
c

ti
n
c
p
s
r
r

ifi
o
ig
v
r
s
e
c
i
c
e

le
s

e
]

l
n
]
e
ti
to
e
a
e

lly

o-
ifi-
e,

],
se
em-
-
he
rces
To
ce
nd
e
ro-
the
ts,
t a
est

pti-

a
ted
ad
ing

Interface Design Techniques for Single-Chip Systems

Robert H. Bell, Jr. Lizy Kurian John
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-0240

{belljr, ljohn}@ece.utexas.edu
Abstract
This paper quantifies the performance of typical fun

tional unit interface designs in single-chip systems. W
introduce a specific equation to guide the design of op
mal module interfaces. We show how the equation a
interface considerations lead to more efficient queue stru
tures for request buffering. For a specific single-chi
design, we use simulation to show that: 1) For low reque
rates, queue structure is relatively unimportant to eithe
system request bandwidth or service latency; 2) For a na
row range of request rates, queue structure has a sign
cant impact on system latency but not bandwidth; 3) F
high request rates, queue structure impacts bandwidth s
nificantly; 4) As request service latencies increase relati
to the queue size, the impact of the queue structu
decreases; 5) Given a particular range of request rate
the complexity of particular queue structures can b
traded off with the desired system bandwidth and laten
performance. For a particular single-chip system, a max
mum 29% bandwidth improvement and 60% laten
improvement are achieved when using the more effici
queue structures.

1. Introduction

Given the hundreds of millions of transistors availab
on a single die in today’s technologies, multiple proces
ing elements and resources can be integrated onto a sin
piece of silicon to reduce communication costs betwe
functional units and to reduce overall system power [1
The processing elements may be cores in a custom
semi-custom general purpose multiprocessor [2, 3], app
cation-specific embedded devices for telecommunicatio
multimedia, or consumer electronics applications [1, 4
The resources may consist of on-chip memory or oth
functional devices. As an example, in the Power4 mul
processor chip [2], 170 million transistors are used
implement two processor cores and three L2 cache slic
The cache is partitioned to reduce latency to individu
cache address locations and to keep physical placem
and wiring flexible. The cores and cache slices are fu
-
e
-
d
-

t

-
-
r
-

e
e
,

y
-
y
nt

-
gle
n
.
or
i-
s,
.
r
-

s.
l
nt

interconnected.
In a single-chip system, the interconnect between pr

cessing elements and resources usually involves sign
cant wiring delay across the chip. To make matters wors
it is predicted that wire impedance will not scale with
shrinks of device feature sizes in future technologies [6
which suggests that communication latencies will increa
faster than increases in processor performance and m
ory capacity [1, 5, 6]. The relatively higher communica
tion latencies will necessitate that request control at t
processing elements and request handling at the resou
be separated by significant numbers of on-chip cycles.
maintain high-performance system bandwidth in the fa
of increasing delays, the processor must be able to se
requests without complete knowledge of whether th
resource has consumed prior requests. To do this, the p
cessor assumes a certain amount of queueing near or in
resource. Unless the interface is allowed to drop reques
the available queueing limits the number of requests tha
processor can send until a signal indicates that the requ
has been consumed. Efficient interface designs must o
mize this feedback loop.

Multiple processors may be sending requests to
resource simultaneously. In Figure 1, queues associa
with each processor arbitrate at a resource for limited lo
or store ports. Each processor sends requests assum

Processor

Cache

Figure 1: Request Interface in a Single-Chip Design

Ld St

Partition
Cache

Ld St

Partition
Cache

Ld St

Partition
Cache

Ld St

Partition

Processor

c
s
-
b
e
o
-
e

a
n
b

s

e
n

lt

l
o

m
b

s
o
n

0
e
o
ig

ly
w
a

a

u
e
t

x
io
u

s
c
o

at
rbi-
sts
ve
wo
sor

try

-
ts
ch
st
of
to
n-

ut-
ue
n-
t a

o-
n-
In
sts

s-
ser-
the
ate
e
er-
y-
ig-
st
est

ery
ate
worst-case traffic from the other processors. Ideally, ea
processor would have global knowledge of other reque
that would interfere with its own traffic. However, supply
ing global request information to all processors may not
practical due to wiring or placement constraints. Oth
techniques involving the synchronization of process
activity to eliminate contention may involve complex soft
ware or hardware locking mechanisms that impact syst
bandwidth [7].

The simplest queue structures on an interface maint
requests in FIFO order, i.e. the order in which they are se
to the resource. For specific designs, this constraint may
too restrictive. Alternatives exist in which requests bypa
prior requests, but that presupposes some mechanism
maintain fair access to a resource for all requestors, ess
tially reinstating ordering, which complicates the desig
process. FIFO queue structures are useful in many kinds
single-chip systems, including the store queues of mu
processors [2, 8], the request and data queues in stream
DSP devices [4], and ASICs designed from off-the-she
logic blocks, memory and generic interconnect macros f
fast design turn-around.

In this paper, specific FIFO queue structures are exa
ined. The practical aspects of their performance can
understood from bothsteady-stateandburst-modeanaly-
ses. Much prior work examines a high-level queuing sy
tem interface using qualitative performance models
analytical techniques that assume infinite queues and
multiple outstanding requests from the processor [9, 1
Study of the problem of interface synthesis has yield
various interface classes that utilize queues [11], but m
works assume FIFO queues without considering the s
nificance of the details of the queue structures [12-14
Likewise, chip processor simulation studies usual
describe the necessity of queues for buffering, but fe
structural details are provided [15]. Interface classes th
permit request drops, such as network-on-chip systems
the processor clustering mechanism described in [15],
beyond the scope of this paper.

In the next section, specific system interface and que
structures are examined, and a design equation is giv
Section 3 shows how to design queue structures
enhance performance and examines queue comple
tradeoffs. Section 4 describes the performance simulat
system used for this study, gives results for specific que
structures, and examines performance with respect
queue complexity. Section 5 presents the conclusions.

2. Single-Chip System Interface Design

Figure 2 shows a detailed view of an interface for a sy
tem. Each processor has a request queue of a spe
length at the request port of the resource. The arbitrati
h
ts

e
r
r

m

in
t
e

s
to
n-

of
i-
ing
f
r

-
e

-
r
o

].
d
st
-

].

t
or
re

e
n.
o
ity
n
e
to

-
ific
n

of requests into the resource is determined by the rate
which the resource can consume the requests. If the a
tration is fair and both processors have queued reque
ready to be serviced, then each processor will ha
requests accepted at a maximum rate of one every t
cycles, or 1/2. When a request is consumed, the proces
is notified over the interface that an additional queue en
is available for another request.

The interface delay in both directions for a specific pro
cessor is shown to be three flow-through cycles. I
resource queue is a six-entry simple linear queue, whi
adds six additional cycles of delay for a particular reque
to become visible at the resource port. The total number
cycles in the feedback loop from processor request
receiving the notification that the request has been co
sumed is therefore twelve cycles.

For each processor, the total number of requests o
standing can not be higher than the number of que
entries since it is not guaranteed that the resource will co
sume any given request. The resource may not accep
request if it is busy servicing the request of the other pr
cessors, or if it is waiting to resolve internal resource co
tention or waiting for data to service previous requests.
the example, the processor can maintain only six reque
unanswered since it has only six queue entries.

Assuming a steady-state system in which both proce
sors request at the maximum rate and the resource can
vice one request every cycle, the consumption rate at
processor interface will approach 1/2, so the request r
out of the processor will approach 1/2. Over the twelv
cycle feedback loop, six requests on average can be s
viced at a rate of 1/2. Table 1 shows the first six stead
state requests as they arrive at points A, B, C and D in F
ure 2. Since confirmation of acceptance of the first reque
arrives in cycle 12, the processor can send the next requ
(request 7) in that cycle, and the pattern of a request ev
other cycle is maintained with the steady-state request r

Figure 2: Request Interface Detail

Processor

Request

Processor

Consumed

Queue

Request Interface

Latches

(B)

(C)

(D) (A)

Delay Latches

Resource

th
th
h
g

y
ffi

e
e
c

a
h
d

th
d

c
ic
ra

h
e
re
a
n

e
b
th

o

e
e

est

en
sts
up
ort.

ly
first
he
ore
ign

e

les
en

ry
s are
,
n

is
is
ce
ffic
or-
ne
an
matching the consumption rate.
Since this number of serviced requests matches

maximum number of outstanding processor requests,
design has been optimized for maximum bandwidt
Defining N to be the maximum number of outstandin
processor requests,M the delay through the queue,G the
maximum service rate at the resource, andD the one-way
interface delay, then the design is optimized for stead
state performance in the presence of worst-case tra
from other processors when:

If the left-hand side of the design equation becom
larger than the right-hand side, cycles will be lost whil
the processor waits for confirmation of request acceptan
from the resource. This implies that the interface delay c
be reduced without affecting steady-state bandwidth. If t
left-hand side becomes smaller than the right-hand si
then it is possible that the queue has been designed w
too many entries and can be simplified. In either case,
interface design is not matched to the worst-case stea
state service rate at the resource.

3. Improving Interface Delays

The interface design equation (1) shows that interfa
delay can be increased if the maximum request serv
rate at the resource decreases. Likewise, if the service
increases at the resource, the interface delay can
decreased. If the interface is designed assuming each p
cessor requests at the maximum rate, too much delay m
be built into the interface to provide maximum bandwidt
if one processor stops requesting for a while. On the oth
hand, in a single-chip design spread out over a large a
of silicon, there is a minimum delay between modules th
must exist. Usually the intrinsic delay between processi
elements and resources is not negotiable.

However, if the delay on the interface can be reduc
dynamically, then requests can potentially be serviced
the resource more quickly if fewer requests appear at
port from other processing elements. One way to dynam
cally reduce interface delay is to design queues that inc
porate request bypassing to lower level entries. Figure
shows two six-entry queue designs with one and two lev
of bypass. If a queue entry fed by a bypass mux is op

2D M+ N
G
---- 1()=
Table 1: Steady-State Requests (and Cycle of Arriv

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

A 1 2 3 4 5
B 1 2 3 4
C 1
D

e
e

.

-
c

s

e
n
e
e,
ith
e
y-

e
e
te

be
ro-
ay

r
a
t
g

d
y
e
i-
r-
3
ls
n

and no requests reside in the upper entries, a new requ
can bypass to the lower entry.

Bypassing accomplishes three things. First, ev
though the processor can not send down more reque
than the number of available queue entries, it can gro
those requests to appear more quickly at the resource p
If the queue is empty, the requests canburst down to the
lower entries in the queue and be serviced more quick
because the delay through the queue is reduced for the
few requests. This reduces the latency to receive t
acceptance indication back at the processor, and m
requests can be sent down sooner. In the interface des
equation, theM is effectively reduced for the first few
requests, even though it will be at its maximum for th
majority of the requests andG has not changed. This affin-
ity for bursts of requests separated by quiescent cyc
enhances latency performance for some workloads ev
though overall bandwidth may not increase.

Second, if the resource is in a position to service eve
processor request that appears, i.e. the other processor
idle and no internal contention or waiting are occurring
then, in the interface design equation, in addition to a
increase inG, the M is effectively reduced over a signifi-
cant amount of time, and overall interface delay
reduced. Interface matching occurs dynamically. In th
way, a system can be designed to maximize performan
using steady-state delay matching under worst-case tra
assumptions and yet still accommodate increased perf
mance in those cases when request traffic is limited to o
or a few processing elements. The design shows

a

bypass

Figure 3: 6-Entry 1- and 2-level Bypass Queues

e0

e5

e1

e2

e3

e4

bypass 2

e5

e4

e0

e1

e2

e3

a

bypass 1
al at a Location in the System of Figure 2)

t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

6
5 6
2 3 4 5 6

1 2 3 4 5

a

s
e
s
,
e
e
r
h
g

a
e

ry

c
d
e
r
i

is
o
b

g
e
t
e

fo
d
fo
s

le
i
,
u

n

e
ne
ift if

he
o
est
low
ses

m-
ass
e
ifi-
te
ay

ss
in

to
a-
ts
e-

ra-
e
nd
re

wo
es.
o
er-
increased robustness in the face of changing worklo
characteristics, and system bandwidth is improved.

Third, a single-chip system designed with bypas
queues may show improved system scalability as proc
technologies change. While interface delays will increa
because wire resistance and capacitance do not scale
bypass queues implemented at the resources may not n
to change if request traffic is often bursty and resource s
vice rates remain efficient. With this enhanced perfo
mance scalability in the face of technology changes, t
time needed to reimplement a design to a new technolo
decreases.

Note that the design equation implies that more th
NG bypasses will not improve queue performance und
worst case traffic assumptions. Since onlyNG requests can
be serviced inN cycles, any request in the top queue ent
will have time to propagate to the lowest entry and be se
viced at the maximum rate.

3.1. Choosing the Number of Bypasses

The optimal number of bypasses in a design is a fun
tion of the system performance under the set of workloa
targeted to run on the design and the increase in compl
ity as the number of bypasses increases. If there is a la
variety of workloads, more bypasses may be indicated
order to deal effectively with the corner-case character
tics of some applications. If the design under considerati
is an application-specific design, a specific number may
optimal.

As the number of bypasses increases, the control lo
necessary to choose where to place requests in the qu
increases. Muxes are needed to steer requests from
input to an entry or to move requests down in the queu
Since requests usually have addresses and control in
mation associated with them, and in some cases data, a
tional muxes and control lines need to be implemented
each bit being moved. These increases lead to increa
silicon usage and power consumption.

The changes needed in the control equations to imp
ment bypassing give an indication of the increased log
complexity. For anN-entry linear queue without bypasses
a request shifts from the previous entry when the que
unloads to the resource (G is set) or when this entry or one
of the entries below in the queue does not contain
request:

Looking at Figure 3, for a queue withB bypasses, if the
queue unloads to the resource, the top entry is shifted
one or more of the entries down to the first bypass has
request, and the other entries shift. If the queue does

eishf G ej
j i=

N 1–

∪+=
d

ss
e
the
ed
r-
-
e
y

n
r

r-

-
s
x-
ge
n
-
n
e

ic
ue
he
.
r-

di-
r
ed

-
c

e

a

if
a
ot

unload, the top entry shifts if one of the entries down to th
first bypass is empty and the bypass entries are full or o
of the non-bypasses has a request. The other entries sh
there is an entry without a request:

If a entry bypasses it controls the mux and overrides t
shift into that entry. An entry bypasses if there are n
requests in the entries above the entry and it has a requ
and either the queue unloads or one of the bypasses be
it is empty, or the queue does not unload and the bypas
below it have requests:

Not only are the shift and bypass equations more co
plicated over the linear queue case, each additional byp
adds an extra AND or OR signal into each term of th
bypass equation. The levels of logic can increase sign
cantly. The cost is either delay or silicon area to replica
terms. In addition, more complex queue structures m
complicate the simulation and verification efforts.

To quantify the impact of bypassing, the queue bypa
configurations for the six-entry queue were coded
VHDL and synthesized with IBM’s Booledozer tool to
find the relative control logic area increases with respect
a linear queue. Synthesis used a typical family of scann
ble latches and logic gates with no more than four inpu
or five outputs allowed per gate. The synthesis was ex
cuted so as to keep timing delay the same for all configu
tions at the cost of silicon area. Modelling a on
nanosecond cycle time with intrinsic gate delays of arou
50 picoseconds, static timing analysis showed no mo
than 17 picoseconds of slack difference between any t
configurations. Table 2 shows the resulting area increas
Slightly larger increases are seen moving from one to tw
bypasses, and from four to five bypasses. Enhanced p

Table 2: Area Increases for 6-Entry Queue with
Bypasses

Number of
Bypasses

Area Increase vs.
No Bypass

1 2.5%
2 8.2%
3 10.9%
4 12.6%
5 18.1%

e0shf G ej
j 0=

N B– 1–

∪ ej
j 0=

N B– 1–

∪
 
 
 

ej
j N B–=

N 1–

∩ ej
j 0=

N B– 1–

∪+
 
 
 

+=

ei 0≠ shf G ej
j i=

N 1–

∪+=

ei N B– … N 1–,{ , }= byp ej
j 0=

i 1–

∩
 
 
 

ei G ej
j i 1+=

N 1–

∪+
 
 
 

ej
j i 1+=

N 1–

∩+
 
 
 

=

l

e
e
o
s
e

h
n

v
a
L
s

6
e
in
n

i
o
u
t
e
o
fo
l
t
o
n
o
a

t

c
n
th

. It
on

be
ere
the
as
for
of

the
the
formance and scalability for a particular system and app
cation may justify a particular area increase.

3.2. Alternative Queue Designs

A more generalized queue structure is sometimes us
as shown in Figure 4. However, the queue itself no long
enforces the ordering of the requests. Additional bits
information must be maintained to indicate which reque
is the earliest. That information must be factored into th
mux select and the shift and hold control equations for t
queue entries. The generalized queue offers additio
algorithmic flexibility at the cost of significantly more
complicated control logic.

4. Performance Analysis

To verify the queue performance described in the pre
ous section, the performance model shown in Figure 5 w
developed. It consists of two processors, one on-chip
cache partition, and an infinite off-chip L3 cache. The fir
processor feeds requests through four flow-through latch
to a 6-entry queue feeding the L2 cache partition. The
entry queue can be configured with from zero to fiv
bypasses. The second processor is modelled as a cont
ous requestor to simulate worst-case mux traffic, but
real requests are generated.

The first processor generates requests statistically w
a configurable request rate when not held off by a lack
L2 acceptance confirmations, i.e. the queue appears f
The cache partition models realistic state machines
buffer requests, arbitrate for the L2 directory and cach
cast out data to and read data from the L3, and wait f
data operations in the cache. Buffered requests wait
prior addresses in the same congruence class to comp
operations. L2 hit rates, castout and address collision ra
are statistical and configurable. The best-case latency fr
request acceptance to completion is 25 cycles. The late
to castout data to the L3 is 40 cycles, and to read data fr
the L3 is 35 cycles. No data reloads to the processor
modelled.

Requests are consumed as the L2 sends them to
cache. Requests can alsogather into an eight-request
block at a rate of 75%. Gathering implies that specifi
requests and their data can be treated together as a si
blocked request to the cache. This effectively increases

e1e0

a

select

Figure 4: A 3-Entry Generalized Queue Structure

e2
i-

d,
r
f
t

e
al

i-
s
2
t
es
-

u-
o

th
f
ll.
o
,
r
r

ete
es
m
cy
m
re

he

gle
e

L2 service rate for the purposes of these experiments
takes four cycles for the processor to receive confirmati
that the request has been consumed or gathered.

In the first experiment, the L2 cache is assumed to
infinite, i.e. all request addresses hit in the cache, and th
are no castouts or address collisions. Figure 6 shows
number of requests that are processed in 100k cycles
request rates are increased with the queue configured
zero to five bypasses. For request rates below 35%
cycles, there are not enough requests to distinguish
queue structures, and requests increase linearly.When

Processor Processor

L2 Cache
L3

Request
Request

Figure 5: Performance Verification Model
Partition

Consumed/
Gathered

 = ‘1’

Cache

Figure 6: Requests vs. Request Rate, Infinite L2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10 20 30 40 50 60 70 80 90 100

R
eq

ue
st

 O
ps

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

Figure 7: Holdoffs vs. Request Rate, Infinite L2

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100

R
eq

ue
st

 H
ol

do
ffs

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

th
r
e
e
o

a
le
v
h

e
ic

a
n
b

s
i
c
ig
tt

p

nd
of

the
s
ed
re

ost
ior
use
er

ess
ve
ing
ue

rces,
nd

ow
n-
m

, a
an
li-
re.
les
ss
request rate matches the inherent service rate limit of
L2, steady-state is reached. This state is reached late
the queue is configured with more bypasses. As predict
using more than three bypasses does not improve qu
performance. A 29% bandwidth improvement over the n
bypass case is achieved.

Figure 7 shows the number of cycles that requests
held off at the processor because the queue appears fil
and Figure 8 shows the latency increases that result. O
a relatively narrow band of request-rate increases t
latency explodes. This is consistent with alinearized
queue in combination with an inherent maximum servic
rate at the resource. A linearized queue is a queue in wh
requests are in the top entries most of the time so th
bypassing is ineffective.

In Figure 9, the latency differences with respect to
linear queue are shown. For low request rates, there are
enough requests to make good use of the bypass capa
ity. For moderate request rates and three or more bypas
a 60% latency improvement over the linear queue
shown. Note that this improvement occurs in the presen
of worst-case mux usage by the other processor. For h
request rates, the queue is essentially linearized and li
improvement is seen.

Figures 10 through 13 show the same curves for a mo
realistic L2 and infinite L3. To represent a warmed u

Figure 8: Latency vs. Request Rate, Infinite L2

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

Figure 9: Latency Differences (vs. 0 Byp.), Inf. l2

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

La
t D

iff
 (

%
)

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
e
as
d,
ue
-

re
d,

er
e

h
at

ot
il-

es,
s
e
h
le

re

cache, the hit rate in the L2 is set to 80% of requests, a
the castout and address collision rates to 30% and 1%
requests, respectively. The curves resemble those for
infinite L2, but the maximum bandwidth improvement ha
dropped to 24% and the latency improvement has dropp
to 53%. Holdoffs to the processor increase faster and a
higher for three or more bypasses. The curves have l
some smoothness due to the more realistic L2 behav
and L3 interactions. As the L2 hit rate decreases, beca
of the L3 latency effects, queue effects represent a low
percentage of the overall latency, and bypass effectiven
decreases. Experiments for low L2 cache hit rates ha
shown that, for moderate and high request rates, bypass
actually decreases performance relative to the linear que
because requests are less evenly paced to the resou
which increases contention for L2 state machines a
caches.

Looking at the area increases in Table 2, and the narr
region of bypass effectiveness shown in Figure 9, and co
sidering the reduction in effectiveness when the syste
has a more realistic memory hierarchy as in Figure 13
cost-effective queue design might include no more th
two or three bypasses. It should be noted that many app
cations feature request patterns that are bursty in natu
Bursts of operations separated by many quiescent cyc
may achieve much higher performance using bypa

Figure 10: Requests vs. Request Rate, Infinite L3

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70 80 90 100

R
eq

ue
st

 O
ps

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

Figure 11: Holdoffs vs. Request Rate, Infinite L3

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100

R
eq

ue
st

 H
ol

ds

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

f
r
a

d
e

e
e

n

a
t

th
u

n
c
s

e
b
c

p.

d

pp.

-

.

r-
t.

r
n

t-
s,

on

-
n

-
r-

l
-
5.

J.
-
nd
queues than the performance demonstrated here
requests issued with a mean rate. Future work will explo
the performance of bypass queues for burst request p
terns in single-chip systems.

5. Conclusions

This paper quantifies the performance of a typical mo
ule interface design in a single-chip system. We introduc
a specific interface design equation to guide the design
optimal module interfaces for steady-state performanc
We also show how the equation and interface consid
ations lead to a more efficient queue structure design
increase system performance in burst request situatio
For a specific design using system simulation, it wa
shown that system bandwidth and latency effects vary
request rates change. For sparse request rates, queue s
ture is relatively unimportant to either system bandwid
or latency. For a narrow range of request rates, que
structure has a significant impact on system latency but
bandwidth. For high request rates, queue structure impa
bandwidth significantly. As request service latencie
increase relative to the queue size, the impact of the que
structure decreases. Given a particular range of requ
rates, the complexity of particular queue structures can
traded off with the desired system bandwidth and laten

Figure 12: Latency vs. Request Rate, Infinite L3

30

40

50

60

70

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
Bypass 0

Figure 13: Latency Differences (vs. 0 Byp.), Inf. L3

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90 100

La
t D

iff
 (

%
)

Request Rate (%)

Bypass 5
Bypass 4
Bypass 3
Bypass 2
Bypass 1
or
e
t-

-
d
of
.

r-
to
s.

s
s
ruc-

e
ot
ts

ue
st
e
y

performance.

6. References

[1] L. Benini and G. De Micheli, “Networks on Chips: A
new SoC paradigm,” IEEE Computer, January 2002, p
70-78.

[2] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le an
B. Sinharoy, “POWER4 System Microarchitecture,” IBM
Journal of Research and Development, January 2002,
5-25.

[3] K. Diefendorff, “Power4 Focuses on Memory Band
width,” Microprocessor Report, October 6, 1999.

[4] J. Friedman and Z. Greenfield, “The TigerSHARC
DSP Architecture,” IEEE Micro, January 2000, pp.66-76

[5] J. Huk, S. W. Keckler and D. Burger, “Exploring the
Design Space of Future CMPs,” IEEE Conference on Pa
allel Architectures and Compilation Techniques, Oc
2001, pp. 199-210.

[6] V. Agarwal, M. S. Hrishikesh, S.W. Keckler and D.
Burger, “Clock Rate versus IPC: The End of the Road fo
Conventional Microarchitectures,” IEEE Symposium o
Computer Architecture, 2000, pp. 248-259.

[7] J. Hennessey and D. Patterson,ComputerArchitecture:
A Quantitative Approach, Second Edition, Morgan-Kauf-
man Publishing Co., 1996.

[8] M. Johnson,SuperscalarMicroprocessorDesign, PTR
Prentice-Hall, 1990.

[9] M. C. Chiang and G. S. Sohi, “Evaluating Design
Choices for Shared Bus Multiprocessors in a Throughpu
Oriented Environment,” IEEE Transactions on Computer
Vol. 41, 1992, pp. 297-317.

[10] K. S. Trivedi, Probability and Statistics, Englewood
Cliffs, Prentice-Hall, 1982.

[11] A. Rajawat, M. Balakrishnan, A. Kumar, “Interface
Synthesis: Issues and Approaches,” IEEE Conference
VLSI Design, 2000, pp. 92-97.

[12] S. Narayan and D. D. Gajski, “Synthesis of System
Level Bus Interfaces,” IEEE European Conference o
Design Automation, 1994, pp. 395-399.

[13] B.I. Park, I.C. Park and C. M. Kyung, “Interface Syn
thesis for IP-Based Design,” IEEE Asia Pacific Confe
ence on ASICs, 2000, pp.227-230.

[14] A. Baganne, J. L. Phillippe and E. Martin, “A Forma
Technique for Hardware Interface Design,” IEEE Sympo
sium on Circuits and Systems, June 1997, pp. 1592-159

[15] J.M. Parcerisa, J. Sahuquillo, A. Gonzalez and
Duato, “Efficient Interconnects for Clustered Microarchi
tectures,” IEEE Conference on Parallel Architectures a
Compilation Techniques, September 23, 2002.

	Abstract
	1. Introduction
	2. Single-Chip System Interface Design
	3. Improving Interface Delays
	3.1. Choosing the Number of Bypasses
	Table 2: Area Increases for 6-Entry Queue with Bypasses

	1
	2.5%
	2
	8.2%
	3
	10.9%
	4
	12.6%
	5
	18.1%
	3.2. Alternative Queue Designs
	4. Performance Analysis
	5. Conclusions
	6. References

	Interface Design Techniques for Single-Chip Systems
	Robert H. Bell, Jr. Lizy Kurian John
	Department of Electrical and Computer Engineering
	The University of Texas at Austin
	Austin, TX 78712-0240
	{belljr, ljohn}@ece.utexas.edu
	Table 1: Steady-State Requests (and Cycle of Arrival at a Location in the System of Figure 2)
	A
	1
	2
	3
	4
	5
	6
	B
	1
	2
	3
	4
	5
	6
	C
	1
	2
	3
	4
	5
	6
	D
	1
	2
	3
	4
	5

