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Abstract interconnected.

This paper quantifies the performance of typical func-  In a single-chip system, the interconnect between pro-
tional unit interface designs in single-chip systems. We cessing elements and resources usually involves signifi-
introduce a specific equation to guide the design of opti- cant wiring delay across the chip. To make matters worse,
mal module interfaces. We show how the equation andit is predicted that wire impedance will not scale with
interface considerations lead to more efficient queue struc-shrinks of device feature sizes in future technologies [6],
tures for request buffering. For a specific single-chip which suggests that communication latencies will increase
design, we use simulation to show that: 1) For low request faster than increases in processor performance and mem-
rates, queue structure is relatively unimportant to either ory capacity [1, 5, 6]. The relatively higher communica-
system request bandwidth or service latency; 2) For a nar- tion latencies will necessitate that request control at the
row range of request rates, queue structure has a signifi- processing elements and request handling at the resources
cant impact on system latency but not bandwidth; 3) For be separated by significant numbers of on-chip cycles. To
high request rates, queue structure impacts bandwidth sig-maintain high-performance system bandwidth in the face
nificantly; 4) As request service latencies increase relative of increasing delays, the processor must be able to send
to the queue size, the impact of the queue structurerequests without complete knowledge of whether the
decreases; 5) Given a particular range of request rates, resource has consumed prior requests. To do this, the pro-
the complexity of particular queue structures can be cessor assumes a certain amount of queueing near or in the
traded off with the desired system bandwidth and latency resource. Unless the interface is allowed to drop requests,
performance. For a particular single-chip system, a maxi- the available queueing limits the number of requests that a
mum 29% bandwidth improvement and 60% latency processor can send until a signal indicates that the request
improvement are achieved when using the more efficienthas been consumed. Efficient interface designs must opti-
queue structures. mize this feedback loop.

Multiple processors may be sending requests to a
resource simultaneously. In Figure 1, queues associated
with each processor arbitrate at a resource for limited load
or store ports. Each processor sends requests assuming

Given the hundreds of millions of transistors available

on a single die in today’s technologies, multiple process-
piece of silicon to reduce communication costs between gq H

1. Introduction
ing elements and resources can be integrated onto a single
functional units and to reduce overall system power [1].

The processing elements may be cores in a custom or

semi-custom general purpose multiprocessor [2, 3], appli-

cation-specific embedded devices for telecommunications, l ¢ ¢ ? ¢
multimedia, or consumer electronics applications [1, 4]. M\ A\ yv v
The resources may consist of on-chip memory or other

functional devices. As an example, in the Power4 multi-

processor chip [2], 170 million transistors are used to

implement t\_/vo processor cores and three L2 ca_ch(_e _sllces. 4 St d st ld St T,
The cache is partitioned to reduce latency to individual Cache Cache Cache Cache
cache address locations and to keep physical placemen{ Partition Partition Partition Partition

and wiring flexible. The cores and cache slices are fully Figure 1: Request Interface in a Single-Chip Design




worst-case traffic from the other processors. Ideally, each
processor would have global knowledge of other requests
that would interfere with its own traffic. However, supply-

ing global request information to all processors may not be
practical due to wiring or placement constraints. Other

(A)

Request Interface
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techniques involving the synchronization of processor (®) Processor
activity to eliminate contention may involve complex soft-

ware or hardware locking mechanisms that impact system Queue
bandwidth [7]. Latches

The simplest queue structures on an interface maintain
requests in FIFO order, i.e. the order in which they are sent
to the resource. For specific designs, this constraint may be
too restrictive. Alternatives exist in which requests bypass
prior requests, but that presupposes some mechanism to
maintain fair access to a resource for all requestors, essen-
tially reinstating ordering, which complicates the design
process. FIFO queue structures are useful in many kinds ofof requests into the resource is determined by the rate at
single-chip systems, including the store queues of multi- which the resource can consume the requests. If the arbi-
processors [2, 8], the request and data queues in streamintjation is fair and both processors have queued requests
DSP devices [4], and ASICs designed from off-the-shelf ready to be serviced, then each processor will have
logic blocks, memory and generic interconnect macros for requests accepted at a maximum rate of one every two
fast design turn-around. cycles, or 1/2. When a request is consumed, the processor

In this paper, specific FIFO queue structures are exam-is notified over the interface that an additional queue entry
ined. The practical aspects of their performance can beis available for another request.
understood from botisteady-statend burst-modeanaly- The interface delay in both directions for a specific pro-
ses. Much prior work examines a high-level queuing sys- cessor is shown to be three flow-through cycles. Its
tem interface using qualitative performance models or resource queue is a six-entry simple linear queue, which
analytical techniques that assume infinite queues and nadds six additional cycles of delay for a particular request
multiple outstanding requests from the processor [9, 10].to become visible at the resource port. The total number of
Study of the problem of interface synthesis has yielded cycles in the feedback loop from processor request to
various interface classes that utilize queues [11], but mostreceiving the notification that the request has been con-
works assume FIFO queues without considering the sig-sumed is therefore twelve cycles.
nificance of the details of the queue structures [12-14].  For each processor, the total number of requests out-
Likewise, chip processor simulation studies usually standing can not be higher than the number of queue
describe the necessity of queues for buffering, but few entries since it is not guaranteed that the resource will con-
structural details are provided [15]. Interface classes thatsume any given request. The resource may not accept a
permit request drops, such as network-on-chip systems orequest if it is busy servicing the request of the other pro-
the processor clustering mechanism described in [15], arecessors, or if it is waiting to resolve internal resource con-
beyond the scope of this paper. tention or waiting for data to service previous requests. In

In the next section, specific system interface and queuethe example, the processor can maintain only six requests
structures are examined, and a design equation is givenunanswered since it has only six queue entries.

Section 3 shows how to design queue structures to Assuming a steady-state system in which both proces-
enhance performance and examines queue complexitysors request at the maximum rate and the resource can ser-
tradeoffs. Section 4 describes the performance simulationvice one request every cycle, the consumption rate at the
system used for this study, gives results for specific queueprocessor interface will approach 1/2, so the request rate
structures, and examines performance with respect toout of the processor will approach 1/2. Over the twelve
queue complexity. Section 5 presents the conclusions.  cycle feedback loop, six requests on average can be ser-
viced at a rate of 1/2. Table 1 shows the first six steady-
state requests as they arrive at points A, B, C and D in Fig-
ure 2. Since confirmation of acceptance of the first request

Figure 2 shows a detailed view of an interface for a sys- arrives in cycle 12, the processor can send the next request
tem. Each processor has a request queue of a specifi¢request 7) in that cycle, and the pattern of a request every
length at the request port of the resource. The arbitrationother cycle is maintained with the steady-state request rate
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©
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Figure 2: Request Interface Detail
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matching the consumption rate. a a

Since this number of serviced requests matches the
maximum number of outstanding processor requests, the
design has been optimized for maximum bandwidth.
Defining N to be the maximum number of outstanding
processor requestd| the delay through the queu@,the
maximum service rate at the resource, &nthe one-way
interface delay, then the design is optimized for steady-
state performance in the presence of worst-case traffic
from other processors when:
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If the left-hand side of the design equation becomes

the processor waits for confirmation of request acceptance

from the resource. This implies that the interface delay canand no requests reside in the upper entries, a new request
be reduced without affecting steady-state bandwidth. If the can bypass to the lower entry.

left-hand side becomes smaller than the right-hand side, Bypassing accomplishes three things. First, even
then it is possible that the queue has been designed witithough the processor can not send down more requests
too many entries and can be simplified. In either case, thethan the number of available queue entries, it can group
interface design is not matched to the worst-case steadythose requests to appear more quickly at the resource port.

state service rate at the resource. If the queue is empty, the requests damstdown to the
lower entries in the queue and be serviced more quickly
3. Improving Interface Delays because the delay through the queue is reduced for the first

few requests. This reduces the latency to receive the

The interface design equation (1) shows that interface acceptance indication back at the processor, and more
delay can be increased if the maximum request servicerequests can be sent down sooner. In the interface design
rate at the resource decreases. Likewise, if the service ratequation, theM is effectively reduced for the first few
increases at the resource, the interface delay can beequests, even though it will be at its maximum for the
decreased. If the interface is designed assuming each promaijority of the requests ar@d has not changed. This affin-
cessor requests at the maximum rate, too much delay mayty for bursts of requests separated by quiescent cycles
be built into the interface to provide maximum bandwidth enhances latency performance for some workloads even
if one processor stops requesting for a while. On the otherthough overall bandwidth may not increase.
hand, in a single-chip design spread out over a large area Second, if the resource is in a position to service every
of silicon, there is a minimum delay between modules that processor request that appears, i.e. the other processors are
must exist. Usually the intrinsic delay between processingidle and no internal contention or waiting are occurring,
elements and resources is not negotiable. then, in the interface design equation, in addition to an

However, if the delay on the interface can be reduced increase inG, the M is effectively reduced over a signifi-
dynamically, then requests can potentially be serviced bycant amount of time, and overall interface delay is
the resource more quickly if fewer requests appear at thereduced. Interface matching occurs dynamically. In this
port from other processing elements. One way to dynami-way, a system can be designed to maximize performance
cally reduce interface delay is to design queues that incor-using steady-state delay matching under worst-case traffic
porate request bypassing to lower level entries. Figure 3assumptions and yet still accommodate increased perfor-
shows two six-entry queue designs with one and two levelsmance in those cases when request traffic is limited to one
of bypass. If a queue entry fed by a bypass mux is openor a few processing elements. The design shows an

Table 1: Steady-State Requests (and Cycle of Arrival at a Location in the System of Figure 2)
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increased robustness in the face of changing workloadunload, the top entry shifts if one of the entries down to the
characteristics, and system bandwidth is improved. first bypass is empty and the bypass entries are full or one
Third, a single-chip system designed with bypass of the non-bypasses has a request. The other entries shift if
queues may show improved system scalability as processhere is an entry without a request:
;L)echnologle_s char_1ge. While mterfac_e delays will increase N—B-1 N-B-1 [y N-1 N-B-1
ecause wire resistance and capacitance do not scale, the, hi= G ] g+0 [] e N o+ ] el
0O ; i=0 O

bypass queues implemented at the resources may not need 0 i=0 ji=o '=Nn-B

to change if request traffic is often bursty and resource ser-

vice rates remain efficient. With this enhanced perfor- N—1

mance scalability in the face of technology changes, the € zoShf = G+ [] ﬁ

time needed to reimplement a design to a new technology j=i

decreases. If a entry bypasses it controls the mux and overrides the

Note that the design equation implies that more than ghjft into that entry. An entry bypasses if there are no
NG bypasses will not improve queue performance under requests in the entries above the entry and it has a request
worst case traffic assumptions. Since oNIgrequests can  and either the queue unloads or one of the bypasses below

be serviced irN cycles, any request in the top queue entry j js empty, or the queue does not unload and the bypasses
will have time to propagate to the lowest entry and be ser-pe|ow it have requests:
viced at the maximum rate.

i-1 mpo N=t

O 0O
3.1. Choosing the Number of Bypasses Q={N-B...N-} byp:aooej%}i%ﬁ* [ lejg*j
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The optimal number of bypasses in a design is a func-  Not only are the shift and bypass equations more com-
tion of the system performance under the set of workloadsplicated over the linear queue case, each additional bypass
targeted to run on the design and the increase in complexadds an extra AND or OR signal into each term of the
ity as the number of bypasses increases. If there is a largeyypass equation. The levels of logic can increase signifi-
variety of workloads, more bypasses may be indicated incantly. The cost is either delay or silicon area to replicate
order to deal effectively with the corner-case characteris-terms. In addition, more complex queue structures may
tics of some applications. If the design under consideration complicate the simulation and verification efforts.
is an application-specific design, a specific number may be  To quantify the impact of bypassing, the queue bypass
optimal. configurations for the six-entry queue were coded in

As the number of bypasses increases, the control logicvVHDL and synthesized with IBM’s Booledozer tool to
necessary to choose where to place requests in the queugnd the relative control logic area increases with respect to
increases. Muxes are needed to steer requests from thg linear queue. Synthesis used a typical family of scanna-
input to an entry or to move requests down in the queue.ple latches and logic gates with no more than four inputs
Since requests usually have addresses and control inforor five outputs allowed per gate. The synthesis was exe-
mation associated with them, and in some cases data, addicuted so as to keep timing delay the same for all configura-
tional muxes and control lines need to be implemented fortions at the cost of silicon area. Modelling a one
each bit being moved. These increases lead to increase@anosecond cycle time with intrinsic gate delays of around
silicon usage and power consumption. 50 picoseconds, static timing analysis showed no more

The changes needed in the control equations to imple-than 17 picoseconds of slack difference between any two
ment bypassing give an indication of the increased logic configurations. Table 2 shows the resulting area increases.
complexity. For arN-entry linear queue without bypasses,  Slightly larger increases are seen moving from one to two
a request shifts from the previous entry when the queuepypasses, and from four to five bypasses. Enhanced per-

unloads to t.he resourc@@s set) or when this entry or ON€  Taple 2: Area Increases for 6-Entry Queue with
of the entries below in the queue does not contain a

Bypasses
request: yp
N—1 Number of  |ArealIncrease vs.
gshf = G+ |:| ﬁ Bypasses No Bypass
j=i 1 2.5%
Looking at Figure 3, for a queue withbypasses, if the 2 8.2%
gueue unloads to the resource, the top entry is shifted if 3 10.9%
one or more of the entries down to the first bypass has a 4 12.6%
request, and the other entries shift. If the queue does not 5 18.1%
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Figure 4: A 3-Entry Generalized Queue Structure

formance and scalability for a particular system and appli-
cation may justify a particular area increase.

3.2. Alternative Queue Designs

A more generalized queue structure is sometimes used
as shown in Figure 4. However, the queue itself no longer
enforces the ordering of the requests. Additional bits of
information must be maintained to indicate which request
is the earliest. That information must be factored into the
mux select and the shift and hold control equations for the

queue entries. The generalized queue offers additional

algorithmic flexibility at the cost of significantly more
complicated control logic.

4. Performance Analysis

To verify the queue performance described in the previ-

ous section, the performance model shown in Figure 5 wasY

developed. It consists of two processors, one on-chip L2
cache partition, and an infinite off-chip L3 cache. The first

processor feeds requests through four flow-through latches 4%

to a 6-entry queue feeding the L2 cache partition. The 6-
entry queue can be configured with from zero to five

bypasses. The second processor is modelled as a continus s,

ous requestor to simulate worst-case mux traffic, but no
real requests are generated.

The first processor generates requests statistically with
a configurable request rate when not held off by a lack of
L2 acceptance confirmations, i.e. the queue appears full.
The cache partition models realistic state machines to
buffer requests, arbitrate for the L2 directory and cache,
cast out data to and read data from the L3, and wait for
data operations in the cache. Buffered requests wait for

Processor

Request

Processor

Request
111

Consumed/
Gathered

L3
Cache L2 Cache
, ‘_[DIF Partition

Figure 5: Performance Verification Model

L2 service rate for the purposes of these experiments. It

takes four cycles for the processor to receive confirmation

that the request has been consumed or gathered.

In the first experiment, the L2 cache is assumed to be

infinite, i.e. all request addresses hit in the cache, and there
are no castouts or address collisions. Figure 6 shows the
number of requests that are processed in 100k cycles as
request rates are increased with the queue configured for
zero to five bypasses. For request rates below 35% of

cycles, there are not enough requests to distinguish the
ueue structures, and requests increase linearly.When the
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prior addresses in the same congruence class to complete
operations. L2 hit rates, castout and address collision rates
are statistical and configurable. The best-case latency from,
request acceptance to completion is 25 cycles. The Iatency]!?é
to castout data to the L3 is 40 cycles, and to read data fromg
the L3 is 35 cycles. No data reloads to the processor aref
modelled.

Requests are consumed as the L2 sends them to the
cache. Requests can algmther into an eight-request
block at a rate of 75%. Gathering implies that specific .
requests and their data can be treated together as a single °
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Figure 11: Holdoffs vs. Request Rate, Infinite L3

request rate matches the inherent service rate limit of thecache, the hit rate in the L2 is set to 80% of requests, and
L2, steady-state is reached. This state is reached later athe castout and address collision rates to 30% and 1% of
the queue is configured with more bypasses. As predictedrequests, respectively. The curves resemble those for the
using more than three bypasses does not improve queu@nfinite L2, but the maximum bandwidth improvement has
performance. A 29% bandwidth improvement over the no- dropped to 24% and the latency improvement has dropped
bypass case is achieved. to 53%. Holdoffs to the processor increase faster and are
Figure 7 shows the number of cycles that requests arehigher for three or more bypasses. The curves have lost
held off at the processor because the queue appears filledsome smoothness due to the more realistic L2 behavior
and Figure 8 shows the latency increases that result. Oveland L3 interactions. As the L2 hit rate decreases, because
a relatively narrow band of request-rate increases theof the L3 latency effects, queue effects represent a lower
latency explodes. This is consistent with liaearized percentage of the overall latency, and bypass effectiveness
queue in combination with an inherent maximum service decreases. Experiments for low L2 cache hit rates have
rate at the resource. A linearized queue is a queue in whichshown that, for moderate and high request rates, bypassing
requests are in the top entries most of the time so thatactually decreases performance relative to the linear queue
bypassing is ineffective. because requests are less evenly paced to the resources,
In Figure 9, the latency differences with respect to a which increases contention for L2 state machines and
linear queue are shown. For low request rates, there are notaches.
enough requests to make good use of the bypass capabil- Looking at the area increases in Table 2, and the narrow
ity. For moderate request rates and three or more bypassesegion of bypass effectiveness shown in Figure 9, and con-
a 60% latency improvement over the linear queue is sidering the reduction in effectiveness when the system
shown. Note that this improvement occurs in the presencehas a more realistic memory hierarchy as in Figure 13, a
of worst-case mux usage by the other processor. For highcost-effective queue design might include no more than
request rates, the queue is essentially linearized and littletwo or three bypasses. It should be noted that many appli-
improvement is seen. cations feature request patterns that are bursty in nature.
Figures 10 through 13 show the same curves for a moreBursts of operations separated by many quiescent cycles
realistic L2 and infinite L3. To represent a warmed up may achieve much higher performance using bypass
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