
COIN: Combinational Intelligent Networks
Igor D. S. Miranda1, Aman Arora2, Zachary Susskind2, Josias S. A. Souza1,

Mugdha P. Jadhao2, Luis A. Q. Villon3, Diego L. C. Dutra3, Priscila M. V. Lima3,

Felipe M. G. França4, Mauricio Breternitz Jr.5, and Lizy K. John.2

1Universidade Federal do Recôncavo da Bahia, Brazil. 2University of Texas at Austin, USA.
3Universidade Federal do Rio de Janeiro, Brazil. 4Instituto de Telecomunicações, Portugal.

5ISCTE Instituto Universitário de Lisboa, ISTAR, Portugal.

Abstract—We introduce Combinational Intelligent Networks
(COIN), a machine learning technique that targets edge inference
using low-resourced FPGAs or ASICs. COIN is an improve-
ment on LogicWiSARD, a recent weightless neural network
that achieves low power, small area, and high throughput. We
convert the LogicWiSARD model into a binary neural network,
train it using backpropagation, and then convert it to a COIN
model. As a result, COIN can achieve higher accuracy than
LogicWiSARD or it can require significantly fewer hardware
resources when comparing models with similar accuracies. In
comparison to a BNN implementation, FINN, small and large
COIN models are more energy efficient demonstrating up to 11.5x
higher inferences/Joule at similar accuracy. Our tool executes the
complete flow, from training to RTL, and is publicly available.

Index Terms—Weightless neural networks, LogicWiSARD,
binary neural networks, FPGA, ASIC

I. INTRODUCTION

Deploying AI on edge devices poses unique challenges

not seen in other domains. Edge devices have aggressive

area and energy constraints, yet may be expected to maintain

low latencies and high throughputs. Traditional deep neural

networks may be infeasibly expensive in this domain, even

when techniques such as pruning and quantization are used.

An attractive alternative in edge contexts are binary neural

networks (BNNs), which use single-bit weights and activations

representing values -1 and 1 [1]. Weightless neural networks

(WNNs) go a step further by almost eliminating arithmetic

operations with reduced memory requirements [2], [3].

This work† introduces a new approach to the training of

WNNs using the BNN framework. It is done by converting a

LogicWiSARD model to an equivalent BNN model, training

it with backpropagation, and then converting it to a new WNN

model. Our contributions in this work are the following:
1) A novel approach to WNN models that uses back-

propagation to enhance model accuracy and can be

implemented using only logic functions (no arithmetic,

no memory). This leads to efficient hardware imple-

mentations. We call this architecture COmbinational

Intelligent Networks (COIN);

2) A new encoding technique to be used with WNNs that

reduces resources utilization;

3) Evaluation of the COIN implementation with existing

state-of-the-art WNN and iso-accurate BNN models;

†This work was supported by the Fulbright program and FCT/MCTES
projects UIDB/50008/2020, UIDP/4466/2020, and UIDB/04466/2020.

4) An open-source tool chain to automatically generate

these models from training to RTL. This tool chain is

available at: https://github.com/lasdi/coin

II. PROPOSAL: COIN

A. LogicWiSARD training

For LogicWiSARD training, we used the same methodology

introduced in [2].

A trained LogicWiSARD model is defined by its minterms

mr
n and truth table outputs τr

n,k, where r is the RAM index, n=
0, ...,Nr −1 is the minterm index in a RAM with Nr entries,

and k is the class index. After encoding and mapping, an input

x produces R addresses xr, which are sent to classification.

For a K-class LogicWiSARD model, the predicted class can

be evaluated as Ĉ = argmax(θk) where

θk =
R−1

∑
r=0

Nr−1

∑
n=0

τr
n,kq(mr

n,x
r), (1)

and

q(a,b) = ANDunary(XNORbitwise(a,b))). (2)

θk corresponds to the score of the kth discriminator. q(a,b)
function is used to return 1 if its arguments are coincident

and 0 otherwise. In our experiments, we could observe that

pruning LogicWiSARD model lowers its accuracy but does

not affect final COIN accuracy significantly.

B. LogicWiSARD to BNN conversion

A BNN without hidden layers, similar to a multinomial

logit, can represent a LogicWiSARD model. The number of

inputs of this BNN model is the total number of minterms,

which can be defined as

N = R
R−1

∑
r=0

Nr. (3)

The inputs for the BNN model should be derived from the

original LogicWiSARD inputs as follows

x′l = q(mr
n,x

r), (4)

where

l = n+
r−1

∑
r′=0

Nr′ . (5)

27

2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP)

DOI 10.1109/ASAP57973.2023.00016

20
23

 IE
EE

 3
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
pp

lic
at

io
n-

sp
ec

ifi
c

Sy
st

em
s,

 A
rc

hi
te

ct
ur

es
 a

nd
 P

ro
ce

ss
or

s (
AS

AP
) |

 9
79

-8
-3

50
3-

46
85

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
AS

AP
57

97
3.

20
23

.0
00

16

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:09:36 UTC from IEEE Xplore. Restrictions apply.

l is a unified index to refer to all minterms across RAM

nodes which are used as inputs for the equivalent BNN. Then,

the following BNN classifier can be used for training

y′k = BatchNorm(θ ′
k) (6)

where

θ ′
k =

N−1

∑
l=0

ωk,lx′l , (7)

BatchNorm is a batch normalization layer, and ωk,l are

trainable weights. Note that linear activation functions are used

for the output neurons.

C. BNN to COIN conversion

The COIN model consists of implementing the BNN de-

scribed in Eq. (7) using the same arrangement of Eq. (1),

therefore

θ ′
k =

R−1

∑
r=0

Nr−1

∑
n=0

ωk,lq(mr
n,x

r), (8)

A key difference in the COIN model is that ωk,l values

are {−1,+1} instead of {0,1} as in τr
n,k. Additionally, batch

normalization should be performed to (7) before the highest

score is selected. Our batch normalization is performed as

σ+
k =

σk√
1.5

N+K

(9)

where σk is the batch normalization method proposed by

FINN [4] which is suited for binary outputs while requiring

simpler hardware. We also include an extra normalization to

compensate the Glorot initialization during BNN training.

Finally, a COIN classifier can be implemented as Ĉ =
argmax(θ̂ ′

k) where

θ̂ ′
k =

R−1

∑
r=0

Nr−1

∑
n=0

(ω ′
k,lq(m

r
n,x

r)−σ+
k). (10)

D. Reverse ripple thermometer encoding

We introduce the reverse ripple thermometer (RRT) encod-

ing, a method for use when input samples are in a positive

range with approximately exponential distribution (or more

values close to zero), with thresholds defined by power of

two exponentials within the input range. The RRT encoding

can be performed using a binary logarithm function where the

number of bits set to 1 is b = �Log2(a)� for a given input a.

III. EXPERIMENTS AND EVALUATION

A. Implementation Results and Comparison

We implement two COIN models, a small one (n = 16

and T = 8) and a large one (n = 16 and T = 8), referred

to as COIN/small and COIN/large. Using the MNIST dataset

[5], we compare COIN/small (95.8% acc.) with BNN/FINN-

SFC (95.8% acc.) [4] and previous WNN work, namely

BTHOWeN (95.2% acc.) [3] and LogicWiSARD (95.0% acc.)

[2]. COIN/large (97.8% acc.) are compared with BNN/FINN-

LFC (98.4% acc.) [4]. For COIN, we use RRT encoding

Fig. 1: Energy efficiency comparison between proposed

method (COIN), BNN/FINN and previous WNN work in

FPGA. LogicWiSARD, BTHOWeN, BNN/FINN-SFC and

COIN/small models have accuracy in the 96% range while

BNN/FINN-LFC and COIN/large are in the 98% range.

which provided smaller hardware in our experiments. All

these models were synthesized and implemented for the Xilinx

FPGA device XC7Z045-FFG900 operating at 200MHz.

COIN/small requires 6805 LUTs and 184 FFs, which is

significantly fewer resources than the other models in the same

accuracy range. For example, COIN/small needs 91.4% fewer

LUTs than LogicWiSARD. COIN/large also reduces hardware

requiring 70470 LUTs and 226 FFs while BNN/FINN-LFC

requires 82988 LUTs and 396 36-Kbit BRAMs. Due to the

reduced hardware, COIN designs for MNIST have shown large

improvements regarding energy efficiency, as shown in Fig. 1.

IV. CONCLUSION AND FUTURE WORK

In this work, we introduce COIN, a machine learning

technique that can be efficiently implemented in hardware. The

proposed method enhances the state-of-the-art WNN approach,

LogicWiSARD, with backpropagation training based on the

BNN framework, improving the accuracy by 2.6%. Across

all comparisons, the resource utilization is significantly less

than in the previous work and the increase in the energy

efficiency ranges between 3.9x and 11.5x. With improvements

in accuracy, resource utilization, and energy efficiency, the

proposed method is an alternative for edge inference using

FPGAs or ASICs. However, studies should be conducted to

further improve COIN accuracy for complex tasks.

REFERENCES

[1] M. Courbariaux et al., “Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1,” arXiv
preprint arXiv:1602.02830, 2016.

[2] I. D. S. Miranda et al., “Logicwisard: Memoryless synthesis of weight-
less neural networks,” in 2022 IEEE 33rd International Conference on
Application-specific Systems, Architectures and Processors (ASAP), 2022.

[3] Z. Susskind et al., “Weightless neural networks for efficient edge in-
ference,” in 31st International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2022.

[4] Y. Umuroglu et al., “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of FPGA’17.

[5] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

28

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 01,2023 at 15:09:36 UTC from IEEE Xplore. Restrictions apply.

