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ABSTRACT 
Power management of multi-core processors is extremely 
important because it allows power/energy savings when all cores 
are not used. OS directed power management according to ACPI 
(Advanced Power and Configurations Interface) specifications is 
the common approach that industry has adopted for this purpose.  
While operating systems are capable of such power management, 
heuristics for effectively managing the power are still evolving.  
The granularity at which the cores are slowed down/turned off 
should be designed considering the phase behavior of the 
workloads. Using 3-D, video creation, office and e-learning 
applications from the SYSmark benchmark suite, we study the 
challenges in power management of a multi-core processor such 
as the AMD Quad-Core Opteron™ and Phenom™.  We unveil 
effects of the idle core frequency on the performance and power 
of the active cores.  We adjust the idle core frequency to have the 
least detrimental effect on the active core performance.  We 
present optimized hardware and operating system configurations 
that reduce average active power by 30% while reducing 
performance by an average of less than 3%.  We also present 
complete system measurements and power breakdown between 
the various systems components using the SYSmark and SPEC 
CPU workloads.  It is observed that the processor core and the 
disk consume the most power, with core having the highest 
variability.   

Categories and Subject Descriptors 
C.0 [Computer Systems Organization]: General 

General Terms 
Design, Measurement and Performance. 
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power management, performance, operating system, ACPI, multi-core 

1. INTRODUCTION 
The recent shift to multi-threaded and multi-core processors has 
created a new set of challenges for dynamic power management.  
Compared to single-threaded processors, adapting power and 

performance for multiple threads is more complex.  The difficulty 
centers around two issues: program phase behavior and resource 
dependencies between threads.  Program phase behavior is made 
more complex by the aggregate phases created by the combination 
of multiple threads.  Phase behavior is used to control the 
application of power adaptations, making the decision criteria 
more complex.  The decision criteria for adapting must primarily 
consider the performance cost of the adaption and the likelihood 
of encountering a particular performance demand.  For example, 
consider a case in which voltage and frequency scaling is used to 
reduce power consumption during a phase of low performance 
demand.  For each voltage change the processor must briefly 
suspend execution while the voltage source stabilizes at the new 
operating point.  This has a performance cost that is proportional 
to the number of program phase changes.  For a sporadic 
workload this cost can outweigh the benefit of the power 
adaptation.  The concept also applies to other adaptations such as 
resource resizing/power down.  Reducing the active portion of a 
cache causes a performance loss when the resource is reactivated 
due to the need for warm-up.  Disabling a pipeline has a similar 
effect, as instructions do not complete until the newly active 
pipeline refills with instructions.   

In the multi-threaded case, the decision criteria are more complex 
because the adaptations may affect the performance of other 
threads.  The cause is shared resources in a multi-threaded system.  
Since the degree of resource sharing varies among processor 
types, the performance dependence also varies.  For example, a 
typical multi-core processor shares the top-level cache among all 
cores on the chip and provides an independent level one (L1) 
cache.  Any power adaptation that affects the performance of this 
shared cache affects the performance of all cores.  In contrast, 
adapting performance of the L1 cache has little effect on the other 
cores.  The resultant increase in complexity of power adaptations 
is due to the presence of multiple independent threads which have 
dependent performance due to shared resources. 

In this paper we seek to improve the effectiveness of power 
adaptations through a study of program phase behavior and how 
those phases affect performance in a multi-core processor.  We 
show that the performance impact of power adaptations in Quad-
Core AMD Opteron™ and AMD Phenom™ processors is 
dominated by four characteristics: cache snoop activity, idle core 
frequency, program phase behavior, and operating system control 
of power adaptations.  Workloads such as equake from SPEC 
CPU 2000 and 3D workloads from SYSmark® 2007 have a 
strong performance dependence on cache snoop latency.  This 
latency is shown to be dependent on the frequency of idle cores.  
The amount of time a core spends in the idle or active state is 
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dictated by program phase characteristics and the operating 
system (OS) power adaptation policy.  We study these items in the 
framework of the Advanced Configuration and Power Interface 
(ACPI).  This interface specification was developed to establish 
industry common interfaces enabling robust OS-directed power 
management of both devices and entire systems.  ACPI is the key 
element in OS-directed configuration and power management.  
From a power management perspective, ACPI promotes the 
concept that systems should conserve energy by transitioning 
unused devices into lower power states including placing the 
entire system in a low-power state (sleeping state) when possible.  
The interfaces and concepts defined within the ACPI specification 
are suitable to all classes of computers including (but not limited 
to) desktop, mobile, workstation, and server machines.  We also 
show that compared to benchmarks such as SPEC CPU 2000, 
recent benchmark suites such as SPEC CPU 2006 shift power 
consumption significantly from the processor to the memory 
subsystem due to increased working set sizes.  Using these 
findings, we propose a power management configuration/policy 
which has an average power reduction of 30 percent with less than 
3 percent performance loss.   

2. BACKGROUND 
In this study we consider issues surrounding the use of dynamic 
power adaptations on a real system.  The objective is to make 
optimal decisions regarding the tradeoff between performance and 
power savings.  For this purpose we consider areas such as: 
program power/phase behavior, power saving techniques, and 
adaptation control policies.   

In the area of program phase behavior, studies which characterize 
typical program phases with respect to power are most relevant.  
Studies by Boher, Mahesri, and Feng [5][15][7] present power 
characterizations of programs running on hardware ranging from 
mobile to clustered servers.  Our study differs in that the presented 
power characterization includes phase duration.  This information 
is needed since power adaptations must be applied with 
consideration for performance costs associated with transitioning 
hardware to various levels of power adaption.  Two studies which 
do consider phase duration are presented by Bircher [3][4].  Our 
study differs in that we consider desktop workloads.  The 
inclusion of desktop workloads is a critical difference, as it allows 
the analysis of workloads that contain many more power phase 
transitions.  The reason is that desktop workloads, such as the 
ones included here, contain user input and think time events.  
These events introduce a large number of power phase transitions.  
As for our phase classification technique, we make use of phase 
classification metrics as described by Lau [12].  Our study differs 
in that we make use of these techniques for exploring power phase 
characteristics of programs running on an actual system.  Their 
study instead considers a range of classification techniques, but 
does not characterize workloads.         

To quantify the effect of power adaptations we present 
performance and power consumption results for a range of 
adaptation levels.  Studies such as [18] [8][9] consider the 
performance and power impact of applying power adaptations.  
Our study differs in that we study power adaption and policies in 
the framework of a multi-core processor.  While these studies 
consider adaptations and policies which optimize efficiency by 
accounting for architecture-dependent characteristics such as 
memory-boundedness, we examine policies which may only 

consider program slack time in performing adaptations.  To meet 
the goal of increasing energy efficiency within this constraint we 
analyze the inherent characteristics of the hardware power 
adaptations and identify optimal configurations.  Through this 
approach we are able to increase performance and reduce power 
consumption without runtime knowledge of program 
characteristics. 

3. POWER MANAGEMENT 
3.1. Active and Idle Power Management 
An effective power management strategy must take advantage of 
program and architecture characteristics.  Designers can save 
energy while maintaining performance by optimizing for the 
common execution characteristics.  The two major power 
management components are active and idle power management.  
Each of these components use adaptations that are best suited to 
their specific program and architecture characteristics.  Active 
power management seeks to select an optimal operating point 
based on the performance demand of the program.  This entails 
reducing performance capacity during performance-insensitive 
phases of programs.  A common example would be reducing the 
clock speed or issue width of a processor during memory-bound 
program phases.  Idle power management reduces power 
consumption during idle program phases.  However, the 
application of idle adaptations is sensitive to program phases in a 
slightly different manner.  Rather than identifying the optimal 
performance capacity given current demand, a tradeoff is made 
between power savings and responsiveness.  In this case the 
optimization is based on the length and frequency of a program 
phase (idle phases) rather than the characteristics of the phase 
(memory-boundedness, IPC, cache miss rate).  In the remainder of 
this paper we will make reference to active power adaptations 
called p-states and idle power adaptations called c-states.  These 
terms represent adaption operating points as defined in the ACPI 
specification. ACPI [1] “…is an open industry specification co-
developed by Hewlett-Packard, Intel, Microsoft, Phoenix, and 
Toshiba.  ACPI establishes industry-standard interfaces enabling 
OS-directed configuration, power management, and thermal 
management of mobile, desktop, and server platforms.” 

3.1.1. Active Power Management: P-states 
A p-state (performance state) defines an operating point for the 
processor.  States are named numerically starting from P0 to PN, 
with P0 representing the maximum performance level.  As the p-
state number increases, the performance and power consumption 
of the processor decrease.  Table 1 shows p-state definitions for a 
typical processor.  The state definitions are made by the processor 
designer and represent a range of performance levels which match 
expected performance demand of actual workloads.  P-states are 
simply an implementation of dynamic voltage and frequency 
scaling (DVFS).  The resultant power savings obtained using 
these states is largely dependent on the amount of voltage 
reduction attained in the lower frequency states.   

Table 1. Example P-states Definition 
 Frequency (MHz) VDD (Volts) 

P0 Fmax 100% Vmax 100% 
P1 Fmax 85% Vmax 96% 
P2 Fmax 75% Vmax 90% 
P3 Fmax 65% Vmax 85% 
P4 Fmax 50% Vmax 80% 

 



Table 2. Example C-states Definition 
 Response Latency(us) 

C0 0 
C1 10 
C2 100 
C3 1000 
C4 10000 

3.1.2. Idle Power Management: C-states 
A c-state (CPU idle state) defines an idle operating point for the 
processor.  States are named numerically starting from C0 to CN, 
with C0 representing the active state.  As the c-state number 
increases, the performance and power consumption of the 
processor decrease.  Table 2 shows c-state definitions for a typical 
processor.  Actual implementation of the c-state is determined by 
the designer.  Techniques could include low latency techniques, 
clock and fetch gating, or more aggressive high latency techniques 
such as voltage scaling or power gating.   

3.2. Quad-Core AMD Processors and System 
Description 

The Quad-Core AMD Opteron™ and AMD Phenom™ processors 
used in this study are 1.6GHz-2.4GHz, 3-way superscalar, four-
core processors implemented on a 65 nm process.  The processor 
provides an interesting vehicle for the study of dynamic power 
adaptations due to its ability to operate each of its cores at an 
independent frequency.   This ability provides better opportunity 
for power savings, but increases the complexity of configuration 
due to the performance dependence introduced by the independent 
operating frequencies.  Two platform types were used, server and 
desktop.  The server system utilizes 8GB of DDR2-667 
configured for dual channel operation.  The desktop system uses 
1GB of DD2-800 also configured for dual channel. 

3.2.1. Quad-Core AMD Processor P-state 
Implementation 

Each core may operate at a distinct p-state.  However, a voltage 
dependency exists between cores in a single package.  All cores in 
a package must operate at the same voltage.  The actual voltage 
applied to all cores is the maximum required of all.  Therefore, the 
best power savings occurs when all cores are operating in the 
same p-state.  

3.2.2. Quad-Core AMD Processor C-state 
Implementation 

Two architecturally visible c-states are provided: C0 and C1.  In 
C0, the active state, fine-grain clock gating throughout the 
processor provides the power savings.  This gating is 
automatically applied by hardware and has a negligible effect on 
performance.  The other available state, C1, is applied during idle 
phases by execution of the HALT instruction.  This state 
effectively reduces frequency by a programmable power of 2.  For 
example, the C1 state may reduce frequency by a factor of 2, 4, 8, 
16, 128 or 512.  Though the responsiveness of cores in the C1 
state is not greatly affected by the frequency reduction, the 
performance of active cores is.  This dependency is introduced 
through shared cache resources.  When an active core makes a 
request for a cache block, a cache probe (snoop) is made to the 
idle cores.  Since the idle core is operating at a reduced frequency, 
the time to service the probe is increased.  Designers can mitigate 
this effect through the use of adaptations such as increasing idle 

core frequency in response to probe requests (“CPU Direct Probe 
Mode”).  This approach must be applied carefully since it can 
greatly reduce idle power savings.  In order to balance probe 
responsiveness with power savings, Quad-Core AMD processors 
provide a tuning parameter to control how long the idle processor 
remains at an increased frequency in response to a probe.  The 
result is a hysteresis function.  This approach is effective due to 
the bursty nature of cache probe traffic. 

In addition to the architecturally visible C0 and C1, an additional 
state C1e (enhanced C1) is provided.  C1e is applied 
automatically by the hardware in response to idle phases in which 
all cores are idle.  This mode provides larger power savings since 
there is no need to service cache coherence traffic when all cores 
are idle.  Additional power is saved in the on-chip memory 
controller and through more aggressive power settings in the 
cores.  These settings are reasonable since the likelihood of 
waking any one core is less when all cores are idle. 

3.2.3. Quad-Core AMD Processor Power Savings 
Potential 

The power saving states described in this section provide a 
significant range of power and performance settings for 
optimizing efficiency, limiting peak power consumption, or both.  
However, other parameters greatly influence the effective power 
consumption.  Temperature, workload phase behavior, and power 
management policies are the dominant characteristics.  
Temperature has the greatest effect on static leakage power.  This 
can be seen in Figure 1 which shows power consumption of a 
synthetic workload at various combinations of temperature and 
frequency.  Note that ambient temperature is 20°C and “idle” 
temperature is 35°C.  As expected, a linear change in frequency 
yields a linear change in power consumption.  However, linear 
changes in temperature yield exponential changes in power 
consumption.  Note that static power is identified by the Y-
intercept in the chart.  This is a critical observation since static 
power consumption represents a large portion of total power at 
high temperatures.  Therefore, an effective power management 
scheme must also scale voltage to reduce the significant leakage 
component.  To see the effect of voltage scaling consider Figure 
2. 

 
Figure 1. Temperature Sensitivity of Power Reduction 

through Frequency Scaling 
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C0-Max All Cores Active IPC ≈ 3 
C0-Idle All Cores Active IPC ≈ 0 
C1- Idle At Least One Active Core, Core ≈ 0 MHz 
C1e-Idle All Idle, Core ≈ 0 MHz, MemCntrl ≈ 0 MHz 

Figure 2. Power by C-state/P-state Combination 
Figure 2 shows the cumulative effect of p-states and c-states.  
Combinations of five p-states (x-axis) and four operating modes 
are shown.  The lowest power case, C1e-Idle, represents all cores 
being idle for long enough that the processor remains in the C1e 
state more than 90 percent of the time.  The actual amount of time 
spent in this state is heavily influenced by the rate of input/output 
(I/O) and OS interrupts.  This state also provides nearly all of the 
static power savings of the low-voltage p-states even when in the 
P0 state.  Second, the C1-Idle case shows the power consumption 
assuming at least one core remained active and prevented the 
processor from entering the C1e state.  This represents an extreme 
case in which the system would be virtually idle, but frequent 
interrupt traffic prevents all cores from being idle.  This 
observation is important as it suggests system and OS design can 
have a significant impact on power consumption.  The remaining 
two cases, C0-Idle and C0-Max, show the impact of workload 
characteristics on power.  C0-Idle attains power savings though 
fine-grain clock gating.  The difference between C0-Idle and C0-
Max is determined by the amount of power spent in switching 
transistors, which would otherwise be clock-gated, combined with 
worst-case switching due to data dependencies.  C0-Max can be 
thought of as a pathological workload in which all functional units 
on all cores are 100 percent utilized and the datapath constantly 
switches between 0 and 1.  All active phases of real workloads 
exist somewhere between these two curves.  High-IPC compute-
bound workloads are closer to C0-Max while low-IPC memory-
bound workloads are near C0-Idle. 

3.3. Costs of Adaptation 
The p-state and c-state adaptations described above define the 
bounds of power consumption possible.  In this section we 
consider what effect these adaptations have on performance and 
efficiency.  The actual power/performance obtained can be quite 
different due to the physical limitations of how the adaptations are 
implemented, phase characteristics of workloads, and power 
management policies. 

3.3.1. Transition Costs 
Due to physical limitations, transitioning between adaptation 
states may impose some cost.  The cost may be in the form of lost 
performance or increased energy consumption.  In the case of 
DVFS, frequency increases require execution to halt while voltage 
supplies ramp up to their new values.  This delay is typically 
proportional to the amount of voltage change (seconds/volt).  

Frequency decreases typically do not incur this penalty as most 
digital circuits will operate correctly at higher than required 
voltages.  Depending on implementation, frequency changes may 
incur delays.  If the change requires modifying the frequency of 
clock generation circuits (phase locked loops), then execution is 
halted until the circuit locks on to its new frequency.  This delay 
may be avoided if frequency reductions are implemented using 
methods which maintain a constant frequency in the clock 
generator.  This is the approach used in Quad-Core AMD 
processor c-state implementation.  Delay may also be introduced 
to limit current transients.  If a large number of circuits all 
transition to a new frequency, then excessive current draw may 
result.  This has a significant effect on reliability.   Delays to limit 
transients are proportional to the amount of frequency change 
(seconds/MHz).  Other architecture-specific adaptations may have 
variable costs per transition.  For example, powering down a 
cache requires modified contents to be flushed to the next higher 
level of memory.  This reduces performance and may increase 
power consumption due to the additional bus traffic.  When a 
predictive component is powered down it no longer records 
program behavior.  For example, if a branch predictor is powered 
down during a phase in which poor predictability is expected, then 
branch behavior is not recorded.  If the phase actually contains 
predictable behavior, then performance may be lost and efficiency 
may be lost.  If a unit is powered on and off in excess of the actual 
program demand, then power and performance may be 
significantly affected by the flush and warm-up cycles of the 
components.  In this study we focus on fixed cost per transition 
effects such as those required for voltage and frequency changes. 

3.3.2. Workload Phase and Policy Costs 
In the ideal case the transition costs described above do not 
impact performance and save maximum power.  The reality is that 
performance of dynamic adaption is greatly affected by the nature 
of workload phases and the power manager’s policies.  
Adaptations provide power savings by setting performance to the 
minimum level required by the workload.  If the performance 
demand of a workload were known in advance, then setting 
performance levels would be trivial.  Since they are not known, 
the policy manager must estimate future demand based on the 
past.  Existing power managers, such as those used in this study 
(Windows Vista and SLES Linux), act in a reactive mode.  They 
can be considered as predictors which always predict the next 
phase to be the same as the last.  This approach works well if the 
possible transition frequency up the adaptation is greater than the 
phase transition frequency of workload.  Also, the cost of each 
transition must be low considering the frequency of transitions.  In 
real systems, these requirements cannot currently be met.  
Therefore, the use of power adaptations does reduce performance 
to varying degrees depending on workload.  The cost of 
mispredicting performance demand is summarized below. 

• Underestimate: Setting performance capacity lower than the 
optimal value causes reduced performance.  Setting 
performance capacity lower than the optimal value may 
cause increased energy consumption due to increased 
runtime.  It is most pronounced when the processing element 
has effective idle power reduction. 

• Overestimate: Setting performance capacity higher than the 
optimal value reduces efficiency as execution time is not 
reduced yet power consumption is increased.  This case is 
common in memory-bound workloads.   
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• Optimization Points: The optimal configuration may be 
different depending on which characteristic is being 
optimized.  For example, Energy·Delay may have a different 
optimal point compared to Energy·Delay2. 

3.4. Workloads 
To represent typical user programs, we performed all experiments 
using SPEC CPU 2006, CPU 2000 and SYSmark® 2007.  SPEC 
workloads include the complete suite of scientific and computing 
integer and floating point codes.  The CPU 2006 version is 
included to give representative results for current applications.  
The CPU 2000 version is included due to its wide familiarity.  
The most significant difference between the two benchmark suites 
is working set size.  Therefore, results obtained with CPU 2000 
tend to be compute-bound while CPU 2006 results are more 
communication-bound.  This difference is made clear in our 
experiments.  Additionally, we present data from the SYSmark 
2007 benchmark suite.  This suite represents a wide range of 
desktop computing applications.  The major categories are: e-
learning, video creation, productivity, and 3D.  The individual 
subtests are listed below.  This suite is particularly important to 
the study of dynamic power adaptations since it provides realistic 
user scenarios which include user input and think time.  Since 
current operating systems determine dynamic adaption levels 
using thread idle time, these user interactions must be replicated 
in the benchmark.     

Table 3. SYSmark 2007 
E-Learning 3D 

Adobe® Illustrator® Autodesk® 3Ds Max 
Adobe Photoshop® Google™ SketchUp 

Microsoft PowerPoint®  
Adobe Flash®  
Productivity Video Creation 

Microsoft Excel® Adobe After Effects® 
Microsoft Outlook® Adobe Illustrator 
Microsoft Word® Adobe Photoshop 

Microsoft PowerPoint Microsoft Media Encoder 
Microsoft Project® Sony Vegas 

Winzip®  

3.5. Measurement Environment 
To measure power consumption, we instrumented a system at a 
fine-grain level.  For each subsystem we inserted a precision 
series resistor to measure current flow.  We also measured voltage 
levels at the point of delivery.  Using these quantities, it is 
possible to measure power consumption of a particular subsystem.  
We considered all major power subsystems, including: CPU core, 
memory controller, DRAM, PCIe, video, I/O bus, and disk.  We 
performed all sampling at a rate of 1 KHz, using a National 
Instruments NIUSB-6259 [17].  This granularity allowed the 
measurement of most power phases which were sufficiently long 
to perform adaptations.  Though shorter duration phases exist, 
current adaptation frameworks are not able to readily exploit 
them.    

3.6. Phase Classification  
To understand the effect of dynamic power adaptations on power 
and performance it is necessary to understand the phase behavior 
of workloads.  Depending on the number of phase transitions a 
program contains, the performance cost to apply adaptations may 
vary.  Phase transitions are inherent in programs, but are also 

introduced artificially through the operating system control of 
scheduling.  A common example is context switching.  Consider a 
single-processor system in which multiple software threads run 
simultaneously via multiplexing.  Each thread runs until its 
allotted time expires.  The operating system then saves the current 
system state and replaces the current thread with a waiting thread.  
Since the current phase of the various threads are not necessarily 
the same, the effective phase observed on the processor changes 
with each context switch.  This presents a challenge since power 
adaptations are applied based on the hardware’s perspective of the 
current program phase.  In this paper we quantify program phase 
behavior by measuring phase characteristics of a wide range of 
workloads.  We measure phases in terms of power consumption 
since adaptations are applied in order to control power.  Also, this 
data is used to motivate the use of predictive power adaptations in 
a power-constrained environment.  Therefore, it is necessary to 
know the duration and of intensity power allocation overshoot and 
undershoot.   

In this study we defined a program phase as consecutive time 
events in which the power level of the subsystem is constant.  The 
boundaries of a phase are specified by a change in the power 
level.  The method we use for phase classification is similar to 
that used by Lau [12], in which a phase candidate is measured 
using the coefficient of variation (CoV = 
StandardDeviation/Average).  We selected a CoV threshold using 
qualitative assessment and an error analysis.  If the candidate 
phase has a CoV less than the threshold, then it is considered to be 
a phase.  To find all possible phase lengths, we searched the data 
for the longest phases.  Once we identified a portion of the data as 
being a phase, we removed that portion and no longer considered 
it in the search.  The search continued with decreasing phase size 
until we classified all data.  In our study we considered phase 
durations in the range of 1 ms to 1000 ms, as these represent cases 
useful for dynamic adaptation.     

3.7. OS P-state Transition Latency 
With the increasing availability and aggressiveness of power 
adaptations, it is becoming increasingly important to provide a 
mechanism for controlling the manner in which the adaptations 
are applied.  In the case of Microsoft Windows® Vista® [16] , a 
wide range of controlling parameters is made available to users 
with a built-in utility.  The major behaviors adjusted are frequency 
or p-state transitions, time thresholds for promotion/demotion, 
utilization thresholds for promotion/demotion, and p-state 
selection policy.  These parameters may be changed at runtime in 
order to bias p-state selection for power savings, performance, or 
any intermediate level.  Means are also provided for controlling c-
state transitions, though these will not be discussed in the paper.  
A summary of critical parameters follows:    
Timecheck: P-state change interval 
Increase/Decrease Time: How long a thread must be in excess of 
the transition threshold before a transition is requested 
Increase/Decrease percent: Transition threshold.  A thread must 
exceed this threshold in order to be eligible for a transition. 
Increase/Decrease Policy: P-state transition method.  Three 
methods are available: Ideal, single, and rocket. 
• Ideal: OS calculates ideal frequency based on current utilization. 
• Single: new frequency is one step from current frequency. 
• Rocket: go directly to maximum or minimum frequency. 



4. RESULTS 
4.1. Performance Effects 
P-states and C-states impact performance in two ways: Indirect 
and Direct.  Indirect performance effects are due to the interaction 
between active and idle cores.  In the case of Quad-Core AMD 
processors, this is the dominant effect.  When an active core 
performs a cache probe of an idle core, latency is increased 
compared to probing an active core.  The performance loss can be 
significant for memory-bound (cache probe-intensive) workloads.  
Direct performance effects are due to the current operating 
frequency of an active core.  The effect tends to be less compared 
to indirect, since operating systems are reasonably effective at 
matching current operating frequency to performance demand.  
These effects are illustrated in Figure 3. 

Two extremes of workloads are presented: the compute-bound 
crafty and the memory-bound equake.  For each workload, two 
cases are presented: fixed and normal scheduling.  Fixed 
scheduling isolates indirect performance loss by eliminating the 
effect of OS frequency scheduling and thread migration.   This is 
accomplished by forcing the software thread to a particular core 
for the duration of the experiment.  In this case, the thread runs 
always run at the maximum frequency.  The idle cores always run 
at the minimum frequency.  As a result, crafty achieves 100 
percent of the performance of processor that does not use dynamic 
power management.  In contrast, the memory-bound equake 
shows significant performance loss due to the reduced 
performance of idle cores.  We see direct performance loss in the 
green dashed and red dotted lines, which utilize OS scheduling of 
frequency and threads.  Because direct performance losses are 
caused by suboptimal frequency in active cores, the compute-
bound crafty shows a significant performance loss.  The memory-
bound equake actually shows a performance improvement for 
very low idle core frequencies.  This is caused by idle cores 
remaining at a high frequency following a transition from active 
to idle.    

60%

65%

70%

75%

80%

85%

90%

95%

100%

105%

200 700 1200 1700 2200

Pe
rf
or
m
an
ce

Idle Core Frequency (MHz)

crafty‐fixed

equake‐fixed

equake

crafty

 
Figure 3. Direct and Indirect Performance Impact 

4.1.1. Indirect Performance Effects 
The amount of indirect performance loss is mostly dependent on 
the following three factors:  Idle core frequency, OS p-state 
transition characteristics, and OS scheduling characteristics.  The 
probe latency (time to respond to probe) is largely independent of 
idle core frequency above the “breakover” frequency (FreqB).  
Below FreqB the performance drops rapidly at an approximately 
linear rate.  This can be seen in Figure 3 as the dashed red line.  

The value of FreqB is primarily dependent on the inherent probe 
latency of the processor and the number of active and idle cores.  
Increasing the active core frequency increases the demand for 
probes and therefore increases FreqB. Increasing the number of 
cores has the same effect.  Therefore, multi-socket systems tend to 
have a higher FreqB.  Assuming at least one idle core, the 
performance loss increases as the ratio of active-to-idle cores 
increases.  For an N-core processor, the worst-case is N-1 active 
cores with 1 idle core.   To reduce indirect performance loss, the 
system should be configured to guarantee than the minimum 
frequency of idle cores is greater than or equal to FreqB.  Since the 
recommended configuration for Quad-Core AMD processors is 
“K8-style” probe response (CpuPrbEn=0) [2], the minimum idle 
core frequency is determined by the minimum p-state frequency.  
An explanation of these settings is provided later, in section 4.2.2.  
For the majority of workloads, these recommended settings yield 
less than 10 percent performance loss due to idle core probe 
latency. 

The other factors in indirect performance loss are due to the 
operating system interaction with power management.  These 
factors, which include OS p-state transition and scheduling 
characteristics, tend to mask the indirect performance loss.  
Ideally, the OS selects a high frequency p-state for active cores 
and a low frequency for idle cores.  However, erratic workloads 
(many phase transitions) tend to cause high error rates in the 
selection of optimal frequency.  Scheduling characteristics that 
favor load-balancing over processor affinity worsen the problem.  
Each time the OS moves a process from one core to another, a 
new phase transition has effectively been introduced.  We give 
more details of OS p-state transitions and scheduling 
characteristics in the next section on direct performance effects. 

4.1.2. Direct Performance Effects 
Since the OS specifies the operating frequency of all cores (p-
states), the performance loss is dependent on how the OS selects a 
frequency.  To match performance capacity (frequency) to 
workload performance demand, the OS approximates demand by 
counting the amount of slack time a process has.  For example, if 
a process runs for only 5ms of its 10 ms time allocation it is said 
to be 50 percent idle.  In addition to the performance demand 
information, the OS p-state algorithm uses a form of low-pass 
filtering, hysteresis, and performance estimation/bias to select an 
appropriate frequency.  These characteristics are intended to 
prevent excessive p-state transitions.  This has been important 
historically since transitions tended to cause a large performance 
loss (PLL settling time, VDD stabilization).   However, in the case 
of Quad-Core AMD processors and other recent designs, the p-
state transition times have been reduced significantly.  As a result, 
this approach may actually reduce performance for some 
workloads and configurations. See the red dotted equake and solid 
green crafty lines in Figure 3.  These two cases demonstrate the 
performance impact of the OS p-state transition hysteresis. 

As an example, consider a workload with short compute-bound 
phases interspersed with similarly short idle phases.  Due to the 
low-pass filter characteristic, the OS does not respond to the short 
duration phases by changing frequency.  Instead, the cores run at 
reduced frequency with significant performance loss.  In the 
pathologically bad case, the OS switches the frequency just after 
the completion of each active/idle phase.  The cores run at high 
frequency during idle phases and low frequency in active phases.  



Power is increased while performance is decreased.  OS 
scheduling characteristics exacerbate this problem.  Unless the 
user makes use of explicit process affinity or an affinity library, 
some operating systems will attempt to balance the workloads 
across all cores.  This causes a process to spend less contiguous 
time on a particular core.  At each migration from one core to 
another there is a lag from when the core goes active to when the 
active core has its frequency increased.  The aggressiveness of the 
p-state setting amplifies the performance loss/power increase due 
to this phenomenon.  Fortunately, recent operating systems such 
as Microsoft Windows Vista provide means for OEMs and end 
users to adjust the settings to match their workloads/hardware (see 
powercfg.exe).     

4.2. Workload Power Characterization 
4.2.1. Subsystem Power Breakdown 
In this section we consider average power consumption levels 
across a range of workloads.  We draw two major conclusions for 
desktop workloads: the core is largest power consumer, and 
contains the most variability across workloads.  Though other 
subsystems, such as memory controller and DIMM, have 
significant variability within workloads, only the core 
demonstrates significant variability in average power across 
desktop workloads.  Consider Figure 4: while average core power 
varies by as much as 57 percent, the next most variable 
subsystem, DIMM, varies by only 17 percent.  Note, this 
conclusion does not hold for server systems and workloads in 
which much larger installations of memory modules cause greater 
variability in power consumption.  The cause of this core power 
variation can be attributed to a combination of variable levels of 
thread-level parallelism and core-level power adaptations.  In the 
case of 3D, the workload is able to consistently utilize multiple 
cores. 

At the other extreme, the productivity workload rarely utilizes 
more than a single core.  Since Quad-Core AMD processor power 
adaptations may be applied at the core level, frequency reduction 
achieves significant power savings on the three idle cores.  As a 
result, the productivity workload consumes much less power than 
the 3D workload.  The remaining workloads offer intermediate 
levels of thread-level parallelism and therefore have intermediate 
levels of power consumption.  Also note that this level of power 
reduction is due only to frequency scaling.  With the addition of 

core-level voltage scaling, the variation/power savings is expected 
to increase considerably.   

We draw a slightly different conclusion for server workloads and 
systems.  Due to the presence of large memory subsystems, 
DIMM power is a much larger component.  Also, larger working 
sets such as those found in SPEC CPU2006 compared to SPEC 
CPU2000 shift power consumption from the cores to the DIMMs.  
Consider CPU2000 in Figure 5 and CPU20006 in Figure 6.  Due 
to comparatively small working sets, CPU2000 workloads are 
able to achieve high core power levels.  The reason is that, since 
the working set fits easily within the cache, the processor is able 
to maintain very high levels of utilization.  This is made more 
evident by the power increases seen as the number of 
simultaneous threads is increased from 1 to 4.  Since there is less 
performance dependence on the memory interface, utilization and 
power therefore continue to increase as threads are added.  Result 
is different for CPU2006 workloads.  Due to the increased 
working set size of these workloads, the memory subsystem limits 
performance.  Therefore, core power is reduced significantly for 
the four-thread case.  Differences for the single-thread case are 
much less due to a reduced dependency on the memory 
subsystem.  The shift in utilization from the core to the memory 
subsystem can be seen clearly in Figure 7.  For the most compute-
bound workloads, core power is five times larger than DIMM 
power.  However, as the workloads become more memory-bound, 
the power levels converge to the point where DIMM power 
slightly exceeds core power.           
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Figure 4. Desktop Subsystem Power Breakdown 
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Figure 6. CPU2006 Average Core Power 

 

Figure 7. CPU2006 Average Core vs. DIMM Power 

4.2.2. Core Power Phase Characteristics 
The previous section demonstrates the core as having the most 
variable average power consumption across the various 
subsystems.  In this section we present the intra-workload phase 
characteristics which contribute to the variation.  These results are 
attributable to the three dominant components of power 
adaptation: hardware adaptation, workload characteristics, and OS 
control of adaptations.  In Figure 8 we present a distribution of the 
phase length of power consumption for desktop workloads.  We 
draw two major conclusions: the operating system has a 
significant effect on phase length and interactive workloads tend 
to have longer phases. 

First, the two spikes at 10 ms and 100 ms show the effect of the 
operating system.  These can be attributed to the period timer tick 
of the scheduler and p-state transitions requested by the operating 
system.  In the case of Microsoft Windows Vista, the periodic 
timer tick arrives every 10 ms.  This affects the observed power 
level since power consumed in the interrupt service routine is 
distinct from “normal” power levels.  In the case of high-IPC 
threads, power is reduced while servicing the interrupt, which 
typically has a relatively low-IPC due to cold-start misses in the 
cache and branch predictor.  In the case of low-power or idle 
threads, power is increased since the core must be brought out of 
one or more power saving states in order to service the interrupt.  
This is a significant problem for power adaptations since the timer 
tick is not workload dependent.  Therefore, even a completely idle 
system must “wake up” every 10 ms to service an interrupt, even 

though no useful work is being completed.  Also, 10 ms phase 
transitions are artificially introduced due to thread migration.  
Since thread scheduling is performed on timer tick intervals, 
context switches, active-to-idle, and idle-to-active transitions 
occur on 10 ms intervals.  The 100 ms phases can be explained by 
the OS’s application of p-state transitions.  Experimentally, it can 
be shown that the minimum rate at which the operating system 
will request a transition from one p-state to another is 100 ms.  
When p-state transitions are eliminated, the spike at the 100 ms 
range of Figure 8 is eliminated.  

The second conclusion from Figure 8 is that interactive workloads 
have longer phase durations.  In the case of 3D and video creation 
workloads, a significant portion of time is spent in compute-
intensive loops.  Within these loops, little or no user interaction 
occurs.  In contrast, the productivity and e-learning workloads 
spend a greater percentage of the time receiving and waiting for 
user input.  This translates into relatively long idle phases which 
are evident in the lack of short duration phases in Figure 8. 

This is further supported by Figures 9 through 12, which group 
the most common phases by combinations of amplitude and 
duration.  Note that all phases less than 10 ms are considered to be 
10 ms.  This simplifies presentation of results and is reasonable 
since the OS does not apply adaptation changes any faster than 10 
ms.  These figures show that the highest power phases only 
endure for a short time.  These phases, which are present only in 
3D and – to a much lesser degree – in video creation, are only 
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possible when multiple cores are active.  We attribute the lack of 
long duration high power phases to two causes: low percent of 
multithreaded phases and higher IPC dependence during 
multithreaded phases.  The impact of few multithreaded phases is 
expected and has been demonstrated in Figures 5 and 6.  The 
dependence on IPC for phase length increases as the number of 
active cores increases.  Figure 2 from section 3.2.2 shows that 
power increases significantly as IPC increases from 0 to 3.  
Assuming active cores running in the P0 (highest frequency) state, 
IPC has the largest effect on power consumption since IPC varies 
much more quickly (nanoseconds) than transitions between power 
states (10’s of milliseconds).  Consistent power consumption 
levels are less likely as the number of active cores increases.      1 10 100 1000
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Figure 8. Core Power Phase Duration 
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        Figure 9. Core Power Phases – 3D 
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       Figure 10. Core Power Phases – E-learning 
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    Figure 12. Core Power Phases – Video Creation 

4.3. Identifying Optimal Adaption Settings 
In this section, we present results to show the effect that dynamic 
adaptations ultimately have on performance and power 
consumption.  We obtained all results on a real system, 
instrumented for power measurement.  The two major areas 
presented are probe sensitivity (indirect) and operating system 
effects (direct). 

First we consider probe sensitivity of SPEC CPU2006.  Table 4 
shows performance loss due to the use of p-states.  In this 
experiment the minimum p-state is set below the recommended 
performance breakover point for probe response.  This 
emphasizes the inherent sensitivity workloads have to probe 
response.  Operating system frequency scheduling is biased 
towards performance by fixing active cores at the maximum 
frequency and idle cores at the minimum frequency.  These results 
suggest that floating point workloads tend to be most sensitive to 
probe latency.  However, in the case of SPEC CPU2000 



workloads, almost no performance loss is shown.  The reason, as 
shown in section 4.3.1, is that smaller working set size reduces 
memory traffic and, therefore, the dependence on probe latency.  
For these workloads only swim, equake, and eon showed a 
measureable performance loss. 

Next we show that by slightly increasing the minimum p-state 
frequency it is possible to recover almost the entire performance 
loss.  Figure 13 shows an experiment using a synthetic kernel with 
very high probe sensitivity with locally and remotely allocated 
memory.  The remote case simply shows that the performance 
penalty of accessing remote memory can obfuscate the 
performance impact of minimum p-state frequency.  The indirect 
performance effect can be seen clearly by noting that performance 
increases rapidly as the idle core frequency is increased from 800 
MHz to approximately 1.1 GHz.  This is a critical observation 
since the increase in power for going from 800 MHz to 1.1 GHz is 
much smaller than the increase in performance.  The major cause 
is that static power represents a large portion of total power 
consumption.  Since voltage dependence exists between all cores 
in a package, power is only saved through the frequency 
reduction.  There is no possibility to reduce static power since 
voltage is not decreased on the idle cores.   
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Figure 13. Remote and Local Probe Sensitivity 
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Figure 14. C-state vs. P-state Performance 
Using the same synthetic kernel we also isolate the effect of p-
states from c-states.  Since the p-state experiments show that 
indirect performance loss is significant below the breakover point, 
we now consider c-state settings that do not impose the 
performance loss.  To eliminate the effect of this performance loss 
we make use of K8-mode probe response.  In this mode, idle cores 
increase their frequency before responding to probe requests.  To 
obtain an optimal tradeoff between performance and power 
settings, this setting mode can be modulated using hysteresis, 

implemented by adjusting a hysteresis timer.  The timer specifies 
how long the processor remains at the increased frequency before 
returning to the power saving mode.  The results are shown in 
Figure 14.  The blue line represents the performance loss due to 
slow idle cores caused by the application of c-states only.  Like 
the p-state experiments, performance loss reaches a clear 
breakpoint.  In this case, the breakover point represents 40 percent 
of the maximum architected delay.  Coupling c-states with p-
states, the red shows that the breakover point is not as distinct 
since significant performance loss already occurs.  Also, like the 
p-state experiments, setting the hysteresis timer to a value of the 
breakover point increases performance significantly while 
increasing power consumption on slightly.   

 

Figure 15. Varying OS P-state Transition Rates 
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Figure 16. Effect of Increasing P-state Transition Rate 
Next we consider the effect of operating system tuning parameters 
for power adaptation selection.  In order to demonstrate the 
impact of slow p-state selection, we present Figure 15.  The effect 
is shown by varying a single OS parameter while running a phase 
transition intensive kernel. In this graph, the TimeCheck value is 
varied from 1 ms to 1000 ms.  TimeCheck controls how often the 
operating system will consider a p-state change.  We found two 
major issues: minimum OS scheduling quanta and 
increase/decrease filter. 

First, performance remains constant when scaling from 1 us to 10 
ms (< 1 ms not depicted).  We attribute this to the OS 
implementation of scheduling.  For Microsoft Windows Vista, all 
processes are scheduled on the 10 ms timer interrupt.  Setting 
TimeCheck to values less than 10 ms will have no impact since p-
state changes, like all process scheduling, occur only on 10-ms 
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boundaries.  Second, even at the minimum TimeCheck value, 
performance loss is at 80 percent.  The reason is that other settings 
become dominant below 10 ms.  In order for a p-state transition to 
occur the workload must overcome the in-built low-pass filter.  
This filter is implemented as a combination of two thresholds: 
increase/decrease percent and increase/decrease time.  The percent 
threshold represents the utilization level that must be crossed in 
order to consider a p-state change.  The threshold must be 
exceeded for a fixed amount of time specified by 
increase/decrease time.  Since the increase time is much longer 
than TimeCheck (300 ms vs. 10 ms), significant performance is 
lost even at the minimum setting. 

To reduce the impact of slow p-state transitions we select OS 
settings that increase transition rates.  In a general sense, frequent 
p-state transitions are not recommended due to the hardware 
transition costs.  However, our experiments have shown that the 
performance cost for slow OS-directed transitions is much greater 
than that due to hardware.  This can be attributed to the relatively 
fast hardware transitions possible on Quad-Core AMD processors.  
Compared to OS transitions which occur at 10 ms intervals, 
worst-case hardware transitions occur in a matter of 100’s of 
microseconds.  Figure 16 shows the effect of optimizing p-state 
changes to the fastest rate of once every 10 ms.  The probe-
sensitive equake is shown with and without “fast p-states.”   This 
approach yields between 2 percent and 4 percent performance 
improvement across the range of useful idle core frequencies.  As 
we will see in the next section, this also improves power savings 
by reducing active-to-idle transition times. 
Table 4. Performance Loss Due to Low Idle Core Frequency 

SPEC CPU 2006 - INT 
perlbench -0.8% sjeng 0.0% 
bzip2 -1.0% libquantum -7.0% 
gcc -3.6% h264ref -0.8% 
mcf -1.8% omnetpp -3.7% 
gobmk -0.3% astar -0.5% 
hmmer -0.2%  

SPEC CPU 2006 - FP 
bwaves -5.6% soplex -6.7% 
games -0.6% povray -0.5% 
milc -7.9% calculix -0.6% 
zeusmp -2.1% GemsFDTD -5.9% 
gromacs -0.3% tonto -0.6% 
cactusADM -2.6% lbm -5.6% 
leslie3D -6.0% wrf -3.2% 
namd -0.1% sphinx3 -5.6% 
dealII -1.3%  

4.4. Power and Performance 
In this section we present results for p-state and c-state settings 
which reflect the findings of the previous sections.  In this case we 
study the Microsoft Windows Vista operating system running 
desktop workloads.  This approach gives the highest exposure to 
the effect the operating system has on dynamic adaptations.  By 
choosing desktop workloads, the number of phase transitions and, 
therefore, OS interaction is increased.  Since these workloads 
model user input and think times, idle phases are introduced.  
These idle phases are required for OS study since the OS makes 
use of idle time for selecting the operating point.  Also, Microsoft 
Windows Vista exposes tuning parameters to scale the built-in 
adaptation selection algorithms for power savings versus 

performance.  Table 5 shows power and performance results for 
SYSmark 2007 using a range of settings chosen based on the 
results of the previous sections.  In order to reduce p-state 
performance loss, the idle core frequency is set to 1250 MHz.  To 
prevent c-state performance loss, K8-mode is used with the 
hysteresis time set above the breakover point.  Also, C1e mode is 
disabled to prevent obscure idle power savings due to the 
architected p-states and c-states.  

Two important findings are made regarding adaption settings.  
First, setting power adaptations in consideration of performance 
bottlenecks reduces performance loss while retaining power 
savings.  Second, reducing OS p-state transition time increases 
performance and power savings.  Table 5 shows the resultant 
power and performance for a range of hardware and software 
settings.  We show that performance loss can be limited to less 
than 10 percent for any individual subtest while power savings 
average 45 percent compared to not using power adaptations.  The 
effect of workload characteristics is evident in the results.  E-
learning and productivity show the greatest power savings due to 
their low utilization levels.  These workloads frequently use only 
a single core.  At the other extreme, 3D and video creation have 
less power savings and a greater dependence on adaption levels.  
This indicates that more parallel workloads have less potential 
benefit from p-state and c-state settings, since most cores are 
rarely idle.  For those workloads, idle power consumption is more 
critical.  These results also point out the limitation of existing 
power adaptation algorithms.  Since current implementations only 
consider idle time rather than memory-boundedness, the benefit of 
p-states is underutilized. 

Additionally, we show the effect of adjusting operating system p-
state transition parameters.  Columns Fast and Fast-perf represent 
cases in which p-state transitions occur at the fastest rate and bias 
towards performance respectively.  Since existing operating 
system such as Microsoft Windows XP and Linux bias p-state 
transitions toward performance, these results can be considered 
representative for those cases.  The default configuration of 
Microsoft Windows Vista biases toward reducing the number of 
p-state transitions.  Since the normal case, below, uses that 
configuration, performance and power are impacted accordingly. 

5. CONCLUSION 
In this paper we have presented a power and performance analysis 
of dynamic power adaptations in a Quad-Core AMD processor.  
We have shown that performance and power are greatly affected 
by direct and indirect characteristics.  Direct effects are composed 
of operating system thread and frequency scheduling.  We show 
that slow transitions by the operating system between idle and 
active operation cause significant performance loss.  The effect is 
greater for compute-bound workloads which would otherwise be 
unaffected by power adaptations.  Slow active-to-idle transitions 
also cause reduced power savings.  Indirect effects due to shared, 
power-managed resources such as caches can greatly reduce 
performance if idle core frequency reductions are not limited 
sufficiently.  These effects are more pronounced in memory-
bound workloads since performance is directly related to 
accessing shared resources between the active and idle cores.  
Finally, we show that performance loss and power consumption 
can be minimized through careful selection of hardware 
adaptation and software control parameters.  In the case of 
Microsoft Windows Vista running desktop workloads, 



performance loss using a naïve OS configuration is less than 8 
percent on average for all workloads while saving an average of 
45 percent power.  Using an optimized OS configuration, 
performance loss drops to less than 2 percent with power savings 
of 30 percent. 

Table 5. Power/Performance Study: SYSmark® 2007 
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P‐States Perform anceLoss Pow erSavin gs

E ‐Learning Normal 8.80% 43.10%
V ideoCrea tio n Normal 6.20% 44.70%

Productivity N ormal 9.50% 45.30%

3D Normal 5.90% 45.90%

E ‐Learning Fast 6.40% 45.90%

V ideoCrea tio n Fast 5.20% 46.10%
Productivity Fast 8.00% 47.80%

3D Fast 4.60% 48.20%

E ‐Learning F ast‐perf 1.50% 32.90%
V ideoCrea tio n F ast‐perf 1.80% 25.40%

Productivity F ast‐perf 2.50% 27.90%

3D Fast‐perf 1.40% 35.10%


