
Complete System Power Estimation: A Trickle-Down Approach
Based on Performance Events

W. Lloyd Bircher and Lizy K. John
Laboratory for Computer Architecture

Department of Electrical & Computer Engineering
University of Texas at Austin

{bircher, ljohn}@ece.utexas.edu

Abstract
This paper proposes the use of microprocessor performance
counters for online measurement of complete system power
consumption. While past studies have demonstrated the use
of performance counters for microprocessor power, to the
best of our knowledge, we are the first to create power
models for the entire system based on processor
performance events. Our approach takes advantage of the
“trickle-down” effect of performance events in a
microprocessor. We show how well known performance-
related events within a microprocessor such as cache misses
and DMA transactions are highly correlated to power
consumption outside of the microprocessor. Using
measurement of an actual system running scientific and
commercial workloads we develop and validate power
models for five subsystems: memory, chipset, I/O, disk and
microprocessor. These models are shown to have an
average error of less than 9% per subsystem across the
considered workloads. Through the use of these models and
existing on-chip performance event counters, it is possible
to estimate system power consumption without the need for
additional power sensing hardware.

1 Introduction
In order to improve microprocessor performance while
limiting power consumption, designers are increasingly
utilizing dynamic hardware adaptations. These adaptations
provide an opportunity for extracting maximum
performance while remaining within temperature and power
limits. These adaptations are valuable tools for reducing
power consumption and temperature. Two of the most
common examples are dynamic voltage and frequency
scaling (DVFS) and clock gating. With these adaptations it
is possible reduce power consumption and therefore chip
temperature, by reducing the amount of available
performance. Due to the thermal inertia in microprocessor
packaging, detection of temperature changes may occur
significantly later than the power events which caused them.
Rather than relying on relatively slow temperature sensors
for observing power consumption it has been demonstrated
[1][2][3] that performance counters can be used as a proxy
for power measurement. These counters provide a timely,
readily accessible means of observing power variation in
real systems. In this paper we extend this valuable tool
beyond the microprocessor to various computer subsystems.
We present models for five subsystems: microprocessor,

chipset, memory, I/O and disk. Though microprocessors are
the largest consumers of power, the remaining subsystems
make up 40%-60% of total power depending on the
workload. By providing a means for power management
policies to consider these additional subsystems it is
possible to have a significant effect on power and
temperature. In data and computing centers, this can be a
valuable tool for keeping the center within temperature and
power limits [4]. Further, since the tool utilizes existing
microprocessor performance counters, the cost of
implementation is small. Though power models exist for
common computer subsystems, these models rely on events
local to the subsystem for representing power, which are
typically measured using sensors/counters at the subsystem.
Our approach is distinct since it uses events at the processor,
eliminating the need for sensors spread out in various parts
of the system and corresponding interfaces. Lightweight
adaptive systems can easily be built using models of this
type.

In this study we show that microprocessor performance
events can accurately estimate total system power. By
considering the propagation of power inducing events
within the various subsystems, we identify six performance
events for modeling the entire system power. The resultant
models predict power with an average error of less than 9%.

2 Related Work
2.1 Performance Counter Power
Models
The use of performance counters for modeling power is not
a new concept. However, unlike past studies [1][2][3][5][6]
we go beyond modeling power consumed only in a
microprocessor to modeling power consumed by an entire
system. One of the earliest studies by Bellosa et. al [1]
demonstrates strong correlations between performance
events (instructions/cycle, memory references, cache
references) and power consumption in the Pentium II. Isci
develops a detailed power model for the Pentium IV using
activity factors and functional unit area, similar to Wattch
[7]. Bircher [3] presents a simple linear model for the
Pentium IV based on the number of instructions
fetched/cycle. Lee [6] extends the use of performance
counters for power modeling to temperature.

2.2 Subsystem Power Models
2.2.1 Local Event Models
Existing studies [8][9][10][11] into modeling of subsystem
power have relied on the use of local events to represent
power. In this section we consider existing power modeling
studies that make use of local events.

Memory: It is possible to estimate power consumption in
DRAM modules by using the number of read/write cycles
and percent of time within the precharge, active and idle
states [8]. Since these events are not directly visible to the
microprocessor, we estimate them using the count of
memory bus accesses by the processor and other events that
can be measured at the CPU. We also show that it is not
necessary to account for the difference between read and
write power in order to obtain accurate models. We use a
similar approach as Contreras [12]. His model makes use of
instruction cache misses and data dependency delay cycles
in the Intel Xscale processor to estimate power. We show
that for I/O intensive servers, it is also necessary to account
for memory utilization caused by agents other than the
microprocessor, namely I/O devices performing DMA
accesses.

Disk: A study by Zedlewski et al [9] shows that hard disk
power consumption can be modeled by knowing how much
time the disk spends in the following modes of operation:
seeking, rotation, reading/writing, and standby. Rather than
measuring these events directly from the disk, we estimate
the dynamic events, seeking, reading and writing, through
processor events such as interrupts and DMA accesses. Kim
et al [10] find that disk power and temperature can be
accurately modeled using the amount of time spent moving
the disk read/write head and the speed of rotation.

I/O and Chipset: Our objective is to estimate power using
processor counters without having access to specific disk or
memory system metrics. I/O and chipset subsystems are
composed of rather homogeneous structures and we
estimate their power through traditional CMOS power
models. These models divide power consumption into static
and dynamic. Static power represents current leakage,
while dynamic accounts for switching current of cmos
transistors. Since static power does not vary in our system,
due to a relatively constant vcc and temperature, we
estimate dynamic power in the I/O and chipset subsystems
through the number of interrupts, DMA and uncacheable
accesses.

2.2.2 Operating System Event Models
Rather than using events local to the subsystem, Heath [13]
uses operating system level event counters to model
dynamic power of CPU, disk and network subsystems. Our
approach differs by making use of on-chip processor
performance counters. This reduces the performance loss
due to sampling of the counters. Reading On-chip
performance counters requires only a small number of fast
CPU register accesses. Reading operating system counters

requires relatively slow access using system service routines
.(file open/close etc.).

2.3 Dynamic adaptation
Dynamic adaptation of hardware promises to extend
performance gains so common in the era of microprocessor
frequency scaling, in spite of the critical limitation of power
consumption. By dynamically reconfiguring hardware to
match the demands of software, it is possible to obtain high
performance and low power consumption. Also, designers
are able to develop hardware that conforms to average
power consumption rather than peak. This has a great
impact since most modern computing systems spend a
majority of the time underutilized [4].

Techniques which adapt in response to temperature changes
are at a disadvantage compared to performance counter
techniques [6]. Due to the thermal inertia of components,
temperature sensors are less able to allow preemptive
reaction to impending thermal emergencies. By using
performance counters as a proxy for power consumption, it
is possible to see the cause of thermal emergencies in a
timelier manner.

Current dynamic adaptation implementations are primarily
limited to process scheduling, level adaptation or thermal
emergency management. However, current microprocessors
and systems have the potential for significantly more robust
and effective adaptation. Several researchers have
demonstrated the effectiveness of techniques for adapting
performance/power using DVFS. Kotla et al [15] use
instruction throttling and a utilization-based power model to
show the effect of DVFS in a server cluster. At runtime
they determine the minimum amount of required processor
performance (frequency) and adjust the microprocessors
accordingly. Due to the significant variation in webserver
workloads, Rajamani et al [16] show that 30%-50% energy
savings can be obtained through powering down idle
compute nodes (severs). Using simulation Chen [17]
applies DVFS and node power down in a dense compute
center environment. However, unlike previous studies they
that only seek to minimize energy consumption while
maintaining performance, Chen also considers the reliability
impact of powering servers on and off. From the
perspective of managing thermal, all of these dynamic
adaptation schemes can benefit from the use of power
modeling by being able to implement additional power
management policies that maintain safe operating
conditions.

2.4 Phase Detection
While thermally-directed adaptation has clear indicators
(temperature > limit) for when to apply adaptations,
performance-directed adaptation thresholds may not be as
obvious. Since performance must not be compromised,
performance insensitive phases of program execution must
be identified. Researchers have developed numerous

techniques for detecting program phases [18][19][20].
Dhodapkar and Smith [18] consider the effectiveness of
instruction working sets, basic block vectors (BBV) and
conditional branch counts for the detection of program
phases. They find that BBVs offer the highest sensitivity
and phase stability. Lau [19] compares program structures
such as basic blocks, loop branches, procedures, opcodes,
register usage, and memory address information to identify
phases. Using variation in CPI compared to that in the
observed structures, they show that loop frequency and
register usage provide better accuracy the traditional basic
block vector approach. For the purpose of detecting power
phases, Isci [20] compares the use of a traditional control
flow metric (BBV) to on-chip performance counters. He
finds that performance counter metrics have a lower error
rate since they account for microarchitectural characteristics
such as data locality or operand values. These techniques
for phase detection are valuable for direct dynamic
adaptations that increase efficiency of the microprocessor.
For the study of phases within a complete system it is also
necessary to have power information for additional
subsystems.

2.5 Subsystem Power Studies
In order to motivate the use of microprocessor performance
counters in modeling subsystem power, we demonstrate the
significant contribution of the various subsystems to total
power consumption. Unlike previous studies focusing on
workstation [21] and mobile [22] power consumption, we
show that the I/O subsystem makes up a larger part of total
power in servers. Bohrer’s [21] study of workstation power
consumption considers three subsystems: CPU, hard disk,
and combined memory and I/O. Our study provides finer
granularity in that memory, I/O and chipset power are
measured separately. Mahesri’s study [22] presents fine
grain measurement (ten subsystems), but uses a very
different hardware (laptop) and software (productivity
workloads) configuration. Finally, neither of the previous
works present models based on their subsystem power
characterizations.

3 Methodology
In this section we describe our measurement environment,
workloads and performance event selection.

3.1 Power & Performance Measurement
3.1.1 Subsystem Description
The division of the subsystems in our target server is
dictated by the system designer. Fortunately, the design
portioned the subsystems in a configuration that is quite
useful for study. In particular, we were able to separately
measure five major subsystems: CPU, chipset, memory, I/O
and disk. The CPU subsystem is composed of four Pentium
IV Xeon processors. Ideally, we would have been able to
measure power for each processor. We are only able to

measure the sum of processor power. Fortunately, existing
uniprocessor models [2][3] allow observation of individual
processor power. We defined chipset as processor interface
chips not included in other subsystems. The memory
subsystem includes memory controller and DRAM power.
I/O included PCI buses and all devices attached to them.
The disk subsystem was composed of two SCSI disks.

3.1.2 Power Measurement
To measure power in the five subsystems, we employed
resistors connected in series with the power source. Since
the power source is provides as a regulated voltage, the
voltage drop across the resistor is directly proportional to
the power being consumed in the subsystem. This voltage
drop is captured using data acquisition hardware in a
separate workstation. Ten thousand samples were taken
each second and were then averaged for relation to
performance counter samples taken at the much slower rate
of one per second.

Since the performance counter samples were taken by the
target system itself, we included a synchronization signal to
match data from the two sources. At each sampling of the
target performance counters, a single byte was sent to a
USB serial port located on the target. The transmit line of
the serial port was sampled by the data acquisition hardware
along with the other power data. The single byte of data
acted as a synchronization pulse signature. Then using the
synchronization information, the data was analyzed offline
using software tools.

3.1.3 Performance Measurement
To gather a record of performance events in the processor,
we periodically sample the Pentium IV’s on-chip
performance monitoring counters. Sampling is performed
on each processor at a rate of once per second. The total
count of various events is recorded and the counters are
cleared. Software access to the performance counters is
provided by the Linux perfctr [23] device driver. As
described in the power measurement section, a
synchronization signal was introduced at each performance
counter sampling.

3.2 Workloads
3.2.1 Selection
Our selection of workloads was driven by two major factors:
the workload’s effectiveness at utilizing particular
subsystems and a diverse set of behaviors across all
workloads. The first requirement is important for
development and tuning of the power models. The second
is required to validate the models.

In order to meet the requirement of subsystem utilization,
we employ our power measurement system. Workloads are
chosen based on their apparent utilization of a subsystem.
Then actual power measurement is done to verify the
selection. We find that high subsystem utilization is

difficult to achieve using only conventional workloads. As
a result, we create small synthetic workloads that are able to
sufficiently utilize the subsystems. Additionally, we
combine multiple instances of single-threaded workloads
such as SPEC CPU 2000 to produce very high utilization.
Since our target system is composed of a 4-way SMP with
two hardware threads per processor, we find that most
workloads saturate (no increased subsystem utilization) with
eight threads.

In addition to utilizing a particular subsystem, it is necessary
to have sufficient variation within the workload for training
of the models. In the case of the 8-thread workloads, we
stagger the start of each thread by a fixed time, usually 30s-
60s. This broad range of utilization ensures that the models
are not only valid within a narrow range of utilization.
Also, this ensures a proper relationship between power and
the observed metric. Without a sufficiently large range of
samples, complex quadratic relationships may appear to be
linear.

3.2.2 Model Validation
For the validation of the models we use eleven workloads:
eight from the SPEC CPU 2000 benchmark suite [24], two
commercial server type and a synthetic disk type. The
SPEC workloads are computationally intensive scientific
applications intended to stress the CPU and memory
subsystems. The only access to other subsystems by these
workloads occurs during the loading of the data set at
program initialization. In this study we only consider
homogeneous combinations of the workloads. For
commercial workloads we use dbt-2 [25] and SPECjbb [26].
Dbt-2 is intended to approximate the TPC-C transaction
processing benchmark. This workload does not require
network clients, but does use actual hard disk access
through the PostgreSQL [27] database. Unfortunately, our
target system did not have a sufficient number of hard disks
to fully utilize the four Pentium IV processors. Therefore,
we included the SPECjbb server-side java benchmark. This
benchmark is able to more fully utilize the processor and
memory subsystems without a large number of hard disks.

To further validate our I/O and disk models, we developed a
synthetic workload to generate very high disk utilization.
Each instance of this workload creates a very large file
(1GB). Then the contents of the file are overwritten. After
about 100K pages have been modified, the sync() operating
system call is made to force the modified pages to disk.

For all subsystems, the power models are trained using a
single workload trace that offers high utilization and
variation. The validation is then performed using the entire
set of workloads.

3.3 Performance Event Selection
With over forty [28] detectable performance events, the
Pentium IV provides a challenge in selecting which is most
representative of subsystem power. In our approach we

considered the interconnection of the various subsystems
pictured in Figure 1. By noting the “trickle-down” effect of
events in the processor, we were able to successfully select a
subset of the performance events to model subsystem power
consumption. A simple example would be the effect of
cache misses in the processor. For a typical microprocessor
the highest level of cache is the L2. Transactions that
cannot be satisfied (cache miss) by the L2 cause a cache line
(block) sized access to the main memory. Since the number
of main memory accesses is directly proportional to the
number of L2 misses, it is possible to approximate the
number of accesses using only L2 misses. Since these
memory accesses must go off-chip, power is consumed
proportionally in the memory controller and DRAM. In
reality the relation is not that simple, but there is still a
strong causal relationship between L2 misses and main
memory accesses.
Though the initial selection of performance events for
modeling is dictated by an understanding of subsystem
interactions(as in the previous example), the final selection
of which event type(s) to use is determined by the average
error rate and a qualitative comparison of the measured and
modeled power traces.

Figure 1 Propagation of Performance Events

Cycles – Core Frequency ·Time
The cycles metric is combined with most other metrics to
create per cycle metrics. This corrects for slight differences
in sampling rate. Though sampling is periodic, the actual
sampling rate varies slightly due to cache effects and
interrupt latency.

Halted Cycles – Cycles in which clock gating was active
When the Pentium IV processor is idle, it saves power by
gating the clock signal to portions of itself. Idle phases of

CPU

Chipset

Memory

I/O

Disk Network

L3 Miss
TLB Miss
DMA Access
Mem Bus
Uncache Access
I/O Interrupt

execution are “detected” by the processor through the use of
the HLT (halt) instruction. When the operating system
process scheduler has available slack time, it halts the
processor with this instruction. The processor remains in
the halted state until receiving an interrupt. Though the
interrupt can be an I/O device, it is typically the periodic OS
timer that is used for process scheduling/preemption. This
has a significant effect on power consumption by reducing
processor idle power from ~36W to 9W. Because this
significant effect is not reflected in the typical performance
metrics, it is accounted for explicitly in the halted cycles
counter.

Fetched Uops – Micro-operations fetched
The micro-operations (uops) metric is used rather than an
instruction metric to improve accuracy. Since in the P6
architecture instructions are composed of a varying number
of uops, some instruction mixes give a skewed
representation of the amount of computation being done.
Using uops normalizes the metric to give representative
counts independent of instruction mix. Also, by considering
fetched rather than retired uops, the metric is more directly
related to power consumption. Looking only at retired uops
would neglect work done in execution of incorrect branch
paths and pipeline flushes.

Level 3 Cache Misses – Loads/stores that missed in the
Level 3 cache
Most system main memory accesses can be attributed to
misses in the highest level cache, in this case level 3. Cache
misses can also be caused by DMA access to cacheable
main memory by I/O devices. The miss occurs because the
DMA must be checked for coherency in the processor
cache.

TLB Misses – Loads/stores that missed in the instruction or
data Translation Lookaside Buffer. TLB misses are distinct
from cache misses in that they typically cause trickle-down
events farther away from the microprocessor. Unlike cache
misses, which usually cause a cache line to be transferred
from/to memory, TLB misses often cause the transfer of a
page of data (4KB or larger). Due to the large size of pages,
they are often stored on disk. Therefore, power is consumed
on the entire path from the CPU to the hard disk.

DMA Accesses – Transaction that originated in an I/O
device whose destination is system main memory
Though DMA transactions do not originate in the processor,
they are fortunately visible to the processor. As
demonstrated in the L3 Miss metric description, these
accesses to the processor (by an I/O device) are required to
maintain memory coherency. Being able to observe DMA
traffic is critical since it causes power consumption in the
memory subsystem. An important thing to consider in the
use of the Pentium IV’s DMA counting feature is that it
cannot distinguish between DMA and processor coherency
traffic. All memory bus accesses that do not originate
within a processor are combined into a single metric
(DMA/Other). For the uniprocessor case this is not a

problem. However, when using this metric in an SMP
environment such as ours, care must be taken to attribute
accesses to the correct source. Fortunately, the workloads
we considered have very little processor-processor
coherency traffic. This ambiguity is a limitation of the
Pentium IV performance counters and is not specific to our
technique.

Processor Memory Bus Transactions – All transactions
that enter/exit the processor must pass through this bus.
Intel calls this the Front Side Bus (FSB). As mentioned in
the section on DMA, there is a limitation of being able to
distinguish between externally generated (other processors)
and DMA transactions.

Uncacheable Accesses – Load/Store to a range of memory
defined as uncacheable.
These transactions are typically representative of activity in
the I/O subsystem. Since the I/O buses are not cached by
the processor, downbound (processor to I/O) transactions
and configuration transactions are uncacheable. Since all
other address space is cacheable, it is possible to directly
identify downbound transactions. Also, since configuration
accesses typically precede large upbound (I/O to processor)
transactions, it is possible to indirectly observe these.

Interrupts – Interrupts serviced by CPU
Like DMA transactions, most interrupts do not originate
within the processor. In order to identify the source of
interrupts, the interrupt controller sends a unique ID
(interrupt vector number) to the processor. This is
particularly valuable since I/O interrupts are typically
generated by I/O devices to indicate the completion of large
data transfers. Therefore, it is possible to attribute I/O bus
power to the appropriate device. Though, the interrupt
vector information is available in the processor, it is not
available as a performance event. Therefore, we simulate
the presence of interrupt information in the processor by
obtaining it from the operating system. Since the operating
system maintains the actual interrupt service routines,
interrupt source accounting can be easily performed. In our
case we made use of the /proc/interrupts file available in
Linux operating systems.

3.3.1 Model Format
The form of the subsystem power models is dictated by two
requirements: low computational cost and high accuracy.
Since these power models are intended to be used for
runtime power estimation, it is preferred that they have low
computational overhead. For that reason we initially
attempt regression curve fitting using linear models. If it is
not possible to obtain high accuracy with a linear model, we
select single or multiple input quadratics.

4 Results
4.1 Average Workload Power
In this section we present a power characterization of eleven
workloads. Averages in terms of Watts are given in Table
1. Also, workload variation is presented in terms of Watts
of standard deviation in Table 2. We will now consider the
average idle power. With a maximum sustained total power
of just over 305 Watts, the system consumes 46% of the
maximum power at idle. This is lower than the typical
value of 60% suggested for IA32 systems by [16]. The
largest contributor to the reduced power at idle is the clock
gating feature implemented in the microprocessor. Without
this feature, idle power would be approximately 80% of
peak. Due to the lack of a power management
implementation, the other subsystems
consume a large percentage of their peak power at idle. The
chipset and disk subsystems have nearly constant power
consumption over the entire range of workloads.

For the SPEC CPU 2000 workloads, there is the expected
result of very high microprocessor power. For all eight,
greater than 53% of system power goes to the
microprocessors. The next largest consumer is the memory
subsystem at 12%-18%. All of the top consumers were
floating point workloads. This is expected due to the high
level of memory boundedness of these workloads. I/O and
disk consumed almost the same power as the idle case since
there is no access to network or storage during the
workloads.

The commercial workloads exhibited quite different power
behavior compared to the scientific workloads. In dbt-2 the
limitation of sufficient disk resources is evident in the low
microprocessor utilization. Memory and I/O power are
marginally higher than the idle case. Disk power is almost
identical to the idle case also due to the mismatch in storage
size compared to processing and main memory capacity.
Because the working set fits easily within the main memory,
few accesses to the I/O and disk subsystem are needed. The
SPECjbb workload gives a better estimate of processor and
memory power consumption in a balanced server workload
with sustained power consumption of 61% and 84% of
maximum for microprocessor and memory.

Finally, we consider a synthetic workload intended to better
utilize the disk and I/O subsystems. The DiskLoad
workload generates the highest sustained power in the
memory, I/O and disk subsystems. Surprisingly, the disk
subsystem consumed only 2.8% more power than the idle
case. The largest contribution to this result is a lack of
power saving modes in the SCSI disks. According to [9],
the power required for rotation of the disk platters is 80% of
the peak amount, which occurs during disk write events.
Since, our hard disks lack the ability to halt rotation during
idle phases, the largest we could expect to see is a 20%
increase in power compared to the idle state. There is the
possibility that the difference for our disks is even less than
the 20% predicted for Zedlewski’s mobile hard disk.
Unfortunately, we were unable to verify this since the hard
disk manufacturer does not provide power specifications for
the various hard disk events (seek, rotate, read/write and
standby). The large increase in the I/O subsystem is directly
related to the number of hard disk data transfers required for
the workload. No other significant I/O traffic is present in
this workload. The large increase in memory power
consumption is due to the implementation of the synthetic
workload and the presence of a software hard disk cache
provided by the operating system. In order to generate a
large variation in disk and I/O power consumption, the
workload modifies a portion of a file approximately the size
of the operating system disk cache. Then using the
operating system’s sync() call, the contents of the cache,
which is located in main memory, are flushed to the disk.
Since the memory is constantly accessed during the file
modification phase (writes) and the disk flush phase (reads),
very high memory utilization results.

4.2 Subsystem Power Models
This section describes the details of our subsystem power
models. We describe issues encountered during the
selection of appropriate input metrics. For each subsystem
we provide a comparison of modeled and measured power
under a high variation workload.

4.2.1 CPU Power
Our CPU power model improves an existing model by [3] to
account for halted clock cycles. Since it is possible to
measure the percent of time spent in the halt state, we are

Table 1 Subsystem Average Power (Watts)
 CPU Chipset Memory I/O Disk Total

idle 38.4 19.9 28.1 32.9 21.6 141
gcc 162 20.0 34.2 32.9 21.8 271
mcf 167 20.0 39.6 32.9 21.9 281

vortex 175 17.3 35.0 32.9 21.9 282
art 159 18.7 35.8 33.5 21.9 269

lucas 135 19.5 46.4 33.5 22.1 257
mesa 165 16.8 33.9 33.0 21.8 271
mgrid 146 19.0 45.1 32.9 22.1 265

wupwise 167 18.8 45.2 33.5 22.1 287
dbt-2 48.3 19.8 29.0 33.2 21.6 152

SPECjbb 112 18.7 37.8 32.9 21.9 223
DiskLoad 123 19.9 42.5 35.2 22.2 243

Table 2 Subsystem Power Standard Deviation (Watts)
 CPU Chipset Memory I/O Disk

idle 0.340 0.0918 0.0328 0.127 0.0271
gcc 8.37 0.226 2.36 0.133 0.0532
mcf 5.62 0.171 1.43 0.125 0.0328

vortex 1.22 0.0711 0.719 0.135 0.0171
art 0.393 0.0686 0.190 0.135 0.00550

lucas 1.64 0.123 0.266 0.133 0.00719
mesa 1.00 0.0587 0.299 0.127 0.00839
mgrid 0.525 0.0469 0.151 0.132 0.00523

wupwise 2.60 0.131 0.427 0.135 0.0110
dbt-2 8.23 0.133 0.688 0.145 0.0349

SPECjbb 26.2 0.327 2.88 0.0558 0.0734
DiskLoad 18.6 0.0948 3.80 0.153 0.0746

able to account for the greatly reduced power consumption
due to clock gating. This addition is not a new contribution,
since a similar accounting was made in the model by [2].
The distinction is that this model is the first application of a
performance-based power model in an SMP environment.
The ability to attribute power consumption to a single
physical processor within an SMP environment is critical
for shared computing environments. In the near future it is
expected that billing of compute time in these environments
will take account of power consumed by each process [14].
This is particularly challenging in virtual machine
environments in which multiple customers could be
simultaneously running applications on a single physical
processor. For this reason, process-level power accounting
is essential.

Given that the Pentium IV can fetch three instructions/cycle,
the model predicts range of power consumption from 9.25
Watts to 48.6 Watts. The form of the model is given in
Equation 1. A trace of the total measured and modeled
power for our four SMP processors is given in Figure 2.
The workload used in the trace is eight threads of gcc,
started at 30s intervals. Average error was found to be
3.1%. Note that unlike the memory bound workloads that
saturate at eight threads, the cpu-bound gcc saturates after
only 4 simultaneous threads.

∑
=

×+×−+
NumCPUs

i

i
i Cycle

sFetchedUop
ivePercentAct

1
31.4)25.97.35(25.9

Equation 1 – SMP Processor Power Model

0
20
40
60
80

100
120
140
160
180
200

1 51 101 151 201 251 301 351

Seconds

W
at

ts

Measured
Modeled

Figure 2 Four CPU Power Model - gcc

4.2.2 Memory Power
This section considers models for memory power
consumption based on cache misses and processor bus
transactions.

Our first attempt at modeling memory power made use of
cache misses. A model based on only the number of cache
misses/cycle is an attractive prospect as it is a well
understood metric and is readily available in performance
monitoring counters. The principle behind using cache
misses as proxy for power is that loads not serviced by the
highest level cache, must be serviced by the memory

subsystem. As demonstrated in [8], power consumption in
DRAM modules is highest when the module is in the active
state. This occurs when either read or write transactions are
serviced by the DRAM module. Therefore, the effect of
high-power events such as DRAM read/writes can be
estimated.

In this study, we use the number of Level 3 Cache load
misses per cycle. Since the Pentium 4 utilizes a write-back
cache policy, write misses do not necessarily cause an
immediate memory transaction. If the miss was due to a
cold start, no memory transaction occurs. For conflict and
capacity misses, the evicted cache block will cause a
memory transaction as it updates memory.

Our initial findings showed that level 3 cache misses were
strong predictors of memory power consumption (Figure 3).
The first workload we considered was the integer workload
mesa from the SPEC CPU 2000 suite. Since a single
instance of this workload could not sufficiently utilize the
memory subsystem, we used multiple instances to increase
utilization. For mesa, memory utilization increases
noticeably with each instance of the workload. Utilization
appears to taper off once the number of instances
approaches the number of available hardware threads in the
system. In this case the limit is 8 (4 physical processors x 2
threads/processor). The resultant quadratic power model is
given in Equation 2. The average error under the mesa
workload is low at only 1%. However, the model fails
under extreme cases.

66.7
3

43.3
3

28
2

1
×+×+∑

= Cycle
LoadMissesL

Cycle
LoadMissesL i

NumCPUs

i

i

Equation 2 – Cache Miss Memory Power Model

25

27

29

31

33

35

37

1 101 201 301 401 501 601 701 801
Seconds

W
at

ts

Measured
Modeled

Figure 3 Memory Power Model (L3 Misses) – mesa

Unfortunately, L3 misses do not perform well under all
workloads. In cases of extremely high memory utilization,
L3 misses tend to underestimate power consumption. We
found that when using multiple instances of the mcf
workload, memory power consumption continues to
increase, while Level 3 misses are slightly decreasing.

We determined that one of the possible causes was
hardware-directed prefetches that were not being accounted
for in the number of cache misses. However, Figure 4
shows that though prefetch traffic does increase after the
model failure, the total number of bus transactions does not.
Since the number of bus transactions generated by each
processor was not sufficiently predicting memory power, we
concluded that an outside (non-CPU) agent was accessing
the memory bus. For our target system the only other agent
on the memory bus is the memory controller itself,
performing DMA transactions on behalf of I/O devices.

0

10000

20000

30000

40000

50000

1 201 401 601 801 1001 1201 1401 1601 1801
Seconds

B
us

 T
ra

ns
ac

tio
ns

 /
10

^6
 C

yc
le

s

All
Non-Prefetch
Prefetch

Figure 4 Prefetch and Non-Prefetch

Bus Transactions - mcf

Changing the model to include memory accesses generated
by the microprocessors and DMA events resulted in a
model that remains valid for all observed bus utilization
rates.

It should be noted that using only the number of read/write
accesses to the DRAM does not directly account for power
consumed when the DRAM is in the precharge state.
DRAM in the precharge state consumes more power than in
idle/disabled state, but less than in the active state. During
the precharge state, data held in the sense amplifiers is
committed to the DRAM array. Since the initiation of a
precharge event is not directly controlled by read/write
accesses, precharge power cannot be directly attributed to
read/write events. However, in practice we have found
read/write accesses to be reasonable predictors. Over the
long term (thousands of accesses) the number of precharge
events should be related to the number of access events.
The resultant model is given in Equation 3. A trace of the
model is shown in Figure 5 for the mcf workload that could
not be modeled using cache misses. The model yields an
average error rate of 2.2%.

8
2

1

4 10813101.502.29 −

=

− ⋅×+⋅×−∑ MCycle
tionsBusTransac

MCycle
tionsBusTransac i

NumCPUs

i

i

 Equation 3 – Memory Bus Transaction Memory Power
Model

0

10

20

30

40

50

1 201 401 601 801 1001 1201 1401 1601
Seconds

W
at

ts

Measured
Modeled

Figure 5 Memory Power Model

(Memory Bus Transactions)- mcf

4.2.3 Disk Power
The modeling of disk power at the level of the
microprocessor presents two major challenges: large
distance from CPU to disk and little variation in disk power
consumption. Of all the subsystems considered in this
study, the disk subsystem is the farthest away from the
microprocessor. Therefore, there are challenges in getting
timely information from the processor’s perspective. The
various hardware and software structures that are intended
to reduce the average access time to the “distant” disk by the
processor make power modeling difficult. The primary
structures are: microprocessor cache, operating system disk
cache, I/O queues and I/O and disk caches. The structures
offer the benefit of decoupling high-speed processor events
from the low-speed disk events. Since our power modeling
techniques rely on the close relationship between the
subsystems, this is a problem.

This is evidenced in the poor performance of our first
attempts. Initially we considered two events: DMA
accesses and uncacheable accesses. Since the majority of
disk transfers are handled through DMA by the disk
controller, this appeared to be a strong predictor. We also
considered the number of uncacheable accesses by the
processor. Unlike the majority of application memory,
memory mapped I/O (I/O address mapped to system address
space) is not typically cached. Generally, I/O devices use
memory mapped I/O for configuration and handshaking.
Therefore, it should be possible to detect accesses to the I/O
devices through uncacheable accesses. In practice we found
that both of these metrics did not fully capture the fine-grain
power behavior. Since such little variation exists in the disk
power consumption it is critical to accurately capture the
variation that does exist.

To address this limitation we take advantage of the manner
in which DMA transactions are performed. Coarsely stated,
DMA transactions are initiated by the processor by first
configuring the I/O device. The transfer size, source and
destination are specified through the memory mapped I/O
space. The disk controller performs the transfer without
further intervention from the microprocessor. Upon
completion or incremental completion (buffer full/empty)
the I/O device interrupts the microprocessor. The

Cache Miss Model Fails

microprocessor is then able to use the requested data or
discard local copies of data that was sent. Our approach is
to use the number of interrupts originating from the disk
controller. This approach has the advantage over the other
metrics in that the events are specific to the subsystem of
interest. This approach is able to represent fine-grain
variation with very low error. In the case of our synthetic
disk workload, by using the number of disk interrupts/cycle
we achieve an average error rate of 1.75%. The model is
provided in Equation 4. An application of the model to the
memory-intensive mcf is shown in Figure 6. Note that this
error rate accounts for the very large DC offset within the
disk power consumption. This error is calculated by first
subtracting the 21.6W of idle (DC) disk power
consumption. The remaining quantity is used for the error
calculation.

∑
=

×−×+

⋅×−⋅×+
NumCPUs

i ii

ii

Cycle
DMAAccess

Cycle
DMAAccess

Cycle
Interrupt

Cycle
Interrupts

1
2

15
2

7

4.4518.9

101.11106.106.21

Equation 4 DMA+Interrupt Disk Power Model

21.2

21.4

21.6

21.8

22

22.2

22.4

1 21 41 61 81 101 121 141 161 181

Seconds

W
at

ts

Measured
Modeled

`

Figure 6 Disk Power Model (DMA+Interrupt) –

Synthetic Disk Workload

4.2.4 I/O Power
Since the majority of I/O transactions are DMA transactions
from the various I/O controllers, an I/O power model must
be sensitive to these events. We considered three events to
observe DMA traffic: DMA accesses on memory bus,
uncacheable accesses and interrupts. Of the three,
interrupts/cycle was the most representative. DMA accesses
to main memory seemed to be the logical best choice since
there is such a close relation to the number of DMA
accesses and the switching factor in the I/O chips. For
example, a transfer of cache line aligned 16 dwords (4
bytes/each), maps to a single cache line transfer on the
processor memory bus. However, in the case of smaller,
non-aligned transfers the linear relationship does not hold.
A cache line access measured as a single DMA event from
the microprocessor perspective may contain only a single
byte. This would grossly overestimate the power being
consumed in the I/O subsystem. Further complicating the
situation is the presence of performance enhancements in
the I/O chips. One of the common enhancements is the use

of write-combing memory. In write-combining, the
processor or I/O chip in this case combines several adjacent
memory transactions into a single transaction further
removing the one-to-one mapping of I/O traffic to DMA
accesses on the processor memory bus. As a result we
found interrupt events to be better predictors of I/O power
consumption. DMA events failed to capture the fine-grain
power variations. DMA events tended to have few rapid
changes, almost as if the DMA events had a low-pass filter
applied to them. The interrupt model is pictured in Figure 7
has less than 1% error on average. The details of the model
can be seen in Eq.5. Accounting for the large DC offset
increases error significantly to 32%. Another consideration
with the model is the I/O configuration used. The model
has a significant idle power with is related to the presence to
two I/O chips capable of providing six 133MHz PCI-X
buses. While typical in servers, this is not common for
smaller scale desktop/mobile systems that usually contain 2-
3 I/O buses and a single I/O chip. Further, our server only
utilizes a small number of the I/O buses present. It is
expected that with a heavily populated, system with fewer
I/O buses, the DC term would become less prominent. This
assumes a reasonable amount of power management within
the installed I/O devices.

30.5
31

31.5
32

32.5
33

33.5
34

34.5
35

35.5
36

1 21 41 61 81 101 121 141 161 181

Seconds

W
at

ts

Measured
Modeled

Figure 7 I/O Power Model (Interrupt) – Synthetic Disk

Workload

9
2

1

6 1012.1101087.32 ⋅×−⋅×+∑
= Cycle

Interrupt
Cycle

Interrupt i
NumCPUs

i

i

Equation 5 – Interrupt I/O Power Model

4.2.5 Chipset Power
The chipset power model we propose is the simplest of all
subsystems as we suggest that a constant is all that is
required. There are two reasons for this. First, the chipset
subsystem exhibits, very little variation in power
consumption. Therefore, a constant power model is an
obvious choice. Further it is difficult to identify the effect
performance events have on power consumption compared
to induced electrical noise in our sensors. The second, and
more critical reason, is a limitation in our power sampling
environment. Since the chipset subsystem uses power from
more than one power domain, we cannot measure the total
power directly. Instead we derive it from multiple domains.
Unfortunately, since a non-deterministic relationship exists

between some of the domains, it is not possible to predict
chipset power with high accuracy. Therefore, we assume
chipset power to be a constant 19.9 Watts.

4.3 Model Validation
Tables 3 and 4 present summaries of average errors for the
five models applied to twelve workloads. Errors are
determined by comparing modeled and measured error at
each sample. A sample corresponds to one second of
program execution or approximately 1.5 billion instructions
per processor. For performance counter sampling, the total
number of events during the previous one second is used.
For power consumption, the average of all samples in the
previous second (ten thousand) is used. The average for
each combination of workload and subsystem model is
calculated using equation 6.

%1001 ×

−

=
∑

=

NumSamples
Meaasured

MeasuredModeled

orAverageErr

NumSamples

i i

ii

Equation 6 – Average Error Calculation

The I/O and disk models performed well under all
workloads. The very low error rates are partly due to low
power variation / high idle power consumption. The CPU
and memory subsystems had larger errors, but also larger
workload variation. The worst case errors for CPU occurred
in the memory-bound workload: mcf. Due to a very high
CPI (cycles/instruction) of greater than 10 cycles, our fetch-
based power model consistently underestimates CPU power.
This is because under mcf the processor only fetches one
instruction every 10 cycles even though it is continuously
searching for (and not finding) ready instructions in the
instruction window. For mcf this speculative behavior has a
high power cost that is equivalent to executing an additional
1-2 instructions/cycle.

The memory model averaged about 9% error across all
workloads. Surprisingly the memory model faired better
under integer workloads. The error rate for floating point
workloads tended to be highest for workloads with the
highest sustained power consumption. For these cases our
model tends to underestimate power. Since the rate of bus
transactions is similar for high and low error rate workloads
we suspect the cause of underestimation to be access
pattern. In particular our model does not account for
differences in the power for read versus write access. Also,
we do not directly account for the number of active banks
within the DRAM. Accounting for the mix of reads versus
writes would be a simple addition to the model. However,
accounting for active banks will likely require some form of
locality metric.
Idle power error was low for all cases indicating a good
match for the DC term in the models. Chipset error was
very high considering the small amount of variation. This is
due to the limitation of the constant model we assumed for
chipset power.

Table 3 Integer Average Model Error

 CPU Chipset Memory I/O Disk
idle 1.74% 0.586% 3.80% 0.356% 0.172%
gcc 4.23% 10.9% 10.7% 0.411% 0.201%
mcf 12.3% 7.7% 2.2% 0.332% 0.154%

vortex 6.53% 13.0% 15.6% 0.295% 0.332%
dbt-2 9.67% 0.561% 2.17% 5.62% 0.176%

SPECjbb 9.00% 7.45% 6.14% 0.393% 0.144%
DiskLoad 5.93% 3.06% 2.93% 0.706% 0.161%

Integer
Average

7.06
±3.50%

6.18%
±4.92%

6.22%
±5.12%

1.16%
±1.97%

0.191%
±0.065%

All
Workload
Average

6.67 %
±3.42%

5.97%
±4.23%

8.80%
±5.54%

0.824%
±1.52%

0.390%
±0.492%

5 Conclusion
In this paper we have demonstrated the feasibility of
predicting complete system power consumption using
microprocessor performance events. Our models take
advantage of the trickle-down effect of these events. These
events which are visible in the microprocessor, are highly
correlated to power consumption in subsystems including
memory, I/O and disk. Subsystems farther away from the
microprocessor require events more directly related to the
subsystem, such as I/O device interrupts. Memory models
must take into account activity that does not originate in the
microprocessor. In our case, DMA events are shown to
have a significant relation to memory power. We show that
complete system power can be estimated with an average
error of less than 9% for each subsystem.

6 References
[1] Frank Bellosa. The Benefits of Event-Driven Energy
Accounting in Power-Sensitive Systems. ACM SIGOPS
European Workshop, September 2000.

[2] Canturk Isci, and Margaret Martonosi. Runtime Power
Monitoring in High-End Processors: Methodology and
Empirical Data. International Symposium on
Microarchitecture, December 2003).

[3] W. Lloyd Bircher, Madavi Valluri, Jason Law, Lizy
John. Runtime identification of microprocessor energy

Table 4 Floating-Point Average Model Error
 CPU Chipset Memory I/O Disk

art 9.65% 5.87% 8.92% 0.240% 1.90%
lucas 7.69% 1.46% 17.51 % 0.245% 0.307%
mesa 5.59% 11.3% 8.31% 0.334% 0.168%
mgrid 0.360% 4.51% 11.4% 0.365% 0.546%

wupwise 7.34% 5.21% 15.9% 0.588% 0.420%
FP

Average
6.13%

±3.53%
5.67%

±3.57%
12.41%
±4.13%

0.354%
±0.142%

0.668%
±0.703%

All
Workload
Average

6.67 %
±3.42%

5.97%
±4.23%

8.80%
±5.54%

0.824%
±1.52%

0.390%
±0.492%

saving opportunities. International Symposium on Low
Power Electronics and Design, pp 275-280, August 2005.

[4] Parthasarathy Ranganathan, Phil Leech, David Irwin and
Jeffrey Chase. Ensemble-Level Power Management for
Dense Blade Servers. International Symposium on
Computer Architecture, June 2006
[5] Tao Li and Lizy John. Run-Time Modeling and
Estimation of Operating System Power Consumption.
Conference on Measurement and Modeling of Computer
Systems, June 2003.

[6] Kyeong Lee and Kevin Skadron. Using Performance
Counters for Runtime Temperature Sensing in High-
Performance Processors. High-Performance, Power-Aware
Computing, April 2005.

[7] David Brooks, Vivek Tiwari, and Margaret Martonosi,
Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations, International Symposium on
Computer Architecture, June 2000.

[8] Jeff Janzen. Calculating Memory System Power for
DDR SDRAM. Micro Designline, Volume 10, Issue 2,
2001.

[9] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou
Zheng, Arvind Krishnamurthyy, Randolph Wang. Modeling
Hard-Disk Power Consumption. File and Storage
Technologies 2003.

[10] Youngjae Kim, Sudhanva Gurumurthi and Anand
Sivasubramaniam. Understanding the performance-
temperature interactions in disk I/O of server workloads.
The Symposium on High-Performance Computer
Architecture, pages 176- 186, February 2006.

[11] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary
Jane Irwin, N. Vijaykrishnan, Mahmut Kandemir, Tao Li,
Lizy Kurian John. Using Complete Machine Simulation for
Software Power Estimation: The SoftWatt Approach,
Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, pages 141-150, 2002.

[13] T. Heath, A. P. Centeno, P. George, L. Ramos, Y.
Jaluria, and R. Bianchini. Mercury and Freon: Temperature
Emulation and Management in Server Systems.
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
106-116, October 2006.

[12] Gilberto Contreras and Margaret Martonosi. Power
Prediction for Intel XScale Processors Using Performance
Monitoring Unit Events. International Symposium on Low
Power Electronics and Design, pages 221-226, August
2005.

[14] Conversation with Gregg McKnight, IBM
Distinguished Engineer, xSeries Division. September 2004.

[15] Ramakrishna Kotla, Soraya Ghiasi, Tom Keller and
Freeman Rawson. Scheduling Processor Voltage and

Frequency in Server and Cluster Systems High-Performance
Power-Aware Computing April 2005.

[16] Karthick Rajamani and Charles Lefurgy. On Evaluating
Request- Distribution Schemes for Saving Energy in Server
Clusters. International Symposium on Performance Analysis
of Systems and Software, pp 111-122, March 2003.

[17] Yiyu Chen, Amitayu Das, Wubi Qin, Anand
Sivasubramaniam, Qian Wang and Natarajan Gautam,
Managing Server Energy and Operational Costs in Hosting
Centers. ACM SIGMETRICS, pp 303-314, June 2005.

[18] Ashutosh Dhodapkar and James Smith. Comparing
program phase detection techniques. International
Symposium. on Microarchitecture, pages 217-228,
December 2003.

[19] Jeremy Lau, Stefan Schoenmackers and Brad
Calder. Structures for Phase Classification. International
Symposium on Performance Analysis of Systems and
Software, pages 57-67, March 2004.

[20] Canturk Isci and Margaret Martonosi, Phase
Characterization for Power: Evaluating Control-Flow-Based
and Event-Counter-Based Techniques. International
Symposium on High-Performance Computer Architecture,
pages 122-133, Feb. 2006.

[21] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller,
Michael Kistler, Charles Lefurgy, Chandler McDowell, and
Ram Rajamony, The Case For Power Management in Web
Servers. IBM Research, Austin TX 78758, USA.
www.research.ibm.com/arl

[22] Aqeel Mahesri and Vibhore Vardhan, Power
Consumption Breakdown on a Modern Laptop, Workshop
on Power Aware Computing Systems, December 2004.

[23] Linux Perfctr Kernel Patch Version 2.6,
user.it.uu.se/~mikpe/linux/perfctr, October 2006.

[24] SPEC CPU 2000 Version 1.3,
www.spec.org/cpu2000, October 2006.

[25] Open Source Development Lab, Database Test 2,
www.osdl.org/lab_activities/kernel_testing/osdl_database_t
est_suite/osdl_dbt-2, February 2006.

[26] SPECjbb 2005 Version 1.07,
www.spec.org/jbb2005, October 2006.

[27] PostgreSQL,
www.postgresql.org, October 2006.

[28] Brinkley Sprunt. Pentium 4 Performance Monitoring
Features, IEEE Micro, July-August, pages 72-82, 2002.

