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Reducing the time spent during the initial exploration of the design space of a 

microprocessor is being increasingly important especially from time to market 

perspectives. Benchmarks running on simulation models of the microprocessor 

take substantial amount of time, and the time it takes to run increases with the 

complexity of the microprocessor modeling. Most of the benchmarks used 

nowadays are enormous and take substantial amounts of time to run on a 

detailed microprocessor simulation. The idea of the report is to identify 

redundancies within a benchmark or redundancies among benchmarks, which 

stress on the same characteristic of the microprocessor thereby identifying for 

elimination, which will contribute towards time saving while simulating 

microprocessors in the early design phase. The SPEC-int95 benchmarks were 
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characterized, to understand how spread out or clustered they are in the 

workload design space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi 



 

Table of Contents 

 

1. Introduction………………………………………………….1 

2. Background and Motivation…………………………………6 

3. Methodology………………………………………………....9 

3.1 Data Collection………………………...……….………10 

3.2 Data Analysis…………………………………....……...13 

3.2.1 Regression Analysis…………….……..................13 

3.2.2 Principal Component Analysis…...................……19 

4. Results…………………………………………………..….23 

4.1 Regression Analysis Results…………………………....23 

4.2 Principal Component Analysis Results………...............49 

5. Conclusion………………………………………………….60 

6. References…………………………………………..............62 

7. Vita………………………………………………………....67 

 

 

vii 



 

1. Introduction 

 

Time to market has and will always be an important criterion directing 

microprocessor design and the institution designing it. Reduction of the time to 

market has direct significance towards an institution’s success. One way to 

contribute to this is in the early design phase of the microprocessor. 

Simulation models of various levels of accuracy are created during this design 

phase using a particular software language. The models represent both the 

structure and behavior of the microprocessor in various ways. The more 

detailed the simulation is, the longer it takes to simulate a cycle. Computer 

system design is an experimental procedure that is usually a result of measuring 

or estimating the running time of workload or the result that it produces. A 

workload could be considered as a benchmark program given certain particular 

inputs. 

 

Benchmark programs, like the SPECint-95 or the SPECint-2000 are given as 

inputs to the simulations of the microprocessor, in an attempt to explore the 

behavior of the system under real workload conditions. Running simulations 

with benchmarks are very time consuming, especially since each benchmark 

contains numerous input sets testing for various conditions.  According to John 
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et al. [1] certain benchmark-input pairs result in testing the same area in the 

potential workload space. 

 

Consider the complete search space during the design phase of a 

microprocessor as a multidimensional space where each dimension is 

representative of each characteristic. The results each run of the benchmark 

would permeate into this space depending on how it stressed the benchmark. By 

identifying portions of this space, which are stressed redundantly, by either the 

same benchmark, or over various benchmarks, it would give a chance to think 

towards elimination of these redundancies. As an illustration, consider the 

multi-dimensional space compressed into a two-dimensional space.  

 

                 
Fig. 1 Potential Span of existing benchmarks in a multi-dimensional space 
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In reality, the present benchmarks do not span the entire possible design space 

and end up stressing the same characteristic several times and leave certain 

characteristics untouched. However, when running the simulations it would be 

preferred not to leave any stone unturned. By characterizing the benchmarks the 

program-input pairs stressing upon a portion of the application space already 

tested by another program-input pair, can be identified, thereby attempting to 

eliminate redundancy.  Ideally, benchmarks should stress all locations of the 

search space thereby stressing the microprocessor in all aspect as shown below. 

 

               Fig. 2 Optimal Span of ideal benchmarks 

     

 

 

 

This study initially attempts to identify a set of performance metrics of a 

computer system based on upon the results from hardware performance 
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counters monitoring the impact of SPECint-95 benchmarks on the computer 

system. The study then attempts to extract the dependence of the performance 

metrics on the Cycles per Instruction for various benchmarks and their inputs 

pairs. A further attempt is made to obtain a principal component, which is 

preferably a combination of one or very few benchmarks, thereby reducing the 

dimensionality of the set of performance metrics, thereby paving the way for 

further study. 

 

It would be very difficult to display the enormous workload space in a 

comprehendible way. Initially after collecting the data using the hardware 

performance counters, regression analysis is performed in order to understand 

the impact of the benchmarks on the performance metrics in the computer 

system. The system’s performance for a limited number of inputs is measured 

and used to produce a mathematical model to describe the behavior of the 

system over a range of values. The model obtained will be called a regression 

model. After the linear regression model is developed, it is needed to know how 

well the equation that was formed, actually models the measured data. In other 

words, it is necessary to know how the strength of the linear correlation 

between the input and output is. A study of the correlation of various 

performance metrics with the CPI is obtained. 
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 The same data is then analyzed using principal component analysis. In this 

analysis, the multi-dimensional workspace (say, n dimensions) is reduced to a 

lesser dimensional workspace (say, m, where n>>m) thereby facilitating 

visualization of enormous workspace without the loss of valid information. All 

these analyses are carried out on the SPECint-95 benchmarks as described in 

the methodology. As a result of these analyses, an attempt is made to realize the 

impact of the benchmarks on the computer system. 
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2. Background and Motivation 

 

A few decades ago, micro-architects for general-purpose microprocessors, 

designed microprocessors based on their intuitions and past experiences, and 

the experiences of others. Since the mid-1980s, microarchitecture had a face-lift 

by following a more systematic process that proceeded through architectural 

simulations tools and their results. Though the different tools used varied in the 

level of details, and hence accuracy, they provided a means to come to more 

scientific and reproducible conclusions while making micro-architectural 

decisions. However, due to the intense and increasing complexity of the 

microarchitecture, the applications that run on them and the hardware it is 

implemented with, the simulators become very time consuming and there arises 

a need to reduce the time spent during the simulation process. 

 

In [2], Bhandarkar and Ding characterized the performance of several business 

and technical benchmarks on the Pentium® Pro processor based system. They 

were able to show that the Pentium Pro processor achieved significantly lower 

cycles per instruction that the Pentium® processor due it to its out of order and 

speculative execution and non-blocking cache and memory system. Using and 

describing the on-chip hardware performance counters, they analyzed the 
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performance of the machine by analyzing most of the individual performance 

characteristics of the processor. 

 

In [4] and [5] Eeckhout et al, proposed the use of principal component analysis 

and cluster analysis to efficiently explore the workload space, in which the 

benchmark-input pairs could be plotted to give an idea of the behavioral 

difference between the benchmark-input pairs. They selected a limited set of 

representative program-input pairs with small dynamic instruction counts. They 

were able to substantiate their claims by showing that the program-input pairs 

that are close to each other in the principal components space, indeed exhibit 

similar behavior as a function of micro-architectural changes. 

 

Though the paper by Bhandarkar et al., does analyses the performance ratios 

and the individual performance characteristics, it does not take into account the 

relation between the benchmarks and the way their behavior.  In the work done 

by Eeckhout et al., the principal component analysis and cluster analysis was 

performed on the simple scalar simulator. The purpose of this report is to 

combine the best of both reports and provide a new set of results with a 

different objective, to understand the microprocessor benchmarks towards 

understand the workload design space. This report initially uses the on-chip 
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hardware performance counters to collect the data. The data is used and is 

initially analyzed using regression analysis to get a better understanding of the 

benchmarks and the effect of the different performance characteristics on CPI, 

after which principal component analysis is performed on the data to analyze 

the behavior of the benchmarks. 
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3. Methodology 

 

 

In this section, the methodology followed to characterize the benchmarks, the 

tools that were used, the different benchmarks that were used and the different 

analysis carried out on them will be discussed. The methodology can be divided 

into two portions.  

i) Data Collection 

ii) Data Analysis 

 

Data Collection was done with the help of in-built hardware performance 

counters present in the Pentium-III® processor.  The SPECint-95 benchmarks 

were run, while the hardware performance counters collected data in the 

background. It will be discussed in more detail in the next section.  

 

Data Analysis can be divided into two further portions 

i) Regression Analysis 

ii) Principal Component Analysis 

 

Each one of the above will be discussed in depth in the following sections. 
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3.1 Data Collection: 

 

Prior to the study of any data analysis technique is the data collection. A 

Pentium III processor on a Linux 2.4.7-10 was chosen. The processor was a 1 

GHz processor with a 256KB cache size. 

 

Nearly all of the microprocessors that are in the market today internally 

incorporate on-chip hardware performance monitors, which can be used to 

understand microprocessor performance while they run complex, real time 

workloads. Due to this complex systems can be monitored and evaluated very 

closely. Although they are not considered part of the architecture, 

microprocessor vendors release information about these hardware performance-

monitoring counters. 

 

The Intel Microprocessors contain two performance-monitoring counters. 

These counters can be read with special instructions on the processor. These 

counters can be made to measure user and kernel activity in combination or 

isolation. A variety of performance events can be measured using the counters.  

Though 200 events can be measured on the processor, only 2 can be measured 

at the same time. Usually the numbers of events that can be measured at the 
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same time are limited to 4 or 5 to maintain simplicity, because these events 

registering also contributes towards increased hardware complexity. If these 

performance counters are not carefully implemented, they can impact the 

processor cycle time and power consumed too, which is becoming more 

prominent as sub-micron levels are exploited. 

 

In [3], Bhandarkar and Ding talk about the hardware performance counters 

present in the Pentium Pro ® architecture. Two performance counters are 

implemented. Each performance counter has an associated event select register 

that selects what is to be monitored. The RDMSR and WRMSR instructions are 

used internally to access the counters. While a program is running on the 

machine, various performance metrics can be measured in the background. 

 

There are various tools available to monitor these hardware performance 

counters.  PMON is a software driver used to monitor these counters, which is 

written by the Laboratory for Computer Architecture at the University of Texas 

at Austin. 
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The SPEC-int95 benchmarks were chosen for the sole reason that the time they 

take to run on a machine is lesser compared to other and latest benchmarks. 

Among the SPEC suite, the benchmark programs chosen were gcc, perl, li, go. 

Only the reference input sets were chosen to make it uniform over benchmarks. 

Pperf is the version of PMON compatible with Linux. A total of 18 

performance metrics were calculated. The data obtained was used in the 

analyses that were carried out. The table below, taken from [3] shows the 

various events that were used to calculate the performance metrics. 

Pentium® Pro Processor Counter 
based Performance Metrics 
Performance Metric Numerator Event Denominator Event 
Data References per instruction DATA_MEM_REFS INST_RETIRED 
L1 Dcache misses per instruction DCU_LINES_IN INST_RETIRED 
L1 Icache misses per instruction L2-IFETCH INST_RETIRED 
ITLB misses per instruction ITLB_MISS INST_RETIRED 
Istalls cycles per instruction IFU_MEM_STALL INST_RETIRED 
L1 Cache misses per instruction L2_RQSTS INST_RETIRED 
L2 cache misses per instruction L2_LINES_IN INST_RETIRED 
L2 miss ratio L2_LINES_IN L2_RQSTS 
Memory transactions per instruction BUS_TRANS_MEM INST_RETIRED 
FLOPS per instruction FLOPS INST_RETIRED 
UOPS per instruction UOPS_RETIRED INST_RETIRED 
Speculative Execution Factor INST_DECODED INST_RETIRED 
Branch Frequency BR_INST_RETIRED INST_RETIRED 
Branch mispredict Ratio BR_MISS_PRED_RETIRED BR_INST_RETIRED 
Branch Taken Ratio BR_TAKEN_RETIRED BR_INST_RETIRED 
BTB miss ratio BTB_MISSES BR_INST_DECODED
Branch Speculation Factor BR_INST_DECODED BR_INST_RETIRED 
Resource Stalls per instruction RESOURCE_STALLS INST_RETIRED 
Cycles per instruction CPU_CLK_UNHALTED INST_RETIRED 
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3.2 Data Analysis: 

 

As mentioned earlier, data Analysis can be divided into two different parts: 

1. Regression Analysis 

2. Principal Component Analysis 

 

 

3.2.1 Regression Analysis: 

 

Measuring the performance of a computer system for all possible values would 

allow us to have a clear understanding of a system’s performance under any 

possible condition. However, that would be prohibitively expensive, to 

undertake such an endeavor. Instead, the system’s performance for a limited 

number of inputs can be measured and these measured values can be used to 

produce a mathematical model to describe the behavior of the system over a 

range of values. This model that obtained will be called a Regression Model, 

and will be used to predict how the system will perform when given an input 

value that was not actually measure in the first place. 
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The formation of this linear regression model begins with a system that has one 

continuous input factor whose value can be controlled. If the measured 

response values were plotted as a function of the input values, it is found that a 

linear relationship appears between the input and the output. The least-squares 

minimization is then used to produce a linear regression equation to model the 

system. This will help predict as to how the system could react to a response 

that was not measured before.  

 

3.2.1.a. Least Squares minimization:  

A simple linear regression model is of the form  

 

Y= a + bx, 

 

Where x is the input variable, y is the predicted output response, and ‘a’ and ‘b’ 

are the regression parameters that should be estimated from the set of 

measurements. If yi, is the value actually measured when the input is xi, then 

each of these variable can be written as,  

 

yi  = a + bxi + ei, 
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where ei  is the difference between the measure value for yi , and the value that 

would have been predicted for yi , from the regression model. 

 

The analysis can be complete after computing ‘a’ and ‘b’. This ‘a’ and ‘b’ will 

form a line that most closely fits n measured data points. At the same time there 

is a need to minimize the sum of squares of these residuals, denoted by SSE. 

And shown below as: 

 

SSE =  ∑∑
==

−−=
n

i

n

i
bxiayiei

11
2)(2  

 

 

3.2.1. b. Correlation: 

 

After the linear regression model is developed, it is needed to know how well 

the equation that was formed, actually models the measured data. In other 

words, it is necessary to know how the strength of the linear correlation 

between the input and output is. The coefficient of determination and its square 

root, called the correlation coefficient help us determine the correlation of this 

linearity. 
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The fraction of the total variation explained by the regression model is called 

the coefficient of determination. In the case where a perfect linear relationship 

exists between the input and output, all of the variations in the measured 

outputs will explained by the regression model. In this case, all of the measured 

data points would fall directly on the regression line so that all of the residuals, 

i.e. ei are zero, giving SSE =0. Then, the coefficient of determination r2=1. On 

the contrary, if none of the variations is explained by the regression model, then 

r2 = 0. 

 

Thus, the coefficient of determination provides an indication of how well the 

regression model fits the data. Values of r2 = 1, signify a close linear 

relationship between the input and output values. Of course on the flip side, 

r2=0 signify that there is little or absolutely no relationship between the input 

and output values. This would occur if there was a horizontal line, so that 

knowing any of the input values would be of absolutely no help in predicting 

the output values. Also, if there existed a functional relationship between the 

inputs and outputs, which however was not linear, then r2 would be near zero. 
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The square root of the coefficient of determination is called the correlation 

coefficient, denoted by r. The value of r ranges from -1 to +1. A value of +1 

signifies a perfect positive linear correlation between the input and output 

values. In this case, an increase in the magnitude of the input will reflect scaled 

appropriately in the output. Conversely, a value of r = -1 means that any change 

in the input will produce an appropriate change in the output, however in the 

reverse direction. In simple words, an increase in the input will cause a decrease 

in the output. Values of +1 and -1 indicate different levels of correlation. 

 

It is important to understand the difference between the coefficient of 

determination and the correlation coefficient. Consider two systems, for which 

linear regression models have been developed. If for the first system, the 

correlation coefficient was calculated to be 0.5 and for the other system if it was 

-0.91, it cannot concluded that the linear relationship for the second system is 

better than for the first. All that can be concluded is that the linear relationship 

in the second systems appears stronger. 

 

Analyzing this further, if the coefficient of determination for the first system is 

0.25 and the second system around 0.81, only 25% of the variation is explained 

by the regression model for the first system and 81% for the second system. 
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Thus it can be concluded that the linear relationship between the inputs and 

outputs for the second system is much stronger when compared to the first 

system. 

 

It is also worth the fact to mention the difference between correlation and 

causation. Causation means that an observed change in the output is the direct 

result of a change in the input. That is there is some process within the system 

that somehow links the input and output, which implies that if the process were 

linear, a larger coefficient of determination can be expected. A famous example 

is that reading a large file takes longer than reading a small file because more 

data needs to be transferred from the disk to the memory, thus existing a high 

correlation between the file reading time and the number of bytes read. 

 

The converse however does not hold true. The output, could he highly 

correlated to the input without the input causing the output.  

 

On the same lines, multiple input regressions also exist, which is just an 

extension of the one input regression. This helps in including the effects of 

several input variables linearly related to a single output variable. 
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3.2.2 Principal Component Analysis: 

 

Principal component analysis is a statistical analysis techniques used mainly in 

situations where there are numerous inputs and analysis of all the data could be 

complicated. It linearly transforms  an original set of variables into  a 

substantially smaller set of uncorrelated variables called Principal Components, 

which represent most of the information in the original set. 

 

Thus as mentioned earlier, the goal is reduce the dimensionality of the original 

data set. In general PCA helps us understand the structure of a multivariate data 

set.  

 

The p original variables Xi, i = 1 to p are linearly transformed into p principal 

components Zi, i = 1 to p. The principal components are constructed such that 

Z1 has maximum variance and Z2 is chosen such that it has maximum variance 

under the constraint that it is not correlated to Z1. The same procedure is 

followed to form the other principal components. Automatically, the principal 

components are arranged in decreasing variance and are uncorrelated, that is the 

covariance between one principal component and another is equal to zero, 
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where Covariance is a measure of how much the deviations of two variables 

match.  

 

Thus the dimensionality of the data set is brought down by keeping only those 

principal components which have the highest variance.  The number of retained 

principal components can be traded-off against the fraction of the variance in 

the data set that is explained. In other words, it is up to the user of the PCA to 

decide how many principal components are to be retained. 

First of all, before applying PCA, it is advisable to standardize the variable, that 

is, rescale them such that they have zero mean and unit variance. Otherwise, the 

variable with higher variance will have higher impact in the first principal 

components.  

 

The idea behind principal component analysis is that it is easier to understand 

differences between benchmarks when there are only q = 5 (for example) types 

of possible differences when the benchmarks may differ in p = 50 difference 

ways. When the user feels q is sufficiently small, the reduced space can be 

visualized with a scatter plot, showing the position of each benchmark with 

respect to the principal components. The eccentricity of the benchmarks with 

respect to the analyzed benchmark suite determines their position on the scatter 
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plot. Benchmarks that are close to the origin of the q-dimensional space are 

average benchmarks, that is, when one of the parameters is changed, the 

benchmark will also see a change similar to the average over the entire suite. 

Benchmarks that are far from the origin either see an unusually large or small 

effect when one of the parameters is changed. 

 

Only a few parameters play an important role in each principal component. This 

can be determined from the factor loadings. The factor loadings are the 

coefficients aij in the linear combination, Zi = Xjaij
p

j
∑
=1

. The larger aij is in 

magnitude, the stronger it influences the principal component, while the closer 

it is to zero, the lesser or nil impact it has on the principal component. Thus the 

benchmark with large values on Xij, will score positively on Zi when aij is 

positive, while those that have small values for Xj will score negatively. 

 

When the value for a variable Xj is large for a benchmark, then that benchmark 

is insensitive to the parameter that is changed in that variable. The benchmark 

will have a large and positive value for Zi, assuming that the factor loading on 

aij is large and positive. On the contrary, Zi will be negative when the 

benchmark is very sensitive to the parameter change in Xj, when aij is still large 

and positive. Thus, when the factor loading aij is positive, the benchmarks that 
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are sensitive to the parameter changed in Xj have a negative value for Zi. Those 

that are not sensitive have a positive value for Zi. 

 

Principal components analysis can be used to judge the impact of an input on a 

program also. The inputs usually have a small impact when their workload 

characteristics are not that different. Consequently, these program-input points 

will be near each other in terms of original p-dimensional space and also in the 

q-dimensional space of principal components. It is possible to find clusters of 

benchmarks, (groups of benchmarks that are internally close, but externally 

distant to other clusters). It can be said that the input has little effect on the 

behavior of the program if all the instances of the same program run on 

different inputs in the same cluster. 

 

Hence, benchmark suites can be compared more easily in the reduced space of 

the principal components. The benchmark suites occupy disjoint areas in the 

space of principal components. In reality, it can be expected that the 

benchmarks to overlap, thereby having a few benchmarks exhibiting similar 

behavior. When a region of space contains only benchmarks from one suite, 

then those benchmarks contain characteristics that are not present in the other 

suite. 
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4. Results 

 

The results will be discussed in the following sections: 

1. Regression Analysis Results 

2. Principal Component Analysis Results 

 

4.1 Regression Analysis Results: 

 

As mentioned earlier, a Pentium III processor on a Linux 2.4.7-10 was the 

chosen system of operation with SPECint-95 benchmarks, the benchmarks in 

consideration installed.  

 

PPerf was the utility compatible with unix, which was nothing but a software 

driver able to access the hardware performance counters. Also mentioned 

earlier, is the ability of PPerf to access only two counters simultaneously. 

 

For each benchmark and its input value, PPerf measured the data from every 

counter and subsequently the data was recorded. Data was obtained from the 

hardware performance counters from which 18 different performance metrics 

were calculated. After this was done, single-input regression analysis was 
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performed on the data and multiple-input regression was performed for a few 

metrics. Microsoft Excel® was used for the regression analysis. 

 

All of the 18 performance metrics will be plotted against the Cycle per 

instructions (CPI). Thus the dependence of the CPI on all the other 18 

performance metrics will be discussed below. A high correlation factor would 

imply a high dependence of CPI on the performance metric. 

 

4.1.1 CPI Vs Data References Per Instruction 

 

 

 
Table 2. CPI Vs Data References Per Instruction 

Equation : y=a+bx a b r 

CPI Vs data_ref_per_insn 0.234164216 1.573628565 0.401497719 
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Graph 1. CPI Vs Data References Per Instruction 
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As can be seen from the graph, CPI does not seem to be correlated too well 

with the Data References Per Instruction. This is further confirmed by the 

regression results shown.  

 

This could be due to the fact that data references are a combination of hits and 

misses in the L1 cache, L2 cache and also misses in the L2 cache which would 

mean that the main memory is accessed. If the main memory was accessed too 

often then the CPI would have a chance to be affected more by the data 

25 



 

references per instruction, since it would contribute to more cycles being spent 

for that particular instruction and if the data references consisted of a large 

percentage of unique memory addesses then CPI could have depended more on 

data references per instruction, which is not that case as shown in the graph. 

It is also found that the same benchmarks with different inputs seem to affect 

the CPI in the same way, thus not showing a clear distribution. Thus a 

benchmark mixed with memory intensive sections and non-memory intensive 

sections would have stressed it uniformly. 

 

4.1.2 CPI Vs L1 Data Cache Misses Per Insn: 

 

 

 

Table.3. CPI Vs L1 Data Cache Misses Per Instruction 

Equation : y=a+bx a b r 

L1_data_cache_misses_per_insn 1.36316598 1.36316598 0.510789062 
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Graph 2. CPI Vs L1 Data Cache Misses per Instruction 

 

The argument for Result 2 is very similar to that of the first result. The CPI 

does not have a high correlation with the L1 data Cache miss. However, it does 

have a marginally higher correlation coefficient. Though it does not give a clear 

idea it gives an indication that the total number of memory transactions which 

are also part of the L1 cache misses are a greater portion of the L1 Misses than 

the Data References Per Instruction. If there was a benchmark which had more 

transactions to memory, that is, a more memory intensive benchmark, then it 

would have more correlation with the CPI. It is also found that there is 

clustering of inputs for the same type of benchmark showing that the same 

benchmark has the same effect on CPI irrespective of the input. 
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4.1.3 CPI Vs L1 instruction cache misses Per Instruction: 

 

 

 
Table 4. CPI Vs L1 Instruction Cache Misses Per Instruction 

Equation : y=a+bx a b r 

L1_I_cache_misses_per_insn 1.274649485 10.81724493 0.714008245 

 

 

 
Graph 3. CPI Vs L1 Instruction Cache Misses per Instruction 
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Though the L1 I-cache misses have a greater correlation that the L1 data cache 

misses, this still cannot definitively confirm that it has a high correlation. This 
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could mean that the instruction cache could not have as many levels as the data 

cache and a miss in the L1 Cache would need a access to memory, however not 

significant enough to cause enough stalls to have a great enough effect on CPI. 

Also it can be seen that different inputs for the same benchmark have varied 

effects on the CPI, which is closer to what is preferable. 

 

 

4.1.4 CPI Vs ITLB Misses Per Instruction: 

 

 

 
Table.5. CPI Vs ITLB Misses Per Instruction 

Equation : y=a+bx a b r

ITLB_misses_per_insn 1.326095446 1.326095446 0.755605461
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Graph 4. CPI Vs ITLB Misses Per Instruction 
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The ITLB Misses do not fall onto a line of best fit as ideally desired. The 

regression coefficient too is not high enough to mention a high correlation with 

CPI. It is also seen that the same benchmarks with different input sets seem to 

have nearly the same effect on CPI thereby bringing all the points into a cluster.  
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4.1.5 CPI Vs Instruction Stall Cycles Per Instruction: 

 

 
Table 6. CPI Vs Instruction Stall Cycles Per Instruction 

 

Equation : y=a+bx a b r 

I_stalls_cycles_per_insn 1.281516406 0.926023062 0.840292315 

 

 

 

 

Graph 5. CPI Vs Instruction Stall Cycles per Instruction 
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The Instruction stall cycles per instruction have a higher correlation coefficient 

when compared to many other performance metrics. This could be due to the 

fact that Instruction stalls could be a result of the most of the stages ahead of it 

in the pipeline stalling, since the Instruction fetch occurs at the start of the 

pipeline. It can be seen that a better line of best fit is obtained compared to 

some of the other performance metrics that seen earlier. Hence, the same 

benchmark with different inputs stresses the system differently, resulting in 

different CPIs. 

 

 

4.1.6. CPI Vs L1 Cache Misses Per Instruction: 

 

 

 

Table 7. CPI Vs L1 Cache Misses Per Instruction 

Equation : y=a+bx a b r 

L1_cache_misses_per_insn 1.176480636 11.59879379 0.799498704 
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Graph 6. CPI Vs L1 Cache Misses Per Instruction 
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This L1 cache misses are nothing but a combination of the L1 data and L1 

instruction cache misses. It can be inferred that, though both of them did not 

have a high correlation with CPI, I-cache misses had a line, which fit better 

than the D-Cache graph. At first glance of the graph above, it could be said that 

there seems to be a nice line to which the data falls into. But looking at the 

correlation coefficient, it is only 0.8, which is not enough to say that L1 cache 

misses have a high correlation with CPI. One interesting point to note is that 

within a particular benchmark, in this case gcc, there seems to be good fit into a 
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line. This could be due to the fact that the gcc program might be more memory 

intensive thereby a L1 cache miss would have subsequently been a L2 cache 

miss too thereby indicating the existence of memory traffic. 

 

4.1.7 CPI Vs L2 Cache Misses per Instruction: 

 

 Table 8. CPI Vs L2 Cache Misses Per Instruction 

Equation : y=a+bx a b r

L2_cache_misses_per_insn 1.256416465 100.27 0.967588459

 

 

 
Graph 7. CPI Vs L2 Cache Misses Per Instruction 
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This result is very interesting. From first glance not only can it be seen that the 

data falls into a line of very good fit, but the correlation coefficient too is high, 

indicating that the CPI depends a lot on the L2 cache Misses Per Instruction.  

This could be attributed the one main reason. The fact that there are only two 

levels of hierarchy, means that whenever there is a miss in the L1 cache which 

misses in the L2 cache too, this is going to generate a reference to the main 

memory which is not preferred since this usually takes significantly more clock 

cycles when compared to a cache hit. These extra cycles add up to the CPI. 

Hence the high correlation between the CPI and L2 cache misses per 

instruction. 

 

4.1.8 CPI Vs L2 Miss Ratio: 

 

 
Table 9. CPI Vs L2 Miss Ratio 
 

Equation : y=a+bx a b r

L2_miss_ratio 1.309744765 3.278480091 0.792151428
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Graph 8. CPI Vs L2 Miss Ratio  
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Even though the L2 misses had a high correlation, the L2 miss ratio does not 

seem to have a high correlation. One possibility could be that, the number of 

misses was not significant enough to impact the CPI. Also, it can be seen that 

certain benchmarks and their input sets seem to form a line of good fit. So it 

could also be that certain outliers, possibly could have been detrimental to a 

high correlation with CPI. 
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4.1.9 CPI Vs Memory Transactions per Cycle: 

 
Table 10. CPI Vs Memory Transaction Per Instruction 

 

Equation : y=a+bx a b r

Mem_trans_per_insn 1.250804631 85.36869916 0.972288404

 

 
Graph 9. CPI Vs Memory Transaction Per Instruction 
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The Memory transactions per cycle is nothing but an extension of the many of 

the above discussed performance metrics. The L2 cache misses contribute to 
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memory transactions per cycle and memory transactions are expensive on CPI. 

Hence, t\he 0.97 correlation coefficient, indicating a high correlation coefficient 

between CPI and Memory Transactions per Cycle. 

 

4.1.10 CPI Vs Micro-operations per instruction 

 
n
Table 11. CPI Vs Micro-operations Per Instructio
 

Equation : y=a+bx a b r

UOPS_per_insn -0.238805567 1.136245489 0.360553351

 

 Graph 10. CPI Vs Micro-operations Per Instruction 
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The Micro-operations per instruction do not have a high correlation with CPI. 

This can be seen from the fact that there hardly seems to be a line of best fit. 

This is kind of intuitive, since for the same program, irrespective of the inputs 

applied, the number of micro-operations seems to be the same. The point lying 

outside mostly come from non-gcc points. 

 

4.1.11 CPI Vs Speculative Execution Factor: 

 Table 12. CPI Vs Speculative Execution Factor 

Equation : y=a+bx a b r

Speculative_exec_factor 0.329871221 0.920393757 0.444809942

 

 Graph 11. CPI Vs Speculative Execution Factor 
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The Speculative execution factor is a ratio of the total number of instructions 

decoded to the total number of instructions retired. The fact that many points 

seem to be clustered together could mean that for a particular benchmark (most 

of those point belong to the gcc benchmark), the change in inputs bring about 

only a small change in the Speculative Execution factor and hence not much 

correlation with the CPI. 

 

4.1.12 CPI Vs Branch Frequency: 

 

 
Table 13. CPI Vs Branch Frequency 

Equation : y=a+bx a b r

Branch_frequency 0.838513361 3.829141845 0.416675437
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 Table 12. CPI Vs Branch Frequency 

 

CPI Vs Branch Frequency
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The branch frequency is a measure of the occurrence of branch instructions 

among the total instructions. It is a ratio of the total branch instructions to the 

total number of instructions retired. The number of branches taken would have 

had more significance to the CPI if most of them caused a branch mispredict, 

thereby stalling the pipeline for a number of cycles. But this was not the case 

observed as the correlation coefficient is not a significant number. 
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 4.1.13 CPI Vs Branch Mispredict ratio: 

 
Table 14. CPI Vs Branch Mispredict Ratio 

 

Equation : y=a+bx a b r

Branch_mispred_ratio 1.382971731 2.097102083 0.320703921

 

 
Graph 13. CPI Vs Branch Mispredict Ratio 
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The microprocessors nowadays have very efficient branch predictors which 

predict a branch to a very high level of accuracy. From the graph and table 
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above it can be seen that the dependence of CPI on the branch mispredict ratio 

is very low. Like mentioned earlier, this could be a result of there being very 

few branch mispredictions compared to the total number of branch instructions. 

 

4.1.14 CPI Vs Branch Taken Ratio: 

 

 
Table 15. CPI Vs Branch Taken Ratio 

Equation : y=a+bx a b r

Branch_taken_ratio -0.309135784 2.492986457 0.259514779

 
Graph 14. CPI Vs Branch Taken Ratio 
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The branch taken ratio as expected hardly had any correlation with CPI. This is 

because that these taken branches which were predicted could have hardly 

ended up in mispredictions and pipeline stalling. The only way this could have 

had any significance on the CPI is if the Taken branches were a result of 

mispredictions. 

 

4.1.15 CPI Vs BTB miss ratio: 

 Table 16. CPI Vs BTB Miss Ratio 

Equation : y=a+bx a b r

BTB_miss_ratio 1.354687829 0.981848193 0.252081632

 

 
Graph 15. CPI Vs BTB Miss Ratio 
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The Branch target buffer miss ratio had any significance on the CPI and this is 

actually somewhat an expect behavior. 

 

4.1.16 CPI Vs Branch Speculative Factor: 

 Table 17. CPI Vs Branch Speculative Factor 

Equation : y=a+bx a b r

Branch_spec_factor 0.606962806 0.747077822 0.341327378

 

Graph 16. CPI Vs Branch Speculative Factor  
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The branch speculative factor is nothing but the ratio of total branch 

instructions decoded and the total branch instructions retired. From the graph 

and table it can be clearly deduced that it CPI has a very low correlation on the 

branch speculative factor. 

 

4.1.17 CPI Vs Resource Stalls Per instruction: 

 Table 18. CPI Vs Resource Stalls Per Instruction 

Equation : y=a+bx a b r

Resource_stalls_per_insn 1.435559721 0.458279559 0.296454012

 

 

 
Graph 17. CPI Vs Resource Stalls Per Instruction 
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This is probably one of the surprising results obtained. Usually a resource stall 

should cause an increase in the CPI. One possible explanation for this value 

could be that there could be multiple resources all operating in parallel and even 

though one resource stalled due to a dependency, for example, the other 

resources could have been able to continue executing. However, the cycles it 

stalled for could have been included in the counter.  

 

4.1.18 CPI Vs Flops per instruction: 

 

 Graph 19. CPI Vs Flops per instruction 

Equation : y=a+bx a b r

Flops_per_insn 1.409575225 5.907193981 0.365794466
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Graph 18. CPI Vs Flops Per Instructions  
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The benchmark used was a SPEC int benchmark and hence the low correlation 

coefficient of CPI with the Flops Per instruction. The number of flop 

instructions were low and not significant enough to have an impact on the CPI. 

However, if there were extensive flop calculations, then you could expect it to 

have a higher impact on the CPI, that is assuming that the flop instructions 

would have been taxing on the resources. 
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4.2 Principal Component Analysis Results: 

 

As mentioned in detail earlier, Principal component analysis is a statistical 

technique used to reduce the dimensionality of the original set. Ideally it  would 

be ideal, to end up into a set of uncorrelated variables called the Principal 

components from our original set of variables, which represent most of the 

information of the original set. It would be preferable to retain only those 

principal components that have the highest variance. 

 

The 19 performance metrics were initially obtained as mentioned during the 

Regression analysis. After data acquisition, the data was normalized. For 

normalization, initially all the data for a performance metric was taken and its 

mean was calculated. After calculating the mean, the standard deviation was 

calculated. The normalized data was obtained from : 

 

iondardDeviatS
icMeanOfMetrValueDataNormalized

tan
−

=  
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The normalized data which can be considered as a huge matrix (19 x 19) in our 

case becomes the input matrix for our PCA analysis. The analysis was done by 

a MATLAB program, which will analyze the data for its principal components. 

The table below shows the mean and the standard deviation of all the 

performance metrics. 
 

 
Table 20. Mean and Standard Deviation of all performance metrics – Principal 

component Analysis 
Performance Metric Mean 

Standard 

Deviation 

data_ref_per_insn 0.853467746 0.058510186 

L1_data_cache_misses_per_insn 0.006581106 0.003601615 

L1_I_cache_misses_per_insn 0.027969779 0.015136909 

ITLB_misses_per_insn 0.001251023 0.00086327 

I_stalls_cycles_per_insn 0.319310659 0.208093835 

L1_cache_misses_per_insn 0.034548834 0.015807222 

L2_cache_misses_per_insn 0.003199252 0.002212943 

L2_miss_ratio 0.081580692 0.055409762 

Mem_trans_per_insn 0.003823425 0.002611843 

UOPS_per_insn 1.598255856 0.072769265 

Speculative_exec_factor 1.355218035 0.110828498 

Branch_frequency 0.192913219 0.024954396 

Branch_mispred_ratio 0.092620054 0.035069964 

Branch_taken_ratio 0.756659234 0.02387222 
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BTB_miss_ratio 0.22663138 0.058877245 

Branch_spec_factor 1.298716955 0.104774574 

Resource_stalls_per_insn 0.309081468 0.148346557 

Cycles_per_insn 1.57720544 0.22932459 

flops_per_insn 0.0283773 0.014200594 

 

 

From these values and using the formula above, the data was normalized. This 

data was used for PCA analysis and through the analysis, the principal 

components were identified. During these calculations, the eigen values and 

fraction of variance contained in the first q principal components will be 

obtained. 

 

19 principal components were obtained but only the significant ones are shown 

below. For simplicity of explanation, only 3 principal components will be 

shown the analysis. 

 

Table 21 shows the Eigen values or variance and the eigen vectors or factor 

loadings on the 3 principal components, PC1, PC2, PC3. 
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 Table 21.  Factor loadings on the first three principal components 

Performance Characteristic PC1 PC2 PC3 

data_ref_per_insn 0.071 -0.224 0.217 

L1_data_cache_misses_per_insn 0.152 -0.018 0.450 

L1_I_cache_misses_per_insn 0.312 0.061 -0.208 

ITLB_misses_per_insn 0.292 -0.108 -0.252 

I_stalls_cycles_per_insn 0.320 -0.041 -0.198 

L1_cache_misses_per_insn 0.333 0.055 -0.097 

L2_cache_misses_per_insn 0.318 -0.153 0.068 

L2_miss_ratio 0.235 -0.215 0.246 

Mem_trans_per_insn 0.316 -0.164 0.098 

UOPS_per_insn 0.058 -0.428 0.048 

Speculative_exec_factor 0.225 0.334 0.005 

Branch_frequency 0.116 -0.262 -0.306 

Branch_mispred_ratio 0.185 0.383 0.030 

Branch_taken_ratio 0.131 0.287 -0.099 

BTB_miss_ratio 0.124 -0.165 -0.307 

Branch_spec_factor 0.183 0.374 0.068 

Resource_stalls_per_insn 0.067 -0.112 0.489 

Cycles_per_insn 0.335 -0.103 0.063 

flops_per_insn 0.189 0.224 0.268 
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The table 6 below show the amount of variance explained by the 3 important 

principal components.   

 

 
Table 22. Variance explained by the first three principal components 

Property PC1 PC2 PC3 

Eigen Value 7.742 4.622 3.378 

% Variance 41.914 25.020 18.289

Cumulative % 41.914 66.933 85.223

 

The Eigen value of a principal component is the amount of variance it captures. 

Hence, the first principal component has a larger percentage variance than any 

of the other principal components. This corresponds to ~42% of the total 

variance. Thus with three principal components ~85% of the variance present in 

the 19 original performance metrics, can be explained. As the principal 

components progress (that is, PC4, PC5 and so on), they become harder to 

interpret since they progressively contain lesser information. 

 

 

The factor loadings depict the performance metrics that a particular principal 

component can measure. The first principal component loads all performance 
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metrics positively, but by using a threshold of 0.15, it can be said that PC1 

depends upon the following performance metrics: 

a) L1 Data Cache Misses Per instruction 

b) L1 Instruction Cache Misses per instruction 

c) ITLB misses per instruction 

d) Instruction stall cycles per instruction 

e) L1 cache misses per instruction 

f) L2 cache misses per instruction 

g) L2 miss ratio 

h) Memory transactions per Instruction 

i) Speculative Execution factor 

j) Branch misprediction ratio 

k) Branch Speculative factor 

l) Cycles per instruction 

m) Flops per Instruction 

 

This means that PC1 does not depend on a few or one particular performance 

metric. It is a combination of many performance metrics and it seems tough to 

uniquely identify by separating out as to what it exactly depends upon.  
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Similarly, it can be seen that even PC2 and PC3 depend on many other 

performance characteristics and hence, it cannot be said that the principal 

component depends upon a particular performance metric. 

 

Since the factor loadings on PC2 contain both negative and positive numbers, it 

can be said that PC2 is a contrast between the performance metrics with 

positive factor loadings and performance metrics with negative factor loadings. 

What makes it more difficult to analyze is the fact that the factor loadings are 

very near each other in magnitude.  

 

After obtaining the PCA output, the scores matrix can be calculated, which is a 

relationship with the benchmark-input sets and the influence they have the 

principal components. This is obtained by multiplying the PCA output matrix 

by the PCA input matrix. From there they can be plotted in scatter plots. 

 

PCA also allows us to judge the impact of the input on a program too. The 

inputs have a small impact when their workloads do not differ much. As a 

result, these program-input pairs end up being close to each other in terms of 

the original dimension space with all the variables. They will also be near each 

other in the reduce dimension space. As will be shown below, it can be found 
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benchmarks which are close to each other but are far apart from other 

benchmark clusters. When the same benchmark with different inputs ends up in 

the same cluster, then it can be said that the input has very little effect on the 

behavior of the program. 

 

The workload space can be visualized by means of scatter plots. Three of them 

are shown below, each with one of the principal components, PC1, PC2 or PC3 

on the axes. 

 

 
Graph 19. Scatter plot of PC2 Vs PC1 
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The scatter plot between PC1 and PC2 is shown above. It can be seen that the 

Gcc inputs are all clustered together, thereby indicating that irrespective of the 

inputs used, the gcc benchmark seems to exhibit the same behavior. If the 

principal component had depended on lesser number of performance metrics it 

could have been mentioned as to how the input could have a better effect on the 

program. It should also be noted that PC1 and PC2 together contribute to ~67% 

of the variance. Also, the go benchmarks are clustered together suggesting that 

the behavior may not be too input dependent, or the inputs may be causing the 

benchmark to behave in the same way. Also shown below are the scatter plots 

for PC2 and PC3. 

 
Graph 20. Scatter plot of PC3 Vs PC2 
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As it can be seen most of the benchmarks seem to be clustered together 

indicating that the inputs did not have an impact on most of the programs. This 

could be due to the fact that as other principal components are considered, they 

contain lesser information.  There are a few outliers. The benchmark marked as 

“others” indicates, the benchmarks with only one inputs. 

 

Also shown below, is the scatter plot between PC1 and PC3. Even in this plot it 

can be seen that all the gcc inputs do not cause the benchmark to behave 

differently and end up very near each other. It can also be seen that the different 

inputs of the go benchmarks exhibit the same behavior. 

 Graph 21. Scatter plot of PC3 Vs PC1 
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The three graphs above give us a clearer understanding of the behavior of the 

benchmarks. In graphs 19, 20 and 21, it can be clearly seen that the GCC and 

GO benchmarks exhibit totally different behaviors for their respective input 

pairs. All the points representing the input pairs of each of the benchmarks are 

clustered together and the two clusters themselves are far apart on the scatter 

plots. However, similar conclusive remarks could not be drawn based on their 

inconsistent behavior. 

 

So, since the different inputs of Go exhibit similar behavior and similar inputs 

of the Gcc exhibit similar behavior, based on the plots, we can safely say that w 

could reduce the number of input sets on the benchmarks. This reduction of 

input sets on the SPEC-int95 should not impact any analysis drastically. 
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5. Conclusion 

 

Reducing the time-to-market for microprocessors, without reducing the quality 

will pay off directly as dividends. Such a contribution can be made during the 

initial design phase. If it is possible to study the benchmarks to reduce 

redundancy, it can contribute to this cause. For such a reason, a clear 

understanding of the benchmarks is necessary. This report presents two 

different analyses which can be used to study benchmarks. The data collected 

was that of the SPECint-95 benchmarks, running on a Intel Pentium-III® 

processor. The data was collected using the in-built hardware performance 

monitoring counters. 

 

The two analyses carried out were the regression analysis and the principal 

component analysis.  

 

Through regression it was noted that there was a high correlation between the 

L2 cache misses per instruction and the memory transactions per instruction, 

for the data that was obtained. The data collected mainly belonged to the integer 

benchmarks, totaling to about 9 benchmarks and several input sets. An 
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extension to this would be to use a Pentium-IV® processor running many more 

benchmarks, which would be available through the SPECint-2000 benchmarks. 

 

Also presented in this report, is the principal component analysis, which helps 

us study the structure of a multivariate set, by reducing the dimensionality of 

the data. Even though the data was reduced to a lesser dimensionality, I was 

unable to pinpoint the exact performance metrics that the principal components 

depended upon. One of the main points that has to be taken care of while 

conducting principal component analysis is that is makes no sense to conduct 

principal component analysis on variables that have low correlation between 

themselves, since it will take as many principal components as there were 

original data to account for a large portion of the variance in the variables that 

were present at the start of the study.  

 

From the principal component analysis carried out, we could come to a 

conclusion that the different input sets of Gcc and Go end up stressing the 

computer in the same manner, that is, exhibiting similar behavior, and reducing 

the number of inputs would not affect analysis of the benchmarks in any drastic 

manner. 
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