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Abstract. Indirect branch targets are hard to predict as there may be
multiple targets corresponding to a single indirect branch instruction.
Value Based BTB Indexing (VBBI), a recently proposed indirect branch
prediction technique, utilizes the compiler to identify a ‘hint instruction’,
whose output value strongly correlates with the target address of an
indirect branch. At run time, multiple targets are stored at different
branch target buffer (BTB) locations indexed using the branch PC and
the hint instruction output value.
In this paper, we present compiler support for the VBBI prediction
scheme. We also propose compiler and run time optimizations to in-
crease the dynamic instruction count between the indirect branch and
its corresponding hint instruction. The more the dynamic instructions
between the hint-jump instruction pair, the more likely that the hint
value will be available when making the prediction.
Our evaluation shows that the proposed compiler and run time opti-
mizations improve the VBBI prediction accuracy from 66% to 80%. This
translates into performance improvement from 17.2% (baseline VBBI) to
24.8% (optimized VBBI) over the traditional BTB design and from 11%
(baseline VBBI) to 17.3% (optimized VBBI) over the best previously
proposed indirect branch prediction scheme.

Key words: branch prediction, indirect branches, compiler guided branch
prediction, compiler optimizations, compiler-microarchitecture interac-
tion.

1 Introduction

Several high level programming language constructs such as virtual function
calls, switch-case statements, function pointers are implemented using indirect
branches. With object oriented programming languages gaining more popularity
in various computing arenas, indirect branches will become more prevalent in
future applications. As a result, whether or not the indirect branches can be
accurately predicted will be a limiting factor of the overall system performance.

? This research was partially supported by NSF grant 1117895. The opinions and views
expressed in this paper are those of the authors and not those of NSF.



This trend is recognized by commercial microprocessor manufacturers includ-
ing Intel, whose recent processor includes a dedicated indirect branch predictor
[8]. Figure 1 shows the mispredictions per 1K instructions (MPKI) for differ-
ent applications using different indirect branch prediction schemes. On average,
indirect branch mispredictions account for 38%, 31% and 22% of the overall mis-
predictions, using the branch target buffer (BTB) [13], the tagged target cache
(TTC) [2] and the value-based BTB indexing (VBBI) [7] designs respectively.
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Fig. 1. MPKI for BTB, TTC and baseline VBBI prediction schemes

Prior research on indirect branch prediction has mainly focused on history-
based target prediction schemes [2, 4–6, 11, 12]. In these schemes, branch history
information is used to distinguish different dynamic instances of the same indi-
rect branch. These purely dynamic schemes have the advantage of not requiring
compiler support and invisible to the software. However, hardware has limited
view of program execution and may not be able to capture certain program
behavior with reasonable cost.

The recently proposed VBBI scheme [7] shows that by tracing back the in-
direct branch data dependence chain, an instruction can be found whose output
is directly related to the target taken by the indirect branch. This correlated in-
struction is referred to as the hint instruction, and its output as hint value. The
key idea of VBBI is to store multiple targets of an indirect branch at different
BTB indices computed by hashing the branch PC with the hint value.

Previous work on VBBI presented performance improvements without details
on compiler implementation [7]. In this paper, we propose compiler support for
the VBBI prediction scheme. For every static indirect branch instruction, the
compiler analyzes the source code to find the ‘most recent definition’ of the
variable on which the indirect branch is dependent. During code generation this
information is encoded in the indirect branch to be used at run time. In order to
maintain strong correlation between the target and the hint value, the current



hint value should be used for making the prediction, i.e. the hint instruction
should have finished its execution before the indirect branch is fetched. To this
end, we propose the compiler and run time optimizations for improving the
VBBI prediction accuracy by increasing the dynamic instruction count between
the hint instruction and the corresponding indirect jump instruction.

We show the performance improvement from these optimizations and com-
pare with the traditional BTB design and the tagged target cache (TTC) design
[2]. Our evaluation shows that the proposed compiler and run time optimiza-
tions improve the VBBI prediction accuracy from 66% (baseline VBBI) to 80%
(optimized VBBI). In terms of performance, the optimized VBBI improves the
performance from 17.2% (baseline VBBI) to 24.8% (optimized VBBI) over the
traditional BTB design and from 11% (baseline VBBI) to 17.3% (optimized
VBBI) over the TTC design.

This paper makes the following contributions:

1. We added compiler support for a recently proposed indirect branch predic-
tion technique, the VBBI scheme. The implementation is based on GCC
v4.2.1.

2. We propose compiler and run time optimizations to improve the VBBI pre-
diction accuracy. These optimizations are applicable to similar schemes, as
well as other design ideas exploiting data dependences and improving mem-
ory operations.

Rest of the paper is organized as follows. Section 2 gives the VBBI back-
ground. Compiler analysis for the VBBI scheme is introduced in section 3. Sec-
tion 4 presents compiler and run time optimizations. Our simulation methodol-
ogy is outlined in section 5. We discuss our results in section 6. Section 7 presents
the related work and we conclude the paper in section 8.

2 Value Based BTB Indexing (VBBI) Background

The VBBI prediction scheme relies on the compiler to identify a ‘hint instruction’
whose output value strongly correlates with the target taken by the indirect jump
instruction. Dynamically, multiple targets are stored at different BTB locations
indexed using the jump PC and the hint instruction output value. When a hint
instruction is executed, its output value is stored in a buffer. Subsequently, when
the corresponding jump instruction is fetched, it reads the hint value and uses
it to compute the BTB index. When the branch commits, the BTB is updated
with the correct target (if different from the predicted target) using the same
index.

Figure 2 shows the overall operation of the VBBI prediction scheme. Each
entry in the Hint Instruction Buffer (HIB) has 3 fields, branch PC (jmp pc),
corresponding hint instruction PC (hint pc), and the hint value. HIB is accessed
in fetch and write-back (WB) stages. In the fetch stage, indirect jump instruc-
tions read the hint value from the HIB to compute the BTB index, while other
instructions access HIB to see if they are the hint instruction for an indirect
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Fig. 2. VBBI Hardware Design (from [7])

jump instruction. In the write-back stage, hint instructions write their output
value into the HIB.

Target Prediction Overriding: VBBI scheme will be more accurate, if
the prediction is made using the current output of the hint instruction. In cases
where the jump instruction is fetched before the hint instruction has produced its
output, the jump instruction will use stale hint value for making the prediction.
When the latest hint value becomes available, another prediction is made using
the updated hint value, if it is different from the old value. This prediction will
override the initial prediction and redirect the fetch to the correct path, cycles
before the jump resolution.

3 Compiler Analysis for VBBI

VBBI prediction scheme relies on compiler to identify the ‘most recent defini-
tion’ of the variable on which an indirect jump instruction depends on. This
variable can be a switch-case control variable, a pointer to a function or an
object, etc. During code generation, offset of the jump instruction from the in-
struction holding the ‘most recent definition’ (i.e. the hint instruction) is encoded
in the indirect jump instruction. Since an indirect jump instruction specifies its
target using an architectural register instead of an absolute address, some of the
bits in the instruction encoding are unused and are available for providing hints
[3].

Implementation Details: We modified GCC v4.2.1 to support hint instruc-
tion identification for the VBBI scheme. Figure 3 explains the modified passes
using a hand written example code. In Figure 3(a), the switch-case statement
will be compiled into an indirect jump instruction. The target taken by the jump
depends on the definition of the underlined variable p.

1. pass uncprop: This pass is executed before coming out of the SSA form (in
pass del ssa). While the code is still in the SSA form, we modified this pass



                if(p>100)
                m = get_m(p);
                else
                m = p − m;
                j = 2 + p;

                {
                case 0:
                        m=j+1+m;
                        printf("j = %d, m=%d \n",j,m);
                        break;
                case 1:     {

      case 0: goto <L4>;
      case 1: goto <L5>;

D.1948_13 = m_119 + k_293;
D.1947_12 = m_119 * 2;

  # m_3 = PHI <m_15(4), m_17(5)>;

  j_18 = p_14 + 2;

<L1>:;

<L2>:;

<L3>:;

  if (p_14 > 100) goto <L1>; else goto <L2>;

  m_15 = get_m (p_14);
  goto <bb 6> (<L3>);

  m_17 = p_14 − m_119;

 = 2*m*(k+m);

= D.1947_12 * D.1948_13;p_14

  switch ( )

(insn:TI 17 37 19 (set (reg:DI 1 $1 [orig:78 D.1948 ] [78])

    (nil))

....

    (nil))

(insn:TI 21 19 23 (set (reg/v:DI 9 $9 [orig:74 p ] [74])

    (nil))

(insn:TI 23 21 38 (set (reg:DI 3 $3 [85])
        (le:DI (reg/v:DI 9 $9 [orig:74 p ] [74])
            (const_int 100 [0x64]))) 159 {*setcc_internal} (nil)
    (nil))

(insn: TI 19 17 21 (set (reg:DI 2 $2 [orig:79 D.1947 ] [79])

            (use (label_ref:DI 56)) 220 {*tablejump_osf_nt_internal} (nil)
    (nil))

( :TI 55 54 56 (set (pc) (reg:DI 1 $1 [96]))         addq $29,$1,$1

        ldl $1,0($2)

        beq $1,$L11

        s4addq $2,$15,$2

        cmpule $2,27,$1

        addl $9,2,$9

        zapnot $9,15,$2

        addl $10,$11,$1

        addl $10,$10,$2

        cmple $9,100,$3

        subl $9,$10,$0

        beq $3,$L51

$L10:

    mull $2,$1,$9

$31,($1),8203    jmp
         # jump instruction (id 1)

         # hint instruction (id 1)

  p

 p_14

jump_insn

        (se:DI (subreg:SI (plus:DI (reg/v:DI 10 $10 [orig:72 m.87 ] [72])

        (se:DI (subreg:SI (ashift:DI (reg/v:DI 10 $10 [orig:72 m.87 ] [72])

        (se:DI (   :SI (reg:SI 2 $2 [orig:79 D.1947 ] [79])

                    (const_int 1 [0x1])) 0))) 69 {*ashldi_se} (nil)

                (reg:SI 1 $1 [orig:78 D.1948 ] [78])))) 28 {*mulsi_se} (nil)

                switch (

b) pass_uncpropa) example program

d) pass_finalc) pass_expand

                    (reg:DI 11 $11 [orig:73 tmp.76 ] [73])) 0))) 4 {*addsi_se2} (nil)

   mult

     p      )

Fig. 3. Modified compiler passes for VBBI hint instruction analysis

to identify the ‘last definition’ of the variable (i.e., the hint instruction), on
which the indirect jump is dependent on. Figure 3(b) shows that in the SSA
form, the program variable p is renamed to p 14. All the uses of p including
the switch-case statement reached by p’s assignment are also renamed to
p 14. Since in the SSA form, each USE has a unique DEF, we identify the
hint instruction as the one containing the DEF of the SSA variable p 14.

2. pass expand: This pass converts program statements from TREE format
into the RTL code. For every hint instruction identified in the earlier pass, its
corresponding RTL code is also marked as hint instruction. Figure 3(c) shows
RTL code for some of the statements in the example program. Note the un-
derlined mult code generated for statement ‘p 14 = D.1947 12 * D.1948 13’.
Similarly, the underlined jump inst code is generated corresponding to the
‘switch (p 14)’ statement.

3. pass final: This pass looks at the list of instructions in the RTL format and
outputs their corresponding assembly code. While going through the list of
instructions, a counter keeps track of the number (and size) of instructions



Opcode Ra Rb offset from hint inst.1 = use VBBI
0 =  no  VBBIJump Type

01112131415162021252631

hint field
1 =  −ve offset
0 = +ve offset

Fig. 4. Alpha indirect branch instruction augmented with VBBI hint bits

between the hint instruction and its corresponding jump instruction. This
gives the PC offset of the hint instruction from the jump instruction, which
is then encoded in the jump instruction assembly code. Figure 3(d) shows
the assembly code generated for the example program. The underlined mull
instruction is the identified hint instruction for the underlined jmp instruc-
tion. The third argument of the jmp instruction is the VBBI related hint
information encoded in the jump instruction format shown in Figure 4, i.e.
bits 0 through 13 in the instruction. In this example, the hint information
shows that the offset between the hint-jump instruction pair is 11 instruc-
tions (8203 = 2ˆ13 + 11).

4 Optimizations for Improving VBBI Prediction
Accuracy

As indicated by the almost perfect prediction accuracy with VBBI target pre-
diction overriding [7], the VBBI scheme is highly accurate when the current
hint value is used, i.e. the hint instruction output is available when making the
prediction. We apply compiler and run time optimizations to increase the dy-
namic instructions between the hint-jump instruction pair. This results in higher
probability of the hint value being available when making the prediction. The
techniques presented in this section are applicable to similar prediction schemes,
as well as other design ideas exploiting data dependences to improve instruction
level parallelism (ILP) and memory operation performance.

4.1 Compiler Optimizations

Instruction Hoisting In this optimization, the hint instruction is moved away
from its dependent jump instruction, thus creating more dynamic instructions
between the hint-jump pair. Figure 5(a) shows a code example from SPEC95
099.go benchmark that is suitable for such an optimization. In this example, the
switch-case statement will be compiled into an indirect jump instruction. The
target taken by the jump instruction depends on the underlined computation of
shapes[sh].where which can be hoisted up to the beginning of the for loop,
thus increasing the dynamic distance between the hint instruction and the jump
instruction.

Function Inlining If the control variable of an indirect jump instruction is
passed as a function argument, that function can be inlined to increase the dy-
namic instruction count between the hint and the jump instruction. Figure 5(b)



    for(sh = 0; sh < numshapes; ++sh){
        if(shapes[sh].xsize > boardsize ||
                shapes[sh].ysize > boardsize)
            continue;
        bot = lsqr;

        if(left < 0)left = 0;
        up = yval[fsqr] − shapes[sh].ysize + 1;
        if(up < 0)up = 0;
        top = up * boardsize + left;

        left = xval[fsqr] − shapes[sh].xsize + 1;

        if(xval[bot] + shapes[sh].xsize > boardsize)
            bot −= xval[bot] + shapes[sh].xsize −
                boardsize;

    //variable initialization

void findshapes(int fsqr,int lsqr){

                && (f −> rsd_used)                && ((ir−>dest) != 31))
                if (m88000.time_left[(ir −> dest)+1] > time)

                        time = m88000.time_left[(ir −> dest)+1];

int Swap(int source, int target, int wtm)
{   //variable initialization

  attacks=AttacksTo(target);
  attacked_piece=p_values[PieceOnSquare(target)+7];
  color=ChangeSide(wtm);
  swap_list[0]=attacked_piece;
  sign=−1;
  attacked_piece=p_values[PieceOnSquare(source)+7];
  Clear(source,attacks); // #define Clear(a,b) b=And(clear_mask[a],b)

        if(yval[bot] + shapes[sh].ysize > boardsize)
            bot −= boardsize * (yval[bot] +
                    shapes[sh].ysize − boardsize);
        right = xval[bot];
        width = right − xval[top] + 1;
        t = yval[top] == 0;
        b = yval[bot] == boardsize−shapes[sh].ysize;
        l = xval[top] == 0;
        r = xval[bot] == boardsize−shapes[sh].xsize;
        color = vclr[values[shapes[sh].startpoint]];
        point = points[shapes[sh].startpoint];
        switch( ){

                //rest of the switch cases
            case ANYWHERE:

{

    return(Or(attacks, 
           And(And(AttacksRank(from),RooksQueens),plus1dir[from])));

//rest of the switch cases
}

}

  case 1:

BITBOARD 

  switch ( direction ) {

(BITBOARD attacks, int from, int )

} // end of the function
//rest of the function

  if (direction) attacks=

shapes[sh].where

(attacks,source, direction SwapXray
direction

 SwapXray

);

direction

//some code

        {                return ( retval );
        }        else        {

}

{
int Data_path (void)

        if ( (retval = 

(  ir

, f )) == −1 ) ir(

//some code{

}

int 

        if ((

{        ++instr_cnt;

        {

                case ADDU:
                case ADDUCO:
}

 /* integer and logical instructions */

void  (struct IR_FIELDS *

        switch ( ir−>op )          /* operate on current instruction */

(struct IR_FIELDS * ir , struct SIM_FLAGS *f)

) ir Statistics 

                Statistics );

        test_issue

        test_issue

 ir−>op  == LDD)

a) Instruction hoisting example

b) Function Inlining example c) Interprocedural analysis example

  = directions[target][source];

Fig. 5. Code examples showing compiler optimizations for VBBI

shows a code example from SPEC2000 186.crafty benchmark that can benefit
from function inlining optimization. In this example, the indirect jump instruc-
tion in function SwapXray depends on the underlined variable direction which
is passed as an argument to the function. Without inlining, the instruction that
POPS the variable direction from the stack will be marked by the compiler
as the hint instruction. However, after inlining, this indirect jump instruction
is now dependent on the def of the variable direction in function Swap. Note
that this def of variable direction can be further moved to the beginning of the
function using the previous instruction hoisting optimization.

Inter-procedural Dataflow Analysis This optimization aims at identifying
the hint instruction in a function other than the one containing the indirect
jump instruction. Figure 5(c) shows a code example suitable for such an op-
timization. In this example, taken from SPEC95 124.m88ksim benchmark, the
function Data path calls two other functions, test issue and Statistics, pass-
ing them the same pointer ir. The indirect jump instruction in function Statis-
tics depends on the underlined computation ir->op. The same computation is
also performed in an earlier function test issue. Marking the hint instruction in
function test issue instead of Statistics greatly increases the possibility that
the latest hint instruction outcome is available for making the prediction.



{
// some code {

  register int *bestp, *movep, *sortv, temp;
  register int history_value, bestval, done, index;

  switch (next_status[ply].phase) {

  case HASH_MOVE:
    next_status[ply].phase=GENERATE_CAPTURE_MOVES;
    if (hash_move[ply]) {

int 

while ((current_phase[ply]=(in_check[ply]) ? NextEvasion(ply,wtm) :

    extended_reason[ply]&=check_extension;

// some other code

//rest of the code

}  //end of while

} //end of Search

{
  register int piece, from, to, captured, promote;

// some code

// some code

case pawn:

0x120022930                   55%                                 61%                                                      88%

Jump PC                      BTB only                   VBBI baseline                      VBBI with load−store address matching 

Prediction Accuracy (%)

int Search(int alpha, int beta, int wtm, int depth, int ply, int do_null)

                                               NextMove

 (ply, MakeMove

void (int ply, MakeMove , int wtm)

piece = Piece( );  //  define Piece(a) (((a)>>12)&7)move

switch ( ) {piece

NextMove (int ply, int wtm)

      = hash_move[ply];

(ply,wtm))) {

    }
      else printf("bad move from hash table, ply=%d\n",ply);
      if (ValidMove(ply,wtm,current_move[ply])) return(HASH_MOVE);

      current_move[ply]

  case CAPTURE_MOVES:
    if (next_status[ply].remaining) {
      current_move[ply]      = *(next_status[ply].last);

    next_status[ply].phase=KILLER_MOVE_1;
    }
      return(CAPTURE_MOVES);
      if (!next_status[ply].remaining) next_status[ply].phase=KILLER_MOVE_1;
      next_status[ply].remaining−−;
      *next_status[ply].last++=0;

       move int 

,wtm);current_move[ply]

Fig. 6. Load to store address matching example (taken from SPEC2000.186.crafty)

4.2 Hardware Optimization

Load to Store Address Matching: Dynamic tracking of load and store depen-
dences has been used to support data speculation in code scheduling [9] [14]. We
apply this technique to improve target prediction for indirect branches. When
the hint instruction for an indirect jump is a load instruction, the address of the
load instruction can be recorded in a Hint Store Buffer (HSB). Subsequently,
each store address is compared against load addresses in the HSB. If a match
is found, the store value will be placed as the hint value in the corresponding
HIB entry. Figure 6 shows an example taken from SPEC2000 186.crafty bench-
mark. In this example, the while loop in function Search() computes the next
move by calling function NextMove(), which stores the computed move in cur-
rent move[ply]. Subsequently, current move[ply] is passed as an argument
to the function MakeMove() where current move[ply] is used as the switch-
case control variable. Dynamically tracking the load-store dependence and using
the store value as opposed to the load value as the hint value increases the possi-
bility of making the prediction using the latest hint value. As shown in Figure 6,
the load-to-store address matching optimization improved the prediction accu-
racy of this jump to 88% compared to 61% when the hint instruction originally
identified by the compiler was used for making predictions (VBBI baseline).

5 Simulation Methodology

We extended SimpleScalar [1] to simulate a 4-issue, 24-stage pipeline for eval-
uating VBBI prediction scheme. Table 2 shows the baseline parameters for our



Table 1. Characteristics of evaluated benchmarks

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc

Static Indir. br. 59 39 4 8 59 35 8 62 543
Dynamic Indir. br. (K) 161 62 289 215 1252 1238 532 1170 474

Baseline IPC 0.98 0.69 0.78 0.88 0.74 0.73 0.62 0.62 0.59

processor. Our workload includes nine benchmarks, three each from SPEC95,
SPEC2000 and SPEC2006 suites [17]. Currently our compiler work for identify-
ing hint instruction only support benchmarks written in C language. We plan
to extend the support for C++ and Java benchmarks.

We use SimPoint [15] to find a representative program execution slice for each
benchmark using the reference input data set. All binaries are compiled using
modified GCC v4.2.1 with -O3 optimization running on Compaq Tru64 UNIX
V5.1B. Each benchmark is run for 100M Alpha instructions. Table 1 shows the
characteristics of simulated SimPoint for each benchmark.

Table 2. Processor parameters

Pipeline depth Evaluated multiple configurations ranging from 8 to 24 stages;

Instr. Fetch 4 instructions/cycle; fetch ends at first pred. taken br;

Execution 4-wide decode/issue/execute/commit;
Engine 512-entry RUU; 128-entry LSQ;

Branch 12KB hybrid pred. (8K-entry bimodal and selector,
Predictor 32K-entry gshare); 4K-entry, 4-way BTB with LRU repl.;

32-entry return addr. stack; 15 cycle min. br mispred. penalty;
16-entry HIB; 32-entry HSB;

16KB, 4-way, 1-cycle L1 D-cache; 16KB, 2-way, 1-cycle
Caches L1 I-cache; 1MB, 8-way, 10-cycle unified L2 cache;

All caches have 64B block size with LRU replacement policy;

Memory 300-cycle memory latency (first chunk), 15-cycle (rest);

6 Results

In this section we compare the performance of the baseline VBBI [7] with the
optimized VBBI. Sections 6.1 and 6.2 use the traditional BTB and the TTC
designs respectively as the reference point for comparison.

6.1 VBBI versus Traditional BTB

We compare the optimized VBBI prediction accuracy with the baseline VBBI
and with the traditional BTB scheme in Figure 7. On average, the VBBI predic-
tion accuracy is improved from 66% (baseline VBBI) to 80% (optimized VBBI).
The BTB mispredictions are reduced by 2.1x using the optimized VBBI scheme.



Table 3. Average dynamic instruction count between hint-jump instruction pair

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc AVG

VBBI baseline 45 58 10 63 12 31 47 15 51 37

VBBI optimized 168 110 16 158 43 39 174 24 64 88

Table 4. MPKI with traditional BTB, VBBI baseline and optimized VBBI

m88ksim li perl crafty perlbmk gap sjeng perlbench gcc AVG

Indir. br. MPKI (BTB only) 0.9 0.5 2.3 1.2 8.5 5.6 2.9 9.1 1.93 3.7
Indir. br. MPKI (VBBI baseline) 0.6 0.2 1.4 0.8 4.1 0.1 2.1 5.9 1.1 1.8

Indir. br. MPKI (VBBI optimized) 0.1 0.1 0.5 0.5 3.2 0.1 0.8 4.9 1.1 1.3

The increase in prediction accuracy is due to the fact that more predictions are
made using the current and highly correlated hint value. Table 3 shows that
the proposed optimizations increase the average dynamic distance between hint-
jump instruction pair from 37 instructions to 88 instructions. Table 4 shows the
number of mispredictions for indirect branches per 1K instructions (MPKI) for
different prediction techniques. The optimized VBBI slashes the indirect branch
MPKI by a third compared with traditional BTB design, and by a half compared
with the baseline VBBI design.

Performance comparison of the optimized and the baseline VBBI scheme over
the traditional BTB design is shown in Figure 8. For a 4-issue, 24-stage pipeline,
the proposed VBBI optimizations enhance the baseline VBBI performance by
5.5%, achieving a 20.7% performance improvement over the traditional BTB
design. When target prediction overriding is also enabled, the VBBI scheme
achieves an overall performance improvement of 24.8% over the traditional BTB
technique.
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Fig. 7. VBBI Indirect branch prediction accuracy
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Fig. 8. IPC improvement of VBBI over traditional BTB scheme

6.2 VBBI versus Tagged Target Cache

We also compare the VBBI design with the TTC predictor [2], which is shown
to be the best previously proposed jump predictor in a recent study by [10] (in
Figure 17). In the TTC scheme, target addresses from recently executed indirect
jump instructions are recorded in a target history register. When an indirect
jump is fetched, the target cache is indexed using the XOR of the indirect branch
PC and target history register, and the address stored at that index is predicted
as the next target address. When the indirect jump retires, the computed target
address is written into the target cache using the same index. When updating
the history information, few bits from the target address are shifted into the
global target history register. Farooq et al. [7] show that the TTC gives the best
prediction accuracy with 14-bit global target history register. Upon update, 5
bits of target address (starting from the 3rd bit) are shifted into the target
history register.

Figure 9 compares the VBBI prediction accuracy with the TTC design. On
average, the optimized VBBI achieves a prediction accuracy of 80%, compared
to 56% achieved by the best performing TTC configuration. Figure 10 compares
the performance of the VBBI predictor with the TTC predictor. On average,
the baseline VBBI outperforms the TTC design by 9.1% with just 130B of addi-
tional storage [7] compared to 384KB storage of the TTC design. The optimized
VBBI further enhance the baseline VBBI performance by 4.7%, achieving 13.8%
improvement over the TTC design. With target prediction overriding, VBBI
achieves an overall performance improvement of 17.3% over the TTC predictor.

7 Previous Work

Lee and Smith [13] proposed branch target buffer (BTB) to predict indirect
branches. This technique predicts the same target for the current execution of
the branch that was taken in the last execution of that branch. Though simple
in design, this scheme does not work well for indirect branches that may switch
between multiple targets at run time.
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Fig. 9. Indirect branch prediction accuracy: VBBI prediction vs. Tagged Target Cache
(TTC)

History based two-level indirect branch predictor was first proposed by Chang
et al. [2]. This mechanism, known as ‘target cache’, uses the branch history in-
formation to distinguish different dynamic instances of the same indirect branch,
a concept similar to 2-level conditional branch predictor [18]. When an indirect
jump is fetched, the jump address and the global target history register are used
to form an index into the target cache. The target cache is accessed and the
resident address is predicted as the target address. Upon retiring the indirect
jump, the target cache entry and the target history register is updated with the
actual target address.

Driesen et al. [5] [6] focused on improving the indirect branch prediction
accuracy by combining multiple predictors using a cascaded predictor. Cascaded
predictor is a hybrid predictor consisting of a simple predictor for easy-to-predict
indirect branches, and a more complex predictor for hard-to-predict indirect
branches.

Kalamatianos et al. [11] proposed predicting indirect branches via data com-
pression. Their predictor uses prediction by partial matching (PPM) algorithm
of order three, which is a set of four Markov predictors of decreasing size, indexed
by an indexing function formed by a decreasing number of bits from previous
targets in the target history register.

Kim et al. [12] utilized the existing conditional branch predictor for predict-
ing indirect branches as well. The mechanism, known as the ‘VPC prediction’,
treats an indirect branch instruction with t targets as t direct branches, each with
its own unique target address. On fetching an indirect jump, the VPC prediction
algorithm makes MAX ITER attempts for predicting an indirect branch target,
each time as a different ‘virtual direct branch’ of the same indirect branch. This
iterative process stops either when a ‘virtual direct branch’ is predicted to be
taken, or MAX ITER number is reached, in which case the processor is stalled
until the indirect branch is resolved. MAX ITER determines the maximum num-
ber of attempts made to predict an indirect branch. Each attempt takes one cycle
during which no new instruction is fetched. A more recent study ([10] in Figure
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Fig. 10. Performance improvement: VBBI prediction vs. Tagged Target Cache (TTC)

13 and 14) shows that performance of VPC prediction degrades significantly for
workloads with higher number of dynamic targets.

Roth et al. [16] took a different approach for predicting indirect branch tar-
gets, precomputating them in anticipation of having to make a prediction. Pro-
posed specifically for virtual function calls, the scheme dynamically captures the
sequence of instructions involved in the target generation process. Whenever the
first instruction in the sequence completes, it uses a separate, fast execution en-
gine and computes the target before the actual call instruction is encountered.
Although this technique avoids using specialized jump predictor, it requires sig-
nificant hardware for capturing the target generation instructions along with a
fast execution engine to pre-compute the target. Furthermore, this technique is
very specific to target prediction of virtual function calls , as their target gener-
ation process consists of a fixed pattern of three dependent loads followed by an
indirect call.

Joao et al. [10] proposed a new way of handling indirect jumps, dynamically
predicating them. Instead of fetching from a single control path, when a hard-to-
predict indirect jump instruction is fetched, the processor starts fetching from N
different targets of the jump instruction. By fetching from more than one target,
the processor increases the probability of fetching from the correct target path
at the expense of executing more instructions. They showed that N=2 is a good
trade-off between performance and complexity.

Recently, Farooq et. al [7] proposed a compiler-guided, correlation-based tar-
get address prediction scheme that combines data dependences with indirect
branch target prediction. The proposed technique, known as Value based BTB
indexing (VBBI), relies on the compiler’s ability to statically capture data de-
pendences, and uses the hardware to exploit the correlation between the data
and branch target at run time. The key idea of VBBI is to identify a ‘hint in-
struction’ whose output is highly correlated with the target taken by the jump.
At run time multiple targets of an indirect branch are stored at different BTB
indices computed by hashing the branch PC with the output of the hint instruc-
tion. They show that by off-loading dependence analysis to the compiler, the
hardware predictor size can be kept much smaller.



8 Conclusion

The recently proposed VBBI prediction scheme uses a novel BTB indexing tech-
nique that allows multiple targets of an indirect branch to be stored at different
BTB indices. This technique relies on the compiler to identify a ‘hint instruction’
whose output strongly correlates with the target taken by the indirect branch.
At run time multiple targets are stored at different BTB indices computed by
hashing the branch PC and the hint instruction output value.

In this paper we propose the compiler support for identifying the hint in-
struction for the VBBI prediction scheme. We also propose the compiler and
run time optimizations that improve the VBBI prediction accuracy by increas-
ing the dynamic instructions between the hint-jump instruction pair. The more
the dynamic instructions between this instruction pair, the more likely that the
hint instruction outcome will be available when making the prediction.

Our evaluation shows that the proposed optimizations improve the VBBI
prediction accuracy from 66% to 80%. Compared to traditional BTB design, this
translates into average performance improvement from 17.2% (baseline VBBI)
to 24.8% (optimized VBBI). We also compare the VBBI with the best previously
proposed indirect jump predictor, the tagged target cache (TTC). Compared to
the TTC design, the proposed optimizations improve the performance by 6.3%,
from 11% (baseline VBBI) to 17.3% (optimized VBBI).
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