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Abstract

Optimizing FPGA Architecture for Deep Learning

Workloads

Publication No.

Aman Arora, Ph.D.

The University of Texas at Austin, 2023

Supervisor: Lizy Kurian John

Deep Learning (DL) applications have tremendous computation re-

quirements, making running them on traditional computers (CPUs) very ineffi-

cient. Modern computer systems deploy hardware acceleration, which involves

offloading compute-intensive and memory-intensive tasks to specialized hard-

ware. In the space of hardware acceleration alternatives, Field Programmable

Gate Arrays (FPGAs) lie in the middle of the programmability-efficiency spec-

trum, with Graphic Processing Units (GPUs) being more programmable and

Application Specific Integrated Circuits (ASICs) being more efficient.

FPGAs provide massive parallelism and are reconfigurable, which makes

them very well suited for the fast-changing needs of DL applications. However,
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the generic building blocks available on traditional FPGAs limit the accelera-

tion that can be achieved. Hence, FPGAs trail ASICs by an order of magnitude

in terms of performance. So, how can the gap between ASICs and FPGAs be

minimized, while retaining the strength of FPGAs - the reconfigurability?

This dissertation describes research that aims to find the answer to this

question by proposing new domain-optimized FPGAs for Deep Learning. The

key idea is to integrate new hardware blocks to the FPGA that provide domain-

specialized functionality, while still keeping them largely general and allowing

them to be used with traditional FPGA flows. Specifically, new DL-optimized

FPGAs containing blocks called Tensor Slices and CoMeFa RAMs are pre-

sented. The architecture of these blocks, along with the tradeoffs in exploring

their architectures, is explained. Results show that significant performance

improvement and energy reduction can be obtained for DL applications by us-

ing DL-specialized FPGAs containing these blocks. New benchmarks, called

Koios, developed to explore FPGA architectures for DL are also explained.

These benchmarks are open-sourced and work with VTR (an academic open

source FPGA architecture exploration tool).

New DL-optimized FPGAs, containing Tensor Slices and CoMeFa RAMs,

are significantly more efficient at accelerating DL workloads, while still being

reconfigurable at a fine-grain. With the abundance of DL applications, making

DL-optimized FPGAs is an attractive proposition.
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Chapter 1

Introduction

1.1 Deep Learning and FPGAs

Deep Learning (DL) has become ubiquitous in today’s world. DL is

employed to perform tasks like image classification, natural language process-

ing, sentiment analysis, speech-to-text, etc. Some common applications of DL

include self-driving cars, virtual assistants, drug discovery, recommendation

systems, etc. Owing to the enormous computation requirements of DL work-

loads, traditional computers (CPUs) are not very efficient at executing them.

Therefore, hardware acceleration of DL workloads is commonplace. There are

3 main alternatives for accelerating DL workloads in hardware - Application

Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FP-

GAs) and Graphic Processing Units (GPUs). Table 1.1 compares the various

alternatives for DL acceleration.

ASICs are chips designed to perform a specific type of processing very

efficiently. Architecting, designing and fabricating an ASIC takes multiple

years and is very costly. Programming an ASIC efficiently requires a new

software stack to be built for every ASIC.

GPUs, on the other hand, are chips that were originally designed for the
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GPUs ASICs FPGAs
Generality Turing-complete Specific domain Any custom HW
Architecture Many

cores/threads
Suits target domain Spatial Architecture

HW Specialization Fixed datapath &
memory subsystem

Full flexibility Reconfigurable

Power Consumption High power Most efficient Moderate
Latency Limited IOs +

Fixed memory
hierarchy

Custom IOs & HW IOs + Custom HW

NRE Cost Off-the-shelf Very high Off-the-shelf
Ease of Programming Software (compilers

& libraries)
Build your own stack RTL / HLS / Overlays

Table 1.1: Comparing hardware acceleration alternatives for DL (Source: Vaughn
Betz’s slides at the tutorial on FPGA Architectures for Deep Learning at

International Symposium on Microarchitecture 2022)

highly-parallel graphic workloads. However, in the last two decades, they have

been deployed for multiple applications, including DL. This is because GPUs

(sometimes also called GPGPUs - General Purpose GPUs) offer a powerful

programming model that can be used to express parallel computation eas-

ily. However, GPUs are throughput-oriented machines and have high power

consumption.

FPGAs lie somewhere in the middle of this efficiency-programmability

spectrum. FPGAs are reconfigurable substrates that can be easily configured

at the circuit level to perform any computation. FPGAs provide massive

spatial parallelism, while being power-efficient compared to GPUs. They have

significantly lower NRE (non-recurring engineering) costs compared to ASICs

and, hence, a fast time-to-market. They exhibit low latency owing to (1)

the custom memory hierarchies that can be easily built on them, and (2)
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the presence of configurable I/O (input/output) ports. These ports can be

used to efficiently connect an FPGA to the external world, e.g. sensors in an

application. The challenge with FPGAs is that they are programmed using

hardware description languages (at the register transfer level (RTL)), although

other methods such as HLS (high level synthesis) and overlays (described later

in this section) have become common in recent years as well. Nevertheless, the

dominant ways of programming FPGAs still remains RTL and hence, hardware

level expertise is needed to efficiently use them. FPGAs are extensively used

for Deep Learning because they are very well suited for the rapidly changing

world of DL.

There are 3 main paradigms used for DL acceleration using FPGAs:

1. By implementing a layer-specific accelerator on an FPGA. For exam-

ple, an accelerator for convolution layers or an accelerator for GEMM

(general matrix multiplication). The full DNN (Deep Neural Network)

is executed on a CPU host, and specific layers are offloaded to the ac-

celerator on the FPGA. This paradigm has a limitation that the cycles

spent in transferring data back-and-forth between the CPU host and the

FPGA can degrade performance.

2. By implementing a custom DNN-specific dataflow architecture on an

FPGA. This provides high efficiency as the whole DNN is implemented

in hardware. Different layers are unrolled differently to fit the DNN onto

the FPGA. Such designs are typically generated using HLS (high level
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synthesis) or using script-based generators and/or compilers. HPIPE

[47] is an example of this style. This paradigm provides the best per-

formance among the 3 paradigms because the hardware is specific to an

application.

3. By implementing a flexible software-programmable processor with a cus-

tom instruction set on an FPGA. These processors are called overlays.

They can execute different DNNs without the need to reconfigure the

FPGA with a new bitstream. Microsoft Brainwave [37] architecture is an

example of this style. This paradigm provides a software based approach

to program the accelerator on the FPGA. However, the performance is

reduced because the overlay is generic to support multiple DNNs.

1.2 Motivation and Problem Statement

Many works have compared the performance of FPGAs with ASICs and

GPUs. Zhang et al. show that FPGAs exhibit 5.7× and 2× higher energy

efficiency for VGG16 (a popular Deep Neural Network for image classifica-

tion) compared to GPUs, at batch 1 and 16 respectively [138]. Hall et al.

achieve a 2× lower latency at 1.4× higher throughput for Resnet50 (another

popular Deep Neural Network for image classification) inference, using FP-

GAs compared to GPUs [46]. So, it can be seen that FPGAs provide higher

performance and efficiency compared to GPUs for DL inference. Compared to

GPUs, the challenge with FPGAs in that they are hard to program, because

users have to write hardware descriptions using languages like Verilog, instead
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of coding in a C-like programming language. The bodies of research working

to develop High-Level Synthesis (HLS) and overlays (software programmable

programs with custom instruction sets and hardware, configured onto FPGAs)

are working towards solving this problem.

On the other hand, FPGAs lag behind ASICs in performance. Kuon

and Rose [72] posit that FPGA designs have on average 17× more area, con-

sume 7.1× more power, and are 3× slower compared to ASICs. This study

uses 90 nm technology process, and uses benchmarks that are relatively small

and do not make heavy use of hard blocks (DSP Slices and Block RAMs)

that are common in modern designs. Nevertheless, these results imply an or-

der of magnitude of difference in compute throughput between FPGAs and

ASICs. Boutros et al. find that accelerators for CNNs (Convolutional Neural

Networks) using FPGAs are ∼8× larger and ∼3-6× slower than ASIC accel-

erators. Nurvitadhi et al. compare the performance of LSTMs (Long Short

Term Memory; a common DNN used for time series data such as speech and

text) on FPGAs with ASICs, and find a ∼7× difference in performance per

unit power. These observations bring up a question: Can the gap between

the performance of FPGAs and ASICs for DL workloads be reduced? Finding

the answer to this question is the motivation of the research work presented

in this dissertation.

At their heart, FPGAs comprise fine-grained programmable logic blocks

(LBs), embedded memory structures (RAM blocks), and fixed-function math

units (DSP slices). A more detailed description of these blocks is provided
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in Chapter 2. These generic building blocks make FPGAs flexible, but also

limit the performance that can be achieved with FPGAs for domain-specific

applications like DL. To reduce the gap between ASICs and FPGAs, domain-

optimized FPGAs need to be designed. With the abundance of DL applica-

tions, making FPGAs that are optimized for the DL domain is an attractive

proposition.

The problem statement this dissertation identifies is: How to architect

DL-optimized FPGAs? What aspects of the FPGA architecture need to be

changed to make them better DL accelerators?

1.3 DL Optimized FPGAs

As mentioned in the previous section, this dissertation presents DL-

optimized FPGAs to reduce the efficiency gap between ASICs and FPGAs. To

architect DL-optimized FPGAs, both the compute and the memory aspects of

an FPGA are optimized.

Tensor or matrix operations are at the core of DL applications. These

include matrix-matrix multiplication, matrix-vector multiplication, element-

wise matrix additions and multiplications. Designing a matrix multiplier using

the traditional compute blocks on an FPGA (i.e. logic blocks and DSP slices)

does not result in an efficient implementation. Experiments conducted for this

dissertation show that a 4x4 matrix multiplier on an FPGA is ∼4× slower and

∼10× larger than an ASIC in the 45 nm technology process. This is because

multiple logic blocks and DSP slices have to be connected with each other
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using the inefficient routing/interconnect. To perform matrix multiplication

efficiently on an FPGA, a new hard block called Tensor Slice [7] [13] is added

to FPGAs in this dissertation. These blocks are integrated into the FPGA

fabric (a term commonly used to refer to the fine-grained programmable rout-

ing/interconnect) and connected to the rest of the FPGA like other blocks.

These new blocks support the common matrix operations mentioned above.

By doing this, an average speedup of 2.3× is observed across multiple DNNs,

as shown later in this dissertation. Adding Tensor Slices to an FPGA results

in a minor degradation of performance for non-DL applications (2.3% in Fre-

quency and 7.7% in routed wirelength when 30% of the area of the FPGA is

converted to Tensor Slices). However, DL-optimized FPGA families can be

designed focused on DL applications, and non-DL applications can continue

using non-DL optimized FPGAs.

FPGAs have hundreds of Megabits of on-chip memory in the form of

Block RAMs. These in-fabric RAM blocks can be used to store DNN weights

or activations. They provide high bandwidth to the compute units (logic blocks

and DSP slices) via the programmable routing, thereby consuming power. Ad-

ditionally, the bandwidth available is limited by the number of signals at the

routing interface of the BRAM. To make DL-optimized FPGAs, compute ca-

pabilities are added to the BRAMs on FPGAs in this dissertation. This is done

by adding bit-serial processing elements to the sense amplifiers inside the RAM

block, and by exploiting the dual-ported nature of FPGA Block RAMs. These

new blocks are called CoMeFa RAMs [9]. This reduces data movement through
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the general-purpose routing, reduces the dependence on routing, increases the

available bandwidth, and increases the compute throughput of the FPGA. For

a low area overhead (3.8% for an FPGA with delay-optimized CoMeFa RAMs

and 1.2% for an FPGA with area-optimized CoMeFa RAMs), a speedup of up

to 2.6× is observed in multiple DNNs, as shown later in this dissertation. A

negligible overhead (upto 2.3% in area, less than 0.5% in frequency, less than

0.5% in routed wirelength) is seen on non-DL applications.

1.3.1 Optimizing FPGAs for specific application domains

In this dissertation, DL-optimized FPGAs are proposed. Optimizing

an FPGA for one application could seem antithetical to the idea of an FPGA

at the first glance. However, creating FPGA families targeted towards large

swaths of the application space is not uncommon. For example, Intel Stratix

10 AX family of FPGAs integrate high-performance data converters focused

on RF applications. Lattice Semiconductor’s CrossLink family of FPGAs is

geared towards vision and video processing applications. It hardens MIPI

interfaces and has higher DSP and BRAM to Logic Block ratio. Xilinx’s

recently announced Alveo SmartNIC products contain hardened blocks for

network function acceleration.

While optimizing an FPGA for a specific application may not make

sense, but optimizing an FPGA for large application domains does. DL is a

very large application space, and is rapidly widening. In the future, almost

every application will likely have DL components. Hence, developing families
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of FPGAs optimized for DL is an attractive proposition.

A question arises: When optimizing FPGAs for an application domain,

how much should the extent of specialization be? Introducing too much spe-

cialization for an application domain can be harmful because it reduces the

generality of the FPGA significantly. At that point, the FPGA becomes more

like an ASIC and loses its core strength - reconfigurability. The sweet spot

in the generality-specialization spectrum is extremely difficult to determine.

However, an FPGA architect does not have to define one FPGA architecture

for an application domain. Instead, a family of FPGAs for that application

domain is typically developed. Currently, all FPGA vendors offer FPGAs with

different ratios of LBs : DSPs : BRAMs, and different numbers and sizes of

other components such as hard memory controllers, configurable I/Os inter-

faces, etc. Therefore, for DL, this dissertation does not propose one FPGA

architecture. It leaves out prescribing specific numbers/ratios of each new

block to be added to the FPGA. Different FPGA chips with different propor-

tions of various resources (LBs : DSPs : BRAMs : Tensor Slices : CoMeFa

RAMs) can be created. A user can choose the specific FPGA they need from

the vendor’s catalog based on their application’s needs, similar to how it is

done currently. For example, if a healthcare related product is being devel-

oped and the majority of the application involves signal processing, but some

part of the application involves Deep Learning, an FPGA with a higher ratio

of DSPs and lower ratio of Tensor Slices would be the right choice.

Having said that, although the focus of this dissertation is DL, the op-
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timizations proposed in this dissertation are not entirely DL specific. Other

application domains can take advantage of these optimizations. Tensor Slices

accelerate matrix operations like matrix-matrix multiplication and matrix-

vector multiplication, which are common in HPC (high-performance comput-

ing) applications as well. Additionally, the Tensor Slice can be used for just

multiplications or multiply-accumulate (using the individual PE mode; ex-

plained in Section 4.1.4). CoMeFa RAMs are not DL-specific blocks. They

provide precision-agnostic bit-serial computation capabilities. They can be

used for any application that suits a SIMD paradigm. For example, they can

be used in signal processing and multimedia applications. In Section 5.3, re-

sults of using CoMeFa RAMs for some non-DL benchmarks, like FIR filter,

are shown.

1.3.2 Distinction from CGRAs

A CGRA (Coarse Grain Reconfigurable Architecture) is a reconfig-

urable architecture that operates on coarser granularity than FPGAs. It con-

tains an array of tiles, where each tile is either a processing element or a

memory tile. CGRAs for Deep Learning have been developed [81] [112] [96].

When a CGRA for DL is designed, the software stack has to be built from

scratch.

The work described in this dissertation - DL-optimized FPGAs - is sig-

nificantly different from CGRAs for DL. In a DL-optimized FPGA, the major-

ity of the chip still consists of traditional FPGA blocks that are programmable
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at fine-grain. The key idea of designing a DL-optimized FPGA is to consume

only a small portion of the area of the FPGA for new hardware blocks that

provide DL-specialized functionality. Very importantly, the routing architec-

ture remains the same as that of a traditional FPGA. There are no changes

done to the configurable I/O blocks available on the FPGA as well. This al-

lows a DL-optimized FPGA to be used with traditional FPGA design flows.

A DL-optimized FPGA is programmed just like a traditional FPGA. Some

updates are needed to tools to support the new blocks, but there is no need

to rebuild the entire ecosystem - software stack, learning a new programming

style, etc.

1.3.3 Distinction from DL-specific ASICs

Many DL-specific ASICs have been developed as well [65] [44] [45].

Developing such an ASIC requires significant investment in developing both

the hardware as well as the software stack. However, once such an ASIC has

been developed, it can be a serious contender when a user wants to accelerate

a DL application, especially compared to using a DL-optimized FPGA.

DL-optimized FPGAs provide significant advantages over using DL-

specific ASICs. DL-optimized FPGAs provide configurable I/O blocks that

enable the chip to be connected in a variety of systems, which is not the case

with DL-specific ASICs. In edge applications, the availability of configurable

I/O blocks allows the DL-optimized FPGA to be easily connected to a variety

of sensors.
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A custom memory hierarchy matching the requirements of a future DL

application can be easily created on a DL-optimized FPGA. Similarly, DL-

optimized FPGAs allow for creating custom dataflows by connecting compute

blocks (the new DL-specialized compute blocks as well as traditional compute

blocks) in application-specific ways. Most of the DL-optimized FPGA still

consists of Logic Blocks, which allows for customizing the control flow to a

specific DL application. Such customization is not possible with existing DL-

specific ASICs.

Most applications have only a part that involves DL. Common DL

applications such as computer vision, natural language processing, healthcare,

etc. are not performed in isolation, especially on the edge. There are other

parts of the whole system-level application like gathering real-world data from

sensors, data pre-processing, result post-processing, filtering, dynamic control,

network functions, etc. These parts require hardware acceleration as well. If

a DL-specific ASIC is used, only the DL portion of the application can be

accelerated, and the rest of the application has to be executed on a host CPU,

which is inefficient. However, using a DL-optimized FPGA perfectly fits such

usecases. All parts of the application can be accelerated by the FPGA - the

DL portions can take advantage of the DL-optimized hardware blocks and the

non-DL portions can take advantage of hardware acceleration by using the

traditional FPGA components.
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1.4 Architecture Exploration for DL Optimized FPGAs

The process of FPGA architecture exploration is explained in Chapter

3. In this process, representative benchmarks play a vital role. It is essen-

tial that the benchmarks used capture the markets and application domains

targeted by the candidate FPGA architecture. Using an unrepresentative set

of benchmarks means optimizing for the wrong targets. However, existing

open-source FPGA benchmark suites do not focus on (or even capture any)

benchmarks from the DL domain. Existing suites either have small designs

that are not representative of the modern applications, or do not have DL

specific designs. So, a new benchmark suite called Koios [12] is also developed

as a part of this dissertation. The Koios benchmark suite consists of 40 DL-

specific designs, including original designs, designs re-created from prior works

and proxy/synthetic benchmarks.

1.5 Thesis Statement

Integrating DL-specialized blocks such as matrix multipliers and com-

pute capable RAMs in Field Programmable Gate Arrays (FPGAs) can provide

increased acceleration for Deep Learning (DL) workloads.

1.6 Contributions of this Dissertation

In this section, the contributions of this dissertation are listed.

1. The first contribution of this dissertation is adding new blocks specialized
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for matrix/tensor computations to FPGAs. The architecture, design and

implementation of these new blocks, called Tensor Slices, is described.

The impact of adding Tensor Slices on an FPGA for a variety of DL

benchmarks is quantified, by comparing their performance to a contem-

porary FPGA. The degradation of various metrics such as frequency and

routing wirelength for non-DL benchmarks when deployed on an FPGA

with Tensor Slices is also studied. Additionally, the sensitivity of var-

ious metrics to the percentage of the FPGA area consumed by Tensor

Slices is studied. It is observed that replacing DSP Slices on a mod-

ern FPGA with Tensor Slices results in a speedup of 2.3 × for common

DNNs. Adding Tensor Slices to an FPGA results in a minor degradation

of performance for non-DL applications (2.3% in Frequency and 7.7% in

routed wirelength when 30% of the area of the FPGA is converted to

Tensor Slices).

2. The second contribution of this dissertation is incorporating compute

capabilities in Block RAMs on FPGAs. The architecture and operation

of new compute-enabled BRAM blocks, called CoMeFa RAMs, is de-

scribed. The versatility of CoMeFa RAMs is shown by mapping several

applications with different workload characteristics, with a special focus

on DL applications. Novel processing-in-memory hardware concepts are

introduced while designing CoMeFa RAMs : a configurable processing

element and exploiting dual ported’ness of RAMs to perform computa-

tion. A new way to program these RAMs using a stored program concept
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is also illustrated. Novel processing-in-memory algorithmic concepts are

introduced as well: one-operand-outside-ram (OOOR) operations. The

performance and energy benefits of using CoMeFa RAMs are quanti-

fied for multiple microbenchmarks. It is observed that replacing Block

RAMs on an FPGA with CoMeFa RAMs results in a speedup of up to

2.6× for common DNNs, for a low area overhead (3.8% for an FPGA

with delay-optimized CoMeFa RAMs and 1.2% for an FPGA with area-

optimized CoMeFa RAMs). A negligible overhead (upto 2.3% in area,

less than 0.5% in frequency, less than 0.5% in routed wirelength) is seen

in non-DL applications.

3. The third contribution of this dissertation is creating an open-source

benchmark suite for FPGA DL architecture research. This new bench-

mark suite, called Koios, consists of 40 designs, and they work with

the Verilog-To-Routing (VTR) framework, which is the most popular

framework for FPGA architecture research. A framework for generating

synthetic/proxy benchmarks with specific circuit characteristics is also

introduced. Results of running Koios benchmarks through VTR using

an FPGA architecture model developed to capture complex hard blocks

typical of recent FPGAs are presented. Properties of these benchmarks

are compared to the VTR and Titan benchmarks to highlight the added

value of Koios. Example case studies that use these benchmarks to ex-

plore architecture and CAD optimizations for DL are shown.
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1.7 Dissertation Organization

The remainder of this dissertation is organized as follows:

• Chapter 2 provides background information and describes related work.

• Chapter 3 provides an overview of the methodology used for evaluating

the proposals.

• Chapter 4 presents Tensor Slices, new DL-specific compute blocks for

DL-optimized FPGAs.

• Chapter 5 presents CoMeFa RAMs, new compute-enabled Block RAMs

for DL-optimized FPGAs.

• Chapter 6 describes the Koios benchmark suite, a new suite to explore

FPGA architectures for DL.

• Chapter 7 presents the summary and future work.
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Chapter 2

Background and Related Work

2.1 FPGA Architecture

FPGAs consist of a large number of functional blocks connected using

a configurable interconnect/routing network. The main functional blocks in a

modern FPGA are: Logic Blocks, DSP Slices and Block RAMs.

2.1.1 Logic Blocks

A Logic Block (LB) consists of a cluster of Basic Logic Elements (BLEs)

along with local interconnect. A basic logic element (BLE), shown in Figure

2.1a, consists of a K-input Look-Up Table (LUT) coupled with a flip-flop and

a bypass multiplexer. Common values of K are 4,5,6. A BLE can imple-

ment a logical function of K inputs using the K-input LUT with registered or

unregistered output.

In modern FPGAs, each LUT in a BLE can be fractured into smaller

LUTs to improve utilization. A fracturable K-input LUT can be configured

as a single LUT of size K, or can be fractured into 2 LUTs of size up to K−1.

Figure 2.1b shows an example. Also, instead of 1 flip-flop per BLE, modern

FPGAs have two flip-flops per BLE to accommodate the increased demand
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(a) Basic Logic Element (BLE) (b) A 6-input fracturable BLE

Figure 2.1: Block diagrams of logic elements (adapted from [19])

for flip-flops from highly pipelined designs.

The local interconnect in a Logic Block consists of multiplexers that

allow feeding either the external inputs of the LB or the BLE outputs into

BLE inputs. N is usually used to denote the number of BLEs in a LB, and

usually ranges from 8-10. A Logic Block is shown in Figure 2.2.

Modern FPGA architectures include hardened arithmetic circuitry in

their logic blocks as well. E.g., providing a 1-bit adder at the output of each

BLE pair, and then connecting the carry-out of one adder to the carry-in of

the next adder to form a carry chain along the logic block.

2.1.2 Programmable Interconnect

Most commercial FPGAs use an island-style architecture where the

function blocks are arranged in a 2D array with programmable interconnec-

t/routing between them. Island-style routing consists of 3 components: rout-

ing wire segments, connection blocks, and switch blocks. Figure 2.3 depicts
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Inputs from 
global routing

Outputs to 
global routing

Feedback

Local
interconnect

Figure 2.2: Logic Block architecture (adapted from [19])

this architecture. A connection block is a set of multiplexers that connect

function block inputs to the routing wires. A switch block contains switches

that connect routing wire segments together to realize longer routes. Outputs

from function blocks are also fed into switch blocks. Wire segments of vari-

ous lengths can be used. Parameters of the routing architecture of an FPGA

include: number of routing wires each function block input or output can con-

nect to (typically referred to as Fc), number of other routing wires each wire

can connect to (typically referred to as Fs), the lengths of the routing wire

segments, the routing switch pattern, and the number of routing wires per

channel (typically referred to as W or channel width).
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Function
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Function
Block

Function
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Figure 2.3: Island-style routing architecture (adapted from [19]). Thick solid lines
are routing wires, while dashed lines are programmable switches. Connection and

switch blocks are shaded in yellow and yellow-green, respectively.

2.1.3 Block RAMs

Block RAMs (BRAMs) are static RAMs that provide denser on-chip

storage in FPGAs (denser compared to storing data in flip-flops in LBs). Just

like an SRAM, a BRAM contains a memory cell array, along with peripheral

circuitry that includes row decoders, column decoders, write drivers, sense am-

plifiers and bitline drivers. Typical sizes of BRAMs found in modern FPGAs

are 18 Kilobits, 20 Kilobits and 36 Kilobits. They can be used to implement

buffers, FIFOs, ROMs, register files, etc. FPGA BRAMs contain additional

circuitry that allows them to be configurable to be used for diverse usecases,
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Figure 2.4: Block RAM architecture

and also to connect them to the programmable routing. See Figure 2.4 for de-

tails. The crossbars added to the inputs and outputs improve the routability

of the block by making the pins of the block swappable when connecting to

the programmable routing. BRAMs support single port (1 read or write port),

simple dual port (1 read and 1 write port) and true dual port (2 read or write

ports) modes. They can also be configured in different heights and widths.

For example, a 20 Kilobit memory can be configured in 512x40, 1024x20 and

2048x10 geometries. This is achieved by adding a new block called the width

configurability decoder into the RAM. BRAMs also interface with the routing
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through connection blocks and switch blocks. More recently, a few large RAM

blocks (hundreds of Kilobits in size) have been integrated into FPGA chips as

well.

2.1.4 DSP Slices

DSP slices in modern FPGAs are an evolution of hard multipliers that

were added because implementing multipliers in LBs was inefficient and multi-

plications are commonly used in signal processing, which is a major application

domain for FPGAs. Today’s DSP slices are much more than just multipliers.

They also have input and output registers to enable high frequency operation.

Instead of one multiplier, two or more multipliers may be present, followed by

reduction logic (to add the results of the multipliers) or accumulation logic.

Multipliers of varying precisions are typically supported. E.g. 18x18, 24x24,

25x18 and 27x27. These precisions are commonly used in signal processing ap-

plications. Floating-point multiplications and additions (32-bit IEEE Floating

Point) are also supported in DSP slices in modern FPGAs. These are targeted

towards supporting high-performance computing (HPC) applications. Larger

multipliers can be fractured into multiple smaller multipliers. For example,

the DSP slice could be configured to be used as one 27x27 multiplier or two

18x18 multipliers. Some vendors support a full ALU following the multiplier

instead of just reduction or accumulation logic. Pre-adders (adders before

the multipliers) are also available in some commercial DSP slices. These are

useful in DSP filtering applications. Additionally, dedicated cascade inter-
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connect between neighboring DSP slices is provided to create chains that are

typically used to efficiently implement Finite Impulse Response (FIR) filters.

Multiplexers are provided to bypass some stages, for example, bypassing the

accumulation stage. A high level diagram of the architecture of a DSP Slice

is shown in Figure 2.5.

input x

input chain-in output chain-in

output

output chain-outoutput chain-in

input z

input y

Pre-adder Mul�plier

Adder

Figure 2.5: DSP Slice architecture

2.1.5 IO Blocks

FPGAs also include configurable input-output (IO) blocks that allow

them to communicate with a wide variety of other devices. One set of phys-

ical IOs support many different IO interfaces and standards. FPGA IOs use

buffers that can operate across a range of voltages. IOs are implemented with

multiple pull-up/pull-down circuits. In addition to electrical and timing con-

figurability, FPGA IO blocks contain additional hardened digital circuitry e.g.

a capture register, double to single rate conversion registers (used with DDR

memories) and serial-to-parallel converters. For implementing high speed se-

rial protocols, FPGAs include separate differential IO blocks that can be used
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as serial transceivers.

2.2 DL Acceleration and FPGAs

In the last decade, many architectures have been proposed and deployed

to meet the ever-increasing compute and memory demands of DL workloads.

The Google TPU v1 [65] is an ASIC accelerator for DL applications, im-

plementing a large 256x256 systolic array based matrix multiplication engine

supporting int8 precision. In later generations of the TPU, Google has added

support for more precisions and reduced the size of the matrix multiplier and

increased the number of matrix multipliers on a chip. There are many other

ASIC chips for DL from companies like Sambanova, Habana, Cerebras, Graph-

core, and Groq. Designing these dedicated ASIC chips for DL takes a long

time. Not only the chips, the entire software stack has to be rebuilt as well.

Therefore, the time-to-market and the cost is very high. Also, these chips can

not be easily interfaced with sensors and deployed in an edge scenario. These

chips can only execute DL. However, most applications include a portion that

is DL, but there are other parts that may not be DL specific. So, these por-

tions of the application have to be executed on a host CPU. Additionally, being

dedicated chips, they do not allow a user to customize the dataflow required

for their specific (futuristic) application at the hardware level, limiting their

benefit.

NVIDIA Volta GV100 GPU [92] adds specialized cores called Tensor

Cores to the Streaming Multiprocessors (SMs) on the GPU. Each Tensor Core
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provides a 2D processing array that performs the matrix multiplication opera-

tion on 4x4 matrices in fp16 precision. Different sizes of matrix units and more

precisions have been added by NVIDIA in later versions of these architectures.

The main advantage of using GPUs is that they provide a software approach

of programming them. For example, NVIDIA GPUs provide the CUDA pro-

gramming language and model. However, GPUs are very power hungry and

usually used for training scenarios. GPUs are not a good fit for edge inference

scenarios.

FPGAs offer many advantages in accelerating DL applications primar-

ily because of their reconfigurability - the ability to customize the computation

architecture, variable precisions, low NRE (non-recurring engineering) costs,

low time to market, and easy integration into systems using configurable I/O.

FPGAs provide for spatial parallelism, with tightly integrated on-chip mem-

ory blocks. An instruction stream is not required to be decoded to perform

computation. This leads to low energy and low latency, especially for edge

inference applications. Many FPGA based solutions exist for DL acceleration.

Microsoft’s Brainwave [37] is a soft NPU (Neural Processing Unit) with dense

matrix-vector multiplication units at its heart, implemented on Intel’s Stratix

10 FPGAs. Intel’s DLA [1] uses a 1-D systolic processing element array to per-

form dot product operations commonly required in neural networks. Xilinx’s

xDNN [131] is an overlay processor, containing a systolic array based matrix

multiplier, that can be implemented on Xilinx FPGAs.

There are many accelerators that are designed using OpenCL, instead
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of an HDL [110] [139] [119]. Accelerators leveraging the flexibility of FPGAs

to accelerate sparse workloads have also been proposed [107] [83]. In addition

to accelerators themselves, there are many frameworks to generate efficient

accelerator designs automatically. DNNWeaver [104] and DNNBuilder [140]

are open-source frameworks that generate the Verilog code for an accelerator

specialized for a specified network. Verigood-ML [36] presents an automated

methodology for generating Verilog with no human in the loop, starting from

a high-level description of a DNN in a standard format such as ONNX. The

Verilog RTL can then be implemented on an FPGA.

Highly quantized DNNs, such as Binary Neural Networks or Ternary

Neural Networks, have been proposed to reduce the computation requirements

and memory footprint of DNNs. FPGAs provide bit-level programmability

making it possible to implement such quantized DNNs efficiently. LUTNet

[120] and LogicNets [115] use LUTs as processing elements for performing

inference. FINN [116] and HLS4ML [89] are frameworks for building FPGA

accelerators for quantized DNNs.

While most of the research on FPGAs is targeted towards using FPGA

based accelerators for DNN inference, some recent works have performed train-

ing on FPGAs as well [141] [82] [39] [70]. Training requires large amounts of

data to be accessed from DRAM, and typically FPGAs have less DRAM band-

width compared to GPUs. The other advantage of FPGAs is the low latency

and low energy you can get compared to GPUs. But those are typically not

the goals when training a DNN. Training is better done on something that has
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Table 2.1: Existing DL-specific FPGA Architecture Optimizations

Method Proposal Reference

Changes to Logic Blocks

Extra adder chain [20][33]
Adding more adders in the existing carry chain [20][33]
Shadow multipliers in a logic block [20][33]
Additional 6-input XOR gate [99]

Changes to DSP Slices
Low precision support [18] [98]
Semi-2D chaining capability [98]
Adding a register file for data reuse [98]

Changes to Block RAMs Compute capable BRAMs [124]

New in-fabric blocks Intel AI Tensor Block [75]
Achronix Machine Learning Processor [2]

New out-of-fabric blocks Xilinx AI Engines [132]

New out-of-die blocks Intel Tensor Tile [91]
Intel Tensor RAM [90]

a more software-ish interface (like a GPU) so one can run iterations quickly.

2.3 DL-specific FPGA Architecture Optimizations

The FPGA based solutions mentioned above use traditional FPGAs to

accelerate DL. They do not modify the architecture of the FPGA itself. The

FPGA industry has deployed many DL-specific modifications to the FPGA

architecture in recent years. Several academic research ideas to enhance FPGA

architecture for DL have also been proposed. Table 2.1 lists these proposals.

In this section, an overview of these proposals is provided.

2.3.1 Changes to Logic Blocks

Eldafrawy et al. [33] propose changes to the LB architecture to increase

the compute throughput for mac (multiply accumulate) operations. They ex-
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plore 3 improvements to the LB architecture: (1) adding an extra adder chain

into a logic block to enable more efficient adder compressor trees, (2) fracturing

4-input LUTs to 3-input LUTs to increase utilization and adding adders in the

existing carry chain, and (3) incorporating a shadow multiplier in LBs (shown

in Figure 2.6). Improvement #1 achieves 13-16% area reduction and 10-13%

frequency improvement across multiplication, mac and matrix multiplication

benchmarks. Improvement #2 leads to 1.5× area reduction in matrix mul-

tiplication benchmarks, and up to 10% speedup for several arithmetic-heavy

benchmarks, for only a 3% die area increase. Improvement #3 with 9-bit

shadow multiplier results in a die area overhead of 12%, but leads to a 2.4×

increase in density and 17% speedup on matrix multiplication benchmarks.

BLE

BLE

BLE

BLE

Usable BLEs

Unusable BLEs

Added circuitry
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l 
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rc

on
n
ec

t

Figure 2.6: Logic Block with a shadow multiplier proposed by Eldafrawy et al.
(adapted from [33])

Rasoulinezhad et al. [99] propose augmenting the BLEs in Logic Blocks

with a 6-input XOR tree. This can enable efficient mapping of compressor trees
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onto FPGA logic blocks. Compressor trees are commonly used in adder imple-

mentations. Across many benchmarks they consider, 35% of the compressors

are C6:111, which maps efficiently to their enhanced Logic Block. The sili-

con area overhead of their enhancement is less than 0.5%, and the frequency

degradation is 1-6%. They observe an average reduction of 13-19% in logic

utilization on micro-benchmarks from a variety of domains. Additionally, the

majority of the operations in a Binary Neural Network (BNN) involve the

Xnor-Popcount operation. Compressor trees can be used for this operation.

Using their enhanced Logic Block, an average reduction of 37-47% in area is

seen for BNNs.

2.3.2 Changes to DSP Slices

Use of reduced precisions in DL inference tasks has been shown to

improve performance and reduce the memory footprint of the network. FPGAs

can be used to create custom bit-width datapaths using LBs. But the DSP

slices in most FPGAs do not support precisions below 18-bit. Recent FPGAs

like Intel Agilex [53] and Xilinx Versal [40] have introduced native support

for low precisions like int8, fp16 and bfloat16 DSP slices. Low precisions are

commonly used in DNN inference.

Boutros et al. suggest strengthening DSP blocks by efficiently sup-

porting low-precision multiplications [18]. This is shown in Figure 2.7. Their

enhanced DSP slice efficiently packs 2× as many 9-bit and 4× as many 4-bit

multiplications compared to a baseline Intel Arria-10 like DSP block. The
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cost of these enhancements is only 12% area overhead at the block level, and

only 0.6% at the overall die area. The enhanced DSP slice improved the per-

formance of 8-bit and 4-bit CNN accelerator designs by 1.32× and 1.6× and

reduced the utilized chip area by 15% and 30% respectively.

Figure 2.7: DSP Slice supporting low precision proposed by Boutros et al.
(adapted from [18])

Rasoulinezhad et al. [98] propose 3 changes to the DSP blocks to

improve support for multi-precision DNNs: (1) a flexible precision, run-time

decomposable multiplier architecture, (2) a semi-2D chaining capability that

supports the low-precision multiplier, and (3) adding a register file for data

reuse. Their DSP block is called Precision, Interconnect, and Reuse optimized

DSP (PIR-DSP). Compared with a baseline non-DL optimized DSP, the PIR-

DSP offers a 6× improvement in mac operations per DSP in the 9×9-bit

case, 12× for 4×4 bits, and 24× for 2×2 bits. Additionally, the PIR-DSP
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decreases the run time energy to 31/19/13% of the baseline value, in a 9/4/2-

bit MobileNet-v2 DNN implementation.

2.3.3 Changes to Block RAMs

Wang et al. propose Compute Capable BRAMs (CCB) [124]. They

propose adding compute capabilities into block RAMs (BRAMs) to increase

the computational throughput of FPGAs and reduce interconnect usage. De-

tails are provided in Section 2.4.

2.3.4 New in-fabric blocks

Intel’s Stratix 10 NX FPGAs have in-fabric AI tensor blocks [75], in-

stead of DSP slices. These blocks have 30 MACs and 15× more int8 (8-bit fixed

point) compute than a Stratix 10 DSP slice (7.5× compared to an Intel Agilex

DSP slice). The base precisions are int8 and int4, along with shared exponent

support for block floating point fp16 and fp12. All additions/accumulations

can be done in int32 or IEEE single precision floating point (fp32), and multi-

ple blocks can be cascaded together to support larger matrices. Stratix 10 NX

chip achieves 143 int8/fp16 TOPs/FLOPs, or 286 int4/fp12 TOPs/FLOPs at

600MHz. The architecture of the Intel Tensor Block in the int8 precision mode

is shown in Figure 2.8.

Achronix Speedster7t FPGAs [2] have embedded machine learning pro-

cessor (MLP) blocks that have an array of multipliers, an adder tree and ac-

cumulator, integrated with a memory. Each MLP supports 4x int16, 16x int8
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Figure 2.8: Intel’s AI Tensor Block shown in the int8 mode. There are 3 dot
product units with 10 multipliers each. (from [21])

Figure 2.9: Achronix’s Machine Learning Processor (MLP) (from [2])
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or 32x int4 multiplications. Multiple floating point precisions including fp16,

fp24, bfloat16 and block floating-point (BFP) are also supported. Each MLP

also incorporates two memories that are closely coupled to the multipliers and

accumulator. One memory is a large, dual-port, 72-Kilobit RAM, and the

other is a 2-Kilobit cyclic buffer (for reuse). Hard paths between memory and

other MLP blocks enable high-performance while freeing up general-purpose

routing. A high level architecture of the Achronix MLP is shown in Figure

2.9.

In this dissertation, new in-fabric blocks called Tensor Slices are de-

scribed, which add hardened support for matrix operations like matrix-matrix

multiplication, matrix-vector multiplication and elementwise operations like

addition and multiplication. No existing DL-optimized FPGAs propose adding

in-fabric blocks that can perform matrix operations directly in hardware. For

example, Intel’s AI Tensor Blocks support the dot product operation, and

Achronix’s MLP leaves a compute operation like matrix multiplication to be

mapped to it through the user’s design. Additionally, Tensor Slices support

common DL-specific floating point precisions like fp16 and bf16, whereas In-

tel’s AI Tensor Blocks only support block floating point formats. Tensor Slices

and Intel AI Tensor Blocks are compared quantitatively in later in this dis-

sertation in Chapter 4. In the same chapter, Tensor Slices are also compared

qualitatively with Xilinx AI Engines (mentioned in the next section).
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2.3.5 New out-of-fabric blocks

Xilinx’s Versal Adaptive Compute Acceleration Platform (ACAP) fam-

ily [40] adds AI engines [132] on the same die as the programmable logic (also

commonly referred to as the FPGA fabric). The AI engines are laid out as

2D array of tiles, each containing a VLIW (Very Large Instruction Word)

vector processor, a scalar processor, and tightly integrated memory. There

is a NoC (Network on Chip) based interface to connect the AI engines to

the other resources on the chip, e.g. the FPGA fabric. The AI engines are

software programmable (C/C++), instead of being programmed using HDLs

(Hardware Description Languages) like Verilog. Figure 2.10 shows a high level

architecture of the AI engines.

Figure 2.10: A high level architecture of Xilinx AI Engines (from [132]). Black
rectangles = Interconnect switches, Red arrows = Memory interface, Black arrows

= Stream interface, Green arrows = Cascade interface
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2.3.6 New out-of-die in-package blocks

Chiplet technology involves connecting multiple dies using high-bandwidth

interfaces and packaging them as one chip. The various dies can be ASIC

chiplets, transceiver chiplets, memory chiplets or FPGA chiplets. A high level

diagram is shown in Figure 2.11. For example, Intel’s FPGAs integrate hetero-

geneous ASIC tiles using EMIB (Embedded Multi-Die Interconnect Bridge)

interface in a System-In-Package (SIP). An example of this is integrating

domain-specific accelerator tiles called TensorTiles with an FPGA die in the

same package [91]. The TensorTile supports key matrix/vector multiply/accu-

mulate operations with low precision support, including int4. This approach

does not change the FPGA fabric (allowing reuse of existing ecosystems), and

allows freedom in ASIC design (area/freq/etc. unconstrained by the FPGA

fabric). A 4× improvement in performance of AlexNet is observed with 2

TensorTiles connected to an Intel Stratix 10 FPGA. Another example is in-

tegrating ASIC chiplets called TensorRAM [90] with an FPGA in an SIP to

enhance on-chip memory bandwidth. The TensorRAM chiplet contains low-

latency register files (RF) and SRAMs as well as a number of near-memory

compute units matching the memory bandwidth. The compute units are 64-

wide int8 dot product engines (DPEs) that can be configured as 128-wide int4

or 256-wide ternary or 512-wide binary DPEs. The results show that a small

Stratix 10 FPGA with a TensorRAM (int8) offers 15.9× better latency than

a GPU (using fp32) and 34× higher energy efficiency for several RNN, GRU

and LSTM workloads.
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Figure 2.11: FPGA dies can be integrated with ASIC, XCVR (transceiver) and
memory tiles to create a SIP (System In Package)

2.4 Compute-In-Memory

Compute-In-Memory or Processing-In-Memory (PIM) [43] is the paradigm

of bringing computation closer to the data, instead of moving data to distant

compute units. Many accelerators using PIM have been proposed and de-

ployed: ReRAM based [103] [27] [50], DRAM based [80] [102] [41], and SRAM

based [68] [4] [67] [121].

Computational RAM (or C-RAM) [35] is an architecture where a row

of processing elements (PEs) is added to a memory (DRAM or SRAM) to

convert it into a SIMD processor, as shown in Figure 2.12a. Each PE is pitch-

matched with a memory column (bitline). An instruction is received by the

memory from the host, operand rows (wordlines) are read and stored in the

PEs, the operation is then performed, and the results are stored back into a

row. All PEs in a memory execute the same instruction in a cycle. This is
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Figure 2.12: Two approaches for compute-in-memory

shown to achieve significant speedup for applications like image processing,

databases, computer-aided design, etc.

Jeloka et al. [64] created a logic-in-memory SRAM prototype shown in

Figure 2.12b. where multiple word lines are activated simultaneously and the

shared bitlines can be sensed, effectively performing logical AND and NOR

operations on the data stored in the activated wordlines. This technology is

deployed on CPU caches to transform them into parallel processing engines
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[3], leading to speedups in many applications involving operations like word

count, string match, etc. In Neural Cache, Eckert et al. apply this technology

to DL applications [32], adding processing elements to the sense amplifiers and

deploy bit-serial compute to perform DL operations.

Wang et al. proposed integrating the technology from Neural Cache

into FPGA BRAMs to create Compute Capable BRAMs (CCB) [124]. Speedup

is shown for recurrent neural networks (vanilla RNN, LSTM, and GRU), for

int8 and 8-bit block floating-point precisions. To avoid data corruption because

of multi-row access, the wordline voltage (and hence the frequency of opera-

tion) has to be lowered significantly. An additional row decoder is required

for multi-row access. Additionally, in this architecture, one sense amplifier

for each pair of bitlines (BL/BLB) is replaced with two sense amplifiers (one

with BL/Vref and another with BLB/Vref). The complexity associated with

these changes to the memory array makes this architecture not very practical

to implement on a large scale.

In this dissertation, CoMeFa RAMs are described. These are compute-

capable SRAMs, specifically targeted for FPGAs. CoMeFa RAMs exploit the

dual-ported’ness of FPGA BRAMs instead of activating multiple wordlines to

access two operands and perform computation between them. No existing work

proposes exploiting the dual-ported’ness of FPGA BRAMs. For example, CCB

(based on the same technology as Neural Cache) proposes activating multi-

ple wordlines at the same time, leading to robustness issues. Additionally,

CoMeFa RAMs have more feature-rich processing elements, deploy novel al-
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gorithms (e.g. One Operand Outside RAM (OOOR) operations), and can be

programmed easily (e.g. using a stored program instead of hardcoded FSM).

Two architectures of CoMeFa RAMs with different area delay tradeoffs are

presented. More details of these and quantitative comparison between CCB

and CoMeFa RAMs is presented later in this dissertation in Chapter 5.

2.5 FPGA Benchmark Suites

Several benchmark suites have been curated and used by FPGA archi-

tecture and CAD researchers over the past three decades. Table 2.2 provides

an overview of the features of the different suites. The classic MCNC20 (the

twenty largest MCNC) benchmarks [135] are extremely small (less than 10K

LUTs) and simple designs that do not use any FPGA hard blocks. While

these designs were used in many early CAD and architecture studies such as

[17], they are no longer very representative of modern FPGA use-cases. The

UMass RCG HDL Benchmark Collection [5] has somewhat larger designs of

up to 14, 000 look-up tables (LUTs) mostly representing digital signal process-

ing (DSP) applications. However, this suite does not target an open-source

FPGA framework, which limits its use in architecture and CAD studies as

they generally need modifiable and retargetable CAD tools. The Ground-

hog benchmarks [62] are intended to be architecture independent; they work

with academic tool flows and are targeted towards evaluation of power con-

sumption of FPGAs for mobile computing applications. However, only two

of the benchmarks have HDL realizations (and hence can be run through an
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Table 2.2: Comparing FPGA benchmark suites

Benchmark
Suite

Max.
primitives
per design

Use of
Hard
Blocks

Open
Source
CAD

Captures
DL Domain

MCNC20 [135] 10K × ✓ ×
UMass RCG [5] 14K ✓ × ×
Groundhog [62] 1K ✓ ✓ ×
ERCBench [25] 65K ✓ × ×
VTR [85] 165K ✓ ✓ ×
Titan [86] 1.8M ✓ × ×

implementation CAD flow) and both are very small (under 1, 000 primitives).

ERCBench [25] consists of hybrid hardware/software applications. The designs

in this suite are from the multimedia, wireless communications and cryptogra-

phy domains, and it contains some medium size designs (up to 65, 000 LUTs).

They do not contain DL benchmarks, and do not readily work with academic

(open source) FPGA tools.

VTR [85] has a suite of Verilog benchmarks as well. These VTR

benchmarks vary from small (321 netlist primitives) to medium-sized designs

(165, 809 primitives) and they include applications from several domains in-

cluding image processing, soft processors and arithmetic. The Titan bench-

mark suite [86] contains modern heterogeneous large designs (90K to 1.8M

netlist primitives); these are HDL benchmarks (some of which were generated

from high-level synthesis) that are provided as both as the source HDL and

BLIF [93] format netlists that can be input to VPR [17, 85]. However, they

target a hybrid CAD flow that is architecture-specific, as logic synthesis is

performed using the Intel Quartus tool only for the Stratix-IV architecture.
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In this dissertation, the Koios benchmark suite is presented, which is the

only one that provides large, heterogeneous, architecture-agnostic benchmarks

that work with a completely open-source flow, and focuses on the increasingly

important DL domain. No other existing FPGA benchmark suite mentioned

above satisfies these requirements. They either have small non-heterogenous

designs that do not represent today’s workloads, or do not work with an open-

source CAD flow. None of them have DL-specific circuits. Hence, existing

FPGA benchmark suites are not suitable for DL-specific FPGA architecture

and CAD research. Quantitative comparison of Koios benchmarks with VTR

and Titan benchmark suites is presented later in this dissertation in Chapter

6.
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Chapter 3

Methodology

3.1 FPGA Architecture Exploration

Figure 3.1 shows the FPGA architecture exploration flow. There are

3 main components of this flow: an FPGA architecture model, a suite of

benchmarks and a CAD tool. The FPGA architecture model captures the

information about organization and types of different blocks on the FPGA

and its routing architecture. For the various blocks, there is information such

as the area and delay obtained from circuit-level implementation, and also how

they are arranged on the chip. Additionally, there is information about the

type of modes each block supports (e.g. how many heights and widths are

supported by a Block RAM, what precisions are supported by the DSP Slice,

etc.). For the routing architecture, there is information such as the length of

wire segments, routing channel width, architecture of switch blocks, the type

of switches, etc.

The benchmarks are designs written in an HDL (Hardware Description

Language) like Verilog, or synthesized from an HLL (High Level Language) like

C, using HLS (High-Level Synthesis). These benchmarks should be represen-

tative of the key markets and application domains that the FPGA is targeted
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Figure 3.1: FPGA architecture exploration

towards. Typically, FPGA vendors have proprietary benchmarks obtained

from their customers. But FPGA researchers in the academia use open-source

benchmarks or handcrafted benchmarks for each project.

The CAD tool maps the given benchmarks to the give FPGA archi-

tecture model. It performs 4 main steps: synthesizing the benchmark into

a netlist, mapping and packing the netlist onto the different blocks specified

in the FPGA architecture, placing the mapped blocks at specific locations on

the FPGA grid, and routing the connections between them using the routing

architecture specified in the FPGA architecture model. The tool generates

area, timing and power reports.

To explore FPGA architecture, the process or flow shown in Figure 3.1

is repeated with multiple FPGA architecture candidates for the same set of

benchmarks, and the reports from each candidate architecture are compared

to find the best architecture.

64



3.2 Tools

Experiments employed for this dissertation use the following tools:

• VTR (Verilog-To-Routing) [85] for FPGA architecture exploration

• COFFE [136] for FPGA architecture modeling

• Xilinx Vivado for implementation for Xilinx FPGAs (synthesis, place-

ment and routing)

• Intel Quartus for implementation for Intel FPGAs

• Xilinx Vivado HLS for high level synthesis (from C to RTL (Register

Transfer Level))

• Synopsys VCS for RTL simulations

• Synopsys Design Compiler for ASIC RTL synthesis

• Cadence Encounter for ASIC placement and routing

• Synopsys Primetime for ASIC static timing analysis

• Synopsys HSpice for SPICE simulations

• Python for scripting

• Mako template engine for Verilog code generation
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Figure 3.2: VTR Flow

In this section, these tools are briefly explained. Specific versions are

mentioned when methodology for each dissertation contribution is explained

in the subsequent chapters.

VTR (Verilog To Routing) [85] is the most popular CAD tool for per-

forming FPGA architecture exploration. VTR takes two inputs. The first in-

put is an architecture description file containing information about an FPGA’s

building blocks and interconnect resources. VTR provides a very expressive

XML-based language to describe an FPGA architecture model. The second

input is a benchmark, usually in the form of a Verilog design (or circuit). VTR

synthesizes and implements the design on the given FPGA architecture and

generates resource usage, area and timing reports. The VTR flow is shown in
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Figure 3.2. VTR uses ODIN [63] as its synthesis tool (with Yosys [129] being

recently integrated). ABC [23] is used for logic optimization and technology

mapping. VPR [17] is used for packing, placement and routing. VTR provides

many knobs that can be used to control the behavior of each tool - ODIN, ABC

and VPR. It also provides scripts to run the flow for many benchmarks and

many architecture files easily, and to parse results from generated reports.

To obtain the area and delay values for the various components of an

FPGA (to enter them in the FPGA architecture description file for VTR), an-

other tool called COFFE [136] is used. The COFFE flow is shown in Fiure 3.3.

COFFE is a transistor sizing and FPGA modeling tool. The inputs to COFFE

are the properties of the FPGA architecture (e.g. Number of BLEs in a Logic

Block (N), Number of inputs on each LUT (K), Routing Channel Width (W),

etc.), and the SPICE technology/process model. COFFE performs SPICE

simulations to iteratively optimize the transistor sizing and generates areas

and delays for the various subcircuits in the FPGA tile. This is shown in the

left part of the figure. These subcircuits include routing subcircuits (switch

block multiplexers, connection block multiplexers, local interconnect blocks,

etc.), logic block subcircuits (LUT, LUT drivers, etc.), and RAM block sub-

circuits (row decoder, sense amplifier, configurable width decoder, etc.). The

tool Synopsys HSPICE is used for SPICE simulations.

COFFE also supports a flow in which the core of hard blocks like DSP

Slices or Tensor Slices is implemented using a standard cell flow and the in-

terface to the routing/interconnect (local crossbar, switch block, connection
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block, etc) is implemented in full custom using SPICE. This flow is shown in

the right part of the figure. This hard block flow takes in the configuration of

the hard block (e.g. number of inputs and outputs, height, target frequency,

etc.), the hard block’s RTL and a standard cell library as inputs. It uses

Synopsys Design Compiler for synthesis, Cadence Encounter for placement &

routing, and Synopsys Primetime for timing analysis. Results from these tools

are fed into the transistor sizing iterations to appropriately size the routing in-

terface of the hard block. When running COFFE, a cost factor of area∗delay2

is used as it reflects the greater emphasis on delay compared to area, which is

typical of high-performance FPGAs.

For Verilog simulations, to verify designs generated during the research

described in this dissertation, commercial tools such as Synopsys VCS and

DVE, and Vivado’s integrated simulator are used. Python scripts and Mako

templating library are used for auto generation of Verilog, when needed. Python

scripts are also used for automation of flows, such as running multiple architec-

ture explorations in parallel and parsing results. For performance and energy

modelling, analytical models are used, which are coded using Python. For im-

plementing designs for commercial FPGAs, Xilinx Vivado and Intel Quartus

are used. Xilinx Vivado HLS is used for high-level synthesis of designs, which

involves generating Verilog RTL from high-level languages like C.
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3.3 Libraries and PDKs

SPICE simulations performed for experiments described in this dis-

sertation use the 22 nm transistor level libraries from Predictive Technology

Model [117]. The 45 nm GPDK library from Cadence and the FreePDK45

[88] library are used when a standard cell library (also referred to as a PDK

(Process Design Kit)) is needed, for example, while synthesizing the Tensor

Slice. Scaling factors from Stillmaker et al. [108] are used to scale down from

45 nm to 22 nm.
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Chapter 4

Adding DL-Specialized Compute Blocks in
FPGAs

In this chapter, the first contribution of this dissertation is described:

adding new blocks called Tensor Slices to the FPGA. These blocks are special-

ized for performing tensor/matrix operations like matrix-matrix and matrix-

vector multiplication, which are common in DL workloads. Adding such blocks

to an FPGA helps pack far more compute in the same area footprint and im-

proves the performance of FPGAs for DL applications.

A Tensor Slice is architected and implemented, and the performance

of an FPGA architecture with Tensor Slices (in addition to Logic Blocks,

DSP Slices and RAM Blocks) is compared with an FPGA architecture similar

to state-of-the-art Intel’s Agilex FPGAs. A portion of the FPGA’s area is

converted into Tensor Slices and a significant performance boost is observed

for DL benchmarks. Different percentages of the FPGA area spent on Tensor

Slices are explored.

FPGAs provide flexibility to meet the requirements of a broad range

of applications. Adding Tensor Slices to an FPGA is focused on accelerating

DL applications. It can be a concern that adding such slices may impact the

71



generality of an FPGA, and hence may degrade the performance of non-DL

applications by causing a higher routing wire length and longer critical paths.

To that end, the impact of this contribution on non-DL applications is also

evaluated. The Tensor Slice is enhanced so that it can be fractured into smaller

math units like multipliers and MACs (multiply-and-accumulate) and used for

non-DL workloads.

This part of the dissertation resulted in a paper publication in the ACM

International Symposium on Field Programmable Gate Arrays (ISFPGA) [7]

and an article in the ACM Transactions on Reconfigurable Technology and

Systems (TRETS) [13]. The following contributions from the co-authors of

these papers/articles are acknowledged:

• Samidh Mehta: Verilog implementation of the DSP Slice, and drawing

several diagrams

• Moinak Ghosh: Adding int16 and bf16 support to Tensor Slice, creating

separate implementations for each mode from the full feature Tensor

Slice, and drawing several diagrams

72



4.1 Tensor Slices
4.1.1 Overview

A Tensor Slice is to Deep Learning, just like a DSP slice is to Digital

Signal Processing. DSP Slices support the most common DSP operations like

the MAC operation, along with additions and multiplications. Similarly, Ten-

sor Slices support the most common machine learning operations like matrix-

matrix multiplication and matrix-vector multiplication, along with element-

wise matrix addition, subtraction and multiplication. The matrix-matrix and

matrix-vector multiplication operations are pervasive in DL layers like fully-

connected, convolution and recurrent layers. Element-wise (also referred to

as Eltwise) matrix addition and subtraction is commonly found in layers like

normalization, residual add and weight update. Eltwise matrix multiplication

is used in layers like dropout. The Tensor slice also has support for bias-

preloading and tiling.

Input
Logic

Muxing Logic

Output Logic

Connection Block

Switch
Block

Global
Routing}
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Figure 4.1: High-level block diagram of the Tensor Slice
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Figure 4.1 shows a logical block diagram of Tensor Slice. The total num-

ber of inputs pins (including clock and reset) and output pins on the Tensor

Slice are 310 and 298 respectively. The slice interfaces with the FPGA inter-

connect through connection block (for inputs) and switch block (for outputs),

similar to other blocks on modern FPGAs. Outputs being directly connected

to a switch box instead of using a separate output connection box is referred

to as direct drive [78]. The Fcin and Fcout values used for the Tensor Slice are

0.15 and 0.10 respectively.

The slice has a 50% sparsely populated local input crossbar, that makes

the input pins of the slice swappable and, hence, increases the routability of

the FPGA. There are no feedback paths from the outputs of the slice feeding

into the inputs via the crossbar. As seen later in Section 4.2.3, because of the

large number of inputs on the Tensor Slice, this crossbar is large in area and

adds a significant amount of delay, reducing the achieved frequency. There are

multiple ways to reduce this area and delay. One is to reduce the population of

the crossbar to below 50%. This is similar to experiments done in prior work

[84] [77]. Another method is to have multiple smaller crossbars instead of one

large crossbar as explored by Yazdanshenas et al. [136]. As shown later, the

Tensor Slice spans 8 rows on the FPGA grid. So, the crossbar could be split

into 8 smaller crossbars. Both these methods reduce the area and delay of

the crossbar, but also reduce the routability of the Tensor Slice. This tradeoff

analysis between crossbar area (and delay) and routability is not done in this

dissertation and is left as future work.
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The core of the Tensor Slice is a 2D array of 16 processing elements

(PEs) along with control logic. Each PE consists of a multiplier and an adder

which can act as an accumulator when a MAC operation is desired. The

control logic consists of input logic, output logic and muxing logic. The input

logic sets the input data correctly (e.g. appropriately delay it for systolic

computation) to be processed by the PEs. The output logic selects the output

data appropriately from the PEs and shifts it out. The muxing logic selects

between various modes of operation of the slice.

The PEs are arranged as a 2D systolic array. Systolic arrays allow

reusing a piece of data multiple times and never having to read it again, mak-

ing them very efficient for compute-intensive tasks like matrix multiplication.

Only the PEs along the left column and the top row of the 2D PE array have to

interface with the programmable routing. Other PEs receive data from neigh-

boring PEs. This allows for a reduced I/O footprint, which is very important

to connect a block in an FPGA. Low pin density avoids increasing channel

width and reduces routing congestion.

Tensor Slices are laid out along columns in the FPGA, similar to how

other blocks (Logic Blocks, DSP Slices and Block RAMs) are laid out in a

modern island-style FPGA. Some other layouts of large blocks like the Tensor

Slice are explored in prior work [137] [8], but it is decided to keep the column

layout. This allows for easy adoption of the proposal, because this makes

FPGA design flow similar to current existing flow and also leads to fewer

updates to FPGA CAD tools to support a new block.
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The Tensor Slice supports four precisions natively: 8-bit fixed-point

(int8), 16-bit fixed-point (int16), IEEE half-precision (fp16) and Brain Float-

ing Point (bf16) [52]. These are the most commonly used precisions in DL

inference and training. In int8 mode, all multiplications happen in int8, but

accumulations are done in 32-bit fixed-point (int32). In int16 mode, all mul-

tiplications happen in int16, but accumulations are done in 48-bit fixed-point

(int48). In the fp16 and bf16 modes, all multiplications happen in fp16 and

bf16 respectively, but accumulations are done in IEEE single precision (fp32).

There are two primary modes of operation of the Tensor Slice: Tensor

mode and Individual PE mode. In the Tensor mode, the slice operates on

matrix inputs, whereas in Individual PE mode, it operates on scalar inputs.

There are five sub-modes of the Tensor mode: Matrix-Matrix Multiplication,

Matrix-Vector Multiplication, Eltwise Addition, Eltwise Subtraction and Elt-

wise Multiplication. There are two sub-modes of the Individual PE mode:

Multiplier and MAC. All the modes and sub-modes supported by the Tensor

Slice are shown in Figure 4.2. The mode of operation of the slice is dynamically

selectable. That is, the mode bits can be changed during run-time without

requiring reconfiguration of the FPGA.

As discussed later in this section, the Tensor Slice supports 4x4 matrices

in the Tensor mode for the 16-bit precisions, and 8x8 matrices in the Tensor

mode for the 8-bit precision. An exploration of the Tensor Slice size to use is

performed. Sizes from 2x2, 4x4, 8x8, 16x16 are explored.

Designing large matrix multipliers using smaller Tensor Slices means
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Figure 4.2: Modes supported by the Tensor Slice

using the FPGA programmable routing for any communication between the

slices. Larger slices (e.g. 16x16x16) lead to less area, reduced routing wire-

length and reduced power consumption for a given design, but they also lead

to more routing area per block, increased channel width and increased routing

wire segments per net.

The problem of under-utilization or fragmentation happens when a big

Tensor Slice block (e.g. 16x16x16) is available, but a smaller matrix multipli-

cation problem (e.g. 12x12x12) is to be calculated. This also happens when

a larger problem size (e.g. 14x14x14) is to be calculated, but smaller Tensor

Slices are available and do not evenly divide the edges of the problem size (e.g.

8x8x8). Providing smaller sized Tensor Slices on an FPGA means having less

under-utilization and fragmentation problems, compared to providing larger

sized Tensor Slices.

Results of this exploration are shown in Section 4.3.1. Sizes 4x4 and

8x8 have the best tradeoffs, and having one slice with 4x4 for 16-bit precisions

and 8x8 for int8 precision allows the most reuse of the I/Os as well.
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4.1.2 Processing Element

For this section, each processing element (PE) in the Tensor Slice is

referred to as a physical PE, and the logic/circuitry required to process 1

matrix element is referred to as a logical or functional PE. There are 16 physical

PEs in the slice. In 16-bit precision modes, the slice needs to process 16 matrix

elements. So, there is a one-to-one correspondence between a physical PE in

the slice and a logical PE required in 16-bit precision modes. For example,

logical PE00 is physical PE00 of the slice, logical PE01 is physical PE01 of

the slice, and so on up to PE33. However, in 8-bit precision mode, the slice

processes 64 matrix elements, so it needs 64 logical PEs. Because of hardware

sharing, each physical PE in the slice acts as 4 logical 8-bit PEs. So, physical

PE00 in the slice maps to logical 8-bit PE00, PE01, PE02, PE03. Physical

PE01 in the slice maps to logical 8-bit PE04, PE05, PE06, PE07. And so

on. Figure 4.3 shows the diagram of one physical processing element (PE)

configured for 8-bit precision operation (int8) as 4 logical PEs and for 16-bit

precision operation (int16/fp16/bf16) as 1 logical PE.

Each PE consists of registers for shifting input data and a MAC. The

MAC is shown in Figure 4.4. The figure also shows the multiplexing in the

MAC required for the individual PE mode. Logically, the MAC consists of a

multiplier and an adder. But to enable hardware sharing between the integer

and floating point modes, the MAC contains multiple small-sized adders and

multipliers which are combined to form larger adders and multipliers, along

with multiplexing logic, floating-point logic (aligning, normalizing, executing,
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rounding, etc.) and pipelining registers. There are 4 8-bit multipliers and 16

8-bit adders in the MAC block.
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Figure 4.4: Functional diagram of the MAC block which forms the core of a PE

When operating in the int8 mode (Figure 4.5a), 4 int8 multiplications

and 4 int32 additions are required. The 4 8-bit multipliers are directly used,

and 4 int32 additions are performed by combining the 8-bit adders. When

operating in the int16 mode (Figure 4.5b), 1 int16 multiplication and 1 int48

addition is required. The multiplication uses 4 8-bit multipliers along with

10 8-bit adders to add the partial sums. The int48 addition is performed by

combining 6 8-bit adders.

In floating point modes, the floating point logic reuses the 8-bit mul-

tipliers and 8-bit adders as required. In fp16 mode (Figure 4.5c), 1 fp16

multiplication and 1 fp32 addition are required. The fp16 multiplication logic

needs to do an 11-bit multiplication (for mantissas), for which it uses the 4

8-bit multipliers and 8 8-bit adders (to add partial sums). It also needs a 5-bit
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addition (for exponents), for which it uses 1 8-bit adder. In bf16 mode (Figure

4.5d), 1 bf16 multiplication and 1 fp32 addition are required. The bf16 mul-

tiplication logic needs to do an 8-bit multiplication (for mantissas), for which

it uses 1 8-bit multiplier. It also needs an 8-bit addition (for exponents), for

which it uses 1 8-bit adder. For the fp32 addition (required by both fp16 and

bf16 modes) uses the same hardware. In the implementation of the fp32 adder,

it needed 1 24-bit addition and 3 8-bit additions during its various stages. For

this, it uses 6 8-bit adders. Some 8-bit adders stay unused in floating point

modes.

4.1.3 Tensor Mode

The I/O (Input/Output) pins on the Tensor Slice in Tensor mode are

shown in Table 4.1. The Tensor Mode is configured by setting the mode input

to 0. When configured to use int8 precision (dtype = 00), the Tensor Slice acts

on 8x8 matrix operands and generates a 8x8 matrix result. In int16 (dtype =

01), fp16 (dtype = 10) and bf16 (dtype = 11) precisions, the Tensor Slice acts

on 4x4 matrix operands and generates a 4x4 matrix result. By doing this, the

I/O pins of the Tensor Slice can be fully utilized in each mode. Also, there

are ample opportunities to share hardware between 4x4 fp16/bf16/int16 and

8x8 int8 array of processing elements.

The Tensor Slice performs a tensor operation over multiple clock cycles.

The input start is asserted to start the operation. The input matrices/vector

would typically be stored in RAM blocks and some control logic implemented
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Table 4.1: Inputs (I) and outputs (O) of the Tensor Slice in Tensor mode

I/O Signal Bits I/O Signal Bits
I clk 1 I a_data_in 64
I reset 1 I b_data_in 64
I mode 1 I valid_mask_a_rows 8
I accumulate 1 I valid_mask_b_cols 8
I preload 1 I valid_mask_a_cols_b_rows 8
I dtype 2 I final_op_size 8
I op 3 I out_ctrl 1
I start 1 O b_data_out 64
I x_loc 5 O a_data_out 64
I y_loc 5 O c_data 160
I a_data 64 O c_data_available 1
I b_data 64 O flags 8
I no_rounding 1 O done 1

in soft logic would read the RAM blocks to feed the inputs to the slice. Alter-

natively, inputs may be generated from some upstream logic (e.g. hardware

for the previous layer of a neural network) and fed directly into the slice with-

out being stored in a RAM block. As the input matrices/vector are fed into

the slice, control logic inside the slice orchestrates the data and applies the

right data elements at the right time to specific PEs. When the output data is

available in the PEs, it is sent out on c_data and flags. If out_ctrl is 0, the

output data is automatically shifted out cycle-by-cycle when it is ready, but

the user can control when to shift it out by setting out_ctrl to 1. The out-

put c_data_available is asserted when output data is valid on c_data and

flags. flags contain the logical OR of the exception flags from the PEs in a

column and are only valid for floating-point precisions. The output data can

be stored in a RAM block, or directly fed to downstream logic (e.g. hardware
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for the next layer of a neural network) as it is generated by the slice. When

the entire operation is done, the slice asserts the done signal.

Although the size of the matrix operations performed by the Tensor

Slice are 4x4 and 8x8, the Tensor Slices can be chained to perform larger

matrix operations. Section 4.1.3.4 provides details about this. Similarly, the

Tensor Slice can support non-square inputs as well. For this purpose, there

are validity masks for the inputs. This is done using valid_mask_a_rows,

valid_mask_a_cols_b_rows and valid_mask_b_cols pins on the slice. For

example, when multiplying a 6x4 matrix with a 4x7 matrix in int8 mode, the

values of these inputs can be 8’b0011_1111, 8’b0000_1111 and 8’b0111_1111

respectively. Note that the number of columns in input matrix A is required

to be the same as the number of rows in input matrix B.

In Tensor mode, bias and tiling support can be enabled. For bias

(controlled using preload), the Tensor Slice supports pre-loading the PEs

with an input matrix, which is effectively added to the result of the subsequent

matrix operation. For tiling (controlled using accumulate), the Tensor Slice

supports the choice of not-resetting the results in the PEs before starting

another operation. This can be used in performing tiled or blocked matrix

multiplications, where the partial sums need to be accumulated across tiles or

blocks.
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4.1.3.1 Matrix-Matrix Multiplication (matmul) Mode

The matrix-matrix multiplication mode is enabled when op = 000. The

matrix-matrix multiplication operation in the Tensor Slice is done systolically.

Only the PEs along the left column and the top row of the 2D PE array receive

external data. Other PEs receive data from neighboring PEs. The elements

of the first input matrix (matrix A) move from left to right, and the elements

of the second input matrix (matrix B) move from top to bottom. The result

is calculated during the shifting process, and it stays in the respective PE

until its computation is done. After that, the resulting matrix (matrix C) is

shifted out left to right column-wise in a pipelined fashion. When the results

are being shifted out, another tensor operation can be started on the Tensor

Slice.

Elements of one operand matrix are applied column-wise to the input

a_data. Elements of the second operand matrix are applied row-wise to the

input b_data. In one cycle, 8 int8 elements or 4 int16/fp16/bf16 elements are

applied to a_data and the same number of elements are applied to b_data.

The output data is available on c_data and flags. In one cycle, results from

one column of PEs are shifted out (See Section 4.1.3.5 for more details). Only

128 bits of c_data and 4 bits of flags are used in this mode.

Figure 4.6 (a) shows the systolic setup of data from matrix A (left-to-

right). See the path from a_data to the PEs through the flip-flops and A-mux.

The muxing required for chaining (A-mux) that selects between a_data and

a_data_in is discussed later in Section 4.1.3.4. Figure 4.6 (b) shows the
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same logic, but for data from matrix B (top-to-bottom). Figure 4.6 (c) shows

the movement of matrix A elements (in red) and matrix B elements (in yellow)

through the PEs. Figure 4.6 (d) shows the shift out of the results (i.e. data

for matrix C).

Matrix-matrix multiplication operation in the tensor mode is the most

compute intensive operation done by the Tensor Slice. When using 16-bit pre-

cisions (int16, fp16, bf16), the slice performs 16 MAC operations in 1 cycle.

So the math throughput of the slice is 16 MACs/clock. When using 8-bit pre-

cision (int8), the slice’s math throughput is 64 MACs/clock. To keep the slice

fed with data, it reads 8 16-bit elements every clock cycle in 16-bit precision

modes and 16 int8 elements every clock cycle in int8 precision mode. So, the

on-chip memory bandwidth requirement of the Tensor Slice is 16 bytes/clock.

4.1.3.2 Matrix-Vector Multiplication (matvec) Mode

The matrix-vector multiplication mode is enabled when op = 100. The

matrix-vector multiplication operation in the Tensor Slice is also done systoli-

cally. The elements of the matrix move from left to right and the elements

of the vector move from top to bottom. The result is calculated during the

shifting process, and it stays in the respective PE until its computation is

done. After that, the resulting vector is shifted out column-wise in 1 cycle.

Elements of the input matrix are applied column-wise on the input

a_data. Elements of the input vector are applied to b_data. Note that only

8 bits of b_data are used for int8 precision, and 16 bits of b_data are used
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Figure 4.6: Various aspects of operation of the Tensor Slice
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for int16/fp16/bf16 precisions. Since there is only 1 column in a vector, this

implies only the PEs in one column of the 2D PE array are utilized. An

opportunity to improve the utilization of PEs is identified by observing that

there are many I/O pins on the Tensor Slice that are required only for the

matrix-matrix mode, but are not required in matrix-vector mode (and eltwise

modes as well). Multiplexers are added in front of the PEs in the third column

to expose them to already-existing unused I/O pins so that these PEs can also

be loaded directly from the outside (instead of getting data from PEs to their

left). Through this set of wires (called second_a_data), another matrix can

now be fed in the matrix-vector mode. This is shown in Figure 4.7. This is

a slight deviation from a pure systolic design, in which only the PEs on the

periphery read/write data from outside. However, the overhead of adding this

feature is low, and the utilization of the slice doubles in the matrix-vector

mode. More multiplexers can be added to PEs in other columns and rows

to further increase the utilization of the Tensor Slice in matrix-vector mode.

However, this will require new I/O pins to be added to the Tensor Slice. I/O

pins on a block in the FPGA fabric are costly in terms of area (larger local

crossbar) and routing (more congestion). Adding multiplexers also increases

the combinatorial delays of timing paths going through them. So, the cost-

benefit tradeoff needs to be carefully studied before adding multiplexers to

more columns and rows.

The second vector can be fed from the bits of b_data that are unused in

this mode. With this enhancement, two independent matrix-vector products
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can be calculated at the same time in the slice. Some other unused I/Os can

be used for validity masks and for reading out the output results. Here is the

mapping of I/O pins used for the reading a second matrix and a second vector,

and for outputting a second result in the Matrix-Vector Multiplication mode:

• second_a_data is mapped to a_data_in

• second_validity_mask_a_rows is mapped to validity_mask_b_cols

• second_validity_mask_a_cols_b_rows is mapped to b_data[23:16]

• num_rows_matrix is mapped to final_op_size

• num_cols_matrix is mapped to b_data[31:24]

• second_b_data is mapped to b_data[47:32]

• second_c_data is mapped to {c_data[159:128], b_data_out[63:48],

b_data_out[31:16], a_data_out[63:0]}

• second_flags is mapped to flags[7:4]

The num_rows_matrix is used to specify the number of rows of the

matrix, whereas the number of columns in the matrix (and hence the number

of elements in the vector) is specified using num_cols_matrix. These are

used inside the Tensor Slice to calculate the number of cycles elapsed to start

shifting out the results and to assert the done signal.
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In matrix-vector multiplication mode, when using 16-bit precisions, the

slice performs 8 MAC operations in 1 cycle (4 in column 1 and 4 in column

3). So the math throughput of the slice is 8 MACs/clock. When using 8-

bit precision, the slice’s math throughput is 16 MACs/clock. To keep the

slice fed with data, it reads 10 16-bit elements every clock cycle in 16-bit

precision modes, and hence the on-chip memory bandwidth requirement is

20 bytes/clock. Similarly, it reads 18 int8 elements every clock cycle in int8

precision mode, and hence, the on-chip memory bandwidth requirement is 18

bytes/clock.

4.1.3.3 Eltwise Modes

Element-wise matrix operations are supported by the slice as well, and

can be performed by selecting the right settings of the op pins (op = 001 =>

eltwise multiplication; op = 010 => eltwise addition; op = 011 => eltwise

subtraction). For the eltwise operations, the elements of the first matrix move

left to right and the elements of the second matrix move from top to bottom.

The result calculation happens after all inputs have reached their respective

locations in the PE array. This method of moving data through the PEs in

eltwise mode increases the number of cycles required for an eltwise operation.

The enhancement used for matrix-vector mode to increase the utiliza-

tion of PEs can be extended to reduce the cycles required in eltwise mode by

2×. Instead of only feeding data into the 2D PE array from the left-column

and top-row, additional PEs internal to the array can be fed, without adding
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Figure 4.7: Exposing internal PEs to increase the utilization in matrix-vector
multiplication mode and reduce the number of cycles in eltwise modes.

any extra I/O cost. For matrix-vector multiplication mode, the third column is

exposed on existing I/Os. In addition to exposing the third column, the third

row is also exposed in eltwise mode. This enables loading of two columns of

matrix A and two rows of matrix B at the same time, doubling the loading
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speed without adding any I/Os. The cost is a few multiplexers. I/Os unused

in matrix-matrix multiplication mode are used for reading out the output re-

sults. This is also shown in Figure 4.7. The following list shows the mapping

of I/O pins used for the reading a second matrix and a second vector, and for

outputting a second result in Eltwise Modes:

• second_a_data is mapped to a_data_in

• second_b_data is mapped to b_data_in

• second_c_data is mapped to a_data_out[63:0]

• second_flags is mapped to flags[7:4]

4.1.3.4 Chaining

Multiple Tensor Slices can be chained to perform operations on larger

matrices. This is useful in matrix-matrix and matrix-vector multiplication

operations. Figure 4.8 shows a logical view of 4 Tensor Slices chained in x and

y directions to perform a larger matrix-matrix multiplication operation (e.g. a

8x8 matrix multiplied with a 8x8 matrix using 4 slices in fp16 mode). Signals

a_data_in and a_data_out are used to chain the inputs from matrix A along

the x direction. The signals b_data_in and b_data_out are used to chain

the inputs from matrix B along the y direction. Only the Tensor Slices at the

periphery are fed inputs. Inputs flow through the slices through the chains.

The c_data signal contains the output of the Tensor Slice. It can be chained
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Figure 4.8: Multiple Tensor Slices can be chained together to perform larger
matrix-matrix multiplications. Here, 4 slices are shown to be chained together in x

& y direction (logically).

with the output from neighboring Tensor Slices using soft logic or directly

consumed from each Tensor Slice block, depending on the requirements of the

user’s design.

Note that the figure shows a logical connectivity of the slices in the x

(horizontal) and y (vertical) directions. Physically, these slices can be any-

where on the FPGA. For example, 4 Tensor Slices in one grid column of the

FPGA could be connected to perform a larger matrix operation. The inputs

x_loc and y_loc are used to specify the logical location to the slices. Note

that x_loc and y_loc do not determine or are related to the physical location
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of a slice in the FPGA grid. These signals are decoded internally to select

the correct input port(s) whose data should feed the PEs. For example, the

top-left slice in the logical grid of slices has {x_loc,y_loc}=00, implying that

this slice should use the input data received at a_data and b_data ports. The

bottom-right slice in the logical grid of slices has {x_loc, y_loc}=11, imply-

ing that this slice should use the inputs received at a_data_in and b_data_in

from its logical neighbors to the left and top respectively. Not only do dif-

ferent slices in a logical grid receive data from different ports, they get data

at different times as well. For example, the inputs going into the slice with

{x_loc, y_loc}=11 are delayed with respect to the inputs going into the slice

with {x_loc, y_loc}=00. x_loc and y_loc are also used in the control logic

in the slice to sample the incoming data at the appropriate time.

The input final_op_size is used to specify the overall size of the

matrix operation being performed. In the case of the example shown in Figure

4.8, assuming int16 operation, the final_op_size will be set to 8, because 4

slices are connected together, and each slice performs a 4x4 matrix operation.

This signal is used in the control logic in the slice to determine when the

computation is finished and when to start shifting out the result.

Consider a matrix-matrix multiplication, where a MxK matrix is multi-

plied with a KxN matrix. For large values of M, the Tensor Slices are chained

in the y (logically vertical) direction. For large values of N, the Tensor Slices

are chained in the x (logically horizontal) direction. For large values of K,

instead of chaining, typically, a longer number of cycles is used to accumulate
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the results. In other words, M and N dimensions are handled by using more

hardware (more "space"), whereas K dimension is handled by using more cy-

cles (more "time"). An advantage of mapping the K dimension on "time" is

that the extended precision intermediate results do not need to move. The

same concept applies to a matrix-vector multiplication, except that there is no

requirement of chaining in the x (logically horizontal) direction. It only makes

sense to chain Tensor Slices in the y (logically vertical) direction.

4.1.3.5 Rounding

As mentioned above, accumulations in the Tensor Slice are done at a

higher precision, compared to the multiplication. In other words, the results

have higher precision compared to the operands. When no_rounding is set to

1, the outputs are shifted out in the higher precision without being rounded to

the input precision. But when no_rounding is set to 0 by the user, the outputs

are rounded to input precision before being shifted out. Convergent rounding

or "round half to even" rounding [128] is used to round the results. When

rounded results are shifted out, it can take less number of cycles depending

on the precision. For example, in the matrix-matrix multiplication int8 mode,

if rounding is disabled, the output from 8 PEs (8 PEs = 1 column of PEs for

int8 precision) is 8*32=256 bits. The c_data signal is 128 bits. So, it takes 16

cycles to shift out the data of all 8 columns. However, if rounding is enabled,

the output from 8 PEs is 8*8=64 bits. So, it takes 8 cycles to shift out data

of all 8 columns. In matrix-matrix multiplication fp16 mode, if rounding is
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disabled, the output from 4 PEs (4 PEs = 1 column of PEs for fp16 precision)

is 4*32=128 bits. So, it takes 4 cycles to shift out the data of all 4 columns. If

rounding is enabled, the output from 4 PEs is 4*16=64 bits. So, in this case

also, it takes 4 cycles to shift out data of all 4 columns.

4.1.4 Individual PE Mode

When the mode input pin is set to 1, the Tensor Slice changes to Indi-

vidual PE mode. The main goal of providing this mode is to reduce the impact

of adding Tensor Slices to an FPGA on non-DL applications and to improve

utilization. In this mode, the slice is fractured such that inputs and outputs of

individual PEs are exposed to the pins of the slice, enabling the PEs to be used

like mini-DSP slices. Each PE can be separately and dynamically configured

in two sub-modes: Multiplier or MAC. Furthermore, all the 4 precisions (int8,

int16, fp16 and bf16) are available and can be dynamically selected. In int8

mode, each PE can be configured to be used as 2 8-bit multipliers or 1 8-bit

MAC with 32-bit accumulation. In int16 mode, each PE can be configured

to be used as 1 16-bit multiplier. In fp16 and bf16 modes, each PE can be

configured to be used as 1 16-bit multiplier or 1 16-bit adder or 1 16-bit MAC

with fp32 accumulation. Note that because of the large delay to access the PEs

in the Tensor Slice (because of the local input crossbar), using the Individual

PE mode will not be performant compared to, for example, a DSP slice based

multiplication or MAC.

There is a limitation of this mode. The number of inputs and outputs

96



on the slice (also called the I/O footprint of the slice) is governed by the Tensor

mode (310 inputs, including clock and reset, and 298 outputs). Based on that,

8 PEs out of the 16 PEs can be exposed. Additional inputs and outputs could

be added to the slice to accommodate for exposing all 16 PEs in individual PE

mode, but that would mean worsening the I/O footprint of an already large

slice. Increasing the number of I/Os can lead to more routing congestion and

higher channel width requirement, and also a larger area of the Tensor Slice.

The inputs and outputs of an exposed PE are:

• direct_in_a[15:0]

• direct_in_b[15:0]

• direct_mode (Multiply or MAC)

• direct_dtype[1:0] (int8, int16, fp16 or bf16)

• direct_out[31:0]

• direct_flags[3:0] (exception flags for floating point mode)

Each exposed PE’s inputs and outputs are mapped onto the top-level

inputs and outputs of the slice (shown in Table 4.1). The mapping of all inputs

and outputs to various PEs is not significant for the work in this dissertation,

but here’s an example of the pin mapping for exposed PE #1:

• direct_in_a[15:0] is mapped to {valid_mask_b_cols, final_op_size}
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• direct_in_b[15:0] is mapped to a_data[31:16]

• direct_mode[1:0] is mapped to x_loc[3:2]

• direct_dtype is mapped to accumulate

• direct_out[31:0] is mapped to c_data[31:0]

• direct_flags[3:0] is mapped to b_data_out[7:4]
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4.2 Evaluation Methodology

The goal of evaluating the Tensor Slice is to compare the performance of

an FPGA with Tensor Slices, LBs, DSPs and RAMs on it, with an FPGA with

only the traditional building blocks (LBs, RAMs and DSPs). Intel Agilex-like

FPGA architecture is used as the baseline. There are differences between this

baseline architecture and Intel Agilex (e.g. HyperFlex is not modeled), but for

the purposes of this evaluation, as long as the baseline and the proposed FPGA

architectures only differ in presence/absence of Tensor Slices, the results will

hold. Also, 22 nm technology node is used in the evaluation here, but Intel

Agilex devices are 10 nm.

4.2.1 Tools Used

To evaluate and compare FPGA architectures, the Verilog-to-Routing

(VTR) tool flow is used [85]. COFFE [136] is used to obtain the area and

delay values for the various components of an FPGA (to enter them in the

FPGA architecture description file for VTR).

4.2.2 DSP Slice Implementation

A DSP slice that closely matches the DSP slice from Intel Agilex DSP

user guide [54] is designed. It supports all major modes and all precisions - 9x9,

18x19, 27x27, fp16, bf16, fp32. The slice also supports input chaining (scanin-

scanout) and output chaining (chainin-chainout). This Agilex-like DSP slice

does not include some features that are present in the Agilex DSP slice. For
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e.g. there is limited support for internal coefficients and constants, no double

accumulation support, limited support for bypassing pipeline registers, and no

enable signals for registers. To sanity check this implementation, a fixed-point-

only slice (similar to the fixed-point part of Intel Arria 10) is first implemented

and its area and delay numbers are compared to those from Boutros et al. [18].

Very similar numbers are obtained after scaling for technology nodes. For

floating-point units, the architecture described in [24] (hard multiplier and

adder based, not the soft logic based, not the iterative design) is used, with a

slightly different pipelining scheme. The round to nearest tie-breaks-to-even

(RNE) rounding scheme is used. Support for exceptions is present as well.

Table 4.2: Breakdown of the DSP Slice area (post P&R)

Component Area (um2)
Standard-cell core 7701
Local input crossbar 1480
Dedicated output routing 26
Switch box (4) 2736
Connection box 652
Total 12597

For this Agilex-like DSP slice, the critical path delay comes out to be

2.93ns (341 MHz) in floating point mode and 2.33ns (429 MHz) in fixed point

mode. The delay of the 50% sparsely populated local crossbar is 0.33ns. This

DSP slice has 130 non-dedicated inputs and 74 non-dedicated outputs. It

spans 4 rows in the FPGA grid (1 LB spans 1 row) and the DSP slice column

is 1.6× wide (compared to that of a LB). Table 4.2 shows the breakdown of

the DSP slice area obtained from COFFE. About 40% of the area of the slice
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Table 4.3: Overhead of supporting more precisions in the DSP Slice
(post-synthesis area ratios)

DSP Slice variant Ratio
Fixed point 18x19 and
27x27 (similar to Intel
Arria)

1

Add fp32 support (sim-
ilar to Stratix 10)

1.26

Add support for fp16,
bf16 and fixed point 9
bit (similar to Agilex)

1.51

is routing, whereas 60% is the core. Table 4.3 shows the post-synthesis area

of the DSP Slice as more precisions are added to it.

4.2.3 Tensor Slice Implementation

A Tensor Slice using the architecture described in Section 4.1 is de-

signed. The Tensor Slice uses the same core fixed-point and floating-point

adders and multipliers as the ones used in the DSP slice. The number of

inputs in the Tensor Slice is much larger than that of the DSP Slice, so the

local input crossbar delay is higher (0.765ns). The critical path delay of the

Tensor Slice is 3.31ns (302 MHz) in floating point mode and 2.56ns (391 MHz)

in fixed point mode. The Tensor Slice has 308 non-dedicated inputs and 298

non-dedicated outputs. It spans 8 rows in the FPGA grid, and the Tensor

slice column is 3.5× wide (compared to that of a LB).

Tables 4.4 and 4.5 show the breakdown of the Tensor Slice area obtained

from COFFE. About 18% of the area of the slice is routing, whereas 82% is the

101



core. Within the core, ∼90% of the area is consumed by the PE array. Inside

each PE, the adder takes ∼44% area and the multiplier takes ∼30% area. The

adder takes more area than the multiplier, primarily because of the presence of

fp32 adder. Table 4.6 shows the post-synthesis area of the Tensor Slice as more

modes are added to it. Adding the individual PE mode adds about 18.5% of

the area on top of the Tensor Slice supporting matrix multiplication (with the

fp16 and int8 precisions). This overhead is high but makes the Tensor Slice

usable in non-DL applications, if required. Adding elementwise and matrix-

vector modes adds 13% area in the end. The elementwise mode is found to

be the least useful when mapping benchmarks to Tensor Slices (presented in

Section 4.2.5.1), so it is a contender for removal to recover some area for future

enhancements.

Table 4.4: Breakdown of the Tensor Slice area (post P&R)

Component Area (um2)
Standard-cell core 45404
Local input crossbar 2771
Dedicated output routing 0
Switch box (8) 5473
Connection box 1570
Total 55219

Table 4.5: Area distribution of the various components of the Tensor Slice core
(left) and the Processing Element (right)

Component Area (%)
Input logic 3.14
Output logic 6.25
2D PE array 90.61
Total 100

Component Area (%)
Adder 44.1
Multiplier 29.7
Rest 26.1
Total 100
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Table 4.6: Overhead of adding more functionality/modes/precisions in the Tensor
Slice (post-synthesis area ratios)

Tensor Slice variant Ratio
8x8 int8 matrix mult only 1
4x4 fp16 matrix mult only 0.89
4x4 fp16 and 8x8 int8 ma-
trix mult

1.34

Add individual PE modes 1.59
Add bf16 and int16 modes 1.86
Add element-wise and
matrix-vector multiplica-
tion modes

2.10

4.2.4 Baseline vs. Proposed FPGAs

The routing and tile parameters of the FPGA architecture used for the

baseline and proposed FPGAs are shown in Table 4.7. These are based on

modern Intel FPGAs. Blocks on the FPGAs (LBs, DSPs, etc) are arranged

in columns. There are no sectors or super-logic-regions. I/O pads are ar-

ranged along the perimeter of the FPGA. Unidirectional routing with wire

segments of length 4 (260 out of 300 wires) and length 16 (40 out of 300

wires) are used. The switch blocks use a custom switching pattern based on

the Stratix-IV-like architecture used in the Titan flow [86]. Each logic block

(LB) contains 10 basic logic elements (BLEs). Each BLE has a 6-input LUT

which can be fractured into two 5-input LUTs. The BLE also has 2 flip-flops

and 2 bits of arithmetic, with dedicated carry chains between LBs. RAM

blocks have a capacity of 20 Kilobits and have registered inputs and outputs.

True and simple dual port modes with varied heights and widths (512x40,

1024x20, 2048x10) are supported. DSP Slice supports multiple precisions -
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9x9, 18x19, 27x27, fp16, bf16, fp32 and has almost all the modes and fea-

tures present in Intel Agilex DSP Slice. The FPGA architecture file provided

with the Koios benchmarks [12] is used because it matches these features. It

is modified to update the properties of the DSP Slice from Section 4.2.2, to

create the baseline FPGA architecture. Then, the Tensor Slice block from

Section 4.2.3 is added, to create the proposed FPGA architecture. The switch

setting for all hard blocks, include Tensor Slices, is left to the default value:

external_full_internal_straight, which means that there are full switch-

blocks outside a block (i.e. both straight-through connections and turns are

allowed) and straight switchblocks inside (i.e. only straight-through connec-

tions are allowed). This implies that routing wires can cross the Tensor Slice

and there are no switches/transistors on the global routing wires crossing the

Tensor Slice. Having switches on global routing wires inside the Tensor Slice

can increase routability, but increases the area of the Tensor Slice. Similarly,

not allowing global routing wires to pass through the Tensor Slice can ad-

versely impact routability of the FPGA. Exploring such different switchblock

configurations for Tensor Slices is left for future work.

From Intel Agilex’s product table, the product with the most compute

intensive resource mix is identified: AGF 027 (91280 LBs, 8528 DSP slices and

13272 RAM blocks). Based on the areas of each block on the FPGA obtained

from COFFE, the total area of the FPGA consumed by each type of block is

calculated. For the baseline architecture, the exact same resource mix as Intel

Agilex AGF 027 is used in terms of percentage of the area and percentage
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Table 4.7: Routing and tile architecture parameters of the baseline and proposed
FPGA architectures

Parameter Value Definition
N 10 Number of BLEs per cluster
W 300 Channel width
L 4,16 Wire segment lengths
I 60 Number of cluster inputs
O 40 Number of cluster outputs
K 6 LUT size
Fs 3 Switch block flexibility
Fcin 0.15 Cluster input flexibility
Fcout 0.1 Cluster output flexibility
Fclocal 0.5 Local input crossbar population

of the count of various blocks on the FPGA. The absolute size of the FPGA

is smaller than Agilex to ensure speedy simulations and also to ensure high

utilization of the FPGA for the benchmarks used for realistic results. Table

4.8 shows the total count of each block type, the percentage of total area

spent on each block type and the percentage count of each block type for Intel

Agilex AGF 027 and the baseline FPGA. Six variations of the proposed FPGA

architecture are created by spending 5%, 10%, 15%, 20%, 25%, 30% area

of the FPGA on Tensor Slices respectively. These architectures are referred

to as "Prop_Xpct", with X taking a value from {5,10,15,20,25,30}. Table

4.9 shows the resource mix of these FPGA architectures. The main goal of

creating multiple variations of the proposed FPGA is to study the sensitivity

of various metrics for non-DL benchmarks to increasing the area consumed by

Tensor Slices on an FPGA.

Architectures that spend more than 30% of the FPGA area on Ten-

sor Slices are not considered for the evaluation in this dissertation. That is
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because, as shown later in Section 4.3, the degradation in metrics like area,

frequency and routing wirelength is monitored for non-DL benchmarks with

increasing area spent on Tensor Slices. A compound metric for performance

is obtained by multiplying the change in average area, frequency and routing

wirelength across the non-DL benchmarks. This metric exceeds 10% when the

area spent on Tensor Slices is 30%. In other words, it is observed that non-DL

applications do not degrade significantly (less than 10% degradation) on FPGA

architectures where up to 25% of the area is spent on Tensor Slices. Addition-

ally, the largest DL microbenchmark used for evaluation needs 160 Tensor

Slices and the Prop_25pct variation does not have enough Tensor Slices for

this microbenchmark to be successfully mapped. So, an architecture with 30%

area spent on Tensor Slices is required for evaluation1. Qualitatively, spending

more than 25-30% area on Tensor Slices makes the FPGA too DL-specific. It

reduces the number of other blocks - LBs, DSPs, BRAMs - on the FPGA.

So, non-DL applications may not fit the FPGA, if they can not use Tensor

Slices2. This dissertation does not the prescribe a specific value of FPGA area

to be spent on Tensor Slices. FPGA vendors typically design multiple FPGA

families. So, different FPGA chips with different area occupied by Tensor Slice

can be designed.

The grid dimensions of all the architectures used in experiments are

1A case where a large DL benchmark requires more Tensor Slices than present on the
FPGA is evaluated in Section 4.3.11

2A case where a large non-DL benchmark requires more DSP Slices than present on the
FPGA is evaluated in Section 4.3.10
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Table 4.8: Resource mix in Agilex AGF047 and the baseline FPGA architecture

AG047 Baseline

Block Relative
area

#
blocks

%
area

%
count

#
blocks

%
area

%
count

Logic Block 1 91280 48.52 80.72 8480 45.19 80.92
DSP Slice 6.5 8528 29.49 7.54 800 27.37 7.63
RAM Block 3.12 13272 21.99 11.74 1200 27.44 11.45
Tensor Slice 28.5 0 0 0 0 0 0

Table 4.9: Resource mix in various variations of the proposed FPGA architecture.
# denotes the number of blocks of a type. % denotes the percentage of area

consumed by that block type.

Prop_5pct Prop_10pct Prop_15pct Prop_20pct Prop_25pct Prop_30pct
Block # % # % # % # % # % # %
Logic Block 8000 45.59 7920 45.11 7760 44.37 7680 43.89 7600 43.4 7120 40.69
DSP Slice 780 28.92 720 26.68 660 24.55 600 22.3 540 20.06 500 18.59
RAM Block 1160 20.61 1040 18.47 920 16.4 800 14.25 680 12.11 640 11.4
Tensor Slice 30 4.88 60 9.74 90 14.67 120 19.55 150 24.43 180 29.33

around 170x80. The number of columns containing Tensor Slices are 3, 6,

9, 12, 15, and 18 in Prop_5pct, Prop_10pct, Prop_15pct, Prop_20pct,

Prop_25pct, and Prop_30pct architectures respectively. The Tensor Slice

columns are placed in the middle of the FPGA to keep the layout symmetric

and to ensure shorter paths between neighboring Tensor Slices. This is an im-

portant aspect of the proposed architecture and is governed by the reduction

in frequency observed when Tensor Slice columns are placed far apart in the

FPGA. Figure 4.9 shows a part of the Prop_5pct FPGA showing the 3 Tensor

Slice columns in this architecture.
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Figure 4.9: A zoomed-in version of the Prop_5pct FPGA architecture obtained
from VTR. Blue: Logic Block, Yellow: RAM Block, Purple: DSP Slice, Red:

Tensor Slice. This is not a physical layout; different column types have different
widths in the actual layout.

4.2.5 Benchmarks

For benchmarking the proposed FPGA architecture, a set of DL and

non-DL designs is used. Table 4.10 contains a list of all the benchmarks used,

along with a brief description of the nature of each workload.

4.2.5.1 DL benchmarks

For DL benchmarks, several designs from the Koios benchmark suite

[12] are used. These designs cover various sub-applications within DL like

Multi-Level Perceptrons, Convolutional Neural Networks, Recurrent Neural

Networks, etc. Design variations are added to cover multiple precisions -
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int8, int16, bf16 and fp16. When evaluating DL benchmarks on the pro-

posed FPGA(s), Tensor Slices are manually instantiated in Verilog, because

the synthesis tool cannot automatically infer them. The process of conversion

of existing benchmarks that use DSP slices to new benchmarks that use Tensor

Slices involved:

• Identifying occurrences of matrix-matrix multiplication, matrix-vector

multiplication and elementwise operations in the Verilog code of the

benchmarks

• Replacing that code with Tensor Slice instances i.e. instantiating the

module called tensor_slice with the same port list as defined in the

VTR architecture file

• Designing appropriate control logic modules (Finite State Machines) that

orchestrate the data movement in and out of the slice (read data stored

in RAMs, feed it to the slice at the right time, write outputs to RAMs,

etc.)

• Making connections between the new control logic, the Tensor Slice in-

stances and the rest of the existing code

• Verifying the operation of the new design with simulation and comparing

the results with the original unmodified benchmark

In 2 benchmarks (lstm and attention), the process of mapping to Tensor

Slices involved some changes to the original architecture of the benchmark.
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These designs are modified keeping them as close to the original architecture

as possible - in terms of clock cycles spent, data elements consumed per cycle,

etc.

In addition, the performance improvement obtained by using an FPGA

with Tensor Slices is evaluated for real-world Deep Neural Networks (DNNs)

from 3 common types: Fully Connected Networks (Multi-Level Perceptron

(MLP)), Recurrent Neural Networks (Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU)), Convolutional Neural Networks (Tiny Dark-

net) and Residual Neural Networks (Resnet)). To evaluate these neural net-

works, a Microsoft Brainwave-like accelerator [37] is created based on Boutros

et al.’s work [21]. This accelerator consists of five pipeline stages: the ma-

trix unit (MU) for matrix-vector multiplication operations, the selector unit

for skipping the MU when necessary, two multi-function units (MFUs) for

vector elementwise operations (e.g. activation, addition, multiplication), and

the loader (LD) which interfaces with the DRAM to load and unload data.

Register files (MRF and VRF) store the data locally. Figure 4.10 shows the ar-

chitecture of the accelerator. Two versions of this accelerator are created: one

for the baseline FPGA and another for the proposed FPGA. For the baseline

FPGA, the MU consists of dot product engines (DPEs) that contain DSP slice

cascade chains. Each DPE generates 1 result. The MFUs use LB-based acti-

vation blocks, LB-based addition blocks and DSP-based multiplication blocks.

The proposed FPGA in this case does not contain DSP Slices. The total area

spent on DSP Slices in the baseline FPGA is instead spent on Tensor Slices
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in the proposed FPGA. On the proposed FPGA, Tensor Slices are used in the

MU as well as the MFU. Tensor Slices in the MU are configured in the Tensor

mode, but those in the MFU are configured in the Individual PE mode.
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Figure 4.10: Microsoft Brainwave-like accelerator used for evaluating DNNs

An analytical model is used to estimate the cycles consumed for evalu-

ating each network on the baseline FPGA and the proposed FPGA. A DDR4

memory with 64-bit channel at 4800 MTPS (Mega Transfers Per Second) is

assumed to be connected to the FPGA. A batch size of 8 and a precision of

int8 is used. The Brainwave-like accelerator does not directly support convo-

lutions. So, for CNNs, convolution is expressed as matrix multiplication using

the im2col operation. It is assumed that the im2col operation is performed in

hardware. Although this can be optimized by designing an accelerator specifi-

cally for convolution, the goal here is to showcase the gains from using Tensor

Slices rather than designing the most efficient accelerator.

Five DNN benchmarks are considered for this part of the evaluation.

The mlp benchmark is a 5-layer MLP with each hidden layer having 512 neu-
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rons, with 1.2M parameters. The gru benchmark is a GRU has a hidden size =

512, embedding size = 512, and time steps = 50. It has 1.5M parameters. The

tdarknet benchmark is Tiny Darknet, a small image classification network for

edge devices. It has 650K parameters. The lstm_net benchmark is an LSTM

with hidden size = 1024, embedding size = 1024, and time steps = 50. It

has 8.4M parameters. The resnet benchmark is the ResNet-50 variation of

ResNet. It has 24M parameters. Out of these, the mlp, gru, tdarknet fit on

the proposed FPGA, but lstm_net and resnet do not. For the latter, the

time taken to load/unload weights is included to evaluate the speedup.

4.2.5.2 Non-DL benchmarks

For non-DL benchmarks, the VTR benchmark suite [85] is used. These

designs cover several domains like computer vision, medical physics, math,

finance, etc. These include designs with/without floating point operations,

heavy/low DSP usage, and heavy/low/no RAM usage. The 10 largest designs

in the benchmark suite (based on number of netlist primitives) are used, so

that the utilization of the FPGAs (baseline and proposed) is fairly high to

ensure realistic results.
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Table 4.10: Non-DL and DL benchmarks used for evaluation shown in increasing
order of number of netlist primitives. The netlist primitives are from when the

benchmark is implemented on the baseline FPGA with DSP slices.

Benchmark Netlist
primi-
tives

Nature of the workload

Non-DL benchmarks
or1200 4305 Soft processor. Some DSP and RAM usage
blob_merge 11527 Image processing. No DSP or RAM usage. Only soft logic.
arm_core 18156 Soft processor. No multiplications in this design, but some RAM

usage
stereovision1 29075 Computer vision. Some fixed point multiplications and no RAM usage
stereovision0 31090 Computer vision. No multiplications in this design and no RAM usage
LU8PEEng 39042 Math. Has floating point operations and some RAM usage
bgm 42293 Finance. Has floating point operations and no RAM usage
stereovision2 68683 Computer vision. Lot of fixed point multiplications and no RAM

usage
LU32PEEng 128132 Math. Has floating point operations and extensive RAM usage
mcml 178845 Medical physics. Large design with multiple fixed point multiplica-

tions
DL benchmarks

eltadd 10778 A design that adds two 6x14 int8 matrices elementwise. Inputs read
from RAMs and output stored into RAMs

fcl.int 19426 Fully connected layer using int8 precision. Has num_features = 15,
batch_size = 16 and num_outputs = 14. APB based control and
configuration logic. RAMs store inputs and outputs.

conv.fp 22603 Convolution using 8x8 fp16 input image with 3 channels,
padding=1, stride=1, filter size = 3x3 and batch size=2.

eltmul 23437 A design that multiplies two 24x8 fp16 matrices stored in RAMs,
elementwise. Inputs and outputs stored into RAMs.

tpuld.16 29722 A design similar to Google’s TPU v1 [65] with a 16x16 systolic array
and normalize, pool and activation units. RAMs store activation and
weights. Precision = int8

conv.int 32299 Same convolution design as above, but with int16 precision
attention 51858 Self-attention module in Transformers [118]. Involves matrix vector

multiplication, elementwise multiplication and softmax (precison =
int16)

fcl.bf 64758 Fully connected layer using bf16 precision with AXI programming
interface. No RAM usage. 20x20 activation matrix, 20x20 weight
matrix and 20x20 output matrix

tpuld.32 96497 Same TPU design as above, but with a 32x32 systolic array
lstm 340460 An LSTM layer [48] involving several matrix vector multiplications,

elementwise operations and activations (precision = int16)
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4.3 Results
4.3.1 Size

In this section, the results for experiments to identify the best Ten-

sor Slice size are presented. Four sizes are considered - 2x2, 4x4, 8x8, 16x16,

focused on the matrix multiplication operation in the Tensor Mode. The no-

tation used is: a MxNxK matrix multiplier multiplies a MxK matrix (matrix

A) with a KxN matrix (matrix B) to produce a MxN matrix (matrix C). For

this experiment, a Tensor Slice with a given size only supports a specific pre-

cision, and multiple Tensor Slices are used to perform a given multiplication

operation.

Two cases are considered. For the first case, a design size without

fragmentation issues is considered. Figure 4.11 plots various metrics for a

32x32x32 matrix multiplier design implemented on an FPGA with different

sizes of the Tensor Slice. The metrics are plotted relative to the baseline

- a 32x32x32 matrix multiplier implemented on an FPGA with DSP Slices.

Both int8 and fp16 precisions are considered. A lower value of all metrics

is desirable. The logic area (plotted on the right axis because of a different

range) and routed wirelength decrease as the Tensor Slice size increases. This

is because more of the design is being hardened on moving right along the

x-axis. Critical path remains relatively constant. The average wire segments

per net increases as larger Tensor Slices are used. This is because the area of

the Tensor Slice increases, and it occupies more locations in the FPGA grid,

making wires connecting to the block longer. Additionally, routing channel
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width requirement increases slightly on moving right along the x-axis.

The second case is a design with fragmentation issues. A 35x35x35

matrix multiplier is designed using 4 Tensor Slice sizes. int8 precision is used.

Table 4.11 shows the results from these experiments. Because of fragmenta-

tion effects, more time is consumed when larger Tensor Slices are used. The

utilization of the Tensor Slice is much higher with smaller building blocks.

Utilization refers to the fraction of the number of processing elements of all

the Tensor Slices performing useful work during the operation.

Tensor Slice Freq (MHz) Cycles Time (us) Utilization
2x2 540 150 0.28 0.94
4x4 500 150 0.30 0.94
8x8 470 166 0.35 0.76

16x16 465 198 0.42 0.53

Table 4.11: A matrix multiplier with high fragmentation problems (35x35x35)
designed using different Tensor Slice sizes

Considering both fragmentation effects and the metrics shown in Figure

4.11, it is concluded that sizes 4x4 and 8x8 exhibit the best tradeoffs.

4.3.2 Peak Throughput

One of the most important benefit of adding Tensor Slices to FPGAs is

to increase the compute density. That is, an FPGA with Tensor Slice has more

compute throughput per unit area than a baseline FPGA. In this section, the

peak throughput of the baseline and the proposed FPGAs is evaluated.

To evaluate the peak throughput, the MAC (multiply-accumulate) op-

eration, which is the most common operation in DL applications, is considered.
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(32x32x32) designed using different Tensor Slice sizes
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For LBs, one MAC is implemented on the FPGA to determine the operating

frequency and number of LBs consumed. Using this and the total number

of LBs on the FPGA, the total number of MACs that can be implemented

on the FPGA using LBs is calculated. For DSPs, the number of MACs that

can be implemented on 1 DSP Slice (for a given precision) is multiplied with

the number of DSPs on the FPGA to find the total number of MACs. For

Tensor Slices, the method to evaluate the total throughput is the same as the

method for DSP Slices. Then the throughput from all compute resources (LBs,

DSPs and Tensor Slices) is added to find the total peak MAC throughput of

the FPGA. Note that while doing this calculation, it is assumed that the fre-

quency of operation when the FPGA is filled with MACs using a compute

unit is the same as the operating frequency of 1 MAC for that compute unit.

This ignores the frequency degradation as the FPGA is filled, but serves the

purpose of evaluating peak throughput.

Figure 4.12 shows the peak throughput for each precision supported by

the Tensor Slice, obtained from each computing resource in GigaMACs per

second. A significant increase is seen in the throughput by spending some

area of the FPGA on Tensor Slices. For example, for the Prop_10pct case,

10% of the area of the FPGA is spent on Tensor Slices, and it can be seen

that the peak compute throughput increases by ∼1.86× for int8 and ∼1.42×

for int16, fp16 and bf16 precisions. For Prop_30pct variation of the proposed

architecture, the throughput increases by 3.5× for int8, 2.2× for int16, 2.18×

for fp16 and 2.17× for bf16.
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Table 4.12: Resource usage of various benchmarks. Resource usage is the same
for all variants of the proposed FPGA architecture, hence there is only one moniker

used here: "Proposed"

Logic Blocks DSP Slices RAM Blocks Tensor Slices
Benchmark Baseline Proposed Baseline Proposed Baseline Proposed Baseline Proposed
arm_core 836 836 0 0 40 40 0 0
bgm 2132 2132 11 11 0 0 0 0
blob_merge 540 540 0 0 0 0 0 0
LU32PEEng 5890 5890 32 32 274 274 0 0
LU8PEEng 1728 1728 8 8 73 73 0 0
mcml 6792 6792 106 106 294 294 0 0
or1200 202 202 4 4 4 4 0 0
stereovision0 582 582 0 0 0 0 0 0
stereovision1 490 490 40 40 0 0 0 0
stereovision2 1958 1958 483 483 0 0 0 0
attention 1706 757 (0.44×) 73 9 188 188 0 16
conv.fp 630 243 (0.38×) 75 0 56 56 0 7
conv.int 913 243 (0.26×) 42 0 56 56 0 7
eltadd 287 71 (0.25×) 0 0 24 24 0 2
eltmul 630 206 (0.32×) 96 0 48 48 0 6
fcl.bf 2017 788 (0.39×) 200 0 0 0 0 25
fcl.int 464 97 (0.20×) 112 0 24 24 0 4
lstm 6982 1883 (0.27×) 642 2 532 532 0 160
tpuld.16 744 134 (0.18×) 148 0 14 14 0 4
tpuld.32 2440 258 (0.10×) 552 0 26 26 0 16

4.3.3 Resource Usage

Table 4.12 shows the resource usage obtained from VTR for the various

benchmarks when implemented on the baseline and proposed FPGAs. For DL

benchmarks, the usage of LBs and DSPs reduces greatly with the usage of

Tensor Slices. The highest reduction in LB usage is in tpuld.32 with 0.10×

usage (i.e. 90% reduction from baseline architecture). The same number of

blocks are used by the benchmarks across the variants of the proposed FPGA;

so only one column for Proposed is shown. For non-DL benchmarks, there is
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no difference in the resource usage between the baseline and proposed FPGAs.

This is because the designs do not have any matrix operations in them and use

the same blocks in both types of FPGAs. A larger percentage of Tensor Slice

area can lead to insufficient resources for a large non-DL design, and hence the

design may not fit. However, for large non-DL designs, it is better to choose

an FPGA from a device family that is oriented towards non-DL applications,

instead of using a DL-optimized FPGA that has Tensor Slices.

4.3.4 Area

The total area consumed by a circuit on an FPGA is the sum of the

logic area and the routing area. Logic area is available in the VTR output

report, but routing area is not. The routing area is estimated approximately

by adding the routing area of all tiles that have at least one operation mapped

to.
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For DL benchmarks, the total used area reduces significantly (Figure

4.13). This follows directly from the usage of Tensor Slices instead of LBs

and DSP slices. On average, area reduces to 0.45×. The best case is 0.22×

for fcl.int. Tensor Tiles harden the circuitry that would otherwise be im-

plemented in soft logic and DSP slices. These results (along with Routed

Wirelength results in Section 4.3.6) provide a first order approximation of the

potential power reduction that can be achieved by using Tensor Slices. The

area reduction does not differ significantly for different variations of the pro-

posed FPGA architecture, similar to resource usage.

Non-DL benchmarks do not show any change in total area3. Logic

area is not expected to change because the resource usage does not change.

The routing area may change slightly because of the presence of Tensor Tiles.

However, the routing area model used is approximate as it only considers the

routing area of the tiles that have at least one operation mapped to, which also

stays constant for non-DL benchmarks. Therefore, the total area improvement

for only DL benchmarks is shown in Figure 4.13.

4.3.5 Frequency

Figure 4.14 (a) shows the improvement in the frequency of operation

of DL benchmarks on a proposed FPGA compared to the baseline FPGA. An

increase in frequency implies a reduction in execution time at the application

3Note that because the proposed FPGA has fewer LBs, DSPs and BRAMs than the
baseline FPGA, some large benchmarks may not fit the proposed FPGA. An analysis of
such a case is done in Section 4.3.10
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level. A maximum frequency improvement of 2.43× for the conv.fp bench-

mark and an average improvement of 1.63× across benchmarks is seen. This

boost happens because on the baseline FPGA, the critical paths include long

paths across LBs and DSP slices, which are inside the hard Tensor Slice on the

proposed FPGA. The achieved frequency does not change significantly across

different variations of the proposed FPGA architecture (i.e. with different

area percentage consumed by Tensor Slices on the FPGA), so results for one

variation are shown in the figure.

In non-DL benchmarks, the frequency degrades when Tensor Slices are

added, although not significantly. Some degradation is expected because the

presence of Tensor Slices can increase the routing wire length required to route

a circuit, causing an increase in the critical path delay. Figure 4.14 (b) shows

the sensitivity of frequency of operation for non-DL benchmarks as the area

spent on Tensor Slices increases in the different variations of the proposed

FPGA. An average degradation of 2.3% is observed for Prop_30pct variation

of the proposed architecture. The maximum degradation observed is 7.9%

in the blob_merge benchmark. Reduction in frequency implies increase in

execution time. If a large non-DL design can not utilize Tensor Slices (e.g. in

Individual PE mode), then it may not fit on an FPGA where a large portion

of the area is consumed by Tensor Slices. To fit the design on the FPGA, some

parallelization may have to be reduced (if possible, based on the nature of the

design), leading to the application consuming more time. However, for large

non-DL designs, it is better to choose an FPGA from a device family that is
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oriented towards non-DL applications, instead of using a DL-optimized FPGA

that has Tensor Slices.

4.3.6 Routed Wirelength

Figure 4.15 shows the impact of using Tensor Slices on the total routed

wirelength for various benchmarks. For DL benchmarks (Figure 4.15 (a)), a

significant reduction in routed wirelength is seen. This is because a lot of

wiring required to connect soft logic and DSP slices on the baseline FPGA is

effectively absorbed inside the hard Tensor Slice. On average, the routed wire-

length reduces to 0.45× (55% reduction). In some circuits where the portion

of the design that is mapped to Tensor Slices is large, the routed wirelength

reduction is very high. E.g. for tpuld.32 design, the routed wirelength is

reduced by ∼ 90%. In other designs which have a significant portion of the

design that is not mapped to Tensor Slices, the routed wirelength reduction

is low, e.g. wirelength reduction of ∼ 35% and ∼ 31 % is seen in lstm and

attention designs respectively. These results (along with area results in Sec-

tion 4.3.4) provide a first order approximation of the potential power reduction

that can be achieved by using Tensor Slices. Different variations of the pro-

posed FPGA show similar reduction in routed wirelength and hence, they are

not shown in the figure.

For non-DL benchmarks (Figure 4.15 (b)), the routed wirelength in-

creases slightly. Adding a large block on the FPGA can increase wire length

required to route a design that does not use the large block. An average in-
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Figure 4.14: Comparison of achieved frequency of operation for various
benchmarks
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Figure 4.15: Comparison of routed wirelength used for various benchmarks
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crease of 1.9% is seen across non-DL benchmarks for the Prop_5pct FPGA

architecture. As the percentage of area consumed by the Tensor Slices in the

variations of the proposed FPGA architecture is increased, the routed wire-

length increases. That’s because longer net lengths are required to make con-

nections between blocks with an increasing number of Tensor Slices in the fab-

ric. An average increase of 7.7% in routed wirelength is seen in the Prop_30pct

FPGA architecture. The maximum increase in routing wirelength of 14.1% is

seen in stereovision0) in this architecture.

4.3.7 VTR Flow Run Time

Tensor Slices are large hard blocks that make the FPGA more coarse-

grained. A design using Tensor Slices can go through the FPGA tool chain

(synthesis, packing, placement, routing) faster. Having Tensor Slices in the

FPGA fabric reduces the total number of blocks on the FPGA (for the same

area), and hence reduces exploration space available to the packing, placement

and routing algorithms, making the runtime shorter. Also, Tensor Slices are

instantiated as hard macros in the RTL. There is no behavioral code that

is analyzed to infer Tensor Slices. This reduces the runtime of the synthesis

engine.

Figure 4.16 shows the VTR CAD flow time for various benchmarks.

The time taken to run the VTR CAD flow reduces by an average of 73% for DL

benchmarks when using Tensor Slices. Since the time taken does not change

significantly across different variants of the proposed FPGA architecture, the
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Figure 4.16: Comparison of VTR flow run time for various benchmarks
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results for all variants are not shown in the figure. For non-DL benchmarks,

there is a trend in the time taken by the CAD flow. As the percentage of area

consumed by Tensor Slices on the FPGA increases, the time taken by the flow

reduces. A reduction of up to 9.4% is seen for the Prop_30pct architecture.

4.3.8 Routing Channel Width

In all the results discussed so far, a fixed routing channel width of 300 is

used for all the FPGA architectures. In this section, the routing channel width

is varied to study the impact of adding Tensor Slices on channel width. VTR

provides a mode where it finds the minimum channel width required to route a

circuit on a given FPGA architecture. Minimum channel width requirement is

influenced by the pin density of the building blocks in an FPGA architecture.

Blocks with small area and large number of I/Os can cause routing congestion

and hence lead to higher minimum channel width requirement. A large block

with a large perimeter (or area), like the Tensor Slice, does not negatively

impact the routability, even with many I/Os. If a block disrupts the routing

fabric by not allowing wiring to cross it, then that can cause routability issues

as well. The Tensor Slice tiles are defined to have full switch boxes outside

and straight switch boxes inside the block [85], alleviating the routability im-

pact. Note that this requires careful physical layout of the Tensor Slice block.

Adding a local crossbar inside the Tensor Slice blocks helps with improving

the routability of the proposed FPGA as well.

Figure 4.17 shows the minimum routing channel width required for var-
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Figure 4.17: Minimum routing channel width required for the baseline FPGA
architecture and the different variations of the proposed FPGA architecture,

averaged across different categories of benchmarks

ious FPGA architectures, averaged across the benchmarks. DL benchmarks

have a lower channel width requirement compared to non-DL benchmarks,

even for the baseline FPGA. As the area consumed by Tensor Slices increases

(in variations of the proposed FPGA architecture), the channel width require-

ment reduces. This is because of the more spread out placement of the blocks

used for the circuits because of the presence of more and more Tensor Slices

(which leads to increase in routed wirelength, as seen in Section 4.3.6).

4.3.9 FPGA Grid Area

In all the results discussed so far, fixed FPGA grid areas (number of

columns × number of rows) are used. The grid dimensions are calculated

such that the FPGA is capable to fit the total number of blocks of each type
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architecture, across DL and non-DL benchmarks

mentioned in Tables 4.8 and 4.9. In this section, the grid dimensions of the

FPGA are varied to observe how the minimum FPGA size required for a

benchmark changes with the addition of Tensor Slice columns in the FPGA

architecture. VTR provides a mode called auto_layout, where it expands the

grid dimensions (by repeating a specified set of columns and rows) to find the

minimum FPGA size required to successfully implement a circuit on the given

FPGA architecture. With the introduction of Tensor Slices (i.e. replacing

some columns with columns containing Tensor Slices in the FPGA), the total

number of columns required to implement a circuit that does not use Tensor

Slices can increase. In other words, to fit the same design, a larger FPGA may

be required. This can show the impact of adding Tensor Slices, especially on

non-DL designs.
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For this study, a set of columns is specified in the FPGA architecture,

and this set is repeated over and over by VTR to satisfy the resource require-

ment of a design. For the baseline architecture, this set includes 11 Logic Block

columns, 4 DSP Slice columns and 3 RAM Block columns. For the proposed

architecture, this set includes 11 Logic Block columns, 4 DSP Slice columns,

3 RAM Block columns and 1 Tensor Slice column. These architectures are

referred to as Baseline(Auto) and Proposed(Auto) respectively.

Figure 4.18 shows the results from this study. For DL benchmarks, the

average grid area required reduces by 26% when the Proposed(Auto) architec-

ture is used, compared to when the Baseline(Auto) architecture is used. This

is because DL benchmarks use Tensor Slices and a smaller number of columns

are now required to fit the same design. The minimum reduction in FPGA grid

area required is seen to be 74.2%. However, an interesting behavior is seen.

For DL benchmarks, it is observed that the FPGA grid area required increases

in some cases, the maximum increase being 12.3%. This happens because of

the arrangement of Tensor Slice columns in the Proposed(Auto) architecture.

As the FPGA grid size is increased by VTR, to get an additional Tensor Slice

column, the grid size has to be increased by 19 columns, even if 18 out of 19

columns may not be utilized because they contain other resources. The Ten-

sor Slice columns are equally spread out in the architecture. This illustrates

the importance of having Tensor Slice columns close to each other like in the

Prop_Xpct architectures, instead of being spread out on the entire FPGA.

For non-DL benchmarks, however, the average grid area required increases by
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4.3% when the Proposed(Auto) is used. A larger FPGA is now required to fit

all the designs.

4.3.10 Non-DL benchmarks when sufficient DSP Slices are not
available

Adding Tensor Slices on an FPGA takes away area from other resources

like Logic Blocks, DSP Slices and RAM Blocks. This implies that for large

non-DL designs requiring many DSP Slices, the number of DSP Slices in a

proposed FPGA may be less than the number of DSP Slices required by the

design. In such cases, Tensor Slice’s Individual PE mode can be used. Note

that the Individual PE mode of the Tensor Slice is not as performant as a DSP

Slice, because of the lower frequency of operation of the Tensor Slice compared

to the DSP Slice, and it supports smaller precisions only (int8, int16, fp16 and

bf16) compared to larger precisions supported by DSP Slice (e.g. 27x27 and

fp32). Note that the frequency of operation of the Tensor Slice in this mode can

be improved by using multiple local input crossbars as mentioned in Section

4.2.3. In this section, the impact of using Tensor Slice’s Individual PE mode

is evaluated.

Table 4.13: Tensor Slices used by a non-DL design in Individual PE mode when
sufficient DSP Slices are not available

Block Baseline Prop_30pct
Logic Blocks 3107 2713
RAM Blocks 0 0
DSP Slices 599 298
Tensor Slices 0 108
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Figure 4.19: Comparing various metrics for a non-DL design when implemented
on a baseline FPGA using DSP Slices vs. proposed FPGA using Individual PE

mode of Tensor Slices for some compute.

Since none of the benchmarks in the VTR benchmark suite is very DSP-

intensive, a synthetic benchmark is created by instantiating multiple stereo-

vision designs (1 stereovision2 instance and 3 stereovision1 instances). This

design requires 599 DSPs on the baseline FPGA (Table 4.13). The worst case

is considered by using the Prop_30pct FPGA for this experiment. In the

Prop_30pct FPGA, there are only 500 DSP Slices. So, when this design is

implemented on the Prop_30pct architecture, some operations get mapped to

the Tensor Slice (in Individual PE mode). Table 4.13 shows that 298 DSP

Slices get used, and 108 Tensor Slices get used.

The results of this study are shown in Figure 4.19. A frequency degra-

dation of 3% is seen, whereas the area increases by 9% and the routed wire-

length increases by 25%. This shows the usefulness of Individual PE mode
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Table 4.14: Resource usage of the lstm benchmark for the baseline architecture
and different variations of the proposed architecture

Block Baseline Prop_5pct Prop_10pct Prop_15pct Prop_20pct Prop_25pct Prop_30pct
Logic Blocks 6982 6285 5388 4479 3724 2816 1883
RAM Blocks 532 532 532 532 532 532 532
DSP Slices 642 562 450 349 242 130 2
Tensor Slices 0 20 48 76 100 128 160

of the Tensor Slice. This design would not have otherwise fit on this FPGA.

But because of Individual PE mode, this design can be implemented on the

proposed FPGA (even the one that has 30% area spent on Tensor Slices) with

a minor performance degradation. The increase in area and routing wirelength

actually indicates an improved utilization of the FPGA in this case, because

these resources would have been lying idle otherwise.

4.3.11 DL benchmarks when sufficient Tensor Slices are not avail-
able

In the experiments shown so far, different variations of the proposed

FPGA are evaluated - the area of the FPGA spent on Tensor Slices increases

from 5% to 30% in increments of 5%. A question arises: What happens when

the number of Tensor Slices on the FPGA is less than the Tensor Slices required

by a design? The answer is that computation has to be mapped to DSP Slices

and Logic Blocks instead. In this section, the impact on various metrics in

such a scenario is studied.

For this experiment, the lstm benchmark is considered, as it requires

the largest number of Tensor Slices. This design is implemented on the baseline

architecture and different variations of the proposed architecture. On the
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Figure 4.20: Performance results of mapping a DL benchmark to FPGAs with
increasing number of Tensor Slices. 5pct, 10pct, etc denote variants of proposed

FPGA architecture. The letters "Prop_" are omitted for brevity.

baseline FPGA, all computation is mapped to DSP Slices and Logic Blocks.

More and more computation is mapped onto Tensor Slices depending on the

number of available Tensor Slices in the variations of the proposed architecture.

On the Prop_30pct FPGA, all computation that could be mapped to Tensor

Slices is mapped to Tensor Slices. This is shown in Table 4.14.

Figure 4.20 shows the results from this experiment. When more com-

putation is mapped to DSP Slices, (1) the frequency is lower, (2) more area of

the FPGA is consumed to implement the circuit, and (3) more routed wire-
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length is used. When enough Tensor Slices are not available, computation can

be mapped to DSP Slices and Logic Blocks at the cost of reduced performance.

4.3.12 DNN Evaluation

Figure 4.21 shows the speedups obtained for various DNNs using a

proposed FPGA with Tensor Slices compared to a baseline FPGA with DSP

Slices. Note that as mentioned in Section 4.2.5.1, the proposed FPGA in this

case does not contain DSP Slices. The total area spent on DSP Slices in the

baseline FPGA is instead spent on Tensor Slices in the proposed FPGA. This

leads to ∼27% area of the FPGA being consumed by Tensor Slices.

A geomean speedup of 2.3× is observed across the 5 DNNs. The

lstm_net workload shows the least speedup because of two reasons: (1) the

weights do not fit on the FPGA and loading the weights takes a significant

amount of time, and (2) there is not enough reuse of weights to amortize the

time for loading the weights. The highest speedup is seen for the gru workload.

The peak throughput enhancement for the FPGA with Tensor Slices is

3.5×. The reasons for why the achieved speedup is lower are: (1) some layers

in the workloads are limited by DRAM bandwidth, and (2) underutilization

of Tensor Slices.
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4.4 Discussion
4.4.1 Benefits and Limitations

Qualitatively, the benefits of adding Tensor Slices to FPGAs can be

summarized as:

• Adding Tensor Slices to an FPGA increases the compute density of the

FPGA. The area consumed by DL designs is smaller when Tensor Slices

are used. This implies larger DL designs can now fit the same-sized

FPGA chip.

• Designs using Tensor Slices can achieve faster frequencies compared to

those using DSP Slices, because of the reduced dependence on rout-

ing/interconnect. This means DL applications can run faster on FPGAs

with Tensor Slices.

• Using Tensor Slices leads to a reduction in routing wirelength required to

implement a DL design. This implies a reduction in power consumption

as well.

• Tensor Slices are large coarse-grained blocks. A design using Tensor

Slices can go through the FPGA tool chain (synthesis, packing, place-

ment, routing) faster. This means shorter turn around time for debug

iterations.

Overall, Tensor Slices lead to better out-of-the-box performance for

DL applications. This can lower the barrier of adoption for FPGAs for DL
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acceleration. Note that, currently, to use Tensor Slices, a designer has to

manually instantiate a Tensor Slice block in the RTL and connect it. This is

commonly how DSP Slices are used as well, other than for simple use cases

like multiplication and MAC.

There are some limitations of adding Tensor Slices to FPGAs as well.

First, adding Tensor Slices makes an FPGA more heterogeneous (any new type

of block added to the FPGA fabric adds to heterogeneity). This increases the

complexity in CAD tool algorithms, especially at the implementation stage

(pack, place, route). However, this cost is typically transparent to end-users

of the FPGA. Secondly, adding Tensor Slices makes an FPGA less generic

or flexible compared to a typical FPGA. If a Tensor Slice is not required or

can not be used by an application (even in individual PE mode), the Tensor

Slices will remain unutilized on the FPGA. But with the abundance of DL

applications, DL-specialized FPGA families containing Tensor Slices can be

created. And non-DL applications can continue to use non-DL-specialized

FPGAs. Thirdly, adding Tensor Slices to an FPGA causes some degradation

in performance for non-DL applications, as shown in Section 4.3.

4.4.2 Comparison with DSP Slice

Table 4.15 compares I/O and area related properties of the DSP Slice

with the Tensor Slice. The Tensor Slice is about 4.3× in area compared to the

implementation of an Agilex-like DSP Slice, but has only 1.5× the number

of I/O pins. This means that the Tensor Slice has a low pin density or that
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Table 4.15: Comparing I/O and area related metrics for a Tensor Slice with a
DSP Slice (numbers based on 22 nm tech node)

Metric DSP Slice Tensor Slice Ratio
Area (um2) 12597 55218 4.3

Number of I/Os 386 608 1.5
Pin density (pins/um2) 0.03 0.01 0.3

Logic to routing area ratio 1.5 4.5 3

Table 4.16: Comparing compute throughput related metrics of a Tensor Slice
with a DSP Slice (numbers based on 22 nm tech node)

Precision Metric DSP
Slice

Tensor
Slice

Ratio

INT8

Number of MACs 4 64 16
Freq (MHz) 429 391 0.9
Throughput (GigaMACs/sec) 1.7 25.0 14.6
Throughput/area (GigaMACs/sec/mm2) 136.2 453.2 3.3

INT16

Number of MACs 2 16 8
Freq (MHz) 429 391 0.9
Throughput (GigaMACs/sec) 0.8 6.2 7.3
Throughput/area (GigaMACs/sec/mm2) 68.1 113.3 1.6

FP16/BF16

Number of MACs 2 16 8
Freq (MHz) 341 302 0.9
Throughput (GigaMACs/sec) 0.7 4.8 7.0
Throughput/area (GigaMACs/sec/mm2) 54.1 87.5 1.6

the Tensor Slice has a high core-to-pin ratio. The Tensor Slice also has about

3× the logic-to-routing ratio, compared to the DSP Slice. The routing area

includes the local crossbar, the switch boxes and the connection boxes. This

implies significantly lower routing overhead compared to a DSP slice.

Table 4.16 compares throughput related properties of the DSP Slice

with the Tensor Slice. The Tensor Slice has over 14× int8 throughput and over

7× throughput for 16-bit precisions, compared to an Agilex DSP slice. Note

that because of quantization/fragmentation, the Tensor Slice can suffer from
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under-utilization (reduced effective throughput) in cases where the problem

size does not divide up evenly into the dimensions of the Tensor Slice. For

example, to compute a 7x7 int8 matrix-matrix dot product using the Tensor

Slice, 15 out of the 64 PEs will be effectively wasted. But with the large matrix

sizes commonly required for DL applications, this performance loss is not a

significant issue in real-world applications.

4.4.3 Comparison with Intel AI Tensor Block

Intel Stratix NX FPGAs contain a new block called the AI Tensor

Block [75] [57]. The AI Tensor Block4 is a replacement of the DSP Slice, in

that it exactly matches the I/Os and the area of a DSP Slice. Each Tensor

Block contains three dot product units, each of which has 10 multipliers and

10 accumulators. A Tensor Block has 7.5x more int8 compute compared to

an Intel Agilex DSP Slice. Multiple blocks can be cascaded to support larger

matrices.

AI Tensor Blocks are similar to Tensor Slices in that both these blocks

are integrated into the programmable logic. However, there are many differ-

ences. A qualitative and quantitative comparison of the two types of blocks is

shown below. This notation is used: A matrix-vector multiplication (MVM)

involves multiplying M×K matrix with a K×1 vector and a matrix-matrix

4Intel Stratix NX FPGAs were announced in June 2020 and were not generally avail-
able until 2021. The first submission based on this dissertation for an FPGA with matrix
multiplier blocks was made to the ACM International Symposium on FPGAs (ISFPGA) in
September 2019 [15] and published in the International Conference on Application-specific
Systems, Architecture and Processors (ASAP) conference in July 2020 [8].
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multiplication (MMM) involves multiplying a M×K matrix A with a K×N

matrix B.

1. AI Tensor Blocks are smaller (1× an actual Stratix 10 DSP) compared

to Tensor Slices (4.3× Agilex-like DSP). Note that Tensor Slice’s imple-

mentation is full-featured, but the DSP Slice implementation does not

have all the features that are present in Intel’s DSP slices (as mentioned

in Section 4.2.2). As an approximation, 4.3x can be used as the ratio of

the area of a Tensor Slice and an AI Tensor Block. An AI Tensor Block

has 30 int8 MAC units, but a Tensor Slice has 64 int8 MACs. AI Tensor

Blocks have lower compute throughput compared to Tensor Slices, but

higher throughput per unit area.

2. Information about AI Tensor Block operating frequency is not available

in the Intel Stratix 10 datasheet. In [75], the frequency used for cal-

culating peak throughput is 600MHz, but it is not clear if this is the

maximum frequency of operation of the AI Tensor Block. Optimistically

it can be assumed to be the same as the Stratix 10 DSP Slice, which

is 1000 MHz for fixed-point and 750 MHz for floating-point (in 14 nm

technology node). Scaling to 22 nm (which is the technology node used

for evaluation in this chapter) using equations from [108], this comes out

to be 442 MHz for fixed-point and 331 MHz for floating-point. This is

faster than the Tensor Slice.

3. Tensor Slices and AI Tensor Blocks support different set of precisions.
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The base precisions supported on AI Tensor Block are int8 and int4.

There is no native floating point support, but instead, there is shared

exponent support for block floating point fp16 and fp12 [127]. Tensor

Slices, on the other hand, completely supports int8, int16, fp16 and bf16

precisions. The only common precision between the two is int8.

4. Tensor Slice and AI Tensor Block have different bandwidth requirements.

That is, the number of bytes read/written per cycle by each slice to per-

form a computation is different. For matrix-matrix multiplication, Ten-

sor Slices read the inputs only once because of their systolic architecture.

So, the inputs can be streamed in, for example, from the previous layer’s

logic on the FPGA. However, in case of the AI Tensor Block, one of the

input matrices is read multiple times, so it has to be stored and fed to

the block. For matrix-vector multiplication, Tensor Slices and AI Ten-

sor Block both only read the inputs once. However, in both cases, to

get more speedup, more blocks can be used and that typically involves

reading the inputs once and fanning them out to the multiple blocks.

5. Both Tensor Slice and AI Tensor Block suffer significant under-utilization

for matrix-vector multiplication, as will be seen in the quantitative com-

parison later in this section. Tensor Slice has a utilization of 25% for

int8 precision, but for 16-bit precisions (int16, fp16, bf16), its utilization

is 50%. AI Tensor Block has a utilization of 33% for any precision for

matrix-vector multiplication. For matrix-matrix multiplication, 100%
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utilization can be achieved on both the blocks. For the Tensor Slice,

rounding up or zero padding the problem size to the nearest multiple of

8 is needed for int8 precision and to the nearest multiple of 4 for 16-bit

precisions. This is true for all 3 dimensions - M, N, and K. For the AI

Tensor Block, rounding up or zero padding to the nearest multiple of 6

along the N dimension and nearest multiple of 10 in the K dimension

leads to maximum efficiency.

For quantitative comparison, two workloads are considered - one is

matrix-vector multiplication (MVM) and the second is matrix-matrix mul-

tiplication (MMM). The problem size considered is such that there are no

fragmentation effects in either the AI Tensor Block or the Tensor Slice (i.e.

the problem dimensions have to be a multiple of 6, 10 and 8). Table 4.17

shows the properties and metrics for these workloads. The int8 precision is

used because that’s the only common precision between the two blocks.

An interplay between cycles consumed, number of blocks used and the

bandwidth requirements is seen. For the MVM workload, Tensor Slice takes

a smaller number of cycles, but more blocks are required compared to the AI

Tensor Block. More blocks means more routing interconnect will be required

and the frequency of operation will likely be lower. The total bytes read dur-

ing the process is the same (both matrix and vector are read only once). For

the MMM workload, two implementations which differ in how the blocks are

cascaded to perform a large MMM are shown. In implementation #1, only
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Table 4.17: Comparing Intel AI Tensor Block (AI.T.Block) with Tensor Slice
(T.Slice) for 2 workloads: a matrix-vector multiplication (MVM) and a

matrix-matrix multiplication (MMM). There are two implementations for MMM:
imp #1 and imp #2. They differ in how multiple blocks are cascaded. Note that
this is only for int8 precision. The area is in terms of number of DSPs and only

includes the area of the blocks, not the routing wires.

MVM MMM (imp #1) MMM (imp #2)
AI.T.Block T.Slice AI.T.Block T.Slice AI.T.Block T.Slice

M 480 480 480 480 480 480
K 480 480 480 480 480 480
N 1 1 480 480 480 480

Number of blocks used 49 60 49 3600 3920 1800
Approximate area 49 258 49 15480 3920 7740

Clock cycles 674 274 76996 1920 1156 3840
Utilization 33% 25% 100% 100% 100% 100%

Peak i/p BW (elements in 1 cycle) 480 482 490 960 1280 720
Peak o/p BW (elements in 1 cycle) 10 480 30 480 2400 240

Total bytes read 230880 230880 37094400 460800 18892800 691200
Fanout for matrix B (or vector) 1 1 1 1 1 1

Fanout for matrix A 1 2 1 1 80 1

Note that neither a board with an Intel Stratix NX FPGA nor Intel Quartus CAD tool with support for
Stratix NX FPGAs was available to be able to design and implement these designs and obtain metrics
such as resource usage and achieved frequency.
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a few AI Tensor Blocks are used compared to Tensor Slices, and so the AI

Tensor Blocks take a large number of cycles, while also reading a much larger

number of bytes (matrix A has to be read multiple times). On the other hand,

Tensor Slices take a very small number of cycles, but the number of blocks

required is very high. In implementation #2, for the AI Tensor Block case,

more blocks are used leading to a significant reduction in cycles, but a much

higher fanout requirement for matrix A and also higher input (i/p) and output

(o/p) bandwidth is required. Higher fanout generally means a lower frequency

of operation and higher bandwidth requirement implies more routing intercon-

nect usage. More blocks also means more routing wires required to connect

the blocks, which can nullify the area advantage the AI Tensor Block has over

Tensor Slice in this case. In implementation #2 for the Tensor Slice case, half

the number of blocks compared to implementation #1 are used, which dou-

bles the number of cycles required. Both Tensor Slice based implementations

read much smaller number of bytes compared to the AI Tensor Block based

implementations because of the systolic architecture of the slice. This implies

reduced dynamic power consumption. Tensor Slices consume more area in

both implementations.

Let us consider two smaller workloads as well. First one is an MMM of

size M=12, K=20, N=12. This workload has no fragmentation when the AI

Tensor Block is used. 3 AI Tensor Blocks are required, the number of cycles

taken is 60, and the total elements read are 1200. When computed using

Tensor Slices, 4 blocks are required, 80 cycles are consumed, and 768 elements
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are read. The second workload is an MMM of size M=16, K=16, N=16. This

workload has no fragmentation when the Tensor Block is used. 4 Tensor Slices

are required, the number of cycles taken is 64, and the total elements read are

512. When computed using AI Tensor Block, 3 blocks are required, 108 cycles

are consumed, and 2280 elements are read.

Overall, there is no clear winner and both blocks have their positives

and negatives. There are many ways in which both the blocks can be con-

nected to perform MVMs and MMMs and the best solution depends on the

requirements of the application. From the point of view of approximate area

(i.e. only block area, not the area of routing wires required to connect the

blocks), AI Tensor Blocks are a better choice. Either block can be chosen

based on cycles. If bytes read (and dynamic power) is a concern, then Tensor

Slices are a better option. Note that these comparisons are valid only for int8

precision.

4.4.4 Comparison with Xilinx AI Engine

Xilinx Versal ACAPs (Adaptive Compute Acceleration Platform) add

an array of AI engine tiles [132] [134] to the FPGA chip. Each AI engine tile

contains an AI engine and a data memory. The AI engine contains a SIMD

(Single Instruction Multiple Data) VLIW (Very Long Instruction Word) vector

processor. The data memory is 32 Kilobytes. An AI engine can access the data

memory of its near neighbors as well. The AI engine array can communicate

with the programmable logic via AXI stream and memory mapped interfaces
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over a NoC (Network-On-Chip). An analytical comparison of the Tensor Slice

and the AI engine is performed in this section:

1. Integrating AI engines on an FPGA is similar to adding CPUs on the

same die, whereas integrating Tensor Slices on an FPGA is similar to

adding DSP slices in the FPGA’s programmable logic. AI engines are

not tightly coupled with the FPGA programmable logic. They follow

a different computation paradigm. This approach is a software centric

approach to acceleration. It does make programming the FPGA easier,

but it brings with it the overheads of instruction pipelines like address-

ing, decode, etc., as well as additional overheads in communicating with

compute/control units designed in the programmable logic. Tensor Slice,

on the other hand, enables tighter integration with any custom logic im-

plemented in the programmable logic.

2. The precisions supported by the AI engine are 8-bit fixed-point, 16-bit

fixed-point, 32-bit fixed-point and IEEE floating point 32-bit. It does

not support smaller floating-point precisions like fp16 and bf16, which

are commonly used in DL workloads and are supported by the Tensor

Slice.

3. For 8-bit fixed-point operands (16-bit accumulation), the AI engine’s

peak throughput is 128 MACs/clock. For 16-bit fixed-point operands

(48-bit accumulation), the AI engine’s peak throughput is 32 MACs/-

clock. For both these precisions, the throughput of the AI engine is 2×

148



that of a Tensor Slice.

4. The AI engine tiles work at 1 GHz at 7 nm technology node. Scaling to

22 nm (which is the technology node used for evaluation in this chapter)

using equations from [108], this comes out to be around 300 MHz, which

is lower than the frequency of the Tensor Slice.

5. The area of the AI engine is not publically available. However, in addi-

tion to raw MACs, it has a lot of additional control logic like load and

store units, instruction fetch and decode units, debug and trace units,

etc. The Tensor Slice, on the other hand, has a high ratio of compute

to control logic. With the additional logic in the AI engine and given

that it has 128 int8 MACs, it is likely much larger than 2× the area of

a Tensor Slice. Therefore, the Tensor Slice has a higher throughput per

unit area compared to an AI engine.

4.4.5 Replacing DSP Slices with Tensor Slices vs. Having Both

In Section 4.2.4 and in the experimental results for various benchmark

circuits in Section 4.3, the proposed FPGA had both DSP Slices and Tensor

Slices. Some area of the baseline FPGA is converted to Tensor Slices. So, the

proposed FPGA has fewer LBs, DSPs and BRAMs than the baseline FPGA.

However, in the DNN evaluation in Section 4.3.12, the proposed FPGA has

only Tensor Slices. The area occupied by DSP Slices in the baseline FPGA is

repurposed for Tensor Slices in the proposed FPGA. So, the proposed FPGA

has the same number of LBs and BRAMs as the baseline FPGA. This is done
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to make evaluation easy. This is similar to what Intel did with Stratix NX

FPGAs [75].

There are tradeoffs between both these approaches. Having both DSP

Slices and Tensor Slices on an FPGA chip means the FPGA is more generic.

That is because the DSP Slice is tuned for non-DL applications. It provides

multiplication and multiply-accumulate operations, in several precisions, along

with many other features such as the ability to chain DSP Slices using direct

interconnect. So, having DSP Slices on the FPGA allows mapping non-DL

applications more efficiently. Having both DSP Slices and Tensor Slices, in

addition to LBs and BRAMs, increases the heterogeneity of the FPGA fabric

because there is one extra block type to handle, making CAD tools more

complicated.

On the other hand, having only Tensor Slices makes the FPGA less

generic and more DL specific. The Tensor Slice is tuned for DL applications.

When only Tensor Slices are available and non-DL operations are required (in

a non-DL application or in a DL application), the Tensor Slice’s Individual PE

mode can be used to map multiplication and multiply-accumulate operation.

However, this mode is not as performant as the DSP Slice, as mentioned in

Section 4.3.10. But having only Tensor Slices in the FPGA, along with LBs

and BRAMs, does not increase the complexity of CAD tools (same heterogene-

ity as the baseline FPGA) and in fact, reduces the turnaround time for the

compilation (synthesis, placement, routing, bitstream generation) for users, as

shown in Section 4.3.7.
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Common DL applications such as computer vision, natural language

processing, healthcare, etc. are not performed in isolation, especially on the

edge. There are other non-DL parts of the full application such as data pre-

processing, result post-processing, filtering, dynamic control, network func-

tions, etc. So, it is useful to have both DSP Slices and Tensor Slices on the

FPGA.

151



Chapter 5

Adding Compute Capabilities to RAM Blocks in
FPGAs

In this chapter, the second contribution of this dissertation is described:

converting BRAMs on an FPGA to CoMeFa RAMs. A CoMeFa RAM enables

computation within the RAM array, without transferring the data in or out of

it. One-bit bit-serial configurable processing elements are added to the output

of the sense amplifiers in the RAM block. This transforms the BRAM into

a parallel SIMD (Single Instruction Multiple Data) computation unit. The

availability of true dual-port mode in FPGA BRAMs [133][58] is exploited to

read two operands in one cycle.

Computation in any precision can be easily performed in CoMeFa

RAMs without any explicit precision-specific hardware because it uses bit-

serial compute [32]. For performing a different operation or for using a different

precision, a different instruction sequence needs to be generated and applied

to the CoMeFa RAM. CoMeFa RAMs reduce the dependence on routing/in-

terconnect and hence increase the routability of the FPGA. Data movement

is reduced because the computation is done in the RAM itself, thereby saving

power and reducing energy. Since the data is not moved in/out of the RAM
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block, routing interface limitations do not restrict the available bandwidth.

Instead, the internal physical geometry of the RAM, which is wider than the

interface width, governs the effective bandwidth. The compute throughput and

compute density (GOPS/mm2) of the FPGA is increased significantly owing

to the massive parallelism that is unlocked because of the existence of numer-

ous RAM blocks on an FPGA. When not computing, CoMeFa RAMs can still

function as normal BRAMs to store data.

This part of the dissertation resulted in a paper publication at the IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM) [9]

and a research article at the ACM Transactions on Reconfigurable Technology

and Systems [10]. The following contributions from the co-authors of these

papers/articles are acknowledged:

• Aatman Borda: Implementation of the GEMV and GEMM benchmarks,

and drawing some diagrams

• Tanmay Anand: Implementation of the FIR benchmark

• Atharva Bhamburkar: Experiment to compare BRAM+PE with CoMeFa

• Rishabh Sehgal: Experiment to verify working of CoMeFa using SPICE

simulation

• Bagus Hanindhito: Drawing several diagrams
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5.1 CoMeFa RAMs

In this section, the architecture and design of CoMeFa RAMs is de-

scribed. The changes made to BRAMs to convert them to CoMeFa RAMs are

explained. As in modern Intel FPGAs, a BRAM size of 20 Kilobits is consid-

ered, with support for single port, simple dual port, and true dual port modes,

with the 512x40 being the shallowest and widest configuration. This BRAM

has a physical geometry of 128 rows x 160 columns with a column multiplexing

factor of 4 [79] [114]. Even though BRAM sizes, geometries, and modes from

Intel FPGAs are used, the architecture described is not specific to a vendor.

BRAMs from other vendors, such as Xilinx, may have slightly different sizes

and geometries, but the architecture will work as long as the BRAMs support

true dual port modes.

Some Intel FPGAs, such as the Stratix 10 family of FPGAs, implement

the true dual port in Block RAMs by time-multiplexing the peripheral circuitry

(sense amplifiers and write drivers). This is inferred by looking at the clock

frequencies specified in the datasheet [56] - while the single port and simple

dual port modes work at 1000 MHz, the true dual port mode works at 600

MHz. Implementing CoMeFa RAMs using such a Block RAM is feasible, but

the frequency of operation of the CoMeFa RAM will be lower than the values

evaluated later in Section 5.2.4. This will reduce the speedup obtained from

CoMeFa RAMs. This architecture is not evaluated in this dissertation.
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5.1.1 High Level Operation

At a high level, converting BRAMs into CoMeFa RAMs requires adding

processing elements (PEs) to the sense amplifiers inside the BRAM block, as

shown in Figure 5.1. The architecture of a PE can vary depending on the

type of computations being targeted. The PEs are fed operands by reading

multiple wordlines. They perform the required computation, and the result is

written back into another wordline. Note that each PE requires two bits (one

of each operand) in 1 cycle. All computation is done in a bit-wise manner,

using transposed data layout. Figure 5.1 shows how operands are stored,

read, computed on and the result stored back. Consider an example of bit-

wise ANDing of the elements of two arrays (array length = 160 and element

width = 4 bits). Each element is stored in a column, 1 bit in 1 row. This

is called transposed layout. Elements of array 1 are stored in rows i, i + 1,

i + 2, and i + 3. Elements of array 2 are stored in rows j, j + 1, j + 2, and

j +3. A total of 8 rows and 160 columns are required to store both arrays. In

one cycle, rows i and j are read, each PE computes the AND of two bits, and

the result is stored in row k. This process is repeated 4 times with increasing

row addresses, and the final result is available, after 4 cycles, in rows k, k+1,

k + 2, and k + 3. Note that 160 operations are done in parallel in each cycle.

5.1.2 Implementation options and changes to the BRAM

To achieve the high-level operation described above, different aspects

of the BRAM need to be modified. For each aspect, there are multiple design
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Table 5.1: Implementation Options (Option used in this dissertation is in bold)

Objective Options
Processing paradigm • Bit-parallel

• Bit-serial
Obtaining two operands • Activating one wordline and storing bits

• Storing operands in separate banks
• Activating two wordlines together
• Using dual-ported memory

Number of PEs and SAs • # PEs = # SAs = Number of bitlines
• # PEs = # SAs = Number of datalines
• Or something in between

Distinguishing between
data and instructions • Write to a special address

• Add a new signal on the interface
Transposing the data • In soft logic

• In DRAM controller
• Use RAM with transposable cells

Programming the CoMeFa
RAM • Workload-specific state machine

• Stored program

options. Table 5.1 lists the implementation options considered. The following

sections explain each aspect and the design decisions taken.

The goal is to minimize the number of changes done to the BRAM to

make the CoMeFa RAM design easily adoptable. Figure 5.2 shows a top-level

diagram of an FPGA BRAM, with blocks modified/added for CoMeFa shown

with a red outline. The sense amplifiers and write drivers are modified to

add and connect the PEs. Sequencing logic that sequences the events of the

read/write operations (wordline activation, precharge, sense amp enable, etc.)

in the memory is modified. This is done to support reading and writing in

one cycle. Some additional logic (comparator, mode configuration bit, multi-

plexers in front of row decoders) is also added. The memory array itself stays

unmodified. The following sections explain each change in detail.
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5.1.3 Processing Paradigm

There are two paradigms that can be used to convert a BRAM into

CoMeFa RAM: Bit-Parallel and Bit-Serial. Bit-Parallel computing is the con-

ventional paradigm in which multiple bits of one data element are processed

every cycle. As an example, a conventional bit-parallel processor will take 128

steps to perform an element-wise sum of two arrays with 128 16-bit elements,

using 16-bit PEs (adders). Bit-parallel PEs could be added in the RAM [42],

for example, 16-bit fixed-point adders or floating-point multipliers. However,

this means that the precisions supported by the PE have to be pre-determined,

thereby reducing the flexibility of the block. Additionally, using bit-parallel

PEs means restricting the location of data to be aligned to certain bitlines.

Bit-growth during addition and multiplication operations can cause additional

challenges. This paradigm is low in utility because it will not be very different

from directly connecting a BRAM and a DSP slice.

Bit serial computing, on the other hand, is commonly used for digital

signal processing and has been used on FPGAs as well [74] [73]. The main idea

is to process one bit of multiple data elements every cycle. For the example

above, a bit-serial processor with 128 processing elements would complete the

operation of adding the two arrays in 16 steps as it processes the arrays bit-by-

bit instead of element-by-element. Adding bit-serial PEs in the RAM makes

the block a more generic computing unit. The PEs are agnostic to precision,

which is useful for evolving applications like DL. The data has to be laid out

in a transposed manner (bits of an operand located in a bitline, instead of
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a wordline), to feed an operand into the PE one bit at a time. Adding bit-

serial PEs to a BRAM converts the BRAM into a SIMD engine with a high

vectorization width - up to 160 (in the case of Intel FPGA BRAMs that are

considered) when one PE is added for each bitline. The main disadvantage of

the bit-serial is that each operation takes many cycles, implying higher latency.

However, this latency can be hidden/overlapped with other operations in data-

parallel applications like DL. Bit-serial PEs are added in CoMeFa RAMs.

5.1.4 Obtaining two operands

To perform computation, each bit-serial PE needs one bit from each

operand. There are multiple ways to achieve this. The first method, based

on Computational RAM [35], involves adding flip-flops in the PE (Fig 2.12a).

The row (wordline) containing the first operand’s bits is read and the bits are

stored in the flip-flops in the PEs. The row containing the second operand’s

bits is read in the next cycle and the computation is then performed. The

results are stored back in another row in the third cycle. This increases the

area of the PE, and also leads to a multi-cycle operation, reducing the speedup

that can be obtained for applications.

In the second method, data can be stored such that each operand exists

in a different bank of the RAM. The two banks can be accessed simultaneously.

This requires the RAM to be implemented using two banks and also places a

restriction on the data layout - that the two operands can not be in the same

bank.
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The third method is based on Logic-In-Memory [64] (Fig 2.12b). In this

method, two wordlines containing bits of the two operands are activated at

the same time. This needs changing the memory array, has robustness issues,

and as mentioned in Section 2.4, is not very practical on a large scale.

The fourth method proposed in this dissertation uses dual-ported RAMs.

Two bits, one from each operand, are read by the two ports’ sense amplifiers

and fed to the two operands to the PE. This costs additional area for the

second port, but FPGA BRAMs are already dual-ported, so this does not add

any additional area in the case of FPGAs. Although in the logical diagram

of Figure 5.2, the peripheral circuitry of the two ports of the RAM (decoders,

write drivers, sense amplifiers, etc.) are shown in diagrammatically opposite

parts of the figure, in a typical physical layout of a RAM block, they are ad-

jacent to each other. This ensures the practicality of adding a set of PEs fed

by both sets of sense amps.

5.1.5 Modes, Stages and Phases

As shown in Figure 5.2, a new configuration SRAM cell is added which

decides the mode of operation of a CoMeFa RAM block. A CoMeFa RAM can

operate in two modes:

• Memory Mode: In this mode, CoMeFa RAM behaves as a conventional

BRAM with no change in functionality. In this mode, the FPGA pro-

grammer can flexibly configure the number of ports and the width/depth

of the BRAM.
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• Hybrid Mode: If this mode is enabled at configuration time, the

CoMeFa RAM can be used for computation as well as storage. In

this mode, the RAM is automatically configured to its maximum width

(512x40) to maximize the read/write throughput for populating the

memory array with input data and reading the results.

Operations on CoMeFa RAMs typically happen in 3 stages:

• Data loading stage. Input data is stored in transposed format into

the memory array in this stage.

• Compute stage. In this stage, the CoMeFa RAM is instructed to read

source operand rows, perform computation in the processing elements

and write the results to a destination row.

• Data unloading stage. Results can be read out in this stage by reading

them from any address in the memory array.

A clock cycle during computation has 3 phases. In the first phase, two

rows containing operand bits are read by activating the corresponding word

lines. In the second phase, the logic gates in the PE compute the result. In

the third phase, the result is stored back by activating a wordline. This leads

to a longer clock period, compared to typical BRAM.

5.1.6 Number of processing elements and sense amplifiers

BRAMs typically employ column multiplexing [79] [114] for improving

the detection and correction of transient errors in memory cells, and also to

reduce the number of signals or wires to the programmable routing in FPGAs.
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The memory array layout is roughly square (the number of bitcells in the x-

direction is similar to the number of bitcells in the y-direction). When reading,

column multiplexers select a smaller number of cells from those along a word-

line, based on the address input. When no column multiplexing is present,

the number of sense amplifiers in the RAM is equal to the number of bitlines.

When column multiplexing is present, the number of sense amplifiers in the

RAM is equal to the number of data lines (i.e. number of data signals on the

RAM interface). When adding compute-in-memory capabilities into RAMs,

the number of PEs and sense amplifiers to provide in the RAM is an archi-

tectural design decision involving area-delay tradeoffs. For CoMeFa RAMs,

two architectures at the ends of the area-delay design space, are explored, as

discussed below.

CoMeFa-D: In this architecture, additional sense amplifiers and write

drivers are added to enable reading and writing a row in all columns (bitline

pairs) together. A processing element (PE) is added below each column. This

is similar to the architecture used in [32], [124] and [3]. During physical de-

sign/implementation, PEs (and sense amplifiers and write drivers) should be

laid out so that they pitch-match with the SRAM cells for a bitline pair (BL

and BLB). This implies longer/skinnier sense amplifiers than those that pitch-

match with multiple bitline pairs behind a column multiplexer. This needs

careful physical design and can be challenging. There are 160 sense amplifiers

and write drivers per port and 160 PEs. This provides a parallelism of 160 op-

erations done in 1 clock cycle (slightly longer than the baseline BRAM’s clock
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period) at the cost of high area overhead. This architecture is more practical

than CCB [124] because multiple wordlines are not activated simultaneously

on a port and voltage reduction is not required for robustness.

CoMeFa-A: In this architecture, the number of sense amplifiers and

write drivers stays the same as the baseline. A PE (different from the one

in CoMeFa-D) is added below each multiplexed column (i.e. one PE for each

data line). The physical design of the sense amplifiers and write drivers used

in this architecture does not involve any additional challenges than normal

SRAM design because they have to be pitch-matched with multiple bitline

pairs behind a column multiplexer. An optimization technique called sense

amp cycling [109] is employed to sequentially sense multiplexed column bits in

an extended clock cycle. There are 40 sense amplifiers and write drivers per

port, and 40 PEs in the RAM. This provides a parallelism of 160 operations

done in 1 extended clock cycle, thereby trading off delay for area. This ex-

tended clock cycle is not a major concern though, since critical paths in most

FPGA designs include routing and LBs, and very rarely include BRAMs which

can run at much higher frequencies. This architecture has the highest prac-

ticality among CCB [124] and CoMeFa variations because it retains column

multiplexing.

5.1.7 PE Architecture

The next aspect of converting BRAMs to CoMeFa RAMs is to identify

the architecture of the PE. The PE can be a simple logic gate, in which case
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the CoMeFa RAM would be capable of only performing logical operations, and

hence, would not be very useful for DL applications. Instead, using a bit-serial

adder (2 inputs, 1-bit full-adder, 1 carry flip-flop, 1 output) as the PE enables

arithmetic operations like addition and multiplication (by repeated addition).

This is the core of the PE in [32] and [124]. Additional logic is provided for

predication to enable cases where operations in some columns (or bitlines)

need to be masked. The PE architecture used in CoMeFa RAM extends from

this and adds additional features like configurability and BRAM-to-BRAM

connections.

Figure 5.3a shows the structure of PE added to each column of the

memory in CoMeFa-D. On the read path, A and B are the bits of the two

operands read from the memory at sense amplifiers SA1 and SA2 of the two

ports. Multiplexer TR evaluates a logical function of A and B, depending

on the inputs TR0, TR1, TR2, TR3 (truth table). If a 2-bit addition is

required, the truth table bits will correspond to that of an XOR gate. The

TR mux is basically like a 2-input dynamic LUT that can be configured every

cycle. The output of TR goes through another XOR gate (X) to generate the

addition of the input bits (S), including the previous cycle’s carry. Gates to

generate the carry (CGEN) are also present. The carry is stored in the carry

latch (C) and can be used in the following cycle’s computation. If an addition

operation is not required, the carry latch is reset with C_RST=1, which

enables X to pass the output of TR transparently to the S wire. C_EN=0

disables the latch so it keeps the old value. The read outputs A and B are
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also sent to d_out1 and d_out2, which is the normal read path.

On the write path, 3-input multiplexers W1 and W2 are added before

the write drivers of the two ports. These multiplexers determine the sources

for the write operation. W1 can select between the S, the input data port

d_in1 (normal write operation) and the value read from the right neighboring

PE (used during left shift operation). W2 can select between the carry, the

input data port d_in2 (normal write operation) and the value read from the

left neighboring PE (used during the right shift operation).

Figure 5.3b shows a waveform view of the sequence of operations in 1

clock cycle for CoMeFa-D. After the bitlines are precharged, the read operation

is performed by activating the read word line and asserting sense amplifier

enable. The PEs compute on the values read by the sense amplifier. The

results are written by activating the write wordline and asserting write driver

enable.

The output of multiplexer TR is also stored in a special latch called

M and is called mask. Predication logic allows enabling/disabling the write

drivers (WD1 and WD2). For this, a multiplexer (P) is added to select

the signal that will enable/disable the write drivers. The mask, carry, not-

carry and VDD (logic 1; default) can be selected. This helps CoMeFa

RAMs mask writing the results based on various conditions, like the value

of the mask or the carry bit, to support multiplications and floating point

operations. The wps1/2 signals decide which port’s write path is activated

for a given cycle.
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Figure 5.4a shows the structure of PE added to each multiplexed col-

umn of the memory in CoMeFa-A. All the labels have the same meaning as

the PE described above. The number of C and M latches changes to 4, and

there are 4 additional latches for S. On each port, 4 column-multiplexed bits

are read and two results are written back in an extended clock cycle. In the

read phase of the cycle, the brown bitline pairs from each port are sensed first.

The resulting S bit is stored in latch S1, carry bit C is stored in the latch C1,

and mask bit M is stored in latch M1. This is repeated for red, green, and

purple bitline pairs successively. All Sn, Cn, and Mn latches get updated in

this process. Then, in the write phase of the cycle, results for the brown and

red bitlines are written using the write drivers of the two ports, followed by

the green and purple ones. This is shown in Figure 5.4b. Clocks in the PE are

driven by signals derived from the sense amplifier enable pulses. The paths in

the PE do not add any additional delay to the extended clock from sense amp

cycling.

5.1.8 Instructions

An instruction is defined as a bitvector whose bits tell the CoMeFa

RAM and the PE what to do in each cycle. The CoMeFa RAM instruction is 40

bits and the format is shown in Figure 5.5. The field names in the instruction

are self-explanatory. They directly drive the corresponding signals in the PE

(e.g. predicate bits are applied to the select lines of the multiplexer P). The

src1_row, src2_row and dst_row bits are used for activating the first operand
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Figure 5.5: Instruction format for CoMeFa RAMs

row on Port A, the second operand row on Port B, and the row at which results

will be stored, respectively. These addresses are fed to the appropriate row

decoders at the right time in the clock cycle by the sequencing logic in the

CoMeFa RAM using the multiplexers shown in Figure 5.2. Instructions are

generated using instruction generation logic and fed to the CoMeFa RAMs.

Section 5.1.14 will discuss the various ways of achieving this.

5.1.9 Distinguishing between data and instructions

As mentioned in Section 5.1.5, in Hybrid mode, the CoMeFa RAM can

be used for computation as well as storage. So, in this mode, a way to dis-

tinguish between compute operations (sending instructions to the RAM) and

storage operations is required. Two options are considered for this. In the

first option, a special address (0x1FF) is reserved to signal sending instruc-

tions to the RAM, similar to [124]. Data written to this address is treated as

an instruction. Accessing other addresses is done normally; used for storing

operands and reading results. A comparator is added to Port A’s address sig-

nal to check for this address (see Figure 5.2). One limitation of this method

is that the special address (0x1FF) cannot hold data anymore. This can be a

problem especially when an application needs to store data on all addresses of

the RAM. As a workaround, data can be written to another address first and

then copied or moved to the special address internally in the BRAM using a
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compute instruction.

The second option is to use a dedicated signal on the RAM interface

that when asserted indicates that the data written into the RAM be treated

as an instruction. This does not need adding an extra signal on the RAM

interface because existing signals can be reused. In Hybrid mode, the BRAM

is configured into its widest mode (512x40). So, 9 address bits are required.

In other modes (like 1024x20 or 2048x10), there are more address bits (10 in

1024x20 and 11 in 2048x10), and those address bits are unused in the widest

mode. One of these bits can be reused to denote that the data bus contains

instructions.

Both methods do not have any impact on the performance of the

CoMeFa RAM. Results from the evaluation are independent of which method

is used.

5.1.10 RAM-to-RAM chaining

CoMeFa RAMs provide the capability of performing left-shift and right-

shift operations efficiently. Shifts are single operand operations. For a left

(right) shift operation, the source operand row is read into the PEs, each PE’s

W1 (W2) mux is configured to select the bit read from the right (left) neigh-

boring PE, and that bit is written into the destination row. For CoMeFa-A,

shifting values from a bitline pair to another bitline pair within the same col-

umn multiplexer is also supported, by decoding the write_sel bits of the

instructions and setting the select lines of W1 and W2 muxes appropriately.
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Figure 5.6: CoMeFa RAM supports shifting within a block and across blocks
using chaining

Direct links connecting top and bottom neighboring CoMeFa RAMs are pro-

vided to allow for shifting data between the corner PEs in each CoMeFa RAM.

These connections can provide a much easier way to perform inter-CoMeFa

RAM communication and obtain even more parallelism. Figure 5.6 shows

the pins on a CoMeFa RAM required to provide these direct connections be-

tween CoMeFa RAMs, along with the details of the shift operation support

inside each PE. These connections are similar to carry chains in Logic Blocks

and cascade chains in DSP Slices in modern FPGAs. Xilinx FPGAs have

direct BRAM-to-BRAM interconnections as well. If unidirectional wiring is

used, four additional pins would be required on the CoMeFa RAM to allow

for shifting in both directions. To minimize this overhead, bidirectional wires

controlled by tri-state switches are provided, because at one time, shifting in

only one direction is required. The tri-state switches are controlled by a signal

decoded from the write_sel* and wps* bits, because they govern the shift

direction.
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5.1.11 Transposing the data

As mentioned in Section 5.1.1, data has to be stored in a transposed

layout in CoMeFa RAMs for computation. There are multiple methods that

can be used for transposing data. The first method is to modify the mem-

ory array to use transposable bitcells, similar to [121]. This approach is also

referred to as Transpose Memory Units (TMU) in [32]. This requires exten-

sive modification to the RAM and also increases the area significantly, so this

approach is not pursued.

Another method is to design logic to transpose data and implement it

in soft logic. This is referred to as a swizzle module (or swizzle logic) that

can read data from DRAM, transpose it and write it to a CoMeFa RAM on-

the-fly. The architecture of the swizzle logic, shown in Figure 5.7, employs

a ping-pong buffer FIFO. Untransposed data read from DRAM is written in

order into the ping part of the FIFO (depth = 40 elements). When the ping

part is full, a transposed word (a bit slice from 40 elements) can be read and
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written into consecutive bitlines on the same wordline in a CoMeFa RAM,

and new data from DRAM is written into the pong part. After the pong

part is full, transposed data is read from the pong part and written into a

CoMeFa RAM, and new data from DRAM is now written into the ping part

again. This process continues until the required data has been populated

into CoMeFa RAMs. Similarly, transposed data can be read from CoMeFa

RAMs and stored into DRAM in untransposed form using swizzle logic. In

other words, the swizzle logic is a set of registers which are written in columns

(all bits of a column are written with a bit-parallel word) and read in rows

(one bit each of many words is read along a row). This method in used in the

evaluation.

The swizzle module is mapped to LBs. So, for an application that is

already bound by LB usage, this can be a concern. There are multiple ways

to reduce dependence on swizzle modules by avoiding the need for transpose,

such as OOOR operations (Section 5.1.13), popcount based addition [124], and

storing pre-transposed values in CoMeFa RAMs for static data like weights

of a neural network during inference.

A third method is based on the realization that transposing data is

only needed when reading/writing from/to the DRAM. Modern FPGAs have

hardened DRAM controllers integrated into them. So, transpose logic (like

the swizzle module) could be hardened into a DRAM controller. However, the

current baseline FPGA does not have a hard memory controller.
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5.1.12 Variable precision support

Hardware in CoMeFa RAM PEs is not specific to any numerical pre-

cision. A different sequence of instructions is all that is required to compute

in a different precision. The sequences for fixed-point addition, multiplica-

tion, and in-RAM reduction are the same as [32]. Addition for n-bit operands

takes n + 1 cycles. Multiplication of n-bit operands takes n2 + 3n − 2 cy-

cles. CoMeFa RAMs can natively support floating point precisions as well, as

opposed to CCB [124]. Floating point algorithms for addition and multiplica-

tion are adopted from FloatPIM [50]. The CoMeFa RAM PE can perform all

the steps in the sequences because: (1) carry and not-carry are used in the

predication logic, (2) mask is populated from the output of the programmable

multiplexer TR instead of just A or B, and (3) operations like XOR can be

performed easily using TR and the truth_table fields in the instruction. The

approximate number of cycles consumed for floating point multiplication and

addition are M2+7M+3E+5 and 2ME+9M+7E+12, where M = number

of mantissa bits and E = number of exponent bits.

5.1.13 One Operand Outside RAM (OOOR) operations

In Section 5.1.8, two operands are stored inside the RAM. However,

in many cases, an optimization can be applied - one of the operands can be

outside the RAM. For example, multiplying an array of numbers (stored in

the RAM) with a scalar operand (outside the RAM). These are called OOOR

operations. This method saves space inside the RAM. Without OOOR, in the
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multiplication example, the scalar operand would need to be replicated in each

column. This method allows easy inspection of outside operand’s bits, thereby

enabling efficient algorithms. For example, in the normal shift-and-add based

multiplication explained in [32], if a bit in the scalar operand is 0, cycles are

still consumed, which can be avoided by using OOOR. In the average case,

half of the bits will be 0 and therefore, the number of cycles can be reduced

by 50%. Efficient algorithms like booth multiplication can also be deployed.

A simple way to perform OOOR operations is to have a row of 1s and a row

of 0s in the RAM and use that as a proxy for bits in the operand outside the

RAM. Alternatively, appropriate truth table (TR) bits can be sent to the PE

in CoMeFa RAMs to achieve the same goal. Overall, OOOR operations make

the PEs more powerful by expressing 2 (or 3) operand operations as 1 (or 2)

operand operations.

OOOR is applied to design an efficient algorithm for dot-product op-

erations where one of the vector’s elements is common to all columns. This

is useful in many applications like matrix-vector multiplication and FIR filter.

Consider the case where a weight vector [X, Y, Z,W ] needs to be multiplied

with multiple vectors [A,B,C,D], [E,F,G,H], ... and each vector is stored in

a different column of the RAM. The weight vector does not need to be stored

in the RAM, but can be outside the RAM and inspected in the instruction

generation logic to generate appropriate instructions. To simplify, AX + BY

is calculated as the building block operation in one column. Fig 5.8 pictorially

shows the evaluation of partial sums PV and PW . In a naive algorithm, PV
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will be calculated first and then PW . So, now both PV and PW are in the

same column in the RAM. They will be added to get the result. This algo-

rithm is shown in Algorithm 1, and can be done using OOOR with X and Y

being outside the RAM, and will provide a speedup of 2x on average assuming

half the bits are zeroes.

In the proposed intelligent algorithm (shown in Algorithm 2), A+B is

first calculated (call it temp). So, now A, B, and A + B (temp) are present

in the column. When X and Y are outside the RAM, bits X[0] and Y [0] can

be inspected together. If they are 11, A+B (temp) is added to the result. If

they are 10, X is added to the result. If they are 01, Y is added to the result.

If they are 00, nothing is done. This is successively done for all bit locations

of X and Y . When adding to the partial result each time, the correct rows

are added to effectively do the shifts required during a normal multiplication.

This algorithm provides a speedup of 2x compared to Algorithm 1, and up to

4x compared to the naive multiply-then-add algorithm.

For OOOR operations, the data outside the RAM does not need to be

transposed, thereby saving some swizzle logic. There are some disadvantages

to using OOOR operations as well. The instruction generation logic becomes

more complex. A lesser reduction in energy consumption should be expected,

because of additional control logic outside the RAM and because of higher

dependency on programmable routing. Since the instruction generation logic

takes different paths based on the data, the opportunities of sharing it across

many CoMeFa RAMs may drop depending on the application.
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Algorithm 1 Naive
dot product
Input: A,X,B, Y
Output: Z

PV = 0
PW = 0
for i = 0 to precision do

Calculate Vi

PW+ = (Vi << i)
end for
for i = 0 to precision do

Calculate Wi

PW+ = (Wi << i)
end for
Z = PV + PW

Algorithm 2 Intelligent
dot product
Input: A,X,B, Y
Output: Z

Calculate temp = A+B
for i = 0 to precision do

if Xi, Yi == 2′b11 then
Z+ = (temp << i)

else if Xi, Yi == 2′b10 then
Z+ = (A << i)

else if Xi, Yi == 2′b10 then
Z+ = (B << i)

elseNoChange
end if

end for

5.1.14 Programming CoMeFa RAMs

Programming a CoMeFa RAM means sending it a sequence of instruc-

tions to perform a given operation. Two methods for programming CoMeFa

RAMs are considered. In both methods, multiple CoMeFa RAMs can share in-

struction generation logic to amortize its cost. However, doing so can increase

the fanout and reduce frequency.

First, a finite state machine (FSM) implemented in soft logic is used to

generate instructions, similar to [124]. This is shown in Fig 5.9a. This method

leads to an efficient implementation because the FSM can be customized to (or

hardcoded for) specific requirements of an application. However, this method

is tedious because designing an FSM to generate instructions for bit-serial

operations is not easy. This process could be automated by using High-Level

Synthesis, given a high-level language description of the sequence of operations

required. This is not done in this dissertation.
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Figure 5.9: Programming CoMeFa RAMs
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To improve programmer productivity, a stored program method is con-

sidered, inspired by Compute RAMs [14]. This is shown in Fig 5.9b. For this

method, macro-instructions are defined for the various operations supported by

the CoMeFa RAMs. Table 5.2 shows the list of supported macro-instructions

(or opcodes). The ram[x] notation refers to an operand stored in the CoMeFa

RAM at row x. The out[x] notation refers to an operand outside the RAM.

The controller currently supports selecting an operand from 9 values outside

the CoMeFa RAM using multiplexing logic. A macro-instruction ending in

_ooor means that at least one of the operands is outside the RAM. Each oper-

ation is done for the precision specified in the macro-instruction (using a field

ending in _prec). The address specified in the instruction refers to the row

number of the least-significant-bit of the operand. The dot_prod operations

performs a ∗ x+ b ∗ y. Since there are only 40 bits in a macro-instruction, and

more than 40 bits are needed to express all operands of this instruction, an

assumption is made that the x is laid out right after a and y is laid out right

after b. This is the reason for having ram[src3+prec] and ram[src1+prec]

in the instruction description.

An assembler (written in Python) converts a program written using

these macro-instructions into a binary format. This binary data is loaded into

a BRAM (either at configuration time or at run time). An instruction con-

troller (implemented in soft logic) fetches macro-instructions from the BRAM,

decodes them, and sends instructions to the CoMeFa RAMs.

Not all applications need to use all the macro-instructions supported by
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CoMeFa RAMs. E.g, an application that performs elementwise operations may

only need the add and mul macro-instructions. To support this, an instruction

controller generator (written in Python) is designed. A user can generate an

instruction controller that only supports the macro-instructions they need.

This keeps the instruction controller lean and lowers the overhead.

The hardware for executing some macro-instructions such as reduce

can be complex. Providing support for such macro-instructions in the con-

troller will make it complicated. Instead, for such macro-instructions, the

burden is moved to the assembler. The assembler converts these complex

macro-instructions into a sequence of simple macro-instructions such as add

and shift. So, the controller only supports simple macro-instructions and

stays lean.

In some applications, the program can be very small (a few macro-

instructions). In such cases, using a BRAM to store a few instructions is

wasteful. A user can map the binary to distributed RAM in LBs instead of

a BRAM. On the other hand, in some cases, the program can be very long

and may exceed the number of instructions that can be stored in a BRAM.

In the applications evaluated in this dissertation, this is never the case. But,

in the future, to reduce the size of the program, a macro-instruction (repeat)

that will implement hardware loops is planned. Support for floating-point

operations in the controller is also planned.

To make adoption of CoMeFa RAMs even easier by users, a compiler

could be developed that would translate a DNN application written in Python
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Table 5.2: Macro-instructions supported by the assembler. The operator +: has a
meaning similar to Verilog’s index part-select operator. For example, data[24 +: 8]

is the same as data[31:24]

Instruction Operands Semantics

add dst, dst_prec, src2,
src2_prec, src1, src1_prec

ram[dst +: dst_prec] ← ram[src2 +: src2_prec] +
ram[src1 +: src1_prec]

add_ooor dst, dst_prec, src2,
src2_prec, src1, src1_prec

ram[dst +: dst_prec] ← out[src2 +: src2_prec] +
ram[src1 +: src1_prec]

mul dst, dst_prec, src2,
src2_prec, src1, src1_prec

ram[dst +: dst_prec] ← ram[src2 +: src2_prec] ×
ram[src1 +: src1_prec]

mul_ooor dst_prec, src2, src2_prec,
src1, src1_prec

ram[dst +: dst_prec] ← out[src2 +: src2_prec] ×
ram[src1 +: src1_prec]

logical dst, src2, src1, prec, op ram[dst +: dst_prec] ← ram[src2 +: src2_prec] op
ram[src1 +: src1_prec]

logical_ooor dst, src2, src1, prec, op ram[dst +: dst_prec] ← out[src2 +: src2_prec] op
ram[src1 +: src1_prec]

shift dst, src, dir, shamt, prec ram[dst +: prec] ← ram[src +: prec] left or right shifted
by shamt

dot_prod dst, dst_prec, src3,
src3_prec, src1, src1_prec

ram[dst +: dst_prec] ← ram[src3+src3_prec +:
src3_prec] × ram[src3 +: src3_prec] +
ram[src1+src1_prec +: src1_prec] × ram[src1 +:
src1_prec]

dot_prod_ooor dst, dst_prec, src4, src3,
src2, src1, src_prec

ram[dst +: dst_prec] ← out[src4 +: src_prec] ×
ram[src3 +: src_prec] + out[src2 +: src_prec] ×
ram[src1 +: src_prec]

reduce dst, src, levels, prec internally reduce operands (each of precision prec)
located across CoMeFa RAM levels times

unload src, count unload data from ram[src] to ram[src+count] from the
ram

init (set/reset) dst, pattern, count ram[dst+count] to ram[dst] ← pattern
set_mask src mask register in PE ← ram[src]
nop count No operation for count cycles

or C into macro instructions. Such a compiler would identify the best par-

allelism distribution across CoMeFa RAM blocks, perform data allocation in

memory rows, keep track of the lifetime of each data, and eventually generate

macro instructions (like add, mul, etc.). The assembler would then convert

these macro-instructions to the binary format, which will be then be decoded

and executed by the instruction controller. The development of this compiler

is left as future work.
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5.2 Evaluation Methodology
5.2.1 Tools and Methods Used

The Verilog-to-Routing (VTR) tool flow [85] is used to evaluate and

compare FPGA architectures. COFFE [136] is used to obtain the area and de-

lay values for the various components of the FPGA, including CoMeFa RAMs,

(to enter them in the FPGA architecture model for VTR experiments). SPICE

simulations are performed using FreePDK45 [88] for a circuit containing one

bitline pair, two wordline circuits, and two memory cells, with other transis-

tor and wire loads modeled. This is done to get more confidence that the

read+compute+write operation of CoMeFa RAMs works, and to validate the

numbers obtained from COFFE.

A cycle-accurate behavioral model of CoMeFa RAM is developed to

use in functional simulations. This model is written in System Verilog and has

the exact same interface (input and output signals) as a CoMeFa RAM hard

block in the FPGA architecture model for VTR experiments. Both the storage

and compute modes are modeled, by accurately capturing the functionality of

the PE and the RAM array. Synopsys VCS and Xilinx Vivado’s integrated

simulator are used for functional verification of all designs (e.g. designs for

benchmarks) used during the evaluation.

An analytical model is used to estimate dynamic energy consumption.

Transistor energy and wire energy are considered. Transistor is calculated

based on the number of transistors in each block (obtained from the area

consumed by the block from VTR). Wire energy numbers (fJ/mm) are taken
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from [69], scaled to 22 nm technology node using [108], and multiplied with

the total routing wirelength from VTR. An activity factor of 0.1 is used.

5.2.2 Baseline vs. Proposed Architectures

An Intel Arria 10-like FPGA architecture is used as the baseline with

the same resources as Arria 10 GX900 [59] (Table 5.3). Arria 10 FPGAs [58]

use a technology node (20 nm) similar to the setup used in this chapter (22

nm). Arria 10 GX900 has 96 transceiver channels that support up to 17.4 Gbps

[60]. It is assumed that a 4-port full-width soft HMC (Hybrid Memory Cube)

controller [51] is implemented on the FPGA to provide a DRAM bandwidth

of 2048 bits/clock. Resources consumed by the controller are not used to map

the applications to the FPGA. FPGAs with a higher BRAM:DSP ratio will

see even more benefits by converting BRAMs to CoMeFa RAMs.

The VTR FPGA architecture used in [12] is used to make a baseline

architecture model. COFFE simulations are run on an Arria-10 like DSP to

identify its delay and area. Delay and areas of a 20 Kilobit BRAM are obtained

from COFFE (by interpolating between 16K and 32K). These results are scaled

based on the DSP and BRAM delays specified in [55]. The DSP slice works

at 630 MHz in fixed-point mode and 550 MHz in floating-point mode. The

BRAM works at 735 MHz in single-port, simple dual-port, and true dual-port

modes. The proposed FPGA architecture models (CoMeFa-D and CoMeFa-A)

differ from the baseline in having CoMeFa RAMs instead of normal BRAMs.

183



Table 5.3: Properties of the baseline FPGA architecture
(Intel Arria 10 GX 900 like)

Resource Count Percentage Area
Logic Blocks 33962 66
DSP Slices 1518 18

Block RAMs 2423 15
DRAM bandwidth 2048 bits/clock

Channel width 300

Table 5.4: List of microbenchmarks used for evaluation (CB = Compute bound,
OMB = On-chip memory-bandwidth bound, DBB = DRAM bandwidth bound)

Microbenchmark Domain Scenario
Created Storage Precision

GEMV DL CB DRAM 8-bit
GEMM DL CB DRAM 8-bit
Conv2D DL CB DRAM 8-bit

FIR Filter Signal
Processing CB DRAM 16-bit

Eltwise Mult DL DBB DRAM HFP8
Bitwise - Search Databases OMB BRAM 16-bit
Bitwise - RAID Data Center OMB BRAM 20-bit

ReLU DL OMB BRAM 16-bit
Reduction DL OMB BRAM Multiple

5.2.3 Benchmarks

Verilog designs are created for several diverse applications to use as

microbenchmarks (Table 5.4). These include Deep Learning (matrix-vector

multiplication (GEMV), matrix-matrix multiplication (GEMM), 2D convolu-

tion (Conv2D), reduction, elementwise multiplication (Elt Mul), rectified lin-

ear unit activation (ReLU)), signal processing (FIR filter or 1D convolution)

and bitwise applications (database search and RAID array data recovery).

These applications are manually mapped to CoMeFa RAMs and instantiate
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the CoMeFa RAM blocks in Verilog RTL. During functional verification, a sim-

ulation model of CoMeFa RAM is used. Different scenarios (compute bound,

DRAM bandwidth bound and on-chip memory bound) are created in these

applications. Additionally, the impact of adding CoMeFa RAMs on the per-

formance of real-world Deep Neural Networks (DNNs) is evaluated. Three

common DNN types are used: Fully Connected Networks (MLP), Recurrent

Neural Networks (LSTM and GRU), Convolutional Neural Networks (Tiny

Darknet and ResNet).

General Matrix-Vector Multiplication (GEMV) and General

Matrix-Matrix Multiplication (GEMM): GEMV and GEMM are fun-

damental operations in DL applications. They are used in MLPs, LSTMs

and many other DNNs. The GEMV workload has a weight matrix of size

2048x512 is multiplied with an input vector of size 512x1. The GEMM work-

load has a weight matrix of size 1536x512 is multiplied with an input matrix

of size 512x32. These are sizes from actual layers in DeepBench benchmarks

[87]. 8-bit integer precision with 27-bit accumulation is used. On the baseline

FPGA, compute units are implemented using efficient chaining of DSPs. On

the proposed FPGA, compute units based on CoMeFa RAMs are additionally

deployed, because many RAM blocks are available after mapping the baseline

design on the proposed FPGA. The efficient OOOR-based dot product algo-

rithm, described in Section 5.1.13, is used. Partial sums are read out from

the CoMeFa blocks and accumulated using a pipelined bit-serial tree [74]. No

online data transpose is required - the weight matrix is transposed offline and
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pinned into CoMeFa RAM blocks; the input is streamed and does not need

to be transposed because it is outside the RAM. Since both DSP based and

CoMeFa based compute units are used, a reduction in data movement is not

expected.

Convolution: The convolution operation forms the backbone of Con-

volutional Neural Networks (CNNs). A convolution layer with the following

parameters is considered - Input: Height = 72, Width = 72, Channels =

128; Filters: Height = 2, Width = 2, Number = 128; Output: Height = 71,

Width = 71, Channels = 128. On the baseline FPGA, dot product units

are designed using DSP slices to perform multiplications and additions along

the channel dimension, and then the results from the 4 filter locations are

added. The filters are stored in BRAMs and the inputs are streamed. A

compute unit on the baseline FPGA is made of 64 DSPs and 8 BRAMs. On

the proposed FPGAs, CoMeFa RAMs are additionally deployed. Filters are

pre-transposed and stored in the CoMeFa RAMs. A compute unit formed by

CoMeFa RAMs contains 128 CoMeFa RAMs, along with instruction genera-

tion logic. The columns of a CoMeFa RAM are used to store different filters

(vectorization across the output channel dimension), whereas the RAMs in a

unit are used for vectorization across the input channel dimension. OOOR op-

erations are used to compute dot products. The input data is divided between

the compute units formed by DSPs and those formed by CoMeFa RAMs.

Finite Impulse Response (FIR) Filter: FIR filters are a com-

mon Digital Signal Processing (DSP) application. An FIR filter with 128
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taps is considered. Input operands are streamed onto the FPGA through

the DRAM interface. The baseline FPGA uses an efficient implementation of

FIR filter using systolic DSP chaining [6]. The proposed FPGA uses CoMeFa

RAMs for computation along with DSP chains. Logic blocks are used for

control logic. Operands are transposed on-the-fly and loaded into multi-

ple CoMeFa RAMs in parallel. While some CoMeFa RAMs are computing,

other CoMeFa RAMs are loaded in a pipelined manner to improve parallelism.

When a CoMeFa RAM finishes computing, its results are unloaded and sent

to DRAM, and the process starts again until all inputs are processed. This

is called the Load-Compute-Unload (LCU) pipeline. In this application, the

CoMeFa RAM-to-CoMeFa RAM chaining (Section 5.1.10) feature is used to

share inputs between neighboring blocks.

Elementwise multiplication: Elementwise multiplications are com-

monly used in DL, for example, in normalization layers and Winograd-based

convolution layers. An application involving elementwise multiplication of two

arrays of 100K elements is considered. Floating point data with a precision

of HFP8 [111] is used. The intent is to showcase that CoMeFa RAMs are

adaptable to any custom precision. The operands are read from DRAM and

the results are written to DRAM. This is a DRAM bandwidth bound appli-

cation because of low arithmetic intensity. It is observed that the number

of LBs used is significantly higher (25x) than in the baseline FPGA. This is

because to saturate the DRAM bandwidth available on the chip, many swizzle

logic instances are required. However, if the swizzle logic is hardened into a
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DRAM controller, as discussed in Section 5.1.11, then this overhead is entirely

removed.

Bitwise operations: Bitwise operations (like AND, OR, XOR, XNOR,

etc) are commonly used in databases, encryption, DNA sequence alignment,

etc. They are also used in Binary Neural Networks (BNNs). CoMeFa RAMs are

very efficient at these massively parallel operations because of the presence of

mux-based fully configurable PEs. The operands are assumed to be available

in BRAMs in the right layout. The speedup seen in these applications is at-

tributed to the effective increase in on-chip memory bandwidth because 160

bits can be operated upon in 1 cycle in a CoMeFa RAM, compared to only 40

bits from a BRAM in the baseline FPGA. Two applications are considered in

this category.

Database search: In this application, records matching a key are searched.

If a record matches the key, it is replaced with special marker data (like con-

stant 0). Each operand is bitwise XOR’ed with the key. Bitwise OR reduction

is performed on the result. And then a bitwise ANDing operation is per-

formed to zero out the operands that match the key. BRAMs are used to

store operands. Each row of a BRAM has 2 16-bit elements. On the proposed

FPGA, elements are stored in 256 CoMeFa RAMs. 7 data elements are stored

in each column and temporary results consume 16 rows in a CoMeFa RAM.

The key is outside the RAM.

RAID data recovery: In RAID (Redundancy Array of Independent

Disks) arrays, parity protection is used. If a drive in an array fails, the re-
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maining data on other drives is combined with the parity data (using XOR)

to reconstruct the missing data. These numerous parallel XOR operations

with the parity data can be accelerated using an FPGA. Instead of storing

operands in a transposed format (bits of one operand in multiple rows), an

un-transposed data layout is used where bits of one operand are stored in one

row and bits of the second operand are stored in another row. This works for

logical operations like bitwise XOR where there is no dependency/communi-

cation between consecutive bits and avoids the overhead of transposing data.

Performing an XOR operation between operands stored on two rows takes 1

cycle. 256 RAMs are used.

ReLU: Rectified Linear Unit (ReLU) is the most common activation

function used in DNNs. Activations usually follow a GEMM or GEMV or

CONV operation. The operation involves zero’ing out any negative input, but

any positive input stays unchanged. The input data is available in a BRAM

(computed by a prior kernel, for example). The precision is 16-bit. In CoMeFa

RAMs, the inverted most significant bit (sign bit) of each input is copied into

the mask latches in the PEs. The value 0 is written to each row containing

the input elements. In some columns, the operation is masked (because the

sign bit is 0) implying the values stay unchanged. But in other columns, the

values are zero’ed out. In the baseline FPGA, values are read from the RAM,

their most significant bit is inspected, the output is generated using simple

multiplexing logic and written back into the RAM.

Reduction: Reduction (or accumulation) is heavily used in DL and
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DSP applications. This application is designed to create a scenario of an on-

chip memory bandwidth limited application. Data is available in transposed

format (computed in RAM by a prior kernel, for example). The precision

is varied from 4-bit to 20-bit (accumulator size = 32-bit). In the baseline,

operands stored in BRAMs are read and successively accumulated using a

pipelined adder tree (in LBs). On the proposed FPGA, CoMeFa RAMs store

the operands. The reduction algorithm from [32] is used to reduce the elements

to 40 partial sums (1 partial sum in each multiplexed column of the RAM).

These intermediate results from multiple CoMeFa RAMs are then read out

and accumulated using a popcount-based adder [124] to obtain the result. A

significantly smaller number of LBs (∼2x-3.5x) is required on the proposed

FPGA.

DNNs: To evaluate full neural networks, a Microsoft Brainwave-like

accelerator [37] is created based on Boutros et al. [21]. This accelerator con-

sists of five pipeline stages: the matrix unit (MU) for matrix-vector multipli-

cation operations, the selector unit for skipping the MU when necessary, two

multi-function units (MFUs) for vector elementwise operations (e.g. activa-

tion, addition, multiplication), and the loader (LD) which interfaces with the

DRAM to load and unload data. Register files (MRF and VRF) store the data

locally. Similarly to CCB [124], two versions of this accelerator are created:

one for the baseline FPGA and another for the proposed FPGA. For the base-

line FPGA, the MU consists of dot product engines (DPEs) that contain DSP

slice cascade chains. Each DPE generates 1 result. For the proposed FPGA,
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the MU additionally contains dot product engines that are mapped to CoMeFa

RAMs (these are called CoMeFa-DPEs or C-DPEs). The CoMeFa RAMs in

C-DPEs receive instructions from instruction generation FSM (duplicated to

reduce fanout). A popcount-based bit-serial reduction tree [124] is used to

combine the results from various CoMeFa RAMs. Each C-DPE generates 40

results. Figure 5.10 shows the architecture of the accelerator for the proposed

FPGA.

An analytical model is written to explore the distribution of data and

BRAMs between DPEs and C-DPEs. There are two main knobs in the analyt-

ical model - f_data, which decides the fraction of workload (in terms of rows

of the matrix processed by the MU) processed by DPEs compared to C-DPEs,

and f_arch, which decides the fraction of BRAMs allocated to DPEs com-

pared to C-DPEs. In addition, the analytical model also varies the number

of DSPs per DPE and the number of BRAMs per C-DPE over pre-specified

ranges. The analytical model iterates over each layer for each neural network

and calculates the cycles consumed for each layer. Then, the results from the

analytical model are post-processed using Pandas to find out the best knob

(or parameter) settings for each neural network. This results in a different

architecture for each neural network. So, instead of having a one-size-fits-all

overlay, there is a customized overlay for each neural network. An RTL gener-

ator is written to generate the Verilog design for the accelerator with the best

hardware parameters identified by the analytical model. Through simulation,

sanity verification of the Verilog design and the analytical model’s results is
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performed.

The Brainwave-like accelerator does not directly support convolutions.

So, for CNNs, convolution is expressed as matrix multiplication using the

im2col operation. It is assumed that the im2col operation is performed in

hardware. Although this can be optimized by designing an accelerator specif-

ically for convolution, the goal here is to showcase the gains from in-memory

computation rather than designing the most efficient accelerator.

For this part of the evaluation, five DNN benchmarks from 3 common

DNN types are considered: Fully Connected Networks (Multi-Level Perceptron

(MLP)), Recurrent Neural Networks (Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU)), Convolutional Neural Networks (Tiny Dark-

net) and Residual Neural Networks (Resnet)). The mlp network is a 5-layer

MLP with each hidden layer having 1024 neurons, with 4M parameters. The

gru network has a hidden size = 512, embedding size = 512, and time steps =

50. It has 1.5M parameters. The tdarknet network is Tiny Darknet, a small

image classification network for edge devices. It has 650K parameters. The

lstm network is an LSTM with hidden size = 1024, embedding size = 1024,

and time steps = 50. It has 8.4M parameters. The resnet benchmark is the

ResNet-50 variation of ResNet. It has 24M parameters.

Two precisions are considered - int8 and int4, and two batch sizes - 1

and 8. The speedup using the two dot product algorithms mentioned in Section

5.1.13 is also evaluated. The FPGA used in the evaluation (Intel Arria 10) is a

mid-sized FPGA (47 MBits capacity). Some of the DNNs used for evaluation
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Table 5.5: Area breakdown of various RAM blocks

Component BRAM CoMeFa-D CoMeFa-A
Input and output crossbars 5.6 4.5 5.2
Decoders & wordline drivers 7.8 6.3 7.3
Write drivers & sense amps. 6.9 14.0 6.4

Memory cell array 53.4 43.0 49.6
Routing (conn. & switch) 26.0 20.9 24.1

Processing elements 0 11.1 7.1
Total (%) 100 100 100

have weights that do not fit on the FPGA. For int8, lstm and resnet do not

fit. For int4, only resnet does not fit. For those cases, the overhead in loading

the weights onto the FPGA from DRAM is also considered.

5.2.4 Implementation Details

Area: Table 5.5 shows the area breakdown of both architectures of

CoMeFa RAM. For CoMeFa-D, the area overhead is 1546.78 um2. This rep-

resents an increase of 25.4% in the BRAM tile area compared to the baseline.

This overhead is mainly attributed to the addition of 160 PEs and the addi-

tional 120 sense amplifiers and write drivers. With BRAMs occupying 15%

of the die size in the baseline FPGA, this overhead corresponds to only 3.8%

increase in the FPGA chip area. The overhead for CoMeFa-A is 493.5 um2.

Compared to the baseline, this represents an increase of 8.1% in BRAM tile

area and only 1.2% increase in FPGA chip area. This overhead is mainly

attributed to the addition of 40 PEs.

Frequency: COFFE is used to obtain the overhead in the frequency

of operation of a CoMeFa RAM in Hybrid mode, compared to a BRAM (735
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MHz). For CoMeFa-D, the cycle duration increases to 1.25x (588 MHz). This

is mainly attributed to performing read, compute (PE circuitry delay), and

write in the same cycle. For CoMeFa-A, the cycle duration increases to 2.5x

(294 MHz). This is because 4 reads and 2 writes are done successively as

described in Section 5.1.7. In Memory mode, the delay overhead is negligible;

there is only one additional mux in the write path and the read path remains

unchanged. For experiments, a delay overhead of 1.5% is considered in Memory

mode.

Routing: The interface of a CoMeFa RAM block to the programmable

routing is not changed compared to that of a BRAM. The only change is the

addition of two pins, which are used for direct connections between neighboring

BRAMs. These do not impact the programmable interconnect directly, but

do increase the pin density.

CCB: The implementation of CCB [124] is based on a BRAM with

128x128 geometry. The area overhead for the CCB block evaluated in [124]

does not include the area of the additional sense amplifiers and write drivers.

CCB is re-implemented and the total area overhead comes out to be 872.64

um2, which is a 16.8% increase at the block level and 2.5% at the chip level in

the Arria-10-like FPGA used in this study. The frequency of operation of the

CCB evaluated in [124] is 1.6x (469 MHz) compared to the baseline BRAM.

Table 5.6 shows the differences between CCB and CoMeFa.
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Table 5.6: Differences between CCB and CoMeFa

Property CCB CoMeFa-D CoMeFa-A
Activate two wordlines at the
same time on one port Yes No No

Additional voltage source
required Yes No No

Additional row decoder
required Yes No No

Changes in sense amplifiers Yes No No
Additional sense amplifiers Yes Yes No
Sense amp cycling No No Yes
Compute uses dual-port
behavior No Yes Yes

Generic/Flexible PE No Yes Yes
Shift between RAM blocks No Yes Yes
Floating point support No Yes Yes
Flip-flops in PE to store
operands No No Yes

Parallelism 128 160 160
Application(s) demonstrated DL Many Many
Clock duration overhead 60% 25% 125%
Area overhead (block) 16.8%* 25.4% 8.1%
Area overhead (chip) 2.5%* 3.8% 1.2%
Column multiplexing No No Yes
Practicality Low Medium High

* includes overhead of additional sense amplifiers and write drivers.
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5.3 Results
5.3.1 BRAM+PE vs. CoMeFa RAMs

A comparison of CoMeFa RAMs with a normal Block RAM and single-

bit bit-serial processing elements implemented in soft logic is performed. The

latter is called the "BRAM+PE" architecture. Figure 5.11 shows the block

diagram of the BRAM+PE architecture. The BRAM is used in true dual port

mode (1024x20) so that each PE can be fed with 2 operands at the same time.

Multiplexing logic is provided to allow data to be loaded into the BRAM before

the operation, and the results to be unloaded after the operation has finished.

When start is asserted, the instruction generation FSM (also implemented in

soft logic) starts generating instructions. The instruction specifies the BRAM

addresses to read to provide data to the PEs. It also specifies the operation

to be performed by the PEs. The address to write the results back to is also

included in the instruction. After the operation is complete, the done signal

is asserted and results can be read out from the BRAM.

Qualitatively, the BRAM+PE architecture suffers from the following

disadvantages compared to CoMeFa RAMs:

1. More cycles are required because separate cycles are required to read

each operand and then write the result, and also in each cycle only 40

bits can be read compared to 160 in CoMeFa RAMs

2. Use of programmable routing/interconnect to transfer data from BRAM

to PEs, resulting in higher power consumption
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Figure 5.11: Block diagram the BRAM+PE architecture

Parameter BRAM+PE CoMeFa
LBs 78 32

RAMs 10 10
Frequency 337.9 536.5

Cycles 64 8
Time (us) 0.19 0.015

Table 5.7: Comparison between CoMeFa RAMs and BRAM+PE

3. Low frequency of operation and higher area because of the PEs and

complex control logic being implemented in soft logic

Quantitatively, to compare the BRAM+PE and CoMeFa RAMs, a sim-

ple elementwise addition operation is performed on an array of two numbers

(precision = 8 bit). Data is laid out inside the RAMs in a transposed man-

ner in both the cases. The results are shown in Table 5.7. It is observed

that CoMeFa RAMs use approximately 60% less LBs than BRAM+PE. The

BRAM+PE design has the PEs, the multiplexing logic for each RAM inter-

face signal and the instruction generation logic implemented in LBs. On the
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other hand, the CoMeFa RAM design does not have any PEs in LBs, and

the multiplexing logic and the instruction generation logic is much simpler.

The frequency of operation is higher in the CoMeFa RAM case for the same

reasons. In the BRAM+PE case, the critical path included routing wires to

implement the multiplexing logic, whereas in the CoMeFa RAM case, the crit-

ical path is inside an LB. There is a factor of 8 difference in the number of

cycles between the two cases. This includes a factor of 4 from the difference

in available bandwidth (160 in CoMeFa RAM case vs. 40 in BRAM+PE

case) and a factor of 2 from the difference in the number of cycles for each

operation (1 cycle to read+compute+write in CoMeFa RAM case vs. 2 cy-

cles to read+compute+write in BRAM+PE case). Overall, the time taken by

CoMeFa RAMs is an order of magnitude less compared to the time taken in

the BRAM+PE case.

5.3.2 Throughput Comparison

To evaluate the peak throughput, the MAC (multiply-accumulate) op-

eration is considered. MAC operation is the most common operation in DSP

and DL applications. Common fixed-point precisions - 4-bit (accumulator=16-

bit), 8-bit (acc=27-bit) and 16-bit (acc=36-bit), as well as floating-point pre-

cisions - HFP8 ({exp=4, frac=3} and acc={exp=6, frac=9}) [111] and IEEE

FP16 (acc=IEEE FP32) are used. The throughput of CoMeFa RAMs is com-

pared to the traditional compute units (LBs and DSPs). For LBs, one MAC is

synthesized, placed and routed onto the FPGA, and the operating frequency
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Figure 5.12: Peak throughput for MAC operations for the whole FPGA for
various precisions

and resource utilization are determined. Then the throughput is calculated

by optimistically assuming that the FPGA can be filled by such MAC units

at the same operating frequency. This serves the purpose of evaluating peak

throughput. For DSPs, MACs are created and taken through a similar process.

The DSPs do not natively support FP16 and HFP8 precisions, so MACs for

these precisions are designed using soft logic and DSPs. For CoMeFa RAMs,

160 MACs are implemented in parallel by instantiating one CoMeFa RAM and

an instruction generation FSM.

Figure 5.12 shows the peak throughput for each precision obtained from

each different computing resource in GigaMACs/second. The throughput of

the FPGA increases by 2x, 1.7x, 1.3x, 1.7x and 1.3x for int4, int8, int16, hfp8

and fp16 respectively by adding CoMeFa-D RAMs. Similarly, the through-

put of the FPGA increases by 1.5x, 1.36x, 1.16x, 1.36x and 1.15x for int4,
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int8, int16, hfp8 and fp16 respectively by adding CoMeFa-A RAMs. CoMeFa

RAM throughput reduces as the precision increases, due to the bit-serial nature

of computation in CoMeFa RAMs. CoMeFa RAMs can be used for comput-

ing in any precision, unlike DSPs. The frequency of operation of CoMeFa

RAMs does not change significantly with changing precision, unlike LBs.

Note that the compute throughput enhancement evaluated here is for

MAC operations only and does not use OOOR operations. The speedup ob-

tained for different benchmarks can vary from the peak throughput enhance-

ment calculated here because: (1) non-MAC operations like reductions may

be needed, (2) clock frequency may be lower because of large designs, (3)

cycles may be spent in loading and unloading data to/from CoMeFa RAMs,

(4) DRAM reads and writes may bound certain parts of the application, (5)

OOOR operations may be used to speed up the operation, and (6) LBs may

only be used for control logic and not for computation.

5.3.3 Resource Usage and Frequency

Table 5.8 shows the resource usage and frequency of operation for the

various compute bound and DRAM bound microbenchmarks obtained from

the VTR flow (averaged over 3 seeds). The table shows the data for the base-

line FPGA and the three FPGA variations with compute-enabled BRAMs

(CCB, CoMeFa-D and CoMeFa-A). The resource usage for each resource is

in percentage of the total resources of that type on the FPGA. The logic

block (LB) usage increases significantly for all the microbenchmarks. This
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is because of the control logic (instruction generation logic, data loading/un-

loading logic, etc) required for using the compute-enabled BRAMs. The DSP

usage remains the same as baseline, and the usage of RAMs significantly in-

creases. Note RAMs are not used in-place-of DSPs, but additionally, in order

to maximize the usage of the FPGA to exploit the higher compute throughput

to obtain speedup. The FIR benchmark uses chaining of RAMs, which is not

supported by CCB. Similarly, CCB does not support floating-point operations.

So, the FIR and Elementwise Multiplication benchmarks are not implemented

on the CCB architecture, and hence the frequency is marked with a "-". For

Elementwise Multiplication benchmark, a design with no swizzle modules is

constructed, so that the design fits on the FPGA by maximizing the number

of CoMeFa RAM for compute. This is done to obtain the theoretical speedup

in the case with unlimited DRAM bandwidth (see Section 5.3.4).

Table 5.9 shows the resource usage and frequency of operation of the

various on-chip memory bound microbenchmarks obtained from the VTR flow.

The resource usage shown here is in absolute numbers. This is because for these

benchmarks, a small design is created that uses similar FPGA RAM resources

on the baseline FPGA and the FPGA with compute-enabled BRAMs. Bitwise-

Search uses more BRAMs in the baseline because of underutilization of the

RAM due to the data layout. No DSPs are used for computation in these

benchmarks on the baseline FPGA as well the FPGA with compute-enabled

BRAMs. A significantly lesser number of LBs are used in the FPGAs with

compute-enabled BRAMs because the computation is done internal to the
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Table 5.8: Resource Usage (percentage) and Frequency (F, in MHz) for compute
and DRAM bound microbenchmarks

Baseline FPGA with compute-enabled BRAMs
Benchmark LB DSP BRAM F LB DSP BRAM F(CCB) F(CoMeFa-D) F(CoMeFa-A)
GEMV 1.6 90.1 43.4 253 27.9 90.1 91.8 231 242 242
GEMM 0.8 92.4 38.6 269 25.5 92.4 86.7 260 267 260
Conv2D 5.0 91.8 28.5 255 35.5 91.8 91.3 245 246 243
FIR 12.8 93.0 3.5 243 53.1 93.0 95.3 - 229 229
Elt Mult 25.8 49.8 38.1 300 21.7* 0 92.6 - 292 288

* does not include LB usage from swizzle modules to capture the infinite DRAM bandwidth case.

Table 5.9: Resource Usage (absolute values) and Frequency (F, in MHz) for
on-chip memory bound microbenchmarks

Baseline FPGA with compute-enabled BRAMs
Benchmark LB DSP BRAM F LB DSP BRAM F(CCB) F(CoMeFa-D) F(CoMeFa-A)
Search 2242 0 280 600 1206 0 256 451 465 294
RAID 1538 0 256 702 578 0 256 459 588 294
ReLU 560 0 256 616 301 0 256 445 465 294
Reduction 4072 0 256 445 1184 0 256 453 469 294

BRAMs and LBs are not used for computation. The frequency of operation

is very high on the baseline FPGA because the control logic is much simpler

compared to the control logic (instruction generation logic) in the FPGAs with

compute-enabled BRAMs. An interesting observation is that in the CoMeFa-A

case, the frequency of operation is always limited by the frequency of operation

of the CoMeFa-A RAM (294 MHz).

5.3.4 Speedup and Energy Benefits

Figure 5.13 shows the speedup obtained by using compute-enabled

BRAMs across microbenchmarks. Significant speedups are seen by using

CoMeFa RAMs in the compute bound applications because of the augmented
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Figure 5.13: Speedups obtained for different FPGA architectures for various
benchmarks. ∗ implies no DRAM bandwidth limitation.

compute throughput provided by the FPGA. For GEMV benchmark, speedups

of 47.5% are seen in CoMeFa-D and CoMeFa-A. With CCB, the max speedup

is 40%. For GEMM, the speedup is 74.5% for CoMeFa-D and 69% for CoMeFa-

A and CCB. A speedup of ∼85% is seen in the Convolution benchmark for

all 3 architectures, because the frequency of operation is similar in all three,

as seen in Table 5.8. A speedup of 59% is seen in the FIR benchmark for

both CoMeFa-D and CoMeFa-A. The FIR benchmark uses chaining of RAMs,

which is not supported by CCB. So, no speedup is considered compared to the

baseline.

Since the Elementwise Multiplication benchmark is limited by DRAM

bandwidth, no speedup is seen by using CoMeFa RAMs. CoMeFa RAMs are

targeted to improve the compute throughput of the FPGA, not the DRAM

bandwidth. If the restriction of DRAM bandwidth is removed and it is as-

sumed that all the compute units (CoMeFa RAMs as well as DSPs/LBs) can
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be fed with data, then speedups of 86% and 79% can be seen on CoMeFa-D and

CoMeFa-A FPGAs respectively. Since CCB does not support floating-point

operations, the speedup for this benchmark for CCB is shown as 0%.

The Search benchmark is sped up by 18% for CoMeFa-D. The design on

baseline FPGA has the highest frequency of operation because of very simple

operations done in soft logic, as seen in Table 5.9. No speedup is seen using

CoMeFa-A RAMs because of the low frequency of operation. This application

is not sped up by using CCB either. CCB takes ∼2x cycles compared to

CoMeFa RAM because of the inflexibility of the processing elements that only

support a few operations. E.g. AND operation can be done in 2 cycles in

CCB, compared to 1 cycle in CoMeFa RAM. The RAID application is sped

up by 6.7x in CoMeFa-D, 3.35x in CoMeFa-A and 5.2x in CCB. The baseline

frequencies are very high in this case also, but the difference in number of cycles

enables the significant speedups. In the ReLU benchmark, speedup of 2.7x,

2.85x and 1.8x are seen in CCB, CoMeFa-D and CoMeFa-A respectively. The

speedups for the Reduction benchmark (4-bit precision) are 5.3x in CoMeFa-D,

3.3x in CoMeFa-A and 5.1x in CCB.

Results from the energy model are shown in Figure 5.14. The results

are similar for the various architectures - CCB, CoMeFa-D, and CoMeFa-A.

FIR and Eltwise Mult benchmarks are not run on the CCB architecture as

mentioned earlier, so those results are omitted from the figure.

In compute-bound benchmarks (GEMV, GEMM, Conv2D, FIR), an

increase in energy consumption is observed. This is because the resource usage
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Figure 5.14: Energy consumption for all microbenchmarks.
* implies no DRAM bandwidth limitation.

in these benchmarks is significantly higher compared to the baseline, as seen in

Section 5.3.3. E.g., for GEMV, the baseline uses 1.6% LBs, 90.1% DSPs and

43.4% BRAMs, but with CoMeFa RAMs, 27.9% LBs, 90.1% DSPs and 91.8%

CoMeFa RAMs are used. The additional LBs are required for control logic to

program the CoMeFa RAMs and also for reduction of partial results obtained

from CoMeFa RAMs. To reduce fanout from this logic to CoMeFa RAMs (to

achieve high frequencies), this control logic has to be replicated multiple times,

increasing the LB usage significantly. This increased resource usage leads

to a high power consumption. The reduction in time for these benchmarks,

compared to the baseline, is less than 2×, as seen earlier in this section from

the Speedup results (Fig 5.13). E.g., for GEMV, the speedup is ~1.47. Since

energy is evaluated by combining the power consumption and the time taken,

the energy consumption is higher when running these benchmarks on an FPGA

with CoMeFa RAMs. These results indicate that using lower precision (e.g.
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int4) in these benchmarks could lead to an overall energy reduction because

of increased speedup. To confirm this, the GEMV benchmark is implemented

with the int4 precision and mapped to an FPGA with CoMeFa-A RAMs.

A speedup of 2.83 compared to the baseline is observed. The baseline uses

1.45% LBs, 91% DSPs and 23.8% BRAMs, but with CoMeFa RAMs, 28.8%

LBs, 89.5% DSPs and 89.7% CoMeFa RAMs are used. An energy reduction

of 24% is observed.

In the memory-bound benchmark (Eltwise Mult), a reduction of 40%

is seen in both CoMeFa-D and CoMeFa-A, but note that this excludes the

impact from the LBs used for swizzle logic, to showcase the infinite DRAM

bandwidth case.

In the on-chip memory bandwidth bound microbenchmarks (Search,

RAID, ReLU, Reduction), up to 38% less LBs are used in CoMeFa compared

to baseline. That is because no LBs are needed for computation when CoMeFa

RAMs are used. Routing WL reduction of up to 68% is seen, which directly

correlates to reduction in data movement. This reduces power consumption

by up to 56% in CoMeFa-A and up to 52% in CoMeFa-D. With significant

reduction in time obtained by using CoMeFa RAMs for these benchmarks as

seen in the Speedup results (Fig 5.13), the energy reduction of up to 95% can

be seen.
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All work done by
traditional units

Figure 5.15: Illustration of variation in speedup (based on cycles) by partitioning
the application between DSPs and CoMeFa RAMs.

5.3.5 Application Co-mapping

CoMeFa RAMs supplement DSPs and LBs as compute units, and en-

hance the FPGA’s compute throughput. Appropriately dividing the data be-

tween CoMeFa RAMs and traditional compute units is key. For the compute

bound applications (GEMV, GEMM, FIR, and Conv2D), the effect of vary-

ing data distribution between CoMeFa RAMs and DSPs/LBs on the proposed

FPGA is explored analytically. The results are shown in Figure 5.15. As more

work is given to CoMeFa RAMs, more speedup can be obtained upto a limit,

after which the overheads (loading, unloading, serial compute) associated with

CoMeFa RAMs can start dominating and reduce the overall speedup. This

sweet spot is different for each application. In some cases, mapping a majority

of the application onto CoMeFa RAMs can even cause an overall slowdown

because of higher latency.
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Figure 5.16: Sweeping precision in the Reduction benchmark

5.3.6 Adaptability to Precision

CoMeFa RAMs can be used for efficiently computing in any custom

precision. Figure 5.16 shows the results of sweeping the precision from 4-bit to

20-bit in the Reduction benchmark. Speedups ranging from 5.3x (3.3x) to 2.7x

(1.7x) are seen with CoMeFa-D (CoMeFa-A) as precision increases. CoMeFa-

D is 3% better than CCB owing to the improved frequency achieved by the

design. The baseline takes the same number of cycles for each precision because

of the bit-parallel nature of compute. But the number of cycles taken increases

as the precision increases when CoMeFa RAMs are used. This is because of

bit-serial arithmetic, and illustrates that applications using smaller precisions

are better suited for CoMeFa RAMs. Note that the frequency of operation

stays constant for CoMeFa RAMs because the hardware architecture stays

the same. For the baseline, the frequency decreases slightly as the precision

increases.
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Benchmark LB DSP BRAM
GEMV 49.0 90.1 91.7
GEMM 53.5 92.4 86.7
Conv2D 55.2 91.8 91.4

FIR 63.0 93.0 95.7
Elt Mult 24.2 0 84.2

Table 5.10: Resource usage when instruction generation logic is implemented
using the stored program method

Benchmark Customized
FSM

Stored
Program

GEMV 1.47 1.07
GEMM 1.69 1.22
Conv2D 1.85 1.45

FIR 1.59 1.41
Elt Mult 1.79 1.21

Table 5.11: Speedup obtained when instruction generation logic is implemented
using a customized FSM and using the stored program method

5.3.7 Using stored programs instead of hardcoded FSM

For each microbenchmark, a design that uses the stored program method

discussed in Section 5.1.14 is created. Table 5.10 shows the resource usage of

benchmarks when the stored program method is used. Comparing this to the

resource usage in Table 5.8, it is observed that the LB usage increases signif-

icantly. This increase is attributed to the relatively more generic instruction

controller logic, compared to the hardcoded FSM logic which can be highly

specialized and optimized for a specific benchmark. The DSP usage remains

exactly the same, because the instruction controller logic does not use any

DSPs. The BRAM usage remains almost the same, because of how the exper-

iment is designed. Some BRAMs used for computation are instead repurposed

to be used for storing instructions. The minor differences arise because the
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number of CoMeFa RAMs removed from compute units in the benchmark and

the number of instruction RAMs required by the remaining compute units

may differ.

The speedup obtained by using the stored program method is compared

with the speedup obtained using hardcoded FSM based method in Table 5.11.

It is observed that the speedup reduces by ~40% on average. But there is a

significant hard-to-quantify improvement in programmability of the CoMeFa

RAMs by using the stored program method. There are two main reasons for

reduction in the speedup. Firstly, instruction storage in the stored program

method can consume a significant number of BRAMs, reducing the BRAMs

available for compute. The hardcoded FSM method does not use any BRAMs

in the instruction generation logic. Secondly, when using the stored program

based method, a reduction in frequency of operation of the design is observed.

The critical path is in the instruction decoder of the controller.

In the future, improving the speedup obtained with the stored program

method is planned by (1) adding pipeline stages in the controller to improve

frequency, and (2) mapping macro-instructions to distributed RAMs in LBs

to keep the number of BRAMs available for compute the same.

Note that the reduction in speedup is evaluated only for compute-bound

and DRAM-bound microbenchmarks here. For the on-chip memory band-

width microbenchmarks, the experimental setup is such that a small number

of BRAMs is used in both baseline and proposed cases. A few extra BRAMs

can be used to store instructions and obtain the same speedup as the case with
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hardcoded FSM.

5.3.8 DNN evaluation

Fig 5.17 shows the speedup obtained by using the accelerator shown

in Fig 5.10, for 5 DNNs along with the geometric mean. The baseline uses

an accelerator without C-DPEs, on an FPGA without CoMeFa RAMs. Three

knobs or parameters are varied - precision, batch size, and dot product al-

gorithm. The frequency of operation of the accelerator is the same for both

cases - using CoMeFa-D and using CoMeFa-A - because the critical path of

the design is not in the Matrix Unit of the accelerator. So, these speedups

apply to both cases.

In Fig 5.17a, a geomean speedup of 1.26x is seen with int8 precision,

and that increases to 2.49x with int4 precision. Because of the bit-serial com-

putation in CoMeFa RAMs, smaller precision exhibit low latencies and higher

speedups compared to the baseline. These speedups are for a batch size of 8

using Algorithm 2. Fig 5.17b, the speedups for batch size of 4 and batch size

of 8 are compared, for int4 precision and Algorithm 2. The speedup increases

with batch size because of improved utilization, higher reuse, and amortiza-

tion of weight loading (when needed). In Fig 5.17c, the speedups obtained by

using Algorithm 1 and Algorithm 2 are compared, for a batch size of 8 and

precision of int4. Algorithm 1 is slower than Algorithm 2 because Algorithm

2 takes advantage of inspecting one bit each from two operands outside the

RAM, and reduces cycles by up to 2x.
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In Fig 5.18, the trends of varying the knobs f_arch and f_data (dis-

cussed in Section 5.2.3) can be seen, based on the results of the analytical

model. The number of cycles consumed (normalized) for each DNN is plotted

along the y-axis. In the top chart, f_data is kept constant at 0.5, implying

50% of the workload (matrix rows) is assigned to the DPEs and the rest 50%

is assigned to the C-DPEs. For higher values of f_arch, the number of cycles

consumed is high because enough BRAMs are not available for the 50% of the

workload assigned to C-DPEs. On moving left along the x-axis, f_arch re-

duces, and more BRAMs become mapped to C-DPEs, which in turn means the

part of the workload assigned to C-DPEs can be executed efficiently, reducing

the overall cycles consumed.

In the bottom chart in Fig 5.18, f_arch is kept constant at 0.5, implying

that 50% of the BRAMs are assigned to DPEs and 50% are assigned to C-

DPEs. When f_data is low (on the left of the x-axis), only a small amount

of the workload is assigned to C-DPEs, so there isn’t much speedup. But on

moving right along the x-axis, more of the workload is assigned to C-DPEs,

achieving a lower number of cycles. But on moving further right, the cycles

start to increase again because the latency of the C-DPEs starts to dominate.

Medium values of f_data give the highest speedup.

5.3.9 Integration into an open acceleration framework

To demonstrate using CoMeFa RAMs with already existing accelera-

tion frameworks, a CoMeFa RAM based acceleration unit is integrated into
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CFU Playground [97] from Google and Harvard. Figure 5.19 shows the overall

architecture of the system. CFU stands for Custom Functional Unit. CFU

Playground is a collection of software and hardware to make it easy for every-

one, including software engineers, to accelerate ML/DL inferencing. Overall,

the system provides a soft RISC-V based SoC that can be mapped to any

FPGA, with a simple C-based programming interface, along with the capa-

bility to design a CFU that is easily hooked up to the CPU. In the original

CFU Playground framework, the CFU is tightly coupled to the pipeline of the

CPU. Both commands and data to the accelerator are sent from the CPU in-

terface. This limits the acceleration that can be achieved because of the large

amount of data to be transferred using a narrow interface. The framework is

enhanced by adding a direct-memory-access (DMA) path from the accelerator

unit shown using red arrows in the figure (currently only using a simulation

model).

A C program is written to first populate the instruction RAM in the

accelerator. Then the accelerator is triggered by writing into a control register.

This trigger initiates the instruction controller in the accelerator to fetch data

into the CoMeFa RAMs using the DMA path via the swizzle logic. A status

register is read to ensure that the data transfer has been completed. Then

another command is sent by writing to a control register in the accelerator.

This command initiates the controller to fetch the instructions from the in-

struction RAM in the accelerator, and decode and execute them on CoMeFa

RAMs. After the execution has finished, another status register is set. The
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Figure 5.19: Integrating a CoMeFa RAM based unit into an SoC using an
open-source accelerator framework (CFU Playground)

CPU busy-waits on this status register until the execution is finished (there

are no interrupts currently).

Kernels are deployed to perform elementwise addition and multiplica-

tion on large arrays of data, using this framework. With the C-based interface

of the RISC-V CPU and the instruction based interface of the CoMeFa RAMs,

it is very easy to develop and use this accelerator. Comparing the cycles re-

quired to perform the same kernels using DSP-based accelerators, the speedup

obtained is similar to that in Section 5.3.4.

5.3.10 Impact on non-DL benchmarks

Some of the microbenchmarks used for evaluation of CoMeFa RAMs

in the previous sections are non-DL, for example, FIR filter and the bitwise

(search and RAID) benchmarks. This illustrates that CoMeFa RAMs can

be used for compute (by configuring them in their Hybrid mode) in non-DL
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benchmarks as well. However, in applications like legacy non-DL designs,

CoMeFa RAMs are not used in their Hybrid mode (for compute). They are

used in the Memory mode. To comprehensively evaluate the impact of adding

CoMeFa RAMs on non-DL benchmarks which use CoMeFa RAMs in memory

mode, VTR benchmarks [85] are run on 3 FPGA architectures: (1) Base-

line FPGA architecture with Block RAMs, (2) Proposed FPGA architecture

with CoMeFa-D RAMs, and (3) Proposed FPGA architecture with CoMeFa-

A RAMs.

VTR is run with auto layout enabled (meaning the grid size expands

based on the resources required by the design), the default timing-driven rout-

ing option with a maximum of 150 routing iterations, and a fixed channel width

of 300 wires. When running VTR, an SDC (Synopsys Design Constraints) file

is provided in which the target clock period is set to 0 (i.e. VTR will opti-

mize the design for maximum clock frequency), and timing analysis for paths

to/from the FPGA IOs is disabled.

VTR reports the resoure usage, achieved frequency, and routing wire-

length for each benchmark. The total area consumed by a circuit on an FPGA

is the sum of the logic area and the routing area. Logic area is available in the

VTR output report, but routing area is not. The routing area is estimated

approximately by adding the routing area of all tiles that had atleast one op-

eration mapped to. To reduce CAD noise, the results of each benchmark are

averaged first over six different seeds. Then, the results of each benchmark are

geometrically averaged to get the overall results plotted in Fig 5.20.
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Resource usage remains the same for all 3 cases (the only difference is

in the type of RAM used). Fig 5.20 compares the area, frequency and routing

wirelength. For area, increases of 2.3% and 0.75% are seen when CoMeFa-

D RAMs and CoMeFa-A RAMs are used respectively. CoMeFa-D RAMs are

larger than CoMeFa-A RAMs, which are larger than BRAMs, so this difference

is expected.

The change in frequency is negligible (less than 0.5%) for both CoMeFa-

A and CoMeFa-D cases. In fact, for some benchmarks, the achieved frequency

is higher than the baseline for some seeds. At the block level, the baseline

Block RAM and the CoMeFa RAMs operate at significantly high frequency

than the overall frequency of operation of the circuit. As mentioned in Section

5.2.4, Block RAM operates at 735 MHz, and this frequency is reduced by

only 1.5% in memory mode for CoMeFa-D and CoMeFa-A. The overall circuit

frequencies are unaffected by this minor reduction in frequencies of CoMeFa

RAMs. If the degradation in frequency in memory mode was significant, the

CoMeFa RAMs could have been in the critical path and reduced the frequency

of operation in some benchmarks.

The change in routing wirelength is negligible (less than 0.5%) for both

CoMeFa-A and CoMeFa-D. This is because in the evaluation done here, the

number of rows and columns in the FPGA grid consumed by a CoMeFa

RAM remains the same as a Block RAM. Only the width of a CoMeFa

RAM column is increased to accommodate for the increase in area. However,

VTR does not model grid columns of different widths.
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5.4 Discussion
5.4.1 Benefits and Limitations

Qualitatively, the advantages of using CoMeFa RAMs can be summa-

rized as:

1. CoMeFa RAMs transform BRAMs, which can only be used for stor-

age, into highly parallel SIMD engines. This parallelism provides sig-

nificant throughput boost for an FPGA. When not computing, CoMeFa

RAMs can still function as normal BRAMs (data does not need to be

transposed).

2. Because the computation happens inside the memory block, data move-

ment between various blocks on the FPGA is significantly reduced. The

requirement of precious routing/interconnect resources is reduced. This

leads to reduction in energy consumption, reduced routing congestion,

and potentially faster frequencies.

3. Any custom operation with any custom precision can be supported by a

CoMeFa RAM block. For performing a different operation or for using a

different precision, a different instruction sequence needs to be generated

and applied to the CoMeFa RAM. This makes CoMeFa RAMs univer-

sally applicable for any application domain.

4. CoMeFa RAMs increase the effective bandwidth available for computa-

tion. For Intel BRAMs, in one cycle, 160 data bits can be processed in

parallel, instead of 40 (an external block like DSP/LB can only access

40 bits from a BRAM at a time).
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5. Replacing BRAMs in an FPGA with CoMeFa RAMs increases the com-

pute density of FPGAs (GOPS/mm2). A smaller Silicon area will poten-

tially be required for a given circuit. More Silicon area can be dedicated

to compute an application resulting in significant speedups.

There are some limitations of converting FPGA BRAMs to CoMeFa

RAMs. First, because a CoMeFa RAM is larger in area than a BRAM, the

proposed FPGA is larger in size compared to the baseline FPGA. There is

an area overhead of 3.8% for an FPGA with delay-optimized CoMeFa RAMs

and of 1.2% for an FPGA with area-optimized CoMeFa RAMs. Secondly,

some overhead is seen on non-DL applications (upto 2.3% in area, less than

0.5% in frequency, less than 0.5% in routed wirelength). Thirdly, CoMeFa

RAMs take longer for one operation because of their bit-serial nature, leading

to higher latency. In many cases, this latency can be hidden or overlapped

with other operations to obtain speedup, similar to how speedup is achieved

for benchmarks in Section 5.3. Another drawback of CoMeFa RAMs is the

new programming model. In this dissertation, a stored program method for

programming CoMeFa RAMs is proposed, which makes them much easier to

program. Even then, a new block means tools need to be updated and libraries

need to be created that can enable users to use them easily.

5.4.2 Comparison with other FPGA blocks

CoMeFa RAMs are universal blocks and can be used for accelerating

any application. CoMeFa RAMs are not replacements of DSPs or LBs, but
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can work together and complement them. In some ways, CoMeFa RAMs can

be thought of as blocks that fuse together Logic Blocks and BRAMs. They

provide a more structured way of computation compared to Logic Blocks,

along with the storage capability of BRAMs. Compared to DSPs, CoMeFa

RAMs provide infinite flexibility in terms of precisions (because of their bit-

serial nature) even after the chip has been designed. DSPs can support mul-

tiple precisions too, but the precisions have to be hardened at the time of de-

signing the FPGA, and adding more precisions increases DSP area. CoMeFa

RAMs support more operations than DSPs (which mainly just support mul-

tiplication and addition) because of the configurable processing element in

them. They also allow flexibility in which algorithm to use for multiplication

and addition, through bit-serial and OOOR operations. With DSPs, a user is

forced to use the multiplier or adder architecture that is designed into it.

5.4.3 Applications

Applications that are well-suited for deploying CoMeFa RAMs are:

1. Applications that have significant SIMD parallelism, e.g., Deep Learning

and signal, image and video processing.

2. Applications that do not require a lot of communication between pro-

cessing elements, e.g., elementwise and bitwise operations.

3. Applications that use reduced and/or custom numerical precisions, e.g.,

Deep Learning.
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5.4.4 Organizing data for computation

When performing computation using CoMeFa RAMs, data is laid out

in a transposed manner, i.e. bits of an element are stored along a bitline. In

addition to operands and results, intermediate results need to be stored in the

same column. If the intermediate results are not required at a later stage,

they can be overwritten to improve RAM utilization. For example, consider

the case where 4 operands a, b, c, d are stored in a column and the operation

required is e = a∗b+c∗d. The intermediate results a∗b and c∗d are calculated

bit-serially, and then added. The final result can reuse the same rows as those

storing the intermediate results by overwriting them.

In some cases, complex operations can be split over multiple columns

and the final results can be obtained by reducing intermediate results from

different columns. For example, in the example of calculating e = a ∗ b+ c ∗ d,

if the precision of operands is 18-bit fixed point, total available rows (128)

would not be enough to store the operands, intermediate results, and the final

result. Splitting independent operations over multiple columns exposes more

parallelism and can achieve better speedups. However, reducing intermediate

results stored in different columns involves serialization and can reduce the

obtained speedup. Bit-slicing [124] is another method in which individual

elements are split over multiple columns. For example, a 16-bit number can

be sliced into 2 8-bit chunks and stored in 8 rows in two columns. Operations

can be performed independently on the two bit-slices and then concatenated

and reduced appropriately to get the final result.
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There are tradeoffs in RAM utilization, data reuse, and latency. Having

a smaller number of operands in one column (bitline) means reduced utiliza-

tion, but low latency, because it will take fewer cycles to perform the operation

(because there is only 1 PE per column). However, storing more operands in a

column means that the RAM will have higher utilization, but the latency will

be higher. Also, more operands in a column allow for more reuse. Consider an

example where one operand needs to be multiplied by 2 other operands and

then the partial products need to be added. Having all three operands in one

column allows this operation to happen locally. Otherwise, two multiplica-

tions will need to be done in separate columns (or separate BRAMs) and then

reduced. Smaller precisions allow for more elements to co-exist in a column.

Consider an operation where elements stored in all 160 columns of a

CoMeFa RAM need to be reduced to get one final result. Performing in-

CoMeFa RAM reductions will proceed in a tree fashion, where after the first

reduction step, 80 columns will have the new partial results. Then, these

will be reduced further into 40 columns. At some stage, performing further

in-CoMeFa RAM reductions can significantly degrade the compute through-

put, as only a successively smaller portion of the CoMeFa RAM columns are

actively performing compute during each reduction iteration. To avoid this,

reduction can be performed in soft logic outside the CoMeFa RAMs. 40 partial

results can be read out one bit-slice at a time (bit 0 of 40 partial results in 1

cycle, bit 1 of these partial results in the next cycle, and so on) and reduced

externally. A popcount based external reduction [124] can be used for this
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addition/accumulation.

5.4.5 Parallelism

The parallelism CoMeFa RAMs provide (SIMD) is different from the

pipeline parallelism that is commonly used with Logic Blocks and DSP Slices.

Although SIMD parallelism can be achieved with LBs and DSP Slices as well,

CoMeFa RAMs provide it in a more efficient and compact form. In applications

where SIMD parallelism from CoMeFa RAMs is used to obtain speedup (e.g.

the on-chip memory boundary bound applications in Section 5.2), reduced

data movement will typically be observed leading to a significant reduction in

energy.

In addition to SIMD parallelism, data parallelism (splitting the data

to be processed between traditional DSP and LB based compute units, and

CoMeFa RAM based compute units) is used to exploit the additional compute

throughput provided by CoMeFa RAMs. Consider the case where time T

is spent on processing D chunks of data on a baseline FPGA (using only

traditional compute units like LBs and DSPs). However, if a part of the

data (e.g. D/3 chunks) is processed by CoMeFa RAMs and if the rest of the

data (2D/3) is processed by traditional compute units in parallel, then the

total time taken would be less than T (say 2T/3). This achieved speedup

depends on the distribution of work between traditional units and CoMeFa

RAM based units, and the best case would be when both types of units finish in

an approximately equal amount of time. In applications where data parallelism
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is used to obtain speedup (e.g. compute bound applications in Section 5.2),

energy consumption may not reduce because more hardware is used to solve

the problem.

Different applications may need different types of parallelism. Even

parts of one application may be suited for different types of parallelism. So,

adding CoMeFa RAMs to FPGAs opens the door to new ways to exploit

parallelism efficiently.
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Chapter 6

DL Benchmarks for FPGA Architecture
Research

In this chapter, the third contribution of this dissertation is described:

an open-source benchmark suite of DL acceleration benchmark circuits for

FPGA architecture and CAD research called Koios1. This benchmark suite is

currently in its second version (2.0). The Koios suite consists of 40 benchmarks

that capture a wide variety of accelerated neural networks, design sizes, nu-

merical precisions, and circuit characteristics. To maximize the utility of these

benchmarks, they are made compatible with the Verilog-to-Routing (VTR)

flow [85], which is the most widely-used FPGA architecture and CAD research

framework. Researchers can use these benchmarks seamlessly with VTR and,

with minor modifications, can also use them with other tool chains.

The Koios benchmarks are representative of modern DL workloads;

many of them are re-created from prior works and some are replicas of in-

dustrial benchmarks. In addition to being more pipelined and heavily using

FPGA hard blocks, these benchmarks have higher usage of structures like

wide buses, large reduction trees, hard block dedicated cascade routing and

1Koios (also written as Coeus) is the Titan of intelligence in Greek mythology. Unlike
the Titan benchmarks [86], Koios focuses on deep learning.
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large fanouts. This makes the Koios benchmarks better suited for DL-targeted

FPGA architecture exploration than other non-DL benchmark suites.

This part of the dissertation resulted in a paper publication at the

IEEE International Conference on Field-Programmable Logic and Applica-

tions (FPL) [12] and a research article at the IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) [11]. The following

contributions from the co-authors of these papers/articles are acknowledged:

• Andrew Boutros: Implementation of clstm and intel_dla benchmarks,

comparison with Intel Quartus, running some experiments, drawing some

figures/charts, and significant help with writing the paper/article

• Seyed Alireza Damghani: ODIN and Yosys support/enhancements

• Karan Mathur: Implementation of proxy and deepfreeze benchmarks

• Vedant Mohanty: Implementation of tpu_like.ws benchmarks

• Tanmay Anand: Implementation of bwave_like benchmarks

• Daniel Rauch: Implementation of tdarknet_like benchmarks

• Aishwarya Rajen: Implementation of lstm and attention_layer bench-

marks

• Aatman Borda: Implementation of spmv benchmark

• Samidh Mehta: Implementation of robot_rl benchmark

• Sangram Kate: Implementation of tpu_v2 benchmark (not included in

Koios)

• Pragnesh Patel: Implementation of softmax benchmark
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6.1 Koios Benchmarks
6.1.1 Overview

The Koios benchmark suite is a DL-specific benchmark suite for FPGA

research. It consists of 40 benchmarks covering a diverse representative space,

coming from various applications within the DL domain. Table 6.1 provides

an overview of the benchmarks and their properties. These benchmarks are

completely open-source, and both Verilog HDL source codes and BLIF netlists

are provided.
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Table 6.1: The Koios Benchmarks (in decreasing order of number of netlist primitives)

Benchmark Description Im
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Other Properties

dla_like (S/M/L) Intel-DLA-like accelerator RTL CNN2 int8/16 Overlay ✓ ✓3 ✓4 ✓ [16][22] Daisy chain
clstm_like (S/M/L) CLSTM-like accelerator RTL RNN int18 Overlay ✓ ✓3 ✓ [123] Circular compression
deepfreeze ARM FixyNN design RTL CNN int4 Layer ✓ ✓ ✓ [126] Hardcoded weights
tdarknet_like (S/L) Accelerator for Tiny Darknet HLS CNN12 fp16 Custom ✓3 ✓ [100] Fused layer pairs
bwave_like Microsoft-Brainwave-like design RTL Any int8, bfp11 Overlay ✓ ✓ ✓4 [37] Mat-vec mult unit
lstm LSTM engine RTL RNN int16 Layer ✓ ✓ ✓ Streaming dataflow
bnn 4-layer binary neural network HLS MLP1 binary Custom ✓ [89] int16 act/norm
lenet Accelerator for LeNet-5 HLS CNN int8 Custom ✓ ✓ [76] 5x5 conv layers
dnnweaver DNNWeaver accelerator RTL Any int8 Overlay ✓ ✓3 ✓ ✓ [104] DDR and PCIe intf
tpu_like.ws (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [65] Weight stationary MMU
tpu_like.os (S/L) Google-TPU-v1-like accelerator RTL Any12 int8 Overlay ✓ ✓ ✓ ✓ [65] Output stationary MMU
gemm_layer Matrix multiplication engine RTL MLP bfloat16 Layer ✓ ✓ ✓ AXI interface
attention_layer Transformer self-attention layer RTL RNN int16 Layer ✓ ✓3 ✓ [118] GEMV based
conv_layer GEMM based convolution RTL CNN int16 Layer ✓ ✓ ✓ ✓ 3x3 filters
robot_rl Robot+maze application RTL RL int8/16/32 Custom ✓ ✓ ✓ [106] [28] Q-learning algo
reduction_layer Add/max/min reduction tree RTL Any int16 Layer ✓ ✓ ✓ Reduces 128 inputs
spmv Sparse matrix vector multiplication RTL MLP int8 Layer ✓ ✓ ✓ [38] [130] COO sparsity enc.
eltwise_layer Matrix elementwise add/sub/mult RTL Any bfloat16 Layer ✓ ✓ ✓ Broadcast heavy
softmax Softmax classification layer RTL Any fp16 Layer ✓ ✓ [125] LUT based exp/log
conv_layer_hls Sliding window convolution HLS CNN fp16 Layer ✓ ✓ 1x1 filters
proxy Proxy benchmarks RTL - - - - - - - - - Sec 6.1.4 -

1 Has Normalization layer 2 Has pooling layer 3 Uses double buffering 4 Has DSP cascade chains
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6.1.2 Diversity and Representativeness

The Koios benchmarks cover a wide variety of design sizes, implemen-

tation styles, target neural networks, acceleration paradigms, numerical preci-

sions, and circuit properties.

• Design Size: The smallest design has 12, 097 netlist primitives while the

largest has 1, 608, 867. Any latch, gate or hard block resulting from logic syn-

thesis counts as a netlist primitive. Some benchmarks, such as clstm_like,

dla_like, tpu_like, have multiple size variants (i.e. small, medium, large).

In these cases, the size indicates the parallelism factor used in the design.

Bigger designs create a more challenging optimization problem for the CAD

tools, while smaller ones have faster compilation time, suitable for early-

stage experiments.

• Implementation Style: Although all the designs in the benchmark suite

are provided to users in the form of Verilog HDL implementations, some

are originally implemented in RTL while others are automatically gener-

ated from higher-level language descriptions using high-level synthesis (HLS)

tools. HLS-generated designs typically have specific design characteristics

that are not very common in hand-coded RTL designs, such as widely dis-

tributed control signals and complex state machines.

• Target Neural Network: Koios benchmarks cover all major classes of

neural networks. These include: multi-layer perceptrons (MLPs), convo-

lutional neural networks (CNNs), recurrent neural networks (RNNs), and

reinforcement learning (RL). These different classes have different compute
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and memory requirements, which reflects on the resource breakdown and

routing patterns of their corresponding benchmark circuits. Some designs

are also generic and can be used to accelerate any type of network.

• Acceleration Paradigm: FPGAs are used for acceleration of DL work-

loads in different ways. One way is to design a flexible software-programmable

overlay architecture that can execute different DL models without the need

to reprogram the FPGA with a new bitstream similar to the Microsoft Brain-

wave [37] architecture. These designs tend to have instruction decoders

and more complicated control logic to enable this level of flexibility. In

other cases, a custom network-specific dataflow architecture is mapped to

an FPGA to maximize efficiency, similar to [47]. The control logic of these

circuits is usually hard-coded and implemented as relatively simple state

machines. Another approach is to implement layer-specific accelerators that

are invoked by software running on a host or an embedded CPU. These

circuits are mostly streaming-style datapaths with simple or even no control

paths. Koios benchmark suite contains designs from all three acceleration

paradigms.

• Numerical Precisions: One of the main advantages of using FPGAs to

accelerate DL workloads is the ability to design hardware for custom nu-

merical precisions, which is a commonly used technique in accelerating DL

workloads [101]. The designs in Koios use various precisions, including:

binary (bin), different fixed point types int4/8/16/18/32, brain floating

point (bfloat16 [122]), IEEE half-precision floating point (fp16), and block
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floating point (bfp11 [37]). This diversity is useful for exploring new DSP

block architectures and different hard arithmetic circuitry.

• Circuit Properties: Koios benchmarks have varying circuit styles that

can exercise different components of the CAD tools in different ways. For

example, regular structures like systolic arrays can be used for optimizing

placement algorithms, large reduction trees can form local routing conges-

tion that stress the routing algorithms, long cascades (or chains) of hard

blocks impose harder placement constraints, etc. The benchmarks are also

highly heterogeneous (i.e. use different types of FPGA resources) with vary-

ing degrees. They utilize a large number of DSP blocks and BRAMs. DSPs

are often used to form dot product units and memory structures like double-

buffered RAMs and FIFOs are commonly used to store on-chip weights and

activations.

6.1.3 Curating the benchmark suite

The designs in the benchmark suite are chosen keeping representative-

ness and diversity in mind. These designs are implemented (either handcoded

or script generated or using HLS) and tested using commercial FPGA tools

for ease of development and debugging. Then, many modifications are done to

these designs to ensure their compatibility with the VTR flow. Vendor-specific

and architecture-specific IP cores (e.g. floating point adders and multipliers,

RAM macros) are replaced with ones that are compatible with VTR and

the FPGA architecture file used for experiments. This process is especially

challenging for the designs generated from HLS tools which tend to be non-
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human-readable in many cases. After that, various experiments are run to

ensure the suitability of these benchmarks.

6.1.4 Proxy benchmarks

Having a larger set of benchmark circuits is desirable for most FPGA

architecture and CAD research. Obtaining real world designs and curating

them to be used as FPGA benchmarks is a tedious process as it requires re-

creating designs that are not publicly available or modifying existing ones to

be compatible with open source CAD tools. Hence, deriving inspiration from

other fields [94, 105], a framework for generating synthetic DL benchmark

circuits is created. The synthetic benchmarks generated by this framework

have similar properties and circuit compositions to real DL benchmarks as de-

scribed in the previous section. Since these benchmarks can be used as proxies

of real DL designs for FPGA architecture and CAD research, they are referred

to as proxy benchmarks. Unlike the other benchmarks in Koios, the generated

proxy benchmarks are not functional DL accelerators – they instead mimic

the composition of key components of DL accelerators. Statistical analysis is

performed on the properties of real designs and synthetic designs generated

from this framework, and compare them in Section 6.2.4.

Proxy benchmarks are generated using design components that are

commonly present in real DL designs. Different components from the ex-

isting benchmarks are extracted and parameterized, and new components are

designed to create a library of modules that can be used in the generation of
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Table 6.2: Circuit components used to generate proxy benchmarks

Type Properties

Adder Tree Adder tree levels {3,4,5}, Precision {16, 8, 4, fp16}
DSP Chain # DSPs {2,3,4}, Precision {16, fp16}
Systolic Array Array size {4x4, 8x8}, Precision {4, 8, fp16}
Activations # of logical LUTs {32}, Precision {8, 16}
Dot Product Dot product length {10}, Precision {8, bf16}
RAM Depth {2048, 4096}, Width {40, 60}, # Ports {1, 2}
Double Buffer Depth {2048, 4096}, Widths {40, 60}
FIFO Depth {256, 512}, Widths {40, 60}

proxy benchmarks, as listed in Table 6.2. This library can be easily extended

to increase the diversity of the generated proxy benchmarks. In addition to

the Verilog implementation of these components, the library also contains a

Python dictionary of the various components along with their properties (e.g.

size, precision, width) and the resource usage of each module for the FPGA ar-

chitecture used for evaluation. Fig. 6.1a shows how the proxy benchmark gen-

eration framework works. The benchmark generator takes as input a YAML

format file which specifies the graph structure the user desires (i.e. the specific

hardware components and the connections between them). A snippet from a

sample YAML file is shown in Fig. 6.1b. For each component, its specific

parameters (e.g. type, size, precision) are also specified in the YAML file. The

generator goes through the graph structure described by the user, instantiates

the corresponding components in the top-level module, and automatically gen-

erates the interconnections between them to generate the Verilog file of the

proxy benchmark.
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(a) Flow overview

fifo1:

type: "fifo"

size: 256

precision: 40

number: 4

inputs: [top]

outputs: [dsp_ch1]

dsp_ch1:

type: "dsp_chain"

size: 4

precision: 18

number: 8

inputs: [fifo1, add_tree2]

outputs: [activ1]

activ1:

type: "sigmoid"

size: 16

precision: 16

number: 1

inputs: [dsp_ch1]

outputs: [sarray2,dbram2]

(b) YAML file snippet

Figure 6.1: Proxy benchmark generation

Since the YAML input file specifies components connected to each other

regardless of the number of output and input bits of each component, the

generator inserts some interface logic between the component instances. For

example, if the YAML file specifies that component A with 40 output bits

feeds component B that has 20 input bits, some interface logic needs to be

generated that can enable connecting 40 signals to 20 signals. There are three

cases that can arise:

1. The input bits are equal to the output bits and can be directly connected.

2. The input bits are less than the output bits. In this case, input bits are

fanned out to match the number of outputs.

3. The input bits are greater than output bits. In this case, a reduction of

bits is performed by inserting reduction trees of logical operations (e.g.

xor/and/or gates, 2:1 multiplexers). The user can specify the mix of
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gates and multiplexers to be used via command line options (“Interface

options" in Fig. 6.1a).

The interface logic always adds a register stage between components.

Note that these choices are also governed by circuit properties observed in real

world designs; deep pipelines, high fanouts and reduction trees are common in

DL designs. The proxy generator also generates statistics, such as the number

of I/Os, the expected number of logic blocks, DSPs and BRAMs used by the

generated benchmark. Comparing these numbers with the numbers obtained

after running the generated benchmark through the VTR flow can be useful

for verifying the validity of the generated benchmark.

For the Koios suite, 8 proxy benchmarks are generated. They have

varying sizes (14− 43K netlist primitives) and contain different mixes of com-

ponents from the module library. The generator and the YAML files of the 8

benchmarks are open-sourced, so a user can generate more designs, if required.

6.1.5 Enhancements to the VTR Flow

The VTR flow has traditionally been using Odin II [63] as its synthe-

sis front-end. Some of the benchmark circuits could not be synthesized using

Odin II as it only supports a subset of the Verilog-2005 standard. Therefore,

support for some of the commonly used Verilog constructs was added to Odin

II and some benchmarks were re-written using only the supported subset of the

Verilog-2005 standard. However, this was a very tedious and labor-intensive

process that restricted the extension of the Koios suite to include more bench-
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Figure 6.2: Various synthesis front-ends supported by VTR

marks that were written in SystemVerilog or used unsupported Verilog syntax.

Hence, a new effort was undertaken to improve the language coverage of the

VTR synthesis front-end using a combination of the Yosys synthesis tool and

Odin II [29].

Yosys is an open-source synthesis engine with extensive Verilog-2005

and SystemVerilog support [129]. Whereas most commercial synthesis tools

are closed source, Yosys offers a flexible and open-interface synthesis process

which is valuable for developing new and customized synthesis algorithms.

However, Yosys is totally agnostic to the target FPGA architecture and thus

limits opportunities for architecture-aware logic inference (i.e. automatically

inferring logic that can be mapped to hard blocks). Therefore, in this newly

developed Yosys+Odin flow, Yosys provides better language coverage support

and performs HDL elaboration followed by coarse-grained optimizations. After
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that, Odin II performs partial technology mapping based on the target FPGA

architecture using a mix of genetic algorithms [30] and trade-off analysis of

hard vs. soft logic inference [71], and then writes out the final netlist as

illustrated in Fig. 6.2.

The Koios suite includes a variety of benchmarks that use Verilog con-

structs that are not supported by Odin II, and therefore was used for develop-

ing and testing the new hybrid synthesis front-end. During this process, the

Koios benchmarks helped identify and fix several issues such as:

• Unlike the Odin-only flow, the new hybrid front-end produced netlists

with randomly-generated net names that cannot be traced back to their

HDL declarations, which made debugging CAD flow errors significantly

harder.

• Yosys used different names for the clock and reset signals of netlist atoms

that can be packed into the same hard block (e.g. two multiplications to

the same DSP block) which prevented VPR from packing them together

even though they are actually connected to the same clock and reset

signals, leading to higher resource utilization compared to the Odin-only

flow.

• The new hybrid front-end generated a single black-box module definition

for each of the hard block models specified in the VTR architecture

description file. In some cases when the hard block has different modes of

operation with different interface widths, this would result in technology

mapping failures.
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More recently, a modified version of Yosys, adapted from the Verilog-to-Bitstream

tool [49], is also being integrated into the VTR flow to provide the option of

performing all the synthesis steps solely using Yosys as shown in Fig. 6.2.

However, this flow is not currently used for the Koios benchmarks.

While developing them, the Koios benchmarks were useful in exercis-

ing different parts of the tool flow that were not extensively tested before and

identifying subtle bugs/issues in them. For example, multiple of the Koios cir-

cuits make heavy use of cascaded chains of multiple DSP blocks in a column

to implement efficient dot product operations for DL. This presents additional

placement constraints since the DSP blocks in a chain have to be initially

placed and then moved around during placement optimizations as a single

combined molecule to maintain the placement legality. Since VPR picks the

device grid size based on the number of required blocks of each type with-

out considering these additional placement constraints for cascaded DSPs,

some of the Koios benchmarks (tpu_like.small.os, dla_like.large and

bwave_like.fixed.large) were failing at the initial placement stage due to

the absence of a legal solution given the predetermined device grid size. For

example, a design can have a cascaded chain of N DSP blocks left to place

and the device still has enough DSP blocks available but split across differ-

ent columns (i.e. not in consecutive locations along a column). This results

in a failure since no legal solution exists at this device grid size which was

decided earlier in the flow based solely on the number of required blocks. A

straightforward workaround is to manually specify a slightly bigger grid size
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for the failing benchmarks or a maximum resource utilization target for VPR

when automatically sizing the device grid (the latter workaround is currently

used for running the failing Koios benchmarks). It can also be fixed by iter-

atively increasing the grid size during initial placement in such cases until a

legal solution is found. This issue was flagged and its suggested solution will

be implemented by the VPR team in a future release.

6.1.6 Availability and Usage

The Koios benchmarks are available at: https://tinyurl.com/vtrkoios.

They have been tested and work out-of-the-box with the VTR flow. Scripts

to automatically run and generate QoR (Quality of Results) for these bench-

marks are also provided. In addition, the Titan flow [86] is used to generate

the netlist (BLIF) files of the Koios benchmarks for the Stratix-IV FPGA ar-

chitecture. These netlists can be used to directly run placement and routing

using VPR without the need of an Intel Quartus license for running the synthe-

sis front-end in the Titan flow. The BLIF files can be downloaded separately

from this link: https://tinyurl.com/koiosblif.

These benchmarks are implemented and curated in this suite to be

used for FPGA architecture exploration and CAD tool optimization. They

aim to accurately capture all the different circuit structures and compositions,

but should not be expected to be deployed as standalone functional designs.

These circuits are structurally correct, and their high-level functionality have

been verified. However, full functional verification on many different test cases
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is considered beyond the scope of this dissertation.
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6.2 Benchmark Results
6.2.1 Experimental Setup

The latest version of VTR is used for all experiments. When running

VTR, an SDC (Synopsys Design Constraints) file is provided in which the

target clock period is set to 0 (i.e. VTR will optimize the design for maximum

clock frequency). Timing analysis for paths to/from the FPGA IOs is disabled;

only register-to-register paths are analyzed. Unless stated otherwise, VTR is

run with auto layout enabled (meaning the grid size expands based on the

resources required by the design), the default timing-driven routing option

with a maximum of 150 routing iterations, and a fixed channel width of 300

wires. All reported results are the average of three runs with different seeds.

For experiments where VTR flow runtime and peak memory usage is reported,

an Intel Xeon CPU E5-2430 running at 2.5 GHz with 64 GB of memory is used.

6.2.2 FPGA Architecture Used

A new FPGA architecture description file is developed to capture some

relevant features of modern FPGAs. This architecture description file is also

open sourced along with the benchmark suite. The delays and areas of all

the FPGA blocks, including the DSP tiles, are obtained from COFFE [136]

using a 22 nm technology node from PTM [117]. The circuits in this archi-

tecture are optimized for area-delay product, which leads to relatively higher

delays compared to performance-optimized commercial FPGAs such as the

Arria 10 family. Figure 6.3 shows a representation of this architecture, which
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Figure 6.3: FPGA architecture (not to scale) used for experimenting with Koios
benchmarks. Blue = Logic Block, Green = Block RAM, Red = DSP Slice, Yellow

= Input Output Block

is described in the rest of this subsection.

6.2.2.1 Floorplan

The FPGA contains columns of logic blocks, DSPs and BRAMs. Both

DSP and BRAM columns repeat every 16 columns and are interleaved such

that every 8th column is a DSP or a BRAM. The DSP and BRAM tiles are 4

and 2 rows high respectively, and the IO pads are arranged along the perimeter

of the FPGA.

6.2.2.2 Routing Architecture

The architecture uses unidirectional routing with wire segments of length

4 (260 out of 300 wires) and length 16 (40 out of 300 wires). The length 16

wires do not directly connect to block pins and are only accessible from the

length 4 wires. Switches appear after every 4 blocks on the length 16 wires.

The switch blocks use a custom switching pattern based on the Stratix-IV-like

architecture used in the Titan flow [86]. The input and output flexibility of
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connection blocks are set to 0.15 and 0.1, respectively.

6.2.2.3 Logic Blocks

Each logic block (LB) contains 10 basic logic elements (BLEs) similar to

that in the Intel Stratix-10-like architecture from [33]. Each block has 60 input

pins, 40 output pins, and a 50% sparsely populated local input crossbar. Each

BLE has a 6-input LUT which can be fractured into two 5-input LUTs. The

BLE also has 2 flip-flops and 2 bits of arithmetic with dedicated carry chains

between LBs. Each BLE has 8 inputs and 4 optionally registered outputs.

6.2.2.4 DSP Slices

This architecture has a complex DSP block that supports most of the

operating modes in the state-of-the-art Intel Agilex DSP block [53]. Multiple

fixed point (9x9, 18x19, 27x27) and floating point (IEEE 32-bit (fp32), IEEE

16-bit (fp16) and Brain floating point (bfloat16)) precisions are supported.

In addition, the DSP block has dedicated output chains for cascading several

DSP blocks in the same column for efficient dot product structures.

6.2.2.5 BRAMs

BRAM blocks have a capacity of 20 Kb and have registered inputs and

outputs. True and simple dual port modes are supported. In the simple dual

port mode, a BRAM can be configured as: 512×40b, 1024×20b and 2048×10b,

while the widest mode is not supported in true dual port mode. The delays
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and areas of a BRAM block are obtained by interpolation between the values

obtained from COFFE for 16 Kb and 32 Kb BRAMs.

Some benchmarks in Koios use advanced DSP features that are avail-

able in the FPGA architecture described above. This is done by instanti-

ating DSP hard macros directly into the RTL when implementing natively-

supported fp16 multiplications or DSP cascaded structures for example. Simi-

larly, BRAMs are also instantiated as hard macros in the RTL. Although these

hard macros are architecture-specific, users can still use the Koios benchmarks

with other FPGA architectures by replacing these RTL instantiations with

their alternatives. To improve the usability of the Koios benchmarks, the same

functionality of the architecture-specific hard macros is also implemented using

behavioral Verilog. This allows users to switch between the hard macro and

behavioral implementations using pre-processor directives (i.e. ifdefs). By

disabling the complex_dsp and hard_mem directives, the benchmarks become

completely architecture-agnostic and can be used with any FPGA architecture

description file. In this case, the synthesis tool infers the hard blocks to be

used and generates a netlist containing hard macro instances available in the

user’s FPGA architecture. If no hard blocks are available in the FPGA, the

code will just be mapped to FPGA soft logic. The benchmarks have been

verified to run without these directives for the FPGA architecture described

in this section and the VTR flagship architecture as well.

This makes the Koios benchmarks also suitable for evaluating the ad-

dition of new hard blocks to an FPGA architecture, similar to some recent
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DL-optimized FPGAs [75, 7]. To perform such studies, users can either: (1)

modify the synthesis engine to automatically extract specific patterns from

the Verilog designs and map them to the new blocks, or (2) modify the bench-

marks to instantiate these new blocks as hard macros (defined in the VTR

architecture file).

6.2.3 Results of the Koios Benchmarks

Table 6.3 shows the VTR results for the Koios benchmarks when run-

ning them with the FPGA architecture described in Section 6.2.2. The results

show that these designs, with sizes ranging from 12K to 1.6M netlist primi-

tives, are deeply pipelined with 27 out of the 40 benchmarks having critical

paths with 6 or less logic levels on them. The benchmarks are also highly

diverse in heterogeneity, with varying circuit compositions between soft logic,

DSPs, and BRAMs. For example, some designs do not utilize any BRAMs

since they either implement only the workload datapath (e.g. gemm_layer

and softmax) or use distributed registers for storage (e.g. bnn). On the other

hand, there are other BRAM-intensive designs such as tdarknet_like.large

with 4, 400 BRAMs utilized. Similarly, with DSPs, there are some designs that

use very few or no DSPs (e.g. conv_layer_hls and reduction_layer) as they

mostly implement other non-multiplication operations in DL workloads such

as pop-count or max/min/add reduction. Other designs are DSP-intensive

(e.g. deepfreeze.style2) with over 1, 700 DSP blocks. Table 6.3 also shows

that different types of resources are the grid size limiting factor for different
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Table 6.3: VTR results of the Koios benchmarks

Benchmark
Netlist
Primi-

tives

Logic
Depth

Used
IOs

Used
LBs

Used
DSPs

Used
BRAMs

Max.
Freq.

Routed
Wire-
length

Elapsed
Time

Peak
Mem-

ory

dla_like.large 1608867 5 819 28201 1376 864 107.4 11445 1140.0 15733.5
clstm_like.large 1083855 3 1518 26341 961 739 105.6 5785 842.7 12901.0
deepfreeze.style3 759656 3 540 18499 340 3489 116.3 5380 289.3 16131.7
clstm_like.medium 743071 3 1230 17854 661 498 113.9 3767 400.4 8805.7
deepfreeze.style1 687669 3 540 15115 700 1999 135.2 4673 243.0 10172.1
dla_like.medium 600492 5 411 10656 400 312 140.6 2920 209.0 5408.4
deepfreeze.style2 470421 3 540 12896 1762 1387 62.6 3466 246.3 15574.3
proxy.2 439725 8 574 8921 330 1099 130.9 3293 228.9 5796.2
clstm_like.small 402331 3 942 9396 361 257 131.3 1821 100.8 4739.3
tdarknet_like.large 391291 5 46 13574 367 4400 72.7 4173 775.4 18456.7
proxy.4 391195 7 2392 7768 757 1189 101.3 4510 401.9 7439.1
proxy.1 358143 7 1113 5989 1037 619 125.3 4325 206.8 9503.0
bwave_like.float.large 310527 6 1093 9699 640 1182 93.9 4440 114.5 6522.4
proxy.3 304125 10 1036 9585 107 847 96.8 2491 124.7 4569.3
dla_like.small 260199 5 207 4799 128 132 160.7 998 59.3 2143.0
proxy.7 248950 7 498 4937 302 492 114.2 2167 135.9 3214.4
lstm 247060 7 2677 5060 610 305 121.8 2129 272.2 5767.3
proxy.6 206539 3 1025 3403 300 406 134.7 1720 174.3 3053.7
bnn 204601 3 382 5694 63 0 131.0 1184 17.2 2171.0
lenet 190809 34 140 7417 497 820 53.9 3250 671.4 5850.0
dnnweaver 189706 6 3531 5552 288 1139 82.4 2921 49.7 5258.4
tdarknet_like.small 157431 6 46 6974 90 3978 63.8 2657 217.4 16043.7
proxy.8 150264 7 1002 3047 367 378 110.9 1266 67.2 3325.1
proxy.5 147618 7 785 3199 283 236 108.1 1227 70.2 2768.5
bwave_like.float.small 84893 6 200 2625 144 358 129.1 936 14.2 1802.7
tpu_like.large.ws 78335 8 1190 3011 1066 116 100.2 961 87.9 8848.8
tpu_like.large.os 70946 5 1188 1596 1064 64 120.4 2028 95.4 8826.8
gemm_layer 64765 4 1779 2001 200 0 173.9 789 17.6 1897.6
bwave_like.fixed.large 54871 6 328 1299 562 511 104.2 1816 32.4 5938.8
attention_layer 54865 7 1089 1455 137 194 124.5 480 18.6 1328.6
conv_layer 37268 4 156 938 42 56 218.6 245 6.5 562.0
robot_rl 30529 6 387 1285 18 96 148.8 232 6.0 522.9
tpu_like.small.ws 27097 7 646 1034 278 58 118.8 288 15.1 2407.2
tpu_like.small.os 21962 5 644 538 276 32 156.7 416 13.9 2381.5
reduction_layer 18323 6 54 805 0 52 147.4 183 1.9 340.2
spmv 17734 6 99 503 32 232 178.4 221 4.0 946.1
bwave_like.fixed.small 16632 5 198 404 139 170 132.7 397 5.2 1293.1
eltwise_layer 16187 4 249 355 50 72 249.1 193 2.6 472.8
softmax 13177 10 552 512 53 0 114.6 126 2.3 492.1
conv_layer_hls 12097 3 3299 1717 12 21 151.1 102 12.2 3983.8

Frequency is in MHz, Routed Wirelength is 1000 length-1 segments, Elapsed Time is in minutes, and Peak Memory is in
MBs.
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benchmarks in Koios. The majority of the designs are bound by hard blocks,

as indicated by the bold entries in the table, which emphasizes that these

benchmarks can be useful for exploring new DSP and BRAM architectures.

Most of the designs in the Koios suite can achieve reasonably high op-

erating frequencies up to 249 MHz and an average of 124 MHz. The FPGA

architecture used for experiments is not very fast. The delays in the architec-

ture are based on area-delay-optimized PTM models (with raw delays similar

to 40 nm Stratix-IV). Changing the delays of FPGA resources to those typical

of a high-speed (≤14 nm) device would increase the frequency by >2×. The

lenet design is a clear outlier with a frequency of 53.9 MHz. This design is

generated by HLS and has a very high logic depth of 34. The total routed

wirelength of the benchmarks are largely correlated with the circuit size and

ranges from 102K up to 11.4M units of length 1 wire segments.

The top graph in Fig. 6.4 plots the VTR flow runtime for each of

the Koios benchmarks. The trendline shows that the runtime grows almost

linearly with the number of netlist primitives in the circuits. There are some

notable exceptions; lenet and tdarknet designs have very high runtime for

their number of netlist primitives. Also, looking at the components of runtime,

in most benchmarks, ABC (the tool that performs logic optimization and

techmapping in the VTR flow) takes more time compared to Odin/Yosys and

VPR (the tool that performs packing, placement and routing in the VTR

flow). The bottom graph in Fig. 6.4 plots the VTR flow peak memory usage

for the Koios benchmarks. The trendline shows a sub-linear growth in peak
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Figure 6.4: VTR runtime (top) and peak memory usage (bottom) for the Koios
benchmarks

memory requirement as the number of netlist primitives increases. The lenet

and tdarknet designs again have very high memory usage for their size, and

VPR consumes the majority of used memory compared to Odin/Yosys and

ABC.

The routing heat maps for some of the Koios benchmarks are shown

in Fig. 6.5, where the lighter color correspond to higher routing congestion.

The routing heat maps look very different for different designs; this highlights
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(a) bnn (b) clstm_like (c) conv_layer (d) eltwise_layer

(e) dla_like (f) lenet (g) bwave_like (h) deepfreeze.3

(i) proxy.2 (j) proxy.7 (k) dnnweaver (l) tpu.ws

Figure 6.5: Routing utilization heatmaps for some Koios benchmarks

the diversity in routing requirements and patterns of the benchmarks, which

exercises the placement and routing algorithms in different ways. Some bench-

marks have a very regular pattern (e.g. bnn), which implies heavy usage of

LBs (soft logic). In other benchmarks, high routing congestion is seen along

columns of hard blocks (e.g. dnnweaver).
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6.2.4 Statistical Analysis

To perform statistical analysis on the Koios suite, a large number of

metrics (∼75 metrics) are collected for all benchmarks. Some metrics other

than those in Table 6.3 are logic depth, max non-global fanout, average wire

segments per net, max routing channel utilization, number of near critical

connections, number of blocks before and after clustering, and the maximum

number of wire segments used by a net. However, it is difficult to manu-

ally investigate the data and conduct meaningful analysis. Hence, principal

component analysis (PCA) [31, 95] is performed on the collected data, which

converts N variables into a smaller group of m linearly uncorrelated variables

known as the principal components (PCs). m = 4 is used in the evaluation.

Each PC is a linear combination of different features or variables with a certain

weight. The first PC covers the majority of the variance, and subsequent PCs

cover diminishing variances. By eliminating components with lower variance

values, the dimensionality of the data set can be reduced. Benchmark similar-

ity is examined by hierarchically clustering them. The Euclidean distance of

various metrics (or variables) is used to calculate how similar two benchmarks

are. The output of this clustering can be displayed as a tree or dendrogram

in which smaller linkage distance between two benchmarks indicates higher

similarity between their metrics.

Fig. 6.6 shows the dendrogram plot for the Koios benchmarks. The

x-axis shows the linkage distance between the different benchmarks on the

y-axis. The absolute value of the distance does not matter, but the relative
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Figure 6.6: Dendrogram showing similarity between Koios benchmarks

value between benchmarks does, and the ordering of benchmarks on the y-axis

has no special significance. There is no one benchmark that is particularly

unique. If a vertical line is drawn at linkage distance = 15 (for example), the

benchmark suite is divided into the 4 subsets shown in different colors. A

user with limited compute resources or in early stage experiments can choose

one or a few benchmarks from each subset to get the maximum coverage for

their experiments. As another example, this analysis shows that among the 8

proxy benchmarks, {1,4}, {2,3} and {5,6,7,8} are three groups that have very

253



similar characteristics across the circuits in each of them. This means that a

user could choose one proxy benchmark from each group as a representative

benchmark in case of limited resources/time.

Fig. 6.7a shows a scatter plot of all the Koios benchmarks based on

the first two PCs covering 65% of the variance (50% in PC1 and 15% in PC2),

and Fig. 6.7b shows a similar plot based on the next two PCs of the met-

rics covering another 14% of the variance (7.5% in PC3 and 6.5% in PC4).

The PCA analysis provides coefficients for each of the metrics to identify the

main contributors to each PC. PC1 is mainly dominated by metrics related

to the size (netlist primitives, CLB usage, routing wirelength, runtime). PC2

is dominated by average net length, near critical connections, device size and

frequency. PC3 is dominated by the logic depth and maximum routing channel

utilization. PC4 is dominated by max non-global fanout and max net length.

The 4 benchmarks at the extreme opposites of PC1 and PC2 in Fig. 6.7a are

tdarknet_like.small, eltwise_layer, bnn and dla_like.large. These 4

benchmarks belong to different groups from the dendrogram in Fig. 6.6. The

proxy benchmarks appear towards the center of the scatter plots, implying

that they represent the common benchmarks of the suite. Thus, if a user is

constrained on resources, a representative subset of the benchmark suite could

be the 4 extreme benchmarks and one or more of the proxy benchmarks for ex-

ample. In Fig. 6.7b, the outliers are clstm_like.large, clstm_like.medium

and lenet. The lenet benchmark (on the far right) has an abnormally large

logic depth of 34, while the clstm_like.large and clstm_like.medium have
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Figure 6.7: Analyzing the Koios benchmarks using PCA

much higher numbers of non-global fanouts.
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6.3 Comparison to Other Benchmark Suites
6.3.1 Methodology

In this section, various properties of Koios benchmarks are compared

to those of other existing non-DL-targeted benchmarks that are commonly

used to drive FPGA architecture and CAD research. The most relevant suite

for comparison is the VTR benchmark suite, because these are compatible

with the same fully open source VTR flow. Other existing suites are either

too small and do not represent realistic modern use cases of FPGAs or de-

pend partially on commercial CAD tools. For this comparison, only the VTR

benchmarks with more than 10, 000 netlist primitives (9 benchmarks) are used.

This is a common practice in CAD-related studies [34]. Smaller designs are

not representative of realistic benchmarks and they cannot be used to derive

any reliable conclusions. The same VTR settings and architecture file as in

Section 6.2 is used.

In addition, the Koios benchmarks are also compared to the Titan23

benchmarks [86]. The Titan benchmarks are not compatible with the fully

open source VTR flow and depend on the Intel Quartus tool to perform logic

synthesis and generate netlist BLIF files. Therefore, they can only be placed

and routed using the Stratix-IV-like architecture capture in VTR, which limits

their usability for FPGA architecture studies. However, they are commonly

used as large representative benchmarks for FPGA CAD research and for

evaluating QoR of different CAD algorithms/flows. For this comparison, the

BLIF netlists of the Titan benchmarks provided in the v1.3.1 release of Titan
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are run through VPR and the Koios HDL benchmarks through the end-to-end

VTR flow. The same VPR settings from the official VTR Titan regression

tests are used for running both sets of benchmarks.

Finally, a QoR comparison between VPR and Quartus using the Koios

benchmarks implemented on the Stratix-IV FPGA architecture is also pre-

sented, since this is currently the only Intel FPGA architecture with a cor-

responding architecture capture in VTR. In this experiment, Intel Quartus

Prime 20.1 is run using the default compiler effort settings (i.e. STANDARD_FIT

mode). For a fair comparison to VPR with auto layout, the Stratix-IV device

in Quartus is set to AUTO which automatically selects the smallest Stratix-IV

device that can fit the given design. On the other hand, the Koios bench-

marks are synthesized for Stratix IV using Intel Quartus Prime 20.1 and then

the vqm2blif tool from the Titan flow is used to generate Koios BLIF netlists.

Then, they are run through VPR with the same settings used for evaluating

QoR in [85]. The placement inner_num is set to 1.0, the router astar_fac

is set to 1.0, and the number of router iterations is set to 400. Both Quartus

and VPR are also given equivalent timing constraints with an aggressive 1ns

clock period target and paths to/from external IOs constrained on a virtual

IO clock as in [85].

6.3.2 Comparison to the VTR Benchmarks

Fig. 6.8a shows a scatter plot of the DSP and BRAM to LB ratios for

both the Koios (red) and VTR (blue) benchmarks as metrics for their DSP
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(a) (b)

Figure 6.8: Comparing circuit compositions of Koios & VTR benchmarks: (a)
DSP/BRAM to LB and (b) FF/adder to LUT ratios

and memory density. The individual ratios for each of the benchmarks are

shown by (×) symbols, while the average across the whole benchmark suite is

marked by the stars. The figure shows that, on average, the Koios benchmarks

are more DSP and memory rich than the VTR benchmarks; it has 2.9× and

6.2× higher DSP to LB and BRAM to LB ratios, respectively. The individual

benchmarks of the Koios suite are also more scattered and varying across

the spectrum of DSP and BRAM compositions. More importantly, it shows

that most of the VTR benchmarks have very low DSP and BRAM densities

(except for the only stereovision2 outlier circuit), making them inadequate

for evaluating any DSP or BRAM architecture modifications.
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(a)           (b)          (c)           (d)          (e)       (f)

Figure 6.9: Averages and ranges of key metrics of Koios (Red) & VTR (Blue)
suites.

Fig. 6.8b has a similar plot for FF and single-bit adder to LUT ratios.

It shows that the Koios suite has 1.28× higher ratio between FFs and LUTs

which reflects their deeply pipelined nature, and 20% lower adder to LUT

ratio compared to the VTR suite. However, the average adder to LUT ratio of

the VTR suite is significantly skewed by a single benchmark (stereovision2)

which has 60, 753 1-bit adders and only 29, 541 LUTs. Excluding this outlier,

the Koios benchmarks have a 1.4× higher average adder to LUT ratio.

Fig. 6.9 illustrates averages and ranges of key metrics for both the Koios

and VTR benchmark suites. Fig. 6.9a-d show that the Koios benchmarks

have 4.5× more netlist primitives, 4.9× larger non-global fanouts, 2.07× more

near (top 10%) critical connections, and 1.5× higher frequencies on average

compared to the VTR benchmarks. The Koios benchmarks are also scattered

across a much wider range of values for each of those metrics. Fig. 6.9e

shows that Koios circuits have 20% higher average routed wirelength per tile
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compared to VTR benchmarks. Fig. 6.9f shows that the circuit with the

highest max routing utilization in Koios has 35% higher utilization compared

to the circuit with max routing utilization in VTR benchmarks. Koios designs

also have an average of 6 logic levels on the critical path, compared to 30 levels

for the VTR benchmarks. This reflects the deeply pipelined nature of these

benchmarks which is a key property of modern FPGA designs.

6.3.3 Comparison to the Titan Benchmarks

Only 22 out of 23 Titan benchmarks could be successfully placed and

routed. The largest circuit (gaussianblur) fails with runtime exceeding 4

days, and therefore is excluded from the comparison. On the other hand,

some of the Koios benchmarks consume more resources than that available

in the largest Stratix-IV device, and thus are excluded for a fair comparison

(since the Titan benchmarks have to be synthesized through Quartus to a real

Stratix-IV device). 6 out of the 40 Koios circuits are excluded for DSP/BRAM

limitations and another 11 are excluded for IO limitations, leaving 23 Koios

benchmarks valid for this comparison.

Both Titan and Koios suites are heterogeneous - they have a large

number of DSPs and BRAMs. On average, the 23 Koios designs have 2.17×

DSPs, 0.66× memory bits and 0.51× routed wirelength, compared to the 22

Titan designs. Fig. 6.10a shows that the Koios benchmarks are smaller; there

are 2.06× more netlist primitives on average in Titan benchmarks. Koios

benchmarks have 3× lower max non-global fanout (Fig. 6.10b) than Titan
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(a)           (b)          (c)          (d)          (e)     (f)

Figure 6.10: Averages and ranges of key metrics of Koios (Red) & Titan (Blue)
suites.

benchmarks. However, Koios benchmarks have higher min, max and average

number of near-critical connections, compared to Titan benchmarks, as seen in

Fig. 6.10c. Koios benchmarks run at significantly faster frequency (Fig. 6.10d)

compared to Titan benchmarks. The fastest Koios design runs at 1.55× higher

frequency compared to the fastest Titan design. There are designs with very

low frequency (minimum=1.1MHz) in the Titan suite. The average wirelength

per tile (Fig. 6.10e) is 15% higher in Koios benchmarks. Fig. 6.10f shows that

Koios benchmarks have a much wider range of maximum routing utilization,

compared to Titan benchmarks, although the max routing utilization is high on

average in Titan benchmarks. Overall, both suites pose challenging problems

to CAD flows, but there are some peculiar characteristics of Koios benchmarks,

like high frequency and heavy DSP usage, owing to them belonging to the DL

domain.
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6.3.4 QoR Comparison of VPR and Quartus

Table 6.4 presents the detailed QoR comparison of VPR and Quartus

for a subset of the Koios benchmarks that could fit on Stratix-IV devices. For

most of the benchmarks, VPR packed denser logic clusters, resulting in 33%

less Logic Blocks (column ‘LB’) on average. Although denser logic clustering

in VPR was previously reported in [86] and later reduced in [85] resulting in

better critical path delays, the Koios benchmarks show a much bigger differ-

ence in logic packing density between VPR and Quartus compared to the 5%

difference in [85] which uses an older version of Quartus. VPR also uses 42%

more DSP Slices (column ‘DSP’) than Quartus, with some benchmarks (e.g.

bwave_like.fixed.large) using up to 4×. The reason is that VPR, due to

its generality, cannot efficiently map multiplication primitives to DSP blocks

in its complex modes of operation. On the other hand, Quartus searches for

specific patterns in the circuit netlists that can be efficiently mapped to the tar-

get device DSP blocks. For BRAMs, the results show that VPR rarely makes

use of the bigger 144 Kb BRAMs (column ‘M144K’) which it uses in only one

benchmark (lenet). In contrast, Quartus uses these bigger BRAMs in 7 other

circuits as indicated by the BRAM counts in brackets in Table 6.4. For these

benchmarks, VPR maps all logical memories to the smaller 9 Kb BRAMs

(column ‘M9K’) resulting in a 1.9× higher utilization of these blocks when av-

eraged across the 7 benchmarks, which translates to a 24% increase across the

whole suite. VPR also results in 1.46× higher total routed wirelength (column

‘WL’) and 1.36× longer critical path delays (column ‘CP’) compared to Quar-
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Table 6.4: VPR and Quartus QoR comparison on Koios. Numbers are ratios of
VPR:Quartus results, ‘–’ represents unutilized resource for both, and numbers in

brackets are the absolute count of resources used by Quartus when VPR used none.

Benchmark LBs DSPs M9Ks M144K WL CP

attention_layer 0.67 0.69 1.07 – 0.73 1.03
bnn 0.84 – – – 0.54 1.33
bwave_like.fixed.large 0.86 4.00 1.00 – 2.23 1.58
bwave_like.fixed.small 0.37 4.00 1.00 – 2.18 1.59
bwave_like.float.large 0.76 3.00 1.00 – 1.23 1.02
bwave_like.float.small 0.53 2.96 1.00 – 2.62 1.29
conv_layer 0.53 0.89 1.00 – 1.41 1.7
dla_like.large 1.15 1.73 1.27 (24) 1.35 1.25
dla_like.medium 1.10 1.67 1.42 (12) 2.04 1.14
dla_like.small 0.95 0.76 1.58 (6) 1.54 1.04
eltwise_layer 0.57 0.50 1.00 – 1.30 1.36
lenet 0.80 0.85 0.77 1.00 1.37 1.55
proxy.1 0.89 3.00 1.00 – 1.06 1.14
proxy.2 0.68 1.23 1.87 (60) 2.52 2.24
proxy.3 0.52 0.92 2.10 (60) 1.54 1.15
proxy.5 0.46 0.93 2.99 (16) 1.33 1.64
proxy.7 0.66 0.88 2.77 (48) 1.36 1.44
reduction_layer 0.76 – 1.00 – 0.97 1.44
robot_rl 0.78 2.00 1.00 – 1.35 1.15
softmax 0.68 0.63 – – 1.01 1.17
spmv 0.62 1.00 1.00 – 1.54 1.23
tpu_like.small.os 0.35 2.79 1.00 – 2.87 1.88
tpu_like.small.ws 0.50 1.89 1.00 – 2.16 1.55
Geomean 0.67 1.42 1.24 1.46 1.36

tus. These gaps are higher than the 1.26× higher total routed wirelength and

1.2× longer critical path delay reported in [85] on the less heterogeneous and

less DSP-intensive Titan benchmarks. These bigger gaps can be attributed to

the less efficient packing and mapping of hard blocks discussed above which

are more heavily used in the Koios benchmarks, and also their deeply pipelined

nature. This highlights the value of having more challenging benchmarks that

can exercise the CAD tools in different ways.
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6.4 Case Studies

Koios benchmarks are architecture-agnostic and do not depend on com-

mercial tools for any portion of the FPGA CAD flow. Thus, they can be used

to perform flexible FPGA architecture using the fully-open-source VTR flow.

In this section, two example case studies to demonstrate this are presented.

Baseline …

Denser …

Densest …

Baseline …

DSP-heavy …

BRAM-heavy …

 

(a)

(b)

Figure 6.11: FPGA layouts for the architectures used in the case studies. Blue =
Logic Block, Green = Block RAM, Red = DSP Slice

6.4.1 Case Study 1: Hard Blocks to Soft Logic Ratio

            
 

   

   

   

   

 

                  

       

         

  
 
 

            
 

   

   

   

   

 

                  

       

                

 
 

            
 

   

   

   

   

 

                  

       

         

  
 
 

            
 

   

   

   

   

 

                  

       

         

  
 
 

            

   

   

 

                  

       

         

  
 
 

            

   

   

 

                  

       

                

 
 

Figure 6.12: Effect of varying the density of DSPs and BRAMs on Koios and
VTR benchmark suites

As shown in Table 6.3, Koios’ DL-focused circuits are highly hetero-

geneous (i.e. DSP and BRAM intensive). Thus, in the first case study, the
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density of these hard blocks with respect to soft logic is varied. Three different

density levels are considered, as shown in Fig. 6.11a, with 1:7, 1:3, and 1:1

ratio between hard block and soft logic columns for the baseline, denser, and

densest architecture variations, respectively. All three architecture variations

are evaluated using both Koios and VTR benchmarks. Fig. 6.12 shows the

geomean frequency and total routed wirelength for both suites. For the DL-

oriented Koios benchmarks, the frequency increases and wirelength decreases

as the density of hard blocks increases. Since these benchmarks heavily utilize

these blocks, increasing their density in the FPGA grid brings them closer to

each other, which in turn reduces the critical path delays and total length of

used wires. The densest architecture variation results in a 5.2% increase in fre-

quency and 22% reduction in total wirelength on average across all benchmarks

in the Koios suite. For the VTR benchmarks, wirelength is slightly improved

for the denser variation (4% lower), before getting worse for the densest ar-

chitecture. The frequency degrades for both denser and densest architectures.

These results show that a higher density of DSPs and BRAMs is favorable for

building DL-optimized FPGAs, at the cost of a slight or no degradation in

QoR for the general VTR benchmarks (in the densest and denser architecture

variations respectively).

6.4.2 Case Study 2: DSP to BRAM Ratio

In the first case study, the ratio of hard blocks to soft logic is varied,

while keeping a fixed 1:1 DSP to BRAM ratio. For the second case study, the
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Table 6.5: Effect of varying the FPGA’s DSP to BRAM ratio

Metric Arch. Geo-
mean

DSP-heavy
tpu_like(L)

BRAM-heavy
tdarknet_like(L)

Freq.
Baseline 125.6 102.5 86.2

DSP-heavy 124.9 110.4 92.0
BRAM-heavy 126.2 106.0 114.6

WL
Baseline 1065K 749K 3105K

DSP-heavy 1065K 720K 3343K
BRAM-heavy 1098K 781K 3106K

Grid
Baseline 109×109 224×224 190×190

DSP-heavy 110×110 210×210 232×232
BRAM-heavy 111×111 228×228 167×167

Frequency is in MHz, Wirelength (WL) is in units of length 1 wires.

best architecture variation for DL benchmarks from the first case study (i.e.

densest) is carried over. However, the DSP to BRAM ratio is varied between

2:1 and 1:2 to create DSP-heavy and BRAM-heavy variations respectively

(in addition to the baseline with 1:1 ratio), as shown in Fig. 6.11b. Table

6.5 presents the results of this experiment. It shows the geomean frequency,

routed wirelength, and FPGA grid size for the whole Koios suite, as well as

the results for a DSP-intensive benchmark (medium tpu_like.large.ws) and

a BRAM-intensive benchmark (tdarknet_like.large). The geomean results

do not show a strong trend that clearly favors a specific architecture. How-

ever, the DSP-heavy tpu_like.large.ws design has 7.7% higher frequency

and 4% lower wirelength when implemented on the DSP-heavy architecture

compared to the baseline. Similarly, the BRAM-heavy tdarknet_like.large

benchmark has 33% higher frequency and requires a 23% smaller device when

implemented on the BRAM-heavy architecture compared to the baseline. This

highlights that Koios strikes a good balance between different circuit compo-
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sitions and can be reliably used for DL-optimized FPGA architecture explo-

ration.
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Chapter 7

Conclusion

7.1 Summary

This dissertation proposes optimizing the architecture of FPGAs to

improve their performance and energy efficiency for Deep Learning accelera-

tion. Tensor Slices are new DL-optimized blocks that are added to FPGAs.

The Tensor Slice efficiently performs common operations used in today’s neu-

ral networks like matrix-matrix multiplication, matrix-vector multiplication

and element-wise matrix addition, subtraction and multiplication. Converting

about 10% of the area of an Intel Agilex-like baseline FPGA to Tensor Slices

increases the peak compute throughput (GigaMACs/sec) by ∼1.86× for 8-bit

fixed point precision and ∼1.42× for 16-bit fixed-point, IEEE Half-Precision

Floating Point (fp16) and Brain Floating Point (bf16) precisions. Adding

Tensor Slices on the FPGA significantly benefits DL benchmarks in terms of

metrics like frequency, area, routing wirelength, etc. On an FPGA architec-

ture with Tensor Slices, 1.63× improvement in frequency and a 55% reduction

in area and routing wirelength is observed, averaged across several DL bench-

marks, compared to an Intel Agilex-like baseline FPGA. The impact of adding

Tensor slices to an FPGA on non-DL applications is also studied. A reduction

of 2.3% in frequency and an increase of 7.7% in routing wirelength is observed
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on the FPGA with the most amount of area (30%) spent on Tensor Slices,

compared to the baseline FPGA, averaged across several non-DL benchmarks.

Replacing DSP Slices on an FPGA with Tensor Slices, an average speedup of

2.3× is obtained on common DNNs.

Additionally, this dissertation proposes converting BRAMs on FPGAs

to CoMeFa RAMs. CoMeFa RAMs utilize the true dual-port nature of FPGA

BRAMs and contain multiple configurable single-bit bit-serial processing ele-

ments. CoMeFa RAMs can be used to compute with any precision, which is ex-

tremely important for applications like Deep Learning (DL). Adding CoMeFa

RAMs to FPGAs significantly increases their compute density, while also

reducing data movement. Two architectures of these RAMs are presented:

CoMeFa-D (optimized for delay) and CoMeFa-A (optimized for area). Com-

pared to prior works, CoMeFa RAMs do not require changing the underlying

SRAM technology like simultaneously activating multiple wordlines on the

same port, and are practical to implement. CoMeFa RAMs are especially

suitable for parallel and compute-intensive applications like DL; these versa-

tile blocks also find applications in diverse applications like signal processing,

databases, etc. By augmenting an Intel Arria-10-like FPGA with CoMeFa-

D (CoMeFa-A) RAMs at the cost of 3.8% (1.2%) area, and with algorithmic

improvements and efficient mapping, a geomean speedup of 2.55x (1.85x) is

observed across microbenchmarks from various applications and a geomean

speedup of up to 2.5x is seen across multiple Deep Neural Networks.

Compute throughput ratio between ASICs and traditional FPGAs is
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∼ 24:1 [22]. Based on the studies presented in this dissertation, the com-

pute throughput of a DL-optimized FPGA containing both Tensor Slices and

CoMeFa RAMs is 5× compared to a traditional FPGA. Hence, a DL-optimized

FPGA containing both Tensor Slices and CoMeFa RAMs reduces the perfor-

mance gap with ASICs significantly.

In the process of exploring FPGA architecture for Deep Learning,

benchmark circuits are an essential component; the QoR achieved on a set

of benchmarks is the main driver for architecture and CAD design choices.

However, current academic benchmark suites are inadequate, as they do not

capture any designs from the DL domain. This dissertation presents a suite of

DL acceleration benchmark circuits for FPGA architecture and CAD research,

called Koios. This suite of 40 circuits covers a wide variety of accelerated neu-

ral networks, design sizes, implementation styles, abstraction levels, and nu-

merical precisions. These benchmarks include 32 DL designs and 8 synthetic

(proxy) benchmarks. The Koios benchmarks are larger, more data parallel,

more heterogeneous, more deeply pipelined, and utilize more FPGA architec-

tural features compared to existing open-source benchmarks. This enables

researchers to pinpoint architectural inefficiencies for this class of workloads

and optimize CAD tools on more representative benchmarks that stress the

CAD algorithms in different ways. In this dissertation, the Koios designs are

described, their characteristics are compared to prior FPGA benchmark suites,

and results of running them through the Verilog-to-Routing (VTR) flow using

a recent FPGA architecture model are presented. Finally, case studies show-
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ing how exploration of DL-optimized FPGA architecture and CAD algorithms

can be performed using this new benchmark suite are presented.

DL-optimized FPGAs can reduce the gap between ASICs and FPGAs

for DL acceleration. With the abundance of DL applications, making DL-

optimized FPGAs is an attractive proposition.

7.2 Future Work

There are a number of future research directions that can be taken

to further improve FPGA architecture for Deep Learning, or to improve the

usability of the FPGA architecture proposed in this dissertation.

Currently, to use Tensor Slices, a user has to manually instantiate a

Tensor Slice block in the RTL and connect it. However, one future direction

is to develop tools that can map higher level descriptions directly to Tensor

Slices. For example, a tool could directly consume a DNN description and

map fully-connected layers to Tensor Slices. FPGA synthesis tools can be

enhanced to infer code patterns in RTL and map the computation to a Tensor

Slice. Pragmas can be used to aid synthesis tools in mapping code to Tensor

Slices. High-Level Synthesis (HLS) tools can generate RTL that instantiates

Tensor Slice blocks.

Additionally, libraries of hardware components that utilize Tensor Slices

could be created and users could directly instantiate them in their designs.

For example, a parameterized hardware IP (Intellectual Property) block for
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matrix-matrix multiplication or matrix-vector multiplication, that makes use

of Tensor Slices, can be created and distributed with the FPGA tool chain.

Users can directly use these blocks in their designs.

The current implementation of Tensor Slice only supports dense matrix

operations. However, matrices in DL are sparse, with the amount of sparsity

varying greatly across applications and across network types. The Tensor Slice

architecture could be enhanced to efficiently support sparse matrix computa-

tions.

Other future enhancements to Tensor Slice to improve its frequency

of operation is to break down the local input crossbar into smaller crossbars,

possibly one per FPGA grid location occupied by the Tensor Slice. Finding

the optimal value of Fcin and Fcout for Tensor Slice can also be undertaken.

Exploring different switchblock configurations for Tensor Slices could be un-

dertaken.

For CoMeFa RAMs, this dissertation explores two architectures at the

ends of the area-delay design space: CoMeFa-A (area optimized) and CoMeFa-

D (delay optimized). CoMeFa-D requires additional sense amplifiers to be

added to the RAM block, and the number of processing elements added is

equal to the number of bitline pairs. The frequency of operation of the RAM

reduces by 25%. CoMeFa-A does not require any additional sense amplifiers

to be added to the RAM and one PE is added for every 4 bitline pairs. The

frequency of operation of the RAM reduces by 125%. Other candidates in this

space can be explored in the future. For example, an architecture with one
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processing element for every two bitline pairs. This will have a moderate area

overhead and a moderate reduction in clock frequency.

Data needs to be stored in a transposed manner in CoMeFa RAMs for

computation to be performed. But at the application level, transposing data is

only needed when reading/writing from/to the DRAM. Modern FPGAs have

hardened DRAM controllers integrated into them. So, transpose logic (like the

swizzle module described in this dissertation) can be hardened into a DRAM

controller in the future. This will eliminate any requirement of swizzle logic in

soft logic, thereby implying that Logic Blocks could be used for other purposes.

The stored program method used to program CoMeFa RAMs makes it

easier to program CoMeFa RAMs compared to a designing an FSM. However,

it is still difficult to program CoMeFa RAMs. Developing a compiler can

make this much easier. The compiler can take an application written in higher

level languages like, say, a DL application written in Pytorch or TensorFlow,

and generate code for the instruction RAMs that can then be decoded by the

instruction controller shown in this dissertation.

Non-SRAM technologies like ReRAM or STT-MRAM have been pro-

posed to be used for FPGA BRAMs instead of SRAMs [26] [113] [66]. Si-

multaneously, compute-in-memory has been explored with these technologies

as well [61] [50]. In the future, adding compute-in-memory capabilities to

FPGA BRAMs based on these technologies can be undertaken. The CoMeFa

RAM operation is agnostic to the underlying technology.

273



Koios benchmarks are a set of 40 benchmarks. More benchmarks can

be added to this benchmark suite to help build a better and bigger set of DL

benchmarks that can guide the design of future FPGA architectures and CAD

algorithms. New benchmarks such as designs that support new DNN layers

can be added. More proxy benchmarks can be added. In Koios benchmarks,

currently, there are 8 proxy benchmarks. Analysis presented in Section 6.2.4

shows that in the future, the proxy generator can be used to design unique

proxy benchmarks that have higher linkage distances (i.e. more diverse bench-

marks could be generated).

Currently, the user has to specify the exact structure of the proxy

benchmark in the input YAML file. However, this framework can be enhanced

so that the user only needs to specify an approximate mixture of components

they desire. A YAML file can then be automatically generated and passed as

an input to the existing framework, which enables easier and faster generation

of proxy benchmarks from circuit properties.

In this dissertation, the compute and memory components of an FPGA

are modified to design DL-optimized FPGAs. Other ways to improve the archi-

tecture of FPGAs for DL include specializing the programmable interconnect

on the FPGA for DL. This can be done by analyzing the connectivity patterns

between various blocks on the FPGA and changing the routing structure in a

way that reduces the switches required for common connectivity patterns. For

example, direct DSP to DSP connections in two dimensions could be provided,

direct DSP to BRAM connections could be provided, etc.
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