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Abstract
Soft error reliability has become a first-order design cri-

terion for modern microprocessors. Architectural Vulnera-
bility Factor (AVF) modeling is often used to capture the
probability that a radiation-induced fault in a hardware
structure will manifest as an error at the program output.
AVF estimation requires detailed microarchitectural simu-
lations which are time-consuming and typically present ag-
gregate metrics. Moreover, it requires a large number of
simulations to derive insight into the impact of microarchi-
tectural events on AVF. In this work we present a first-order
mechanistic analytical model for computing AVF by esti-
mating the occupancy of correct-path state in important mi-
croarchitecture structures through inexpensive profiling. We
show that the model estimates the AVF for the reorder buffer,
issue queue, load and store queue, and functional units in
a 4-wide issue machine with a mean absolute error of less
than 0.07. The model is constructed from the first princi-
ples of out-of-order processor execution in order to provide
novel insight into the interaction of the workload with the
microarchitecture to determine AVF. We demonstrate that
the model can be used to perform design space explorations
to understand trade-offs between soft error rate and perfor-
mance, to study the impact of scaling of microarchitectural
structures on AVF and performance, and to characterize
workloads for AVF.

1 Introduction
The mitigation of radiation-induced soft errors has

emerged as a key design challenge in current and future pro-
cess technologies, as a result of increasing transistor densi-
ties and lowering of operating voltages [1–4]. However, a
significant fraction of radiation-induced faults do not affect
the correctness of program execution [5]. Therefore, Archi-
tectural Vulnerability Factor (AVF) modeling is utilized to
quantify this masking effect of program execution, enabling
designers to devise efficient soft error mitigation schemes.
AVF captures the probability that a fault in a structure will
manifest as an error in the program output, and can be mod-
eled using Architecturally Correct Execution (ACE) analy-
sis [2] or SoftArch [6] using microarchitectural simulators.
Whereas AVF modeling using ACE analysis allows the ar-
chitect to estimate Soft Error Rate (SER) during early de-
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sign space exploration.

sign planning, it requires a large number of time-consuming
microarchitectural simulations to be able to derive insight
into the relationship between a microarchitectural change
and AVF. Additionally, these simulations typically present
the combined masking effect of the ACE bits due the work-
load, and the impact of microarchitectural events triggered
by a workload on the occupancy of these ACE bits in a
structure. Statistical or machine-learning based modeling
[7–10] also do not easily quantify the fundamental inter-
actions between the workload and the microarchitecture,
making it difficult to derive insight into the factors affect-
ing AVF.

In this work, we develop a modeling methodology to an-
alytically obtain the AVF of a structure, in the first order,
using statistics collected from relatively inexpensive profil-
ing. Our model allows the architect to quantitatively un-
derstand the factors affecting AVF and guide higher level
design decisions. The core idea behind this methodology
is to divide program execution into intervals [11]. Each in-
terval is an independent region of execution delimited by
miss events that disrupt the dispatch of instructions. We
model the occupancy of state that will eventually be com-
mitted by the processor in each interval. The occupancy of
correct-path state during each interval is averaged, weighted
by the time spent in each interval. The AVF of a structure
is then estimated by derating this occupancy with the aver-
age proportion of un-ACE bits induced in it by the work-
load. Additionally, our model is deliberately constructed to
capture the interaction of the various miss events, and their
combined impact on occupancy. This allows us to derive
novel quantitative insights into the workload’s influence on
AVF of a structure, that may not be obvious from the ag-
gregate metrics such as cache miss rates. We use the same
terminology as Eyerman et al. [11] to refer to such “white-
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box” models as mechanistic models, in contrast to “black-
box” statistical or machine-learning based analytical mod-
els. Figure 1 presents the general overview of our modeling
methodology. Workloads are profiled to capture important
metrics required by the model, which is often a one-time ef-
fort. Multiple microarchitectures can then be modeled using
the data from a single profile.

Our methodology can be used to model the AVF of
any structure whose AVF correlates with its utilization, and
whose utilization is influenced by program execution. In
this paper, we demonstrate the methodology for estimat-
ing the AVF of the reorder buffer (ROB), issue queue (IQ),
load and store queues (LQ, SQ), and functional units (FUs).
We show that the mean absolute error in estimating AVF
for each of these structures is less than 0.07, for a 4-wide
out-of-order machine, as compared to ACE analysis using a
cycle-accurate microarchitectural simulator.

The key contributions of this work are as follows:

• We present a novel first-order analytical model for AVF,
designed from first principles to capture the impact of
microarchitectural events on the AVF of major out-of-
order processor structures. The key novelty of this mod-
eling effort over prior mechanistic models for perfor-
mance [11, 12] is that it captures the interaction between
different events occurring in a processor, and estimates
AVF with low error. This enables the architect to derive
unique insight into the factors affecting the AVF of a
structure, not available using aggregate metrics or prior
work using black-box models [7–10].

• As the model requires inexpensive profiling, it can be
used to perform design space exploration studies nearly
instantaneously. In this work, we demonstrate how the
model can be used to study the effect of scaling the
ROB, issue width and memory latency on AVF, which
provides valuable insight into the effect of microarchi-
tecture and workload interactions on AVF.

• We demonstrate how the model can be used for work-
load characterization for AVF. As the model quantita-
tively expresses the exact mechanisms influencing AVF,
it can be used to identify high or low AVF inducing
workloads. We also demonstrate why aggregate metrics
such as IPC or cache miss rates do not correlate with the
AVF of a structure.

The remainder of this paper is organized as follows: Sec-
tion 2 outlines AVF modeling using ACE analysis, and the
interval analysis methodology for modeling performance.
We outline our modeling methodology and associated trade-
offs in Section 3. We compare the AVF as predicted by the
model, to the AVF computed using detailed simulation in
Section 4. Finally, we utilize the model to derive insights
into the effect of microarchitectural changes on AVF in Sec-
tion 5.

2 Background
ACE Analysis: In order to compute AVF, Mukherjee et
al. [2] introduce the concept of Architecturally Correct Ex-
ecution (ACE) bits. An ACE bit is one whose correctness
is required for the correctness of the program. A bit could
be either microarchitecturally or architecturally ACE. Bits
that are not critical to program correctness are termed un-
ACE. Microarchitecturally un-ACE bits include bits due to
unused or invalid state, bits discarded as a result of mis-
speculation, or bits in predictor structures. Architecturally
un-ACE bits are a direct result of the instructions in the bi-
nary, such as NOPs, software pre-fetches, predicated false
instructions, and dynamically dead instructions.

Mukherjee et al. formally define the AVF of a
structure of size N bits, as AV Fstructure = 1

N ×∑N
i=0

(
ACE cycles for bit i

Total Cycles

)
. Thus, AVF of a structure is

expressed as the average number of ACE bits per cycle di-
vided by the total number of bits in the structure. AVF is
used to derate the intrinsic fault rate of the structure to es-
timate its Soft Error Rate (SER). The derated fault rates for
all structures are added up to estimate the overall SER of
the processor.

Interval Analysis: Our first-order mechanistic model for
AVF is inspired by earlier work for estimating Cycles per
Instruction (CPI) for out-of-order superscalar architectures,
proposed by Karkhanis and Smith [12], and refined by Ey-
erman et al. [11] using interval analysis. In the interest of
brevity, we only present the basic ideas here. Interval anal-
ysis models the program execution as an ideal, miss-free
execution, interrupted by miss events that disrupt the dis-
patch of instructions. In the absence of any miss events, the
processor is able to dispatch instructions at the maximum
dispatch rate D1. Each miss event interrupts the dispatch of
instructions until it resolves. As an out-of-order processor
can extract Memory-Level Parallelism (MLP), and nearly
all of the latency of the overlapped miss is hidden behind
that of the non-overlapped data L2/TLB miss, it is sufficient
to count only the non-overlapped data L2 and TLB miss cy-
cles towards estimating performance, for a given instruction
window size. We use the term instruction window to refer
to the instructions in flight, or the ROB. The branch mispre-
diction penalty for an out-of-order processor is modeled as
the sum of the front-end pipeline depth, and the branch res-
olution penalty, which is the number of cycles between the
mispredicted branch entering the instruction window and
the misprediction being detected.

Therefore, the total number of cycles for executing a pro-
gram is modeled as the sum of the cycles spent in each in-
terval. Miss events that would not interrupt dispatch, such
as data cache hits, are modeled similar to arithmetic instruc-

1Note that D may be less than the peak designed dispatch width if the
program lacks sufficient inherent Instruction Level Parallelism (ILP).
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tions. The model assumes a microarchitecture design such
that the processor would not frequently stall in the absence
of miss events, while running typical workloads. Karkhanis
and Smith [12], and Eyerman et al. [11] demonstrate that it
is sufficient to model these intervals as being independent of
one another, with little loss in accuracy. This key simplify-
ing assumption does not hold true for estimating occupancy
and AVF. For example, a mispredicted branch that is depen-
dent on a load miss in the L2 cache significantly reduces the
occupancy of correct-path (ACE) bits in the shadow of the
L2 miss, and is non-trivial to estimate using the existing in-
terval model or aggregate metrics. It is therefore necessary
for our AVF model to account for such interactions.

The profilers for the model are implemented as sliding
windows, and collect statistics for a range of instruction
window sizes [11]. Thus, ROB size, issue width, front-
end pipeline depth and the latencies of instructions, caches,
TLBs, and main memory can be changed without requiring
additional profiling. If the cache hierarchy or the branch
predictor is changed, the corresponding profiler would need
to be rerun. Our model retains the same flexibility to allow
easy design space exploration.

3 Modeling AVF using Interval Analysis
The unique requirements of our model are to capture the

occupancy of state in a given structure in the core, while
discarding the occupancy of wrong-path instructions, and
faithfully modeling the complex interaction between front-
end and data cache/TLB misses that affect AVF.

In this section, we describe the methodology for estimat-
ing the occupancy of correct-path state of the ROB, LQ, SQ,
IQ, and FUs, which contain the largest amount of corrupt-
ible state in the core. We then estimate AVF by derating this
occupancy by the fraction of bits introduced into a struc-
ture that were un-ACE. We identify un-ACE instructions
through profiling and use this information to determine the
number of ACE bits injected into each structure while run-
ning the workload. The separation of the program’s influ-
ence on the number of ACE bits induced in a structure, and
the residency of these ACE bits in the structure enables the
architect to gain deeper insight into the interaction of events,
and their contribution to overall AVF. As with any analyt-
ical modeling methodology, we seek to balance accuracy
with simplicity of formulation, the ability to provide quan-
titative insight, and ease of collecting necessary program
characteristics.

Our modeling methodology must account for the effect
of interaction between miss events – ignored in interval
analysis for CPI – on the occupancy of correct-path state.
The data necessary to achieve this is easily added to the
profiling necessary for interval analysis, incurring negligi-
ble overhead.

We estimate the occupancy of eventually committed

state in the ROB in Section 3.1. The ROB occupancy gov-
erns the occupancy of LQ, SQ and FUs. As the IQ can issue
instructions out-of-order, its occupancy is estimated inde-
pendently in Section 3.2.

3.1 Modeling the AVF of the ROB

In this section, we study the effect of each miss event
on the occupancy of the ROB independently of one an-
other, and analyze the impact of interaction between miss
events. Figure 2 illustrates a simplified view of modeling
occupancy using interval analysis. We model the occu-
pancy of the ROB as having a steady-state, or ideal value
in the absence of miss events. Each miss event would al-
ter occupancy of correct-path instructions, depending on its
behavior. Averaging the occupancy during the steady-state
execution and miss events, weighted by the cycles spent in
each interval gives the overall average occupancy. We lin-
earize the ramp-up and ramp-down curves for occupancy,
with slopes equal to the dispatch rate, in the interest of sim-
plicity. It is assumed for the purposes of this work that the
designed dispatch and retire widths for the processor are
equal.

3.1.1 Occupancy of Correct-Path Instructions

The interval model for performance allows us to estimate
the number of cycles spent during each execution interval.
Our model allows us to estimate the occupancy of correct-
path instructions in the ROB during these intervals. Thus,
average occupancy of the ROB, computed over the execu-
tion of the program is:

OROBavg =
1

Ctotal
· (OROBideal · Cideal +OROBDL2Miss · CDL2Miss

+OROBIL1Miss · CIL1Miss +OROBITLBMiss · CITLBMiss

+OROBbrMp · CbrMp +OROBDTLBMiss · CDTLBMiss)

(1)
In the above equation, C refers to the total number of

cycles, and O refers to the occupancy of state during each
type of miss event. In essence, Equation 1 is the average
occupancy, weighted by the number of cycles spent in each
interval. In the following sections, we describe how the oc-
cupancy of state during each miss event is computed.

3.1.2 Modeling Steady-State Occupancy
Given an instruction window of size W , the total number
of cycles taken to execute all instructions in the instruc-
tion window is a function of the latency of executing the
critical path. The average critical path length K(W ) for
a given program is modeled as K(W ) = 1

αW
1/β [12, 13]

where α and β are constants that are determined by fitting
the relationship between K(W ) and W to a power curve.
This analysis is performed assuming that all instructions
have unit latency. Therefore, given an average instruction
latency l, the critical path would require l · K(W ) cycles.
Using Little’s law, the ideal or steady-state IPC (I(W )) that
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Figure 2. Modeling Occupancy of the ROB Using Interval Analysis.

can be extracted from the program given an instruction win-
dow of size W is presented in Equation 2 below [12, 13].
For a processor with a designed dispatch width D, setting
I(W ) = D, and rearranging the terms in Equation 2 gives
us the steady-state ROB occupancy, OROBideal , or W (D) nec-
essary to sustain the peak dispatch rate.

I(W ) =
W

l ·K(W )
=
α

l
.W (1−1/β) (2)

∴ OROBideal =W (D) =

(
l ·D
α

) β
β−1

(3)

If the steady-state IPC of the program is less than the de-
signed dispatch width, the program requires a much larger
instruction window to extract the necessary ILP. In this case,
the occupancy of the ROB will saturate to 100%. As noted
by Karkhanis and Smith [12], a processor that has a bal-
anced design for a typical workload will not frequently stall
due to a full IQ. Therefore, we consider only the typical case
for our modeling. An implicit assumption of Equation 2 is
that the product of the longest dependence chain length and
average latency (l · K(W )) is approximately equal to the
latency of executing the critical dependence path. This ap-
proximation may induce errors for pathalogical workloads
with few miss events. However, the separation of critical
path and latency profiling allows us to easily change instruc-
tion or cache latencies without re-profiling the workload.

3.1.3 Modeling Occupancy in the Shadow of Long-
Latency Data Cache Misses

As shown in Figure 2(a), a non-overlapped data L2 miss (or
a TLB miss for a hardware-managed TLB) reaches the head
of the ROB, blocking the retirement of subsequent instruc-
tions. The processor continues to dispatch instructions until
the ROB fills up completely. Thus, the occupancy in the
shadow of a non-overlapped L2 miss is OROBDL2Miss = W .
When the data eventually returns from main memory, the
L2 miss completes, and the processor is now able to retire
instructions. However, the occupancy of the ROB need not
return to steady-state after the L2 miss completes; it can
remain at nearly 100% if the processor is capable of dis-
patching and retiring instructions at the same rate. In Sec-

tion 3.1.5, we explain the procedure for accounting for this
interaction.

3.1.4 Modeling Occupancy During Front-end Misses.

Modeling Occupancy During an L1 I-cache Miss: The
occupancy of the ROB during an L1 I-cache miss depends
on the hit latency of the L2 cache, as shown in Figure 2(c),
and therefore requires special modeling. When an L1 I-
cache miss occurs, the processor is initially able to dis-
patch instructions until the front-end pipeline drains. Sub-
sequently, the occupancy of the ROB decreases by a rate de-
termined by the ideal IPC (see Equation 2), as depicted by
the solid line. Once the I-cache miss resolves and the front-
end pipeline is refilled, occupancy of the ROB starts in-
creasing at the rate of the ideal IPC (Equation 2). Lineariz-
ing ramp-up and ramp-down2, the shaded areas under the
ramp-up and ramp-down are equal, allowing us to approxi-
mate occupancy as depicted by the dotted line. As depicted
in Figure 2(c), the reduction in correct-path state during an
I-cache miss is latL2 ·D , where latL2 cycles is the hit la-
tency of the L2 cache, and D is the steady-state dispatch or
retirement rate. Thus,OROBIL1Miss = OROBideal −latL2 ·D. This
allows us to model changes in occupancy as steps, greatly
simplifying computation, and is used to model other miss
events as well.

The occupancy during other front-end misses such as L1
I-cache misses, L2 instruction misses, and I-TLB misses
can be modeled on similar lines. As the latencies of L2 in-
struction misses and I-TLB misses are relatively large, the
occupancy of the ROB goes down to zero.

Modeling Occupancy During a Branch Misprediction:
Figure 2(b) illustrates the effect of a branch misprediction
on the occupancy of the ROB. The solid line depicts the
occupancy of correct-path instructions in the ROB. All in-
structions fetched after the mispredicted branch are even-
tually discarded, and hence un-ACE. As correct-path in-
structions are retired, and instructions from the mispre-
dicted path continue to be fetched, the occupancy of ACE

2Although it is possible to compute the exact ramp-up and ramp-down
curves using Equation 2 and 3, the error due to linearization is negligible.
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state decreases. The overall occupancy, as indicated using
the dotted line remains at the steady-state value, until the
branch misprediction is detected and the pipeline is flushed.
Karkhanis and Smith [12] show that assuming an oldest-
first issue policy, the mispredicted branch is among the last
correct-path instructions to be executed in the instruction
window. Simultaneously, retirement of instructions drains
the ROB of correct-path state, resulting in low ACE oc-
cupancy by the time the misprediction is detected, and the
pipeline is flushed. Thus, OROBbrMp ≈ 0. After the front-end
pipeline refills and dispatch resumes, the occupancy of the
ROB eventually returns to the steady-state value.

3.1.5 Modeling Interactions Between Miss Events.

Dependent Branch Mispredictions in the Shadow of a
Long-Latency Load Miss: Consider the case in which a
branch is dependent on a long-latency load miss and oc-
curs within the same instruction window. If such a branch
is mispredicted, all instructions in the ROB fetched after
the branch instruction are un-ACE. As the branch will not
resolve until the cache miss completes, the occupancy of
correct-path state in the shadow of this L2 miss is less than
100%, as shown in Figure 3(a). Programs such as perl-
bench, gcc, mcf and astar have a significant number of such
interactions. Branch mispredictions that are independent
of long-latency data cache misses will resolve quickly such
that their interaction has a negligible effect on occupancy.

We capture this interaction by computing the number
of instances in which a non-overlapped data L2 or TLB
miss has a dependent mispredicted branch in its instruc-
tion window (Ndep(W )). The average number of instruc-
tions between the earliest dependent mispredicted branch
and the non-overlapped miss at the head of the ROB
(lenDL2,Br(W ), lenDTLB,Br(W )) is also captured to es-
timate the occupancy of correct-path state in the shadow
of the L2 miss. Note that the mispredicted branch only
needs to be dependent on any data L2 or TLB cache miss in
the instruction window. This computation can be added to
the existing profiler for non-overlapped data cache misses
with little overhead. It does, however, require that in-
formation on mispredicted branches from the branch pro-
filer be made available to the non-overlapped data cache
miss profiler. For a total number of non-overlapped L2
misses NDL2Misses(W ), we express the term OROBDL2Miss ·
CDL2Miss in Equation 1 as latDL2Miss · (lenDL2,Br(W ) ·
Ndep(W ) +W · (NDL2Miss(W )−Ndep(W ))).

Interaction of Data and Instruction Cache Misses: Our
model is impacted by two types of interactions between data
cache and instruction cache miss events. The first case oc-
curs when an instruction miss in the L2 cache or ITLB oc-
curs in the shadow of a non-overlapped DL2 or DTLB miss,
resulting in less than 100% occupancy of the ROB. We find
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by long intervals, before the occurence of a front-end miss.

Figure 3. Modeling the Effects of Interactions
Between Miss Events on Occupancy.

that this case is very rare; only perlbench is significantly
impacted due to its higher proportion of ITLB misses. We
follow a procedure similar to the aforementioned case of
dependent branch instructions. L1 I-cache misses in the
shadow of a non-overlapped L2/DTLB miss will resolve
quickly, and hence their interaction has negligible effect on
average occupancy.

A second case occurs when the duration between a long-
latency data cache miss and front-end miss is too long. As
described in Section 3.1.3, we made a simplifying assump-
tion that the occupancy of the ROB returns to steady state
relatively quickly after a long-latency data cache miss re-
tires, as a result of subsequent front-end misses causing the
ROB to drain. We therefore measure the fraction of non-
overlapped DL2 and DTLB misses that are separated from
a front-end miss by at least 2W instructions. This inter-
val length is chosen to be large enough to eliminate misses
that occur in the shadow of the L2 and DTLB miss. Fur-
thermore, a significant number of misses occur within 2W
of the non-overlapped L2/TLB miss, which have negligible
impact on accuracy. Thus, we only capture the length of
long intervals, and filter out the impact of very short inter-
vals on the average. Figure 3(b) outlines the average num-
ber of non-overlapped misses that are followed by intervals
of greater length than 2W instructions, for the cache and
branch predictor configuration outlined for the wide-issue
machine, in Table 1. As seen in Figure 3(b), with the ex-
ception of hmmer, gobmk, sjeng, and astar, this situation
occurs infrequently. The average length of such sequences
for these workloads ranges between 300 and 450 instruc-
tions. Thus, the fraction of non-overlapped L2 misses in
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Parameter Wide Issue Machine Narrow Issue Machine
ROB 128 entries, 76 bits/entry 64 entries, 76 bits/entry
Issue Queue 64 entries, 32 bits/entry 32 entries, 32 bits/entry
LQ 64 entries, 80 bits/entry 32 entries each, 80 bits/entry
SQ 64 entries, 144 bits/entry 32 entries each, 144 bits/entry
Branch Predictor Combined, 4K bimodal, 4K Combined, 4K bimodal, 4K

gshare, 4K choice, 4K BTB gshare, 4K choice, 4K BTB
Front-end pipeline depth 7 5
Fetch/dispatch/issue/ 4/4/4/4/4 per cycle 2/2/2/2 per cycle
execute/commit
L1 I-cache 32kB, 4-way set associative 32kB, 4-way set associative
L1 D cache 32kB, 4-way set associative 32kB, 4-way set associative
L2 cache 1MB, 8-way set associative 1MB, 8-way set associative
DL1/L2 latency 2/9 cycles 2/9 cycles
DTLB and ITLB 512 entry, fully associative 512 entry, fully associative
Memory Latency 300 cycles 300 cycles
TLB Miss Latency 75 cycles 75 cycles

Table 1. Processor Configurations.

Figure 3(b) will experience a subsequent region of ideal ex-
ecution in which occupancy is W , which is included in our
calculations for the model. We perform a similar experi-
ment to capture long intervals between two consecutive data
L2/TLB misses, but find that they are infrequent, and affect
only workloads dominated by these misses. Although in-
cluded in our modeling, they have negligible impact on av-
erage occupancy due to the dominance of L2/TLB misses
on overall occupancy.

Clustered Front-End Misses: With the exception of the
L1 I-cache miss, the ROB is completely drained after a
front-end miss event. As these misses are independent of
one another, their impact on occupancy is separable, in the
first order. The impact of consecutive I-cache misses oc-
curring very close in time to each other is ignored due to
their relative infrequency, and their low impact on average
occupancy.

3.2 Modeling the AVF of the IQ
The occupancy of the IQ requires separate modeling as

instructions can issue out-of-order. We assume an oldest-
first issue policy for our model. Occupancy of correct-path
instructions during front-end misses is modeled in a manner
similar to that of the ROB. Ideal occupancy, and occupancy
in the shadow of a long-latency data cache or TLB miss is
modeled differently, as outlined below.

Steady-State IQ Occupancy: Let A(W ) be the average
number of instructions in a chain of dependent instruc-
tions in the instruction window. A(W ) is obtained as a
by-product of the critical-path profiling necessary to deter-
mine K(W ). The average latency of each instruction in the
IQ is l · A(W ). Using Little’s law, OIQideal = l · A(W ) ·
min(D, I(W )) [14].

Occupancy in the Shadow of a Long-Latency Load
Miss: When issue of instructions ceases in the shadow of
an L2/TLB load miss, the IQ contains only the instructions
dependent on such misses. We measure the average num-
ber of instructions dependent on the L2 and DTLB misses
in the instruction window to determine the average occu-
pancy during such miss events. This profiling can be added
to the existing profiler for determining non-overlapped data
cache misses with no overhead. We also capture the effect
of interactions between data L2/TLB misses and front-end

misses, similar to the procedure outlined in Section 3.1.5.

3.3 Modeling the AVF of LQ, SQ and FU
The occupancy of the LQ, SQ and FUs can be derived

from the occupancy of the ROB, and the instruction mix
(I-mix). Additionally, by classifying un-ACE instructions
according to the I-mix, the occupancy of each of these units
is derated to estimate AVF. FU utilization can be estimated
using Little’s law, as the latency of each arithmetic instruc-
tion and the issue rate are known.

Loads and stores enter the LQ and SQ after they are is-
sued, and remain there until they are retired. As we have
seen in Section 3.2, the average dispatch-to-issue latency for
an instruction is l · A(W ) cycles. Thus, the LQ and SQ oc-
cupancy can be estimated as the fraction of loads and stores
in the ROB, adjusted for the average dispatch-to-issue la-
tency of the loads/stores in the instruction stream. Thus, we
compute the occupancy-cycle product in the ideal case for
SQ as (Nstores/Ntotal) ·OROBideal ·Cideal−l ·A(W ) ·Nstores,
where Nstores and Ntotal are the number of stores, and to-
tal number of instructions, respectively. This assumption
may be violated if a majority of the stores are dependent
on loads in the same instruction window that miss in the
L2 cache or DTLB. This is infrequent in typical workloads.
However, it can be modeled if necessary using the IQ oc-
cupancy estimation methodology during a load miss in the
L2/TLB, and capturing the number of stores in the instruc-
tion window that are dependent on the load miss. All other
occupancy-cycle products from Equation 1 are multiplied
by the fraction of stores to estimate OSQtotal. We improve the
occupancy estimation by capturing the number of loads and
stores in the shadow of a non-overlapped data L2/TLB.

4 Evaluation of the Model
We implement ACE analysis on a modified version of

SimpleScalar [15]. We implement detailed, bit-wise ACE
analysis in which each entry in the microarchitectural struc-
ture of interest has ACE bits fields based on its opcode. For
example, stores or branch instructions do not need a result
register, and thus the corresponding fields in their ROB en-
tries are un-ACE. We also implement a separate IQ, LQ and
SQ in SimpleScalar. We evaluate the accuracy of our model
using 20 SPEC CPU2006 workloads (we were unable to
compile the remaining workloads for Alpha) using gcc v4.1
compiled with the -O2 flag. We run the profilers and the
detailed simulator on single simulation points of length 100
million instructions, identified using the SimPoint method-
ology [16]. The two configurations evaluated in this Section
are presented in Table 1. Wide-issue machine and Narrow-
issue machine represent a 4-wide and 2-wide issue out-of-
order superscalar, respectively.

Results
The AVF of the ROB, IQ, LQ, SQ and FUs computed

using the model and microarchitectural simulation is pre-
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(a) AVF of ROB.
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(b) AVF of IQ.
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(c) AVF of LQ.
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(d) AVF of SQ.
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(e) AVF of FU.
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(f) Soft Error Rate.

Figure 4. AVF of the Wide-Issue Machine.

sented in Figure 4 and 5 for the wide-issue and narrow-
issue machine, respectively. We compute the overall SER
for these structures assuming an arbitrary intrinsic fault rate
of 0.01 units/bit.

As presented in Table 2, the mean absolute error (MAE),
and the maximum absolute error is no larger than 0.07, and
0.16 respectively. As AVF is normalized to the number of
bits in the structure (Section 2), it amplifies errors in small
structures. For a sense of proportion of the error in comput-
ing SER, we express the absolute error in estimating SER
in terms of the intrinsic fault rate of each entry in the cor-
responding structure. In the interest of brevity, in the fol-
lowing discussion, when we express absolute SER error as
n entries, we mean “equivalent to the intrinsic fault rate of
n entries in the corresponding structure”.

The MAE for estimating SER of the ROB, IQ, LQ, and
SQ for the wide-issue machine is 3.8, 4.5, 2.8, and 1.3 en-
tries, respectively. The maximum absolute error for esti-
mating the SER of these structures is 10.2, 9.9, 5.7, and 3.8
entries, respectively. Similarly, the MAE for estimating the
SER of the aforementioned structures of the narrow-issue
machine is 3.8, 2.1, 1.5, and 0.64 entries, respectively. The

Wide-issue Machine Narrow-issue Machine
MAE Max. Abs. Error MAE Max. Abs. Error

ROB 0.03 0.08 (hmmer) 0.06 0.13 (hmmer)
IQ 0.07 0.16 (bwaves) 0.07 0.16 (leslie3d)
LQ 0.05 0.09 (zeusmp) 0.05 0.1 (gemsFDTD)
SQ 0.02 0.06 (omnetpp) 0.02 0.07 (milc)
FU 0.01 0.05(zeusmp) 0.02 0.13 (gromacs)

Table 2. Error in Estimating AVF.

maximum absolute error for these structures is 8.3, 5.12,
3.2, and 2.24 entries, respectively.

Figures 4(f) and 5(f) present the combined SER for
the ROB, IQ, LQ, SQ and FU. Root Mean Square Error
(RMSE) is typically used to compute the accuracy of a

model, and is computed as
√

1
N

∑N
i=0(mi − ai)2, where

mi, ai and N represent the modeled value, actual value,
and total number of workloads, respectively. RMSE places
higher weights on larger deviations, due to the squaring of
errors. Normalized RMSE (NRMSE) is computed by divid-
ing the RMSE by the arithmetic mean of the actual values.
The NRMSE for our model on the wide-issue and narrow-
issue machine is 9.0%, and 10.3%, respectively.
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(a) AVF of ROB.
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(b) AVF of IQ.
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(c) AVF of LQ.
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(d) AVF of SQ.
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(e) AVF of FU.
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(f) Soft Error Rate.

Figure 5. AVF of the Narrow-Issue Machine.

Potential Sources of Error: We multiply the proportion
of ACE bits injected in a structure by the program, with
the average occupancy to compute AVF, under the assump-
tion that the proportion of ACE bits induced by the work-
load remains roughly constant during each interval. We find
that this is reasonable over the simulation points used. Over
larger execution lengths, a conservative approach would be
to estimate AVF over smaller execution lengths, and com-
bine the results to determine overall AVF. This does not
significantly increase the profiling time or AVF estimation
time, but may require additional storage.

For workloads such as hmmer that incur very few miss
events, and are such that the relationship between W and
K(W ) does not exactly fit a power curve, this approxima-
tion may induce errors in modeling the ROB occupancy.

The out-of-order issue of instructions from the IQ causes
errors in the estimation of AVF. For example, NOP instruc-
tions leave the IQ almost immediately, but are included in
the computation of A(W ), and the average number of ACE
bits induced by the instruction stream. Capturing these ef-
fects would require the combination of profiling and ACE
analysis. We avoid this approach so that we can gain insight

into the architectural and microarchitectural contributors to
AVF, and avoid re-running of profiling and ACE analysis on
microarchitectural changes such as to the fields in each IQ
entry, or using a different cache hierarchy.

5 Applications of the Model
The analytical model can be used to study performance

vs. reliability tradeoffs of SER mitigation techniques, the
impact of sizing of microarchitectural structures on AVF
and performance, compiler optimizations on AVF, different
cache sizes and latencies, different branch predictors, etc.
In this section, we study a small subset of these potential
applications of the model. Specifically, we use the model to
explore performance and AVF sensitivity to microarchitec-
ture structure sizing, to drive design space exploration, and
to characterize workloads for AVF.

5.1 Impact of Scaling Microarchitectural Parameters

Impact of Scaling the ROB on AVF and Performance:
Sizing studies for AVF and performance are interesting be-
cause they allow the architect to determine the trade-off be-
tween altering the size of a structure on performance and
AVF. For example, it may be reasonable to reduce the ROB

280



0"

2"

4"

6"

64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0" 64
"

96
"

12
8"

16
0"

Perlbench" bzip2" gcc" bwaves" mcf" milc" zeus" gromacs" leslie3d" namd" gobmk" soplex" hmmer" sjeng" GemsFDTD"libquantum" h264ref" omnetpp" astar" sphinx3"

CP
I$

Ideal" Branch"MispredicKon" DL2" DTLB" IL1" IL2" ITLB"

(a) Effect of scaling the ROB size on CPI.
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Figure 6. Effect of Scaling ROB Size on CPI and SER.

size by a small amount provided that it has negligible im-
pact on performance, but significantly reduces SER. Using
our model, we can instantaneously determine the impact of
scaling a structure on AVF and CPI. In this section, we study
the impact of sizing the ROB on AVF and CPI on the wide-
issue machine presented in Table 1, assuming an intrinsic
fault rate of 0.01 units/bit. We assume that the IQ, LQ,
SQ, and other structures are appropriately scaled with the
ROB size such that the processor is not unbalanced or con-
strained.

Figure 6 illustrates the impact of scaling the size of the
ROB from 64 to 160 entries, on the wide-issue machine.
Note that DL2 and IL2 refer to data and instruction cache
misses in the (unified) L2 cache. The trend in SER due to
increase in ROB size has two general mechanisms. Work-
loads for which the ROB is not large enough to be able to
sustain an ideal IPC of four will see an increase in the con-
tribution from ideal execution until this is satisfied. Work-
loads with MLP will be able to exploit it, resulting in fewer
stalls due to data L2/TLB misses. However, for larger ROB
sizes, the occupancy of instructions in the shadow of these
data L2/TLB misses increases as well, resulting in an over-
all increase in SER. We present a few examples for, and
exceptions to, these mechanisms below.

Workloads such as gobmk do not see significant change
in their CPI or SER due to a large enough ROB, and little
available MLP. On the other hand, workloads such as namd
have a long critical dependency path, which results in high
values for β

β−1 and l/α (Section 3.1). Consequently, from
Equation 3, namd induces high SER for all ROB sizes de-
spite its low CPI.

For workloads such as libquantum, the increase in ROB
size provides increased MLP, resulting in lower CPI, but

also a greater SER in the shadow of the L2/DTLB miss.
Libquantum is able to exploit more MLP than gemsFDTD
resulting in a greater rate of reduction of CPI, and a lesser
rate of increase of SER. Bwaves and zeus experience an in-
crease in SER due to both mechanisms.

Perlbench and mcf represent two important exceptions
to this general trend. Despite both workloads having a sig-
nificant number of data L2/TLB misses, mcf experiences a
significant number of branch mispredictions dependent on
data L2 misses, and perlbench experiences I-TLB misses, in
the shadow of data L2/TLB misses. Consequently, scaling
of the ROB size has little impact on SER, as the occupancy
of state per cycle does not change significantly. Mcf expe-
riences reduction in CPI due to MLP, but the occupancy of
ACE state during such misses is still limited by the depen-
dent mispredicted branches.

The scaling study allows the architect to make the ap-
propriate trade-offs between performance and SER, and un-
derstand the factors affecting the scaling of workloads. For
example, the 128-entry ROB provides a speedup of 1.098
(harmonic mean) and increases the average SER by 18%
over the 96-entry ROB.

Sensititivity of AVF to Memory Latency: We study the
impact on AVF of changing memory latency, to provide in-
sight into the influence of memory bandwidth contention in
CMPs, or Dynamic Voltage and Frequency Scaling (DVFS).
Figure 7 presents the overall SER for a memory latency
of 150 cycles, and 300 cycles, obtained using our model,
and from detailed simulation, assuming a constant intrinsic
fault rate3 of 0.01 units/bit. The memory latency used by

3Although the intrinsic fault rate will significantly increase at low volt-
ages, a constant value allows us to highlight the change due to AVF.
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(a) Sensitivity of SER to memory latency.
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(b) Impact of scaling memory latency from 150 cycles (left) to 300 cy-
cles (right).

Figure 7. Sensitivity of SER to Memory La-
tency.

the model and simulation is enclosed in parentheses. From
the formula for AVF (Section 2), we observe that reduction
in memory latency reduces the total number of cycles of
ACE bit residency, and the total number of execution cycles.
Consequently, the change in AVF in Figure 7 is sub-linear,
and thus, less sensitive to memory latency when compared
with CPI. AVF typically decreases with a decrease in mem-
ory latency, although it may increase, as seen with astar.
The comparison with simulation also serves to validate our
model. The average change in AVF as predicted by the
model is 3.25 units, as compared to 2.22 units from simula-
tion. The model faithfully captures the trend for change in
SER. Figure 7(b) illustrates the fraction of SER attributable
to each event for a memory latency of 150 and 300 cycles.
Although the overall AVF remains nearly the same, the con-
tribution of AVF in the shadow of an L2 miss significantly
reduces for workloads dominated by L2 cache misses. Con-
versely, the relative contribution from ideal execution and
DTLB miss increases. The workload completes faster due
to lower memory latency, and consequently, the contribu-
tion of steady-state and DTLB misses to the overall occu-
pancy increases.

5.2 Design Space Exploration
The model can be used to compare different microar-

chitectures for their impact on performance and AVF/SER.
Figure 8 presents the CPI and SER of the wide-issue and
narrow-issue machine outlined in Table 1. The SER is com-
puted for the ROB, LQ, SQ, IQ and FUs, and is broken
down into its contributing events, so as to provide better in-

sight. On average, there is an 81% increase in SER, and
an average speedup of 1.35 (harmonic mean) going from
the narrow-issue to the wide-issue configuration. This is at-
tributable to an increase in ROB size and dispatch width.
Unlike scaling the ROB size (Section 5.1), increasing the
dispatch width typically increases the SER across all work-
loads. From Equation 3, a larger instruction window is re-
quired to sustain a larger dispatch width. For our workloads,
β is between 1.24 and 2.39, resulting in a super-linear in-
crease in the ideal occupancy. Although branch resolution
time increases with dispatch width, it is reasonable to ex-
pect that SER would generally increase with dispatch width,
on a balanced design. As noted in Section 5.1, namd and
bwaves have a long critical path K(W ). These workloads
have sufficient ILP for the narrow-issue machine, but not
the wide-issue machine, resulting in maximum occupancy
of state during ideal execution for the wide-issue case. Ad-
ditionally, bwaves also experiences an increase in SER due
to data L2 misses. The SER for bwaves and namd increases
by a factor of 2.26 and 2.6, respectively. On the other hand,
mcf is unaffected by increase in issue-width or ROB size
due to the large number of dependent mispredicted branches
in the shadow of its data L2 misses.

The model can also be used to provide insight into the
efficacy of soft-error mitigation schemes. Gomaa et al.
[17] propose an opportunistic mechanism, called Partial Ex-
plicit Redundancy (PER), of enabling Redundant Multi-
Threading (RMT) [18] during low IPC events, such as
L2/TLB miss, and disabling it during high-IPC intervals,
to minimize the performance loss. RMT employs a lagging
thread that re-executes the operations of the leading thread
and detects faults by comparing the output. Load values and
branch outcomes are forwarded by the leading thread so that
the lagging thread does not incur any miss penalties, and al-
ways runs in the ideal mode. Using detailed simulation for
a specific microarchitecture running SPEC CPU2000 work-
loads, Sridharan et al. [19] investigate the efficacy of PER
for the ROB, LQ, SQ and IQ, and report that nearly 60%
of vulnerability occurs in the shadow of a long-stall instruc-
tion, most of which are data L2 cache misses.

Under an optimistic assumption of no performance loss
using the opportunistic scheme, the components of SER
in Figure 8(b) corresponding to data L2 and TLB misses
would disappear. Whereas this scheme generally reduces
the AVF of most workloads significantly (we compute an
SER reduction of 66% for the wide-issue machine), namd
would still have high AVF. Furthermore, given that it incurs
few miss events (Figure 8(a)), the performance of namd will
be significantly impacted if RMT is enabled. Of course,
these results are microarchitecture and workload specific.
For example, we compute that PER results in an average
SER reduction of 60% when the memory latency of the
wide-issue machine is reduced to 150 cycles, as illustrated
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(a) CPI stacks for the wide and narrow-issue machine.
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Figure 8. Comparison of CPI and SER of the wide- and narrow-issue machines.

in Figure 7(b). We reach conclusions similar to earlier
work. Thus, the model enables architects to estimate the
efficacy of such a scheme in the first order, for their mi-
croarchitecture and workloads.

5.3 Workload Characterization for AVF
It is difficult to infer the effect of a workload on the AVF

of a structure using aggregate metrics, beyond a qualita-
tive analysis. Aggregate metrics such as cache miss rates
or branch misprediction rates provide hints, but as noted in
earlier sections, there may be exceptions to our intuitions of
occupancy of state. Given a microarchitecture such as the
wide-issue machine, the model enables us to identify namd
as a high-IPC workload inducing high AVF, and gobmk as a
comparably high-IPC workload that induces very low AVF
in multiple structures. Our model uncovers the complex
relationship between various microarchitectural events that
combine to induce AVF in a structure, thereby enabling an
intuitive understanding of their influence. The model en-
ables the architect to study a greater number of workloads
and over longer intervals of execution than may be feasible
using detailed simulation, and within the bounds of error
of the model, to identify workloads or phases in the work-
load that induce high AVF in particular structures, enabling
better workload characterization for AVF.

6 Related Work
Mukherjee et al. [2] use Little’s Law as a high-level

technique to estimate occupancy of state in the structure;
however, this methodology still requires detailed simulation
to extract the Instructions Per Cycle (IPC) and the average
latency of each correct-path instruction in each structure.
Computing the latter from profiling is non-trivial for an out-

of-order processor due to overlapping of some execution la-
tencies, and dependence on the latencies of other instruc-
tions in that structure. Furthermore, it provides limited in-
sight into the fundamental factors affecting the occupancy
of correct-path state beyond aggregate metrics.

As AVF represents the combined effect of the work-
load and its interaction with the hardware, Sridharan and
Kaeli [20] attempt to decouple the software component
of AVF from the hardware component through a micro-
architecture-independent metric called Program Vulnerabil-
ity Factor (PVF). PVF has been shown to model the AVF of
the Architected Register File using inexpensive profiling.
However, for estimating the AVF of other structures, their
methodology relies on the estimation of Hardware Vulner-
ability Factor (HVF) [21], which in turn requires detailed
simulation, and thus provides less insight than our model.
Sridharan and Kaeli have shown that HVF correlates with
occupancy of structures such as the ROB, and hence we ex-
pect that our modeling methodology can be used to model
HVF of the applicable structures.

Fu et al. [7] report a “fuzzy relationship” between AVF
and simple performance metrics. Therefore, black-box sta-
tistical models for AVF that utilize multiple microarchitec-
tural metrics have been proposed by Walcott et al. [10] and
Duan et al. [8] for dynamic prediction of AVF. These mod-
els use metrics such as average occupancy, and cumulative
latencies of instructions in various structures as inputs to
the statistical model, which are not available without de-
tailed simualation. Cho et al. [9] utilize a neural-network
based methodology for design space exploration, and use
it to model AVF of the IQ. As each workload is associated
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with its own neural network model, training it would poten-
tially require a significant amount of detailed simulations.
All these models combine the software and hardware com-
ponent of AVF, and do not uncover the fundamental mecha-
nisms influencing AVF, thereby providing less insight than
our approach. As we derive the factors affecting AVF from
first principles, we can identify the precise cause of high or
low AVF in a particular structure, and characterize work-
loads for AVF.

7 Conclusion
In this work, we developed a first-order mechanistic

model for AVF, derived from first principles of out-of-order
processor execution, to provide quantifiable insight into
the factors affecting the AVF of structures. The modeling
methodology requires inexpensive profiling, and computes
AVF with mean absolute error of less than 0.07, for the
ROB, LQ, SQ, IQ and FU. Additionally, the model quan-
tifies the impact of each microarchitectural event on AVF
and SER. We have demonstrated that the model can be used
for understanding how microarchitecture affects AVF. The
model was used to perform design space exploration, to
evaluate the impact of parametric changes, and to perform
workload characterization for AVF. By modeling the com-
plex relationship between various miss events that affect the
occupancy of state in the processor, we are able to quantita-
tively explain the lack of correlation between AVF and ag-
gregate metrics observed in earlier work. Finally, this work
enables the architect to identify workloads that would in-
duce high AVF in microarchitectural structures.
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