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Abstract 
This paper proposes the use of microprocessor performance 
counters for online measurement of complete system power 
consumption.  While past studies have demonstrated the use 
of performance counters for microprocessor power, to the 
best of our knowledge, we are the first to create power 
models for the entire system based on processor 
performance events. Our approach takes advantage of the 
“trickle-down” effect of performance events in a 
microprocessor.  We show how well known performance-
related events within a microprocessor such as cache misses 
and DMA transactions are highly correlated to power 
consumption outside of the microprocessor.  Using 
measurement of an actual system running scientific and 
commercial workloads we develop and validate power 
models for five subsystems: memory, chipset, I/O, disk and 
microprocessor.  These models are shown to have an 
average error of less than 9% per subsystem across the 
considered workloads.  Through the use of these models and 
existing on-chip performance event counters, it is possible 
to estimate system power consumption without the need for 
additional power sensing hardware. 

1 Introduction 
In order to improve microprocessor performance while 
limiting power consumption, designers are increasingly 
utilizing dynamic hardware adaptations.  These adaptations 
provide an opportunity for extracting maximum 
performance while remaining within temperature and power 
limits.  These adaptations are valuable tools for reducing 
power consumption and temperature.  Two of the most 
common examples are dynamic voltage and frequency 
scaling (DVFS) and clock gating.  With these adaptations it 
is possible reduce power consumption and therefore chip 
temperature, by reducing the amount of available 
performance.  Due to the thermal inertia in microprocessor 
packaging, detection of temperature changes may occur 
significantly later than the power events which caused them.  
Rather than relying on relatively slow temperature sensors 
for observing power consumption it has been demonstrated 
[1][2][3] that performance counters can be used as a proxy 
for power measurement.  These counters provide a timely, 
readily accessible means of observing power variation in 
real systems.  In this paper we extend this valuable tool 
beyond the microprocessor to various computer subsystems.  
We present models for five subsystems: microprocessor, 

chipset, memory, I/O and disk.  Though microprocessors are 
the largest consumers of power, the remaining subsystems 
make up 40%-60% of total power depending on the 
workload.  By providing a means for power management 
policies to consider these additional subsystems it is 
possible to have a significant effect on power and 
temperature.  In data and computing centers, this can be a 
valuable tool for keeping the center within temperature and 
power limits [4].  Further, since the tool utilizes existing 
microprocessor performance counters, the cost of 
implementation is small.  Though power models exist for 
common computer subsystems, these models rely on events 
local to the subsystem for representing power, which are 
typically measured using sensors/counters at the subsystem.  
Our approach is distinct since it uses events at the processor, 
eliminating the need for sensors spread out in various parts 
of the system and corresponding interfaces.  Lightweight 
adaptive systems can easily be built using models of this 
type. 

In this study we show that microprocessor performance 
events can accurately estimate total system power.  By 
considering the propagation of power inducing events 
within the various subsystems, we identify six performance 
events for modeling the entire system power.  The resultant 
models predict power with an average error of less than 9%.  

2 Related Work 
2.1 Performance Counter Power 
Models 
The use of performance counters for modeling power is not 
a new concept.  However, unlike past studies [1][2][3][5][6] 
we go beyond modeling power consumed only in a 
microprocessor to modeling power consumed by an entire 
system.  One of the earliest studies by Bellosa et. al [1] 
demonstrates strong correlations between performance 
events (instructions/cycle, memory references, cache 
references) and power consumption in the Pentium II.  Isci 
develops a detailed power model for the Pentium IV using 
activity factors and functional unit area, similar to Wattch 
[7].  Bircher [3] presents a simple linear model for the 
Pentium IV based on the number of instructions 
fetched/cycle.  Lee [6] extends the use of performance 
counters for power modeling to temperature. 



2.2 Subsystem Power Models 
2.2.1 Local Event Models 
Existing studies [8][9][10][11] into modeling of subsystem 
power have relied on the use of local events to represent 
power.  In this section we consider existing power modeling 
studies that make use of local events. 

Memory:  It is possible to estimate power consumption in 
DRAM modules by using the number of read/write cycles 
and percent of time within the precharge, active and idle 
states [8].  Since these events are not directly visible to the 
microprocessor, we estimate them using the count of 
memory bus accesses by the processor and other events that 
can be measured at the CPU.  We also show that it is not 
necessary to account for the difference between read and 
write power in order to obtain accurate models.  We use a 
similar approach as Contreras [12].  His model makes use of 
instruction cache misses and data dependency delay cycles 
in the Intel Xscale processor to estimate power.  We show 
that for I/O intensive servers, it is also necessary to account 
for memory utilization caused by agents other than the 
microprocessor, namely I/O devices performing DMA 
accesses. 

Disk:  A study by Zedlewski et al [9] shows that hard disk 
power consumption can be modeled by knowing how much 
time the disk spends in the following modes of operation: 
seeking, rotation, reading/writing, and standby.  Rather than 
measuring these events directly from the disk, we estimate 
the dynamic events, seeking, reading and writing, through 
processor events such as interrupts and DMA accesses. Kim 
et al [10] find that disk power and temperature can be 
accurately modeled using the amount of time spent moving 
the disk read/write head and the speed of rotation.   

I/O and Chipset:  Our objective is to estimate power using 
processor counters without having access to specific disk or 
memory system metrics.  I/O and chipset subsystems are 
composed of rather homogeneous structures and we 
estimate their power through traditional CMOS power 
models.  These models divide power consumption into static 
and dynamic.  Static power represents current leakage, 
while dynamic accounts for switching current of cmos 
transistors.  Since static power does not vary in our system, 
due to a relatively constant vcc and temperature, we 
estimate dynamic power in the I/O and chipset subsystems 
through the number of interrupts, DMA and uncacheable 
accesses. 

2.2.2 Operating System Event Models 
Rather than using events local to the subsystem, Heath [13] 
uses operating system level event counters to model 
dynamic power of CPU, disk and network subsystems.  Our 
approach differs by making use of on-chip processor 
performance counters.  This reduces the performance loss 
due to sampling of the counters.  Reading On-chip 
performance counters requires only a small number of fast 
CPU register accesses.  Reading operating system counters 

requires relatively slow access using system service routines 
.(file open/close etc.).   

2.3 Dynamic adaptation 
Dynamic adaptation of hardware promises to extend 
performance gains so common in the era of microprocessor 
frequency scaling, in spite of the critical limitation of power 
consumption.  By dynamically reconfiguring hardware to 
match the demands of software, it is possible to obtain high 
performance and low power consumption.  Also, designers 
are able to develop hardware that conforms to average 
power consumption rather than peak.  This has a great 
impact since most modern computing systems spend a 
majority of the time underutilized [4]. 

Techniques which adapt in response to temperature changes 
are at a disadvantage compared to performance counter 
techniques [6].  Due to the thermal inertia of components, 
temperature sensors are less able to allow preemptive 
reaction to impending thermal emergencies.  By using 
performance counters as a proxy for power consumption, it 
is possible to see the cause of thermal emergencies in a 
timelier manner. 

Current dynamic adaptation implementations are primarily 
limited to process scheduling, level adaptation or thermal 
emergency management.  However, current microprocessors 
and systems have the potential for significantly more robust 
and effective adaptation.  Several researchers have 
demonstrated the effectiveness of techniques for adapting 
performance/power using DVFS. Kotla et al [15] use 
instruction throttling and a utilization-based power model to 
show the effect of DVFS in a server cluster.  At runtime 
they determine the minimum amount of required processor 
performance (frequency) and adjust the microprocessors 
accordingly.  Due to the significant variation in webserver 
workloads, Rajamani et al [16] show that 30%-50% energy 
savings can be obtained through powering down idle 
compute nodes (severs).  Using simulation Chen [17] 
applies DVFS and node power down in a dense compute 
center environment.  However, unlike previous studies they 
that only seek to minimize energy consumption while 
maintaining performance, Chen also considers the reliability 
impact of powering servers on and off.  From the 
perspective of managing thermal, all of these dynamic 
adaptation schemes can benefit from the use of power 
modeling by being able to implement additional power 
management policies that maintain safe operating 
conditions.   

2.4 Phase Detection 
While thermally-directed adaptation has clear indicators 
(temperature > limit) for when to apply adaptations, 
performance-directed adaptation thresholds may not be as 
obvious.  Since performance must not be compromised, 
performance insensitive phases of program execution must 
be identified.  Researchers have developed numerous 



techniques for detecting program phases [18][19][20].  
Dhodapkar and Smith [18] consider the effectiveness of 
instruction working sets, basic block vectors (BBV) and 
conditional branch counts for the detection of program 
phases.  They find that BBVs offer the highest sensitivity 
and phase stability.  Lau [19] compares program structures 
such as basic blocks, loop branches, procedures, opcodes, 
register usage, and memory address information to identify 
phases.  Using variation in CPI compared to that in the 
observed structures, they show that loop frequency and 
register usage provide better accuracy the traditional basic 
block vector approach.  For the purpose of detecting power 
phases, Isci [20] compares the use of a traditional control 
flow metric (BBV) to on-chip performance counters.  He 
finds that performance counter metrics have a lower error 
rate since they account for microarchitectural characteristics 
such as data locality or operand values.  These techniques 
for phase detection are valuable for direct dynamic 
adaptations that increase efficiency of the microprocessor.  
For the study of phases within a complete system it is also 
necessary to have power information for additional 
subsystems.   

2.5 Subsystem Power Studies 
In order to motivate the use of microprocessor performance 
counters in modeling subsystem power, we demonstrate the 
significant contribution of the various subsystems to total 
power consumption.  Unlike previous studies focusing on 
workstation [21] and mobile [22] power consumption, we 
show that the I/O subsystem makes up a larger part of total 
power in servers.  Bohrer’s [21] study of workstation power 
consumption considers three subsystems: CPU, hard disk, 
and combined memory and I/O.  Our study provides finer 
granularity in that memory, I/O and chipset power are 
measured separately.  Mahesri’s study [22] presents fine 
grain measurement (ten subsystems), but uses a very 
different hardware (laptop) and software (productivity 
workloads) configuration.  Finally, neither of the previous 
works present models based on their subsystem power 
characterizations. 

3 Methodology 
In this section we describe our measurement environment, 
workloads and performance event selection.  

3.1 Power & Performance Measurement 
3.1.1 Subsystem Description 
The division of the subsystems in our target server is 
dictated by the system designer.  Fortunately, the design 
portioned the subsystems in a configuration that is quite 
useful for study.  In particular, we were able to separately 
measure five major subsystems: CPU, chipset, memory, I/O 
and disk.  The CPU subsystem is composed of four Pentium 
IV Xeon processors.  Ideally, we would have been able to 
measure power for each processor.  We are only able to 

measure the sum of processor power.  Fortunately, existing 
uniprocessor models [2][3] allow observation of individual 
processor power.  We defined chipset as processor interface 
chips not included in other subsystems.  The memory 
subsystem includes memory controller and DRAM power.  
I/O included PCI buses and all devices attached to them.  
The disk subsystem was composed of two SCSI disks. 

3.1.2 Power Measurement 
To measure power in the five subsystems, we employed 
resistors connected in series with the power source.  Since 
the power source is provides as a regulated voltage, the 
voltage drop across the resistor is directly proportional to 
the power being consumed in the subsystem.  This voltage 
drop is captured using data acquisition hardware in a 
separate workstation.  Ten thousand samples were taken 
each second and were then averaged for relation to 
performance counter samples taken at the much slower rate 
of  one per second.  

Since the performance counter samples were taken by the 
target system itself, we included a synchronization signal to 
match data from the two sources.  At each sampling of the 
target performance counters, a single byte was sent to a 
USB serial port located on the target.  The transmit line of 
the serial port was sampled by the data acquisition hardware 
along with the other power data.  The single byte of data 
acted as a synchronization pulse signature.  Then using the 
synchronization information, the data was analyzed offline 
using software tools. 

3.1.3 Performance Measurement 
To gather a record of performance events in the processor, 
we periodically sample the Pentium IV’s on-chip 
performance monitoring counters.  Sampling is performed 
on each processor at a rate of once per second.  The total 
count of various events is recorded and the counters are 
cleared.  Software access to the performance counters is 
provided by the Linux perfctr [23] device driver.  As 
described in the power measurement section, a 
synchronization signal was introduced at each performance 
counter sampling. 

3.2 Workloads 
3.2.1 Selection 
Our selection of workloads was driven by two major factors: 
the workload’s effectiveness at utilizing particular 
subsystems and a diverse set of behaviors across all 
workloads.  The first requirement is important for 
development and tuning of the power models.  The second 
is required to validate the models. 

In order to meet the requirement of subsystem utilization, 
we employ our power measurement system.  Workloads are 
chosen based on their apparent utilization of a subsystem.  
Then actual power measurement is done to verify the 
selection.  We find that high subsystem utilization is 



difficult to achieve using only conventional workloads.  As 
a result, we create small synthetic workloads that are able to 
sufficiently utilize the subsystems.  Additionally, we 
combine multiple instances of single-threaded workloads 
such as SPEC CPU 2000 to produce very high utilization.  
Since our target system is composed of a 4-way SMP with 
two hardware threads per processor, we find that most 
workloads saturate (no increased subsystem utilization) with 
eight threads. 

In addition to utilizing a particular subsystem, it is necessary 
to have sufficient variation within the workload for training 
of the models.  In the case of the 8-thread workloads, we 
stagger the start of each thread by a fixed time, usually 30s-
60s.  This broad range of utilization ensures that the models 
are not only valid within a narrow range of utilization.  
Also, this ensures a proper relationship between power and 
the observed metric.  Without a sufficiently large range of 
samples, complex quadratic relationships may appear to be 
linear. 

3.2.2 Model Validation 
For the validation of the models we use eleven workloads: 
eight from the SPEC CPU 2000 benchmark suite [24], two 
commercial server type and a synthetic disk type.  The 
SPEC workloads are computationally intensive scientific 
applications intended to stress the CPU and memory 
subsystems.  The only access to other subsystems by these 
workloads occurs during the loading of the data set at 
program initialization.  In this study we only consider 
homogeneous combinations of the workloads.  For 
commercial workloads we use dbt-2 [25] and SPECjbb [26].  
Dbt-2 is intended to approximate the TPC-C transaction 
processing benchmark.  This workload does not require 
network clients, but does use actual hard disk access 
through the PostgreSQL [27] database.  Unfortunately, our 
target system did not have a sufficient number of hard disks 
to fully utilize the four Pentium IV processors.  Therefore, 
we included the SPECjbb server-side java benchmark.  This 
benchmark is able to more fully utilize the processor and 
memory subsystems without a large number of hard disks. 

To further validate our I/O and disk models, we developed a 
synthetic workload to generate very high disk utilization.  
Each instance of this workload creates a very large file 
(1GB).  Then the contents of the file are overwritten.  After 
about 100K pages have been modified, the sync() operating 
system call is made to force the modified pages to disk.  

For all subsystems, the power models are trained using a 
single workload trace that offers high utilization and 
variation.  The validation is then performed using the entire 
set of workloads. 

3.3 Performance Event Selection 
With over forty [28] detectable performance events, the 
Pentium IV provides a challenge in selecting which is most 
representative of subsystem power.  In our approach we 

considered the interconnection of the various subsystems 
pictured in Figure 1.  By noting the “trickle-down” effect of 
events in the processor, we were able to successfully select a 
subset of the performance events to model subsystem power 
consumption.  A simple example would be the effect of 
cache misses in the processor.  For a typical microprocessor 
the highest level of cache is the L2.  Transactions that 
cannot be satisfied (cache miss) by the L2 cause a cache line 
(block) sized access to the main memory.  Since the number 
of main memory accesses is directly proportional to the 
number of L2 misses, it is possible to approximate the 
number of accesses using only L2 misses.  Since these 
memory accesses must go off-chip, power is consumed 
proportionally in the memory controller and DRAM.  In 
reality the relation is not that simple, but there is still a 
strong causal relationship between L2 misses and main 
memory accesses.   
Though the initial selection of performance events for 
modeling is dictated by an understanding of subsystem 
interactions(as in the previous example),  the final selection 
of which event type(s) to use is determined by the average 
error rate and a qualitative comparison of the measured and 
modeled power traces.  

 
Figure 1  Propagation of Performance Events 

Cycles – Core Frequency ·Time 
The cycles metric is combined with most other metrics to 
create per cycle metrics.  This corrects for slight differences 
in sampling rate.  Though sampling is periodic, the actual 
sampling rate varies slightly due to cache effects and 
interrupt latency. 

Halted Cycles – Cycles in which clock gating was active 
When the Pentium IV processor is idle, it saves power by 
gating the clock signal to portions of itself.  Idle phases of 
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execution are “detected” by the processor through the use of 
the HLT (halt) instruction.  When the operating system 
process scheduler has available slack time, it halts the 
processor with this instruction.  The processor remains in 
the halted state until receiving an interrupt.  Though the 
interrupt can be an I/O device, it is typically the periodic OS 
timer that is used for process scheduling/preemption.  This 
has a significant effect on power consumption by reducing 
processor idle power from ~36W to 9W.  Because this 
significant effect is not reflected in the typical performance 
metrics, it is accounted for explicitly in the halted cycles 
counter.   

Fetched Uops – Micro-operations fetched 
The micro-operations (uops) metric is used rather than an 
instruction metric to improve accuracy.  Since in the P6 
architecture instructions are composed of a varying number 
of uops, some instruction mixes give a skewed 
representation of the amount of computation being done.  
Using uops normalizes the metric to give representative 
counts independent of instruction mix.  Also, by considering 
fetched rather than retired uops, the metric is more directly 
related to power consumption.  Looking only at retired uops 
would neglect work done in execution of incorrect branch 
paths and pipeline flushes.  

Level 3 Cache Misses – Loads/stores that missed in the 
Level 3 cache 
Most system main memory accesses can be attributed to 
misses in the highest level cache, in this case level 3.  Cache 
misses can also be caused by DMA access to cacheable 
main memory by I/O devices.  The miss occurs because the 
DMA must be checked for coherency in the processor 
cache. 

TLB Misses – Loads/stores that missed in the instruction or 
data Translation Lookaside Buffer.  TLB misses are distinct 
from cache misses in that they typically cause trickle-down 
events farther away from the microprocessor.  Unlike cache 
misses, which usually cause a cache line to be transferred 
from/to memory, TLB misses often cause the transfer of a 
page of data (4KB or larger).  Due to the large size of pages, 
they are often stored on disk.  Therefore, power is consumed 
on the entire path from the CPU to the hard disk. 

DMA Accesses – Transaction that originated in an I/O 
device whose destination is system main memory 
Though DMA transactions do not originate in the processor, 
they are fortunately visible to the processor.  As 
demonstrated in the L3 Miss metric description, these 
accesses to the processor (by an I/O device) are required to 
maintain memory coherency.  Being able to observe DMA 
traffic is critical since it causes power consumption in the 
memory subsystem.  An important thing to consider in the 
use of the Pentium IV’s DMA counting feature is that it 
cannot distinguish between DMA and processor coherency 
traffic.  All memory bus accesses that do not originate 
within a processor are combined into a single metric 
(DMA/Other).  For the uniprocessor case this is not a 

problem.  However, when using this metric in an SMP 
environment such as ours, care must be taken to attribute 
accesses to the correct source.  Fortunately, the workloads 
we considered have very little processor-processor 
coherency traffic.  This ambiguity is a limitation of the 
Pentium IV performance counters and is not specific to our 
technique.   

Processor Memory Bus Transactions – All transactions 
that enter/exit the processor must pass through this bus.  
Intel calls this the Front Side Bus (FSB).  As mentioned in 
the section on DMA, there is a limitation of being able to 
distinguish between externally generated (other processors) 
and DMA transactions.   

Uncacheable Accesses – Load/Store to a range of memory 
defined as uncacheable. 
These transactions are typically representative of activity in 
the I/O subsystem.  Since the I/O buses are not cached by 
the processor, downbound (processor to I/O) transactions 
and configuration transactions are uncacheable.  Since all 
other address space is cacheable, it is possible to directly 
identify downbound transactions.  Also, since configuration 
accesses typically precede large upbound (I/O to processor) 
transactions, it is possible to indirectly observe these.  

Interrupts – Interrupts serviced by CPU 
Like DMA transactions, most interrupts do not originate 
within the processor.  In order to identify the source of 
interrupts, the interrupt controller sends a unique ID 
(interrupt vector number) to the processor.  This is 
particularly valuable since I/O interrupts are typically 
generated by I/O devices to indicate the completion of large 
data transfers.  Therefore, it is possible to attribute I/O bus 
power to the appropriate device.  Though, the interrupt 
vector information is available in the processor, it is not 
available as a performance event.  Therefore, we simulate 
the presence of interrupt information in the processor by 
obtaining it from the operating system.  Since the operating 
system maintains the actual interrupt service routines, 
interrupt source accounting can be easily performed.  In our 
case we made use of the /proc/interrupts file available in 
Linux operating systems. 

3.3.1 Model Format 
The form of the subsystem power models is dictated by two 
requirements: low computational cost and high accuracy.   
Since these power models are intended to be used for 
runtime power estimation, it is preferred that they have low 
computational overhead.  For that reason we initially 
attempt regression curve fitting using linear models.  If it is 
not possible to obtain high accuracy with a linear model, we 
select single or multiple input quadratics. 



4 Results 
4.1 Average Workload Power 
In this section we present a power characterization of eleven 
workloads.  Averages in terms of Watts are given in Table 
1.  Also, workload variation is presented in terms of Watts 
of standard deviation in Table 2.  We will now consider the 
average idle power.  With a maximum sustained total power 
of just over 305 Watts, the system consumes 46% of the 
maximum power at idle.  This is lower than the typical 
value of 60% suggested for IA32 systems by [16].  The 
largest contributor to the reduced power at idle is the clock 
gating feature implemented in the microprocessor.  Without 
this feature, idle power would be approximately 80% of 
peak.  Due to the lack of a power management 
implementation, the other subsystems 
consume a large percentage of their peak power at idle.  The 
chipset and disk subsystems have nearly constant power 
consumption over the entire range of workloads.   

For the SPEC CPU 2000 workloads, there is the expected 
result of very high microprocessor power.  For all eight, 
greater than 53% of system power goes to the 
microprocessors.  The next largest consumer is the memory 
subsystem at 12%-18%.  All of the top consumers were 
floating point workloads.  This is expected due to the high 
level of memory boundedness of these workloads.  I/O and 
disk consumed almost the same power as the idle case since 
there is no access to network or storage during the 
workloads. 

The commercial workloads exhibited quite different power 
behavior compared to the scientific workloads.  In dbt-2 the 
limitation of sufficient disk resources is evident in the low 
microprocessor utilization.  Memory and I/O power are 
marginally higher than the idle case.  Disk power is almost 
identical to the idle case also due to the mismatch in storage 
size compared to processing and main memory capacity.  
Because the working set fits easily within the main memory, 
few accesses to the I/O and disk subsystem are needed.  The 
SPECjbb workload gives a better estimate of processor and 
memory power consumption in a balanced server workload 
with sustained power consumption of 61% and 84% of 
maximum for microprocessor and memory.   

Finally, we consider a synthetic workload intended to better 
utilize the disk and I/O subsystems.  The DiskLoad 
workload generates the highest sustained power in the 
memory, I/O and disk subsystems.  Surprisingly, the disk 
subsystem consumed only 2.8% more power than the idle 
case.  The largest contribution to this result is a lack of 
power saving modes in the SCSI disks.  According to [9], 
the power required for rotation of the disk platters is 80% of 
the peak amount, which occurs during disk write events.  
Since, our hard disks lack the ability to halt rotation during 
idle phases, the largest we could expect to see is a 20% 
increase in power compared to the idle state.  There is the 
possibility that the difference for our disks is even less than 
the 20% predicted for Zedlewski’s mobile hard disk.  
Unfortunately, we were unable to verify this since the hard 
disk manufacturer does not provide power specifications for 
the various hard disk events (seek, rotate, read/write and 
standby).  The large increase in the I/O subsystem is directly 
related to the number of hard disk data transfers required for 
the workload.  No other significant I/O traffic is present in 
this workload.  The large increase in memory power 
consumption is due to the implementation of the synthetic 
workload and the presence of a software hard disk cache 
provided by the operating system.  In order to generate a 
large variation in disk and I/O power consumption, the 
workload modifies a portion of a file approximately the size 
of the operating system disk cache.  Then using the 
operating system’s sync() call, the contents of the cache, 
which is located in main memory, are flushed to the disk.  
Since the memory is constantly accessed during the file 
modification phase (writes) and the disk flush phase (reads), 
very high memory utilization results.   

4.2 Subsystem Power Models 
This section describes the details of our subsystem power 
models.  We describe issues encountered during the 
selection of appropriate input metrics.  For each subsystem 
we provide a comparison of modeled and measured power 
under a high variation workload. 

4.2.1 CPU Power 
Our CPU power model improves an existing model by [3] to 
account for halted clock cycles.  Since it is possible to 
measure the percent of time spent in the halt state, we are 

Table 1  Subsystem Average Power (Watts) 
 CPU Chipset Memory I/O Disk Total 

idle 38.4 19.9 28.1 32.9 21.6 141 
gcc 162 20.0 34.2 32.9 21.8 271 
mcf 167 20.0 39.6 32.9 21.9 281 

vortex 175 17.3 35.0 32.9 21.9 282 
art 159 18.7 35.8 33.5 21.9 269 

lucas 135 19.5 46.4 33.5 22.1 257 
mesa 165 16.8 33.9 33.0 21.8 271 
mgrid 146 19.0 45.1 32.9 22.1 265 

wupwise 167 18.8 45.2 33.5 22.1 287 
dbt-2 48.3 19.8 29.0 33.2 21.6 152 

SPECjbb 112 18.7 37.8 32.9 21.9 223 
DiskLoad 123 19.9 42.5 35.2 22.2 243 

Table 2  Subsystem Power Standard Deviation (Watts) 
 CPU Chipset Memory I/O Disk 

idle 0.340 0.0918 0.0328 0.127 0.0271 
gcc 8.37 0.226 2.36 0.133 0.0532 
mcf 5.62 0.171 1.43 0.125 0.0328 

vortex 1.22 0.0711 0.719 0.135 0.0171 
art 0.393 0.0686 0.190 0.135 0.00550 

lucas 1.64 0.123 0.266 0.133 0.00719 
mesa 1.00 0.0587 0.299 0.127 0.00839 
mgrid 0.525 0.0469 0.151 0.132 0.00523 

wupwise 2.60 0.131 0.427 0.135 0.0110 
dbt-2 8.23 0.133 0.688 0.145 0.0349 

SPECjbb 26.2 0.327 2.88 0.0558 0.0734 
DiskLoad 18.6 0.0948 3.80 0.153 0.0746 



able to account for the greatly reduced power consumption 
due to clock gating.  This addition is not a new contribution, 
since a similar accounting was made in the model by [2].  
The distinction is that this model is the first application of a 
performance-based power model in an SMP environment.  
The ability to attribute power consumption to a single 
physical processor within an SMP environment is critical 
for shared computing environments.  In the near future it is 
expected that billing of compute time in these environments 
will take account of power consumed by each process [14].  
This is particularly challenging in virtual machine 
environments in which multiple customers could be 
simultaneously running applications on a single physical 
processor.  For this reason, process-level power accounting 
is essential. 

Given that the Pentium IV can fetch three instructions/cycle, 
the model predicts range of power consumption from 9.25 
Watts to 48.6 Watts.  The form of the model is given in 
Equation 1.  A trace of the total measured and modeled 
power for our four SMP processors is given in Figure 2.  
The workload used in the trace is eight threads of gcc, 
started at 30s intervals.  Average error was found to be 
3.1%.  Note that unlike the memory bound workloads that 
saturate at eight threads, the cpu-bound gcc saturates after 
only 4 simultaneous threads. 

∑
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Equation 1 – SMP Processor Power Model 
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Figure 2  Four CPU Power Model - gcc 

4.2.2 Memory Power 
This section considers models for memory power 
consumption based on cache misses and processor bus 
transactions. 

Our first attempt at modeling memory power made use of 
cache misses.  A model based on only the number of cache 
misses/cycle is an attractive prospect as it is a well 
understood metric and is readily available in performance 
monitoring counters.  The principle behind using cache 
misses as proxy for power is that loads not serviced by the 
highest level cache, must be serviced by the memory 

subsystem.  As demonstrated in [8], power consumption in 
DRAM modules is highest when the module is in the active 
state.  This occurs when either read or write transactions are 
serviced by the DRAM module.  Therefore, the effect of 
high-power events such as DRAM read/writes can be 
estimated.   

In this study, we use the number of Level 3 Cache load 
misses per cycle.  Since the Pentium 4 utilizes a write-back 
cache policy, write misses do not necessarily cause an 
immediate memory transaction.  If the miss was due to a 
cold start, no memory transaction occurs.  For conflict and 
capacity misses, the evicted cache block will cause a 
memory transaction as it updates memory. 

Our initial findings showed that level 3 cache misses were 
strong predictors of memory power consumption (Figure 3).  
The first workload we considered was the integer workload 
mesa from the SPEC CPU 2000 suite.  Since a single 
instance of this workload could not sufficiently utilize the 
memory subsystem, we used multiple instances to increase 
utilization.  For mesa, memory utilization increases 
noticeably with each instance of the workload.  Utilization 
appears to taper off once the number of instances 
approaches the number of available hardware threads in the 
system.  In this case the limit is 8 (4 physical processors x 2 
threads/processor).  The resultant quadratic power model is 
given in Equation 2.  The average error under the mesa 
workload is low at only 1%.  However, the model fails 
under extreme cases. 
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Equation 2 – Cache Miss Memory Power Model 
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Figure 3  Memory Power Model (L3 Misses) – mesa 

 

Unfortunately, L3 misses do not perform well under all 
workloads.  In cases of extremely high memory utilization, 
L3 misses tend to underestimate power consumption.  We 
found that when using multiple instances of the mcf 
workload, memory power consumption continues to 
increase, while Level 3 misses are slightly decreasing.  



We determined that one of the possible causes was 
hardware-directed prefetches that were not being accounted 
for in the number of cache misses.  However, Figure 4 
shows that though prefetch traffic does increase after the 
model failure, the total number of bus transactions does not.  
Since the number of bus transactions generated by each 
processor was not sufficiently predicting memory power, we 
concluded that an outside (non-CPU) agent was accessing 
the memory bus.  For our target system the only other agent 
on the memory bus is the memory controller itself, 
performing DMA transactions on behalf of I/O devices. 
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Figure 4  Prefetch and Non-Prefetch  

Bus Transactions - mcf 

Changing the model to include memory accesses generated 
by the microprocessors and DMA events resulted in a 
model that remains valid for all observed bus utilization 
rates.  

It should be noted that using only the number of read/write 
accesses to the DRAM does not directly account for power 
consumed when the DRAM is in the precharge state.  
DRAM in the precharge state consumes more power than in 
idle/disabled state, but less than in the active state.  During 
the precharge state, data held in the sense amplifiers is 
committed to the DRAM array.  Since the initiation of a 
precharge event is not directly controlled by read/write 
accesses, precharge power cannot be directly attributed to 
read/write events.  However, in practice we have found 
read/write accesses to be reasonable predictors.  Over the 
long term (thousands of accesses) the number of precharge 
events should be related to the number of access events.  
The resultant model is given in Equation 3.  A trace of the 
model is shown in Figure 5 for the mcf workload that could 
not be modeled using cache misses.  The model yields an 
average error rate of 2.2%. 
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 Equation 3 – Memory Bus Transaction Memory Power 
Model 
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Figure 5  Memory Power Model  

(Memory Bus Transactions)- mcf 

4.2.3 Disk Power 
The modeling of disk power at the level of the 
microprocessor presents two major challenges: large 
distance from CPU to disk and little variation in disk power 
consumption.  Of all the subsystems considered in this 
study, the disk subsystem is the farthest away from the 
microprocessor.  Therefore, there are challenges in getting 
timely information from the processor’s perspective.  The 
various hardware and software structures that are intended 
to reduce the average access time to the “distant” disk by the 
processor make power modeling difficult.  The primary 
structures are: microprocessor cache, operating system disk 
cache, I/O queues and I/O and disk caches.  The structures 
offer the benefit of decoupling high-speed processor events 
from the low-speed disk events.  Since our power modeling 
techniques rely on the close relationship between the 
subsystems, this is a problem.   

This is evidenced in the poor performance of our first 
attempts.  Initially we considered two events: DMA 
accesses and uncacheable accesses.  Since the majority of 
disk transfers are handled through DMA by the disk 
controller, this appeared to be a strong predictor.  We also 
considered the number of uncacheable accesses by the 
processor.  Unlike the majority of application memory, 
memory mapped I/O (I/O address mapped to system address 
space) is not typically cached.  Generally, I/O devices use 
memory mapped I/O for configuration and handshaking.  
Therefore, it should be possible to detect accesses to the I/O 
devices through uncacheable accesses.  In practice we found 
that both of these metrics did not fully capture the fine-grain 
power behavior.  Since such little variation exists in the disk 
power consumption it is critical to accurately capture the 
variation that does exist. 

To address this limitation we take advantage of the manner 
in which DMA transactions are performed.  Coarsely stated, 
DMA transactions are initiated by the processor by first 
configuring the I/O device.  The transfer size, source and 
destination are specified through the memory mapped I/O 
space.  The disk controller performs the transfer without 
further intervention from the microprocessor.  Upon 
completion or incremental completion (buffer full/empty) 
the I/O device interrupts the microprocessor.  The 

Cache Miss Model Fails 



microprocessor is then able to use the requested data or 
discard local copies of data that was sent.  Our approach is 
to use the number of interrupts originating from the disk 
controller.  This approach has the advantage over the other 
metrics in that the events are specific to the subsystem of 
interest.  This approach is able to represent fine-grain 
variation with very low error.  In the case of our synthetic 
disk workload, by using the number of disk interrupts/cycle 
we achieve an average error rate of 1.75%.  The model is 
provided in Equation 4.  An application of the model to the 
memory-intensive mcf is shown in Figure 6.  Note that this 
error rate accounts for the very large DC offset within the 
disk power consumption.  This error is calculated by first 
subtracting the 21.6W of idle (DC) disk power 
consumption.  The remaining quantity is used for the error 
calculation. 
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Equation 4 DMA+Interrupt Disk Power Model 
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Figure 6  Disk Power Model (DMA+Interrupt) – 

Synthetic Disk Workload 

4.2.4 I/O Power 
Since the majority of I/O transactions are DMA transactions 
from the various I/O controllers, an I/O power model must 
be sensitive to these events.  We considered three events to 
observe DMA traffic: DMA accesses on memory bus, 
uncacheable accesses and interrupts.  Of the three, 
interrupts/cycle was the most representative.  DMA accesses 
to main memory seemed to be the logical best choice since 
there is such a close relation to the number of DMA 
accesses and the switching factor in the I/O chips.  For 
example, a transfer of cache line aligned 16 dwords (4 
bytes/each), maps to a single cache line transfer on the 
processor memory bus.  However, in the case of smaller, 
non-aligned transfers the linear relationship does not hold.  
A cache line access measured as a single DMA event from 
the microprocessor perspective may contain only a single 
byte.  This would grossly overestimate the power being 
consumed in the I/O subsystem.  Further complicating the 
situation is the presence of performance enhancements in 
the I/O chips.  One of the common enhancements is the use 

of write-combing memory.  In write-combining, the 
processor or I/O chip in this case combines several adjacent 
memory transactions into a single transaction further 
removing the one-to-one mapping of I/O traffic to DMA 
accesses on the processor memory bus.  As a result we 
found interrupt events to be better predictors of I/O power 
consumption.  DMA events failed to capture the fine-grain 
power variations.  DMA events tended to have few rapid 
changes, almost as if the DMA events had a low-pass filter 
applied to them.  The interrupt model is pictured in Figure 7 
has less than 1% error on average.  The details of the model 
can be seen in Eq.5.  Accounting for the large DC offset 
increases error significantly to 32%.  Another consideration 
with the model is the I/O configuration used.  The model 
has a significant idle power with is related to the presence to 
two I/O chips capable of providing six 133MHz PCI-X 
buses.  While typical in servers, this is not common for 
smaller scale desktop/mobile systems that usually contain 2-
3 I/O buses and a single I/O chip.  Further, our server only 
utilizes a small number of the I/O buses present.  It is 
expected that with a heavily populated, system with fewer 
I/O buses, the DC term would become less prominent.  This 
assumes a reasonable amount of power management within 
the installed I/O devices. 
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Figure 7  I/O Power Model (Interrupt) – Synthetic Disk 

Workload 
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Equation 5 – Interrupt I/O Power Model 

4.2.5 Chipset Power 
The chipset power model we propose is the simplest of all 
subsystems as we suggest that a constant is all that is 
required.  There are two reasons for this.  First, the chipset 
subsystem exhibits, very little variation in power 
consumption.  Therefore, a constant power model is an 
obvious choice.  Further it is difficult to identify the effect 
performance events have on power consumption compared 
to induced electrical noise in our sensors.  The second, and 
more critical reason, is a limitation in our power sampling 
environment.  Since the chipset subsystem uses power from 
more than one power domain, we cannot measure the total 
power directly.  Instead we derive it from multiple domains.  
Unfortunately, since a non-deterministic relationship exists 



between some of the domains, it is not possible to predict 
chipset power with high accuracy.  Therefore, we assume 
chipset power to be a constant 19.9 Watts. 

4.3 Model Validation 
Tables 3 and 4 present summaries of average errors for the 
five models applied to twelve workloads.  Errors are 
determined by comparing modeled and measured error at 
each sample.  A sample corresponds to one second of 
program execution or approximately 1.5 billion instructions 
per processor.  For performance counter sampling, the total 
number of events during the previous one second is used.  
For power consumption, the average of all samples in the 
previous second (ten thousand) is used.  The average for 
each combination of workload and subsystem model is 
calculated using equation 6. 
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Equation 6 – Average Error Calculation 
 

The I/O and disk models performed well under all 
workloads.  The very low error rates are partly due to low 
power variation / high idle power consumption.  The CPU 
and memory subsystems had larger errors, but also larger 
workload variation.  The worst case errors for CPU occurred 
in the memory-bound workload: mcf.  Due to a very high 
CPI (cycles/instruction) of greater than 10 cycles, our fetch-
based power model consistently underestimates CPU power.   
This is because under mcf the processor only fetches one 
instruction every 10 cycles even though it is continuously 
searching for (and not finding) ready instructions in the 
instruction window.  For mcf this speculative behavior has a 
high power cost that is equivalent to executing an additional 
1-2 instructions/cycle. 

The memory model averaged about 9% error across all 
workloads.  Surprisingly the memory model faired better 
under integer workloads. The error rate for floating point 
workloads tended to be highest for workloads with the 
highest sustained power consumption.  For these cases our 
model tends to underestimate power.  Since the rate of bus 
transactions is similar for high and low error rate workloads 
we suspect the cause of underestimation to be access 
pattern.  In particular our model does not account for 
differences in the power for read versus write access.  Also, 
we do not directly account for the number of active banks 
within the DRAM.  Accounting for the mix of reads versus 
writes would be a simple addition to the model.  However, 
accounting for active banks will likely require some form of 
locality metric.     
Idle power error was low for all cases indicating a good 
match for the DC term in the models.  Chipset error was 
very high considering the small amount of variation.  This is 
due to the limitation of the constant model we assumed for 
chipset power. 

 
Table 3  Integer Average Model Error 

 CPU Chipset Memory I/O Disk 
idle 1.74% 0.586% 3.80% 0.356% 0.172% 
gcc 4.23% 10.9% 10.7% 0.411% 0.201% 
mcf 12.3% 7.7% 2.2% 0.332% 0.154% 

vortex 6.53% 13.0% 15.6% 0.295% 0.332% 
dbt-2 9.67% 0.561% 2.17% 5.62% 0.176% 

SPECjbb 9.00% 7.45% 6.14% 0.393% 0.144% 
DiskLoad 5.93% 3.06% 2.93% 0.706% 0.161% 

Integer 
Average 

7.06 
±3.50% 

6.18% 
±4.92% 

6.22% 
±5.12% 

1.16% 
±1.97% 

0.191% 
±0.065% 

All 
Workload 
Average 

6.67 % 
±3.42% 

5.97% 
±4.23% 

8.80% 
±5.54% 

0.824% 
±1.52% 

0.390% 
±0.492% 

 

 

5 Conclusion 
In this paper we have demonstrated the feasibility of 
predicting complete system power consumption using 
microprocessor performance events.  Our models take 
advantage of the trickle-down effect of these events. These 
events which are visible in the microprocessor, are highly 
correlated to power consumption in subsystems including 
memory, I/O and disk. Subsystems farther away from the 
microprocessor require events more directly related to the 
subsystem, such as I/O device interrupts.  Memory models 
must take into account activity that does not originate in the 
microprocessor.  In our case, DMA events are shown to 
have a significant relation to memory power.  We show that 
complete system power can be estimated with an average 
error of less than 9% for each subsystem.  
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