
Copyright

by

Karthik Ganesan

2011

The Dissertation Committee for Karthik Ganesan
certifies that this is the approved version of the following dissertation:

Automatic Generation of Synthetic Workloads

for Multicore Systems

Committee:

Lizy K. John, Supervisor

Vijay K. Garg

Adnan Aziz

Sarfraz Khurshid

Byeong K. Lee

Automatic Generation of Synthetic Workloads

for Multicore Systems

by

Karthik Ganesan, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2011

Dedicated to my parents,

Mr. Ganesan Swaminathan and Mrs. Radhamani Ganesan

Acknowledgments

I would like to thank my advisor, Dr. Lizy John, for being a great

mentor throughout the PhD program. She has given me invaluable guidance,

financial support and has always been very motivating. She has been a great

inspiration and was always available to answer questions and provide feedback.

I would also like to thank (in alphabetical order) Dr. Vijay K Garg, Dr. Adnan

Aziz, Dr. Sarfraz Khurshid and Dr.Byeong Lee for serving on my dissertation

committee and providing invaluable comments and feedback.

I would like to thank Dr. Dimitris Kaseridis for helping me setup

GEMS and Simics framework aiding in immensely accelerating my research.

He has also been a great friend and has provided valuable feedback for my

research. I would like to thank Dr. Ajay Joshi for providing me his simulation

tools and framework, which served as the starting point for my research. I am

thankful to Dr. Lloyd Bircher for helping me with hardware measurements

at AMD. I also enjoyed working with Jungho Jo and Dr. Zhibin Yu on the

different projects related to synthetic benchmarks. I am also thankful to the

current and past members of the Laboratory of Computer Architecture, Dr.

Jian Chen, Dr. Ciji Isen, Jungho Jo, Arun Nair, Faisal Iqbal, Youngtaek Kim

for providing comments and feedback during the various practice talks of mine.

Amy Levin, Melanie Gulick, Deborah Prather, and Melissa Campos

v

were very helpful whenever I had any administrative issues and questions.

Prof. Venkateswaran Nagarajan of Waran Research Foundation, Chen-

nai, India has played a key role in helping me understand the importance

of research and the value of a PhD. I cannot thank him enough for his ad-

vise during my PhD program that kept me motivated to pursue my PhD to

completion.

I am very grateful to my father Mr. Ganesan Swaminathan for his

unswerving encouragement throughout my PhD program. He has always been

a great source of inspiration and his encouragement has been one of the most

significant motivating factors in my pursuit towards this doctorate. I am also

very grateful to my mother Mrs. Radhamani Ganesan for providing me the

moral support whenever I needed and also for enabling me to strive to become

a well rounded personality. I am also thankful for the encouragement and

support given by my brother and his family.

vi

Automatic Generation of Synthetic Workloads

for Multicore Systems

Karthik Ganesan, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Lizy K. John

When designing a computer system, benchmark programs are used with

cycle accurate performance/power simulators and HDL level simulators to

evaluate novel architectural enhancements, perform design space exploration,

understand the worst-case power characteristics of various designs and find

performance bottlenecks. This research effort is directed towards automati-

cally generating synthetic benchmarks to tackle three design challenges: 1) For

most of the simulation related purposes, full runs of modern real world parallel

applications like the PARSEC, SPLASH suites cannot be used as they take

machine weeks of time on cycle accurate and HDL level simulators incurring

a prohibitively large time cost 2) The second design challenge is that, some of

these real world applications are intellectual property and cannot be shared

with processor vendors for design studies 3) The most significant problem in

vii

the design stage is the complexity involved in fixing the maximum power con-

sumption of a multicore design, called the Thermal Design Power (TDP). In

an effort towards fixing this maximum power consumption of a system at the

most optimal point, designers are used to hand-crafting possible code snip-

pets called power viruses. But, this process of trying to manually write such

maximum power consuming code snippets is very tedious.

All of these aforementioned challenges has lead to the resurrection of

synthetic benchmarks in the recent past, serving as a promising solution to all

the challenges. During the design stage of a multicore system, availability of

a framework to automatically generate system-level synthetic benchmarks for

multicore systems will greatly simplify the design process and result in more

confident design decisions. The key idea behind such an adaptable benchmark

synthesis framework is to identify the key characteristics of real world parallel

applications that affect the performance and power consumption of a real pro-

gram and create synthetic executable programs by varying the values for these

characteristics. Firstly, with such a framework, one can generate miniaturized

synthetic clones for large target (current and futuristic) parallel applications

enabling an architect to use them with slow low-level simulation models (e.g.,

RTL models in VHDL/Verilog) and helps in tailoring designs to the targeted

applications. These synthetic benchmark clones can be distributed to archi-

tects and designers even if the original applications are intellectual property,

when they are not publicly available. Lastly, such a framework can be used

to automatically create maximum power consuming code snippets to be able

viii

to help in fixing the TDP, heat sinks, cooling system and other power related

features of the system.

The workload cloning framework built using the proposed synthetic

benchmark generation methodology is evaluated to show its superiority over

the existing cloning methodologies for single-core systems by generating minia-

turized clones for CPU2006 and ImplantBench workloads with only an average

error of 2.9% in performance for up to five orders of magnitude of simula-

tion speedup. The correlation coefficient predicting the sensitivity to design

changes is 0.95 and 0.98 for performance and power consumption. The pro-

posed framework is evaluated by cloning parallel applications implemented

based on p-threads and OpenMP in the PARSEC benchmark suite. The aver-

age error in predicting performance is 4.87% and that of power consumption is

2.73%. The correlation coefficient predicting the sensitivity to design changes

is 0.92 for performance. The efficacy of the proposed synthetic benchmark gen-

eration framework for power virus generation is evaluation on SPARC, Alpha

and x86 ISAs using full system simulators and also using real hardware. The

results show that the power viruses generated for single-core systems consume

14-41% more power compared to MPrime on SPARC ISA. Similarly, the power

viruses generated for multicore systems consume 45-98%, 40-89% and 41-56%

more power than PARSEC workloads, running multiple copies of MPrime and

multithreaded SPECjbb respectively.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Motivation . 3

1.1.1 Prohibitive Simulation Time 3

1.1.2 Proprietary Applications 5

1.1.3 Worst-case Power Characteristics 5

1.2 Objectives . 9

1.2.1 Power Virus Generation 12

1.2.2 Workload Cloning . 15

1.3 Thesis Statement . 16

1.4 Contributions . 16

1.5 Organization . 18

Chapter 2. Related Research and Background 20

2.1 Statistical Simulation, Benchmark Synthesis
and Workload Cloning . 20

2.2 Other Simulation Time Reduction Techniques 22

2.3 Power Virus Generation . 24

2.4 Hiding Intellectual Property in Applications 25

2.5 ImplantBench Workloads . 26

x

Chapter 3. Synthetic Benchmark Generation Framework 28

3.1 Abstract Workload Model . 28

3.1.1 Stride Based Memory Access Behavior 31

3.1.2 Model for the Memory Level Parallelism 32

3.1.3 Transition Rate Based Branch Behavior 35

3.1.4 Dimensions of the Abstract Workload Model 35

3.2 Code Generation . 44

Chapter 4. Workload Cloning 50

4.1 Improved Workload cloning for Single-cores 50

4.1.1 Benchmark Characterization 50

4.1.2 Results and Analysis . 61

4.1.2.1 Accuracy in the representativeness of the syn-
thetic clones . 61

4.1.2.2 Accuracy in the sensitivity to design changes . . 70

4.1.2.3 Cloning selected full runs of CPU2006 75

4.2 Workload cloning for Multicores 77

4.2.1 Benchmark Characterization 78

4.2.2 Results and Analysis . 83

4.2.2.1 Accuracy in assessing performance 83

4.2.2.2 Accuracy in assessing power consumption . . . 86

4.2.2.3 Accuracy in assessing sensitivity to design changes 87

4.2.2.4 Speedup achieved in using the synthetics 90

4.2.3 Proxies for Proprietary Applications 92

Chapter 5. Power Virus Generation 94

5.1 Abstract Workload Model . 96

5.2 Genetic Algorithm . 100

5.3 Simulation Infrastructure . 103

5.4 State-of-the-art Power viruses 104

5.5 SYstem-level Max POwer (SYMPO) - Power Viruses for Single-
core systems . 107

5.5.1 Results on SPARC ISA 107

xi

5.5.2 Results on Alpha ISA 111

5.5.3 Suitability of Genetic Algorithm for SYMPO 114

5.5.4 Validation of SYMPO using measurement on instrumented
real hardware . 115

5.6 MAximum Multicore POwer (MAMPO) - Power Viruses for
Multicores . 119

5.6.1 Experimental Setup . 120

5.6.2 Results and Analysis . 122

Chapter 6. Conclusions and Future Research 128

6.1 Workload Cloning . 130

6.2 Power Viruses for Single-core Systems 132

6.3 Power Viruses for Multicore Systems 133

Bibliography 135

Vita 148

xii

List of Figures

1.1 Adaptable synthetic benchmark generation framework 10

1.2 Breakdown of power consumption of the PARSEC benchmark
fluidanimate on typical octcore and sixteen core systems . . . 11

3.1 List of metrics to characterize the execution behavior of work-
loads that significantly affect the performance and power con-
sumption . 30

3.2 Comparison of the MLP behavior of synthetics generated by
previous approaches to that of a real single-threaded workload 33

3.3 Multithreaded synthetic workload generation 43

4.1 Overall workload cloning methodology 51

4.2 Captured SFG information and branch transition rate for CPU2006
and ImplantBench workloads on a single-core system 53

4.3 Dependency distance distribution for SPEC CPU2006 on a single-
core system . 54

4.4 Dependency distance distribution for ImplantBench workloads
on a single-core system . 55

4.5 Memory access stride distribution for SPEC CPU2006 on single-
core systems . 57

4.6 Memory access stride distribution for ImplantBench workloads
on single-core systems . 58

4.7 Captured MLP information as box plots showing the distribu-
tion of the burstiness of long-latency loads for CPU2006 work-
loads on a single-core system 59

4.8 Captured MLP information as box plots showing the distribu-
tion of the burstiness of long-latency loads for ImplantBench
workloads on a single-core system 59

4.9 Machine configurations used for cloning experiments on sin-
glecore systems: Machine-A for SPEC CPU2006 and Machine-B
for ImplantBench workloads 60

4.10 Comparison of the basic block size between the synthetic and
the original workloads for CPU2006 on single-core systems . . 61

xiii

4.11 Comparison of the Instruction mix of the original (bar on left)
and the synthetic workloads (bar on right) for CPU2006 . . . 62

4.12 Comparison of the Instruction mix of the original (bar on left)
and the synthetic workloads (bar on right) for ImplantBench . 62

4.13 Machine configurations used: Machine-A for SPEC CPU2006
and Machine-B for ImplantBench workloads 64

4.14 Comparison of IPC between the synthetic and the original work-
loads on single-core system configurations for Alpha ISA . . . 65

4.15 Comparison of power-per-cycle between the synthetic and the
original workloads for CPU2006 on single-core system configu-
ration for Alpha ISA . 67

4.16 Comparison of power-per-cycle between the synthetic and the
original workloads for ImplantBench on single-core system con-
figuration for Alpha ISA . 68

4.17 Comparison of DL1 missrate, UL2 missrate and branch mis-
prediction rate for CPU2006 and ImplantBench on single-core
system configurations for Alpha ISA 69

4.18 Comparison of the variation of IPC and power-per-cycle for
433.milc between the synthetic and the original on single-core
system configurations for Alpha ISA 72

4.19 Comparison of the variation of IPC and power-per-cycle for
445.gobmk between the synthetic and the original on single-core
system configurations for Alpha ISA 73

4.20 Correlation coefficient between synthetic and the original for
design changes on single-core system configurations for Alpha
ISA . 74

4.21 Comparison of IPC between the synthetic and the original full
runs for CPU2006 on single-core system configuration for Alpha
ISA . 75

4.22 Speedup information for complete runs of some CPU2006 work-
loads on single-core system configuration for Alpha ISA 76

4.23 Instruction mix distribution for a 8-threaded version of various
PARSEC workloads . 79

4.24 Spatial distribution of the accessed memory addresses into shar-
ing patterns for various a 8-threaded version of PARSEC work-
loads . 80

4.25 Temporal distribution of the various memory accesses in a 8-
threaded version of PARSEC workloads into different sharing
patterns for reads . 82

xiv

4.26 Temporal distribution of the various memory accesses in a 8-
threaded version of PARSEC workloads into different sharing
patterns for writes . 82

4.27 Comparison of IPC between original and synthetic for various
threads of benchmark Blackscholes in the PARSEC suite on a
8-core system configuration 84

4.28 Average Error in IPC between synthetic and original for the
PARSEC benchmarks on a 8-core system configuration 84

4.29 Comparison of L1 missrate between the synthetic clones and
that of the original PARSEC workloads on a 8-core system con-
figuration . 86

4.30 Comparison of branch prediction rate between the synthetic
clones and that of the original PARSEC workloads on a 8-core
system configuration . 87

4.31 Power-per-cycle for various PARSEC workloads along with a
breakdown of the power consumption in various components on
a 8-core system . 88

4.32 Multicore machine configurations used to evaluate the accuracy
in assessing the impact of design changes by the synthetic in
comparison to original PARSEC workloads 88

4.33 Correlation coefficients for the sensitivity to design changes be-
tween the synthetic and the original using various multicore
machine configurations for the workloads in the PARSEC suite 89

4.34 Comparison of sensitivity to design changes using various mul-
ticore machine configurations for the workload Streamcluster in
PARSEC suite . 90

4.35 Comparison of sensitivity to design changes using various multi-
core machine configurations for the workload Raytrace in PAR-
SEC suite . 91

4.36 Speedup achieved by using the synthetic proxies over the full
run of the PARSEC workloads on a 8-core system configuration 91

5.1 Multithreaded power virus generation framework 95

5.2 Abstract workload space searched through by the machine learn-
ing algorithm including the range of values used for each of the
different knobs . 97

5.3 Single-threaded power viruses widely used in the industry . . . 106

5.4 Evaluation of SYMPO on SPARC ISA for single-core systems 108

5.5 Single-core machine configurations used to evaluate SYMPO . 109

xv

5.6 Evaluation of SYMPO on Alpha ISA using SimpleScalar for
single-core systems . 112

5.7 Breakdown of power consumption of SYMPO and MPrime for
single-core systems on SPARC and Alpha ISAs 116

5.8 Machine configuration of AMD Phenom II 117

5.9 Power measurement on quad-core AMD Phenom II 118

5.10 Multicore system configurations for which power viruses are
generated to evaluate the efficacy of MAMPO on SPARC ISA 120

5.11 Interconnection networks used in the multicore system configu-
rations for evaluating the efficacy MAMPO 121

5.12 MAMPO virus generation and evaluation on multicore systems
on SPARC ISA . 125

5.13 Breakdown of power consumption of MAMPO virus for various
multicore system configurations and comparison to MPrime on
SPARC ISA . 126

6.1 Summary of the power consumption of the single-threaded power
virus generated by SYMPO in comparison to MPrime on Alpha,
SPARC and x86 ISAs . 132

xvi

Chapter 1

Introduction

Performance evaluation and benchmarking of computer systems has

been a challenging task for designers and is only expected to increase in future

due to the ever increasing complexity of modern computer systems. Under-

standing program behavior through simulations is the foundation for computer

architecture research and program optimization. Thus, it is very common to

have models written for the designed systems at various levels of abstrac-

tions in the design stage of a processor to enable simulations. Functional

models, which stand at the highest level of abstraction are typically written

using higher level languages like C, C++ and could be of varying levels of

accuracy based on the models being cycle-accurate, trace or execution driven,

bare-metal or include a full system. At the lowest level of abstraction, are

the most detailed models written at the Register Transfer Level (RTL) us-

ing languages like VHDL or Verilog. These aforementioned models play a

key role in evaluating novel architectural enhancements, perform design space

exploration, understand the worst-case power characteristics and identify per-

formance bottlenecks of various designs by enabling an architect to simulate

the runs of the most representative set of target workloads.

1

Identifying the correct set of workloads to use with these models is in

itself a more challenging task than even developing the models for the pro-

cessors. Though microbenchmarks and kernels, which are hand coded code

snippets that represent the most commonly used algorithms in real world

applications are small and easy to use with the performance models, they

may not be comprehensive enough to cover various execution behaviors to be

representative of the real target applications. For this purpose, there have

been benchmark suites, developed and maintained by academia and organiza-

tions like Standard Performance Evaluation Corporation (SPEC) containing

the most commonly used applications in various domains. Some of the most

popular benchmark suites are SPEC CPU2006 [1] [2], Splash-2 [3] [4], PARSEC

[5], EEMBC and ImplantBench [6], which represent the most commonly used

desktop, embedded and futuristic applications. The SPEC CPU2006 suite, re-

leased in Aug 2006 is a current industry-standard, CPU-intensive benchmark

suite, created from a collection of popular modern single-threaded workloads.

The EEMBC benchmarks contain workloads from the embedded domain tar-

geting telecom/networking, digital media, Java, automotive/industrial, con-

sumer, and office equipment products. The ImplantBench suite proposed by

Jin et al. [6] is a collection of futuristic applications that will be used in futuris-

tic bio-implantable devices. Splash-2 is a collection of multithreaded workloads

developed at Stanford targeting shared memory systems. The Princeton Appli-

cation Repository for Shared-Memory Computers (PARSEC) is a benchmark

suite developed at Princeton University composed of emerging multithreaded

2

workloads and was designed to be representative of next-generation shared-

memory programs for chip-multiprocessors.

There are many challenges involved in using these real applications

with the various performance models in the design stage to analyze the per-

formance and power characteristics of the designs under study. The most

significant challenges addressed by this dissertation are that these workloads

have a prohibitively large run time on the performance models, some of them

are not available to architects as they are proprietary and most of them cannot

be of much use in analyzing the worst-case power characteristics of designs.

This dissertation addresses each of these challenges by distilling the most im-

portant characteristics of real world applications and using them to construct

an adaptable synthetic benchmark generation framework, which will be a valu-

able tool in the design stage of processors.

1.1 Motivation

1.1.1 Prohibitive Simulation Time

For most of the simulation related purposes, full runs of modern real

world applications like the SPEC CPU2006, PARSEC suites cannot be used

as they take machine weeks of time on cycle accurate and HDL level simula-

tors incurring a prohibitively large time cost. The prohibitive simulation time

of the real-world applications [5] [2] can be attributed to the fact that they

contain thousands of billions of instructions [1]. Design models of modern

multicore systems at RTL level are many orders slower than cycle accurate

3

simulators. For example, the design of IBM POWER6 has 3.3 million lines

of VHDL to model 790 million transistors and it is almost impossible to use

full runs of modern workloads for design studies. The advent of the multicore

processors and heterogeneity in the cores has made the simulations for design

space exploration even more challenging. This has driven architects to use

samples/traces of important parts of the target applications instead of com-

plete runs. It is to be noted that even after 5 years after the release of the

SPEC CPU2006 suite, we do not see many simulation based papers using these

more representative modern workloads and rather architects tend to use the

older version CPU2000 due to the availability of miniaturized samples/traces.

To reduce simulation time, sampling techniques like simulation points

[7] and SMARTS [8] are well known and widely used. But, the problem with

such sampling techniques is that most of them are restricted to phase behavior

analysis and check-pointing of single-threaded applications and none of them

can be directly used for sampling multithreaded applications or simultaneous

execution of independent programs. Though there has been some efforts to-

wards extending such sampling techniques for multicore architectures as in the

work by Biesbrouck et al [9], but it is all still in infancy. Another problem with

such sampling techniques is that huge trace files for the particular dynamic

execution interval have to be stored or they require the simulator to have the

capability to fast-forward until it reaches the particular interval of execution

that is of interest to the user. The problem with other techniques like bench-

mark subsetting [10] is that the results are still whole programs and are too

4

big to be directly used with design models.

1.1.2 Proprietary Applications

The previously mentioned simulation time problem is augmented with

the unavailability of some of the real target applications due to being pro-

prietary. For example, in case where a vendor is designing a system for a

defense application or for military purposes, it is not possible to have these

target applications in hand for performance analysis. In such cases, the archi-

tect will end up using the publicly available similar applications or the most

generic benchmark suites. But, these proprietary target applications may have

some unique characteristics that is not accounted for, and could result in the

architects ending up with a non-optimal design.

1.1.3 Worst-case Power Characteristics

Excessive power consumption and heat dissipation have been a critical

problem faced by computer designers in the past decade. Due to power de-

livery, thermal and cooling issues along with a world-wide initiative towards

green computing, power consumption is a first class design parameter in high

end server systems and it has always been a significant constraint in low end

embedded system design. More specifically, the maximum power consumption

for which computer systems are designed, called the Thermal Design Power

(TDP) is one of the most important of the different design parameters and is

something that is very carefully determined by the computer architects. This

5

worst-case power consumption has a direct impact on attainable micropro-

cessor performance and implementation cost. Current generation multi-core

performance is almost universally limited by power delivery, cooling and reli-

ability rather than critical path delay. The cooling systems of these modern

processors/memories are designed in such a way, that these systems are deemed

to safely operate only within this power cap and are equipped with the capa-

bility to automatically throttle down the operating frequency when the system

is driven to reach this maximum power. This maximum power consumption

for which a system is designed cannot just be fixed as the sum of the power

consumption of the various components in the system, but rather it has to be

the maximum attainable power consumption that a user workload could prac-

tically achieve in the system under design. This is due to the fact that this

maximum attainable power consumption is quite low compared to the sum

of the power consumption of various micro-architectural components as it is

almost impossible to keep all these components of a system simultaneously

active by any workload. The process of determining the maximum power for a

design is very complicated due to it’s dependence on multiple factors like the

workload that could be executed, the configuration of the system, the power

saving features implemented in hardware and the way some of these features

are exercised by the operating system.

If the maximum power of a design is fixed too high, a designer will end

up wasting a lot of resources by over-provisioning the heat sinks, cooling sys-

tem, power delivery system and various other system level power management

6

utilities. A related example will be the design of external power supplies to

server systems. Due to incognizance of the precise maximum attainable power

of a system, a power supply could be designed to handle a high load and when

the typical usage scenario is far below that load, the efficiency of the power

supply is known to drop many folds [11]. It is to be noted that over provi-

sioning of these power related utilities could result in substantial increase in

maintenance costs. The recent trend towards consolidation in server systems

(e.g. blade servers), has resulted in an explosion in power density leading to

high costs related to electricity and cooling system. The ’power dissipation

per square foot’ of recent server systems is estimated to be 160 Watts per

square foot. Data center energy costs are starting to exceed hardware costs

and it was estimated that in 2010, the power a server burns over its lifetime

will cost more than the server itself. It is estimated that for every watt of

power used by the computing infrastructure in a data center, another 0.33 to

0.5 watt of power is required by the cooling system [12] [13] due to the on-

going rack-level compaction [14]. This problem has driven data center based

companies to set up sites near power stations and design some of them to be

wind-cooled naturally to save on cooling costs. On the other hand, if this

maximum power consumption is underestimated, the architect will be unnece-

sarily limiting the performance of the system due to frequency throttling or in

case of unavailability of such features, it results in affecting the overall system

reliability and availability due to overheating. When the ambient temperature

increases beyond the safe operating limits, it could result in early failure of

7

the micro-architectural components resulting in sporadic system freezes and

crashes.

Identifying this attainable worst-case power in current generation mi-

croprocessors is a challenging task that will only become more daunting in the

future. As additional system components are integrated into single packages, it

becomes increasingly difficult to predict aggregate worst-case power. Existing

designs integrate multiple cores and memory controllers on a single die. The

trend for future designs is to include a wider array of components including

graphics processors and IO bus controllers [15] [16]. It is to be noted that the

worst-case power of a system is not simply the sum of the maximum power

of each component. Due to underutilization of resources and contention for

shared resources, such as caches or memory ports, the aggregate worst-case is

significantly less than the sum.

In an effort towards fixing the maximum power consumption of systems

at the most optimal point, architects are used to hand-crafting possible code

snippets called power viruses [17] [18]. But, this process of trying to manually

write such maximum power consuming code snippets is very tedious [19]. This

tedium is due to the fact that there are so many components that interact when

a workload executes on a processor/system making it intractable to model all

these complex interactions and requires a profound knowledge about these

interactions to be able to write a code snippet that will exactly exercise a

given execution behavior. Adding to this complexity are the various power

saving features implemented in the hardware like clock gating, demand based

8

switching, enhanced speed step technology and the various power states of

the CPUs exercised by the operating system. Lastly, one cannot be sure that

the manually written power virus is the practically possible maximum case

to be able to safely design the processor for this particular maximum power.

As a result of this, designers tend to end up in the aforementioned wasteful

over-provisioning.

1.2 Objectives

During the design stage of a multicore system, availability of a frame-

work to automatically generate system-level synthetic benchmarks for multi-

core systems will greatly simplify the design process and result in more con-

fident design decisions. The key idea behind such an adaptable benchmark

synthesis framework is to identify the key characteristics of real world applica-

tions such as instruction mix, memory access behavior, branch predictability,

thread level parallelism etc that affect the performance and power consump-

tion of a real program and create synthetic executable programs by varying

the values for these characteristics as shown in Figure 1.1. Firstly, with such

a framework, one can generate miniaturized synthetic clones for large target

(current and futuristic) applications enabling an architect to use them with

slow low level simulation models (e.g., RTL models in VHDL/Verilog) and

helps in tailoring designs to the targeted applications. These synthetic bench-

mark clones can be distributed to architects and designers even if the original

applications are proprietary that are not publicly available. These clones can-

9

Benchmark Synthesizer

Pro
gra

m

Locality

Instru
ctio

n

Mix Contro
l F

low

Behavior
Application

Behavior Space

‘Knobs’ for Changing

Program

Characteristcs

Workload Synthesis

Algorithm

Multithreaded

Synthetic Benchmark

Pre-silicon

Model
HardwareCompile and Execute

Workload Characteristics

Thre
ad Level

Para
lle

lis
m

Communicatio
n

chara
cteris

tic
s

Data S
harin

g

Patte
rn

s

ADD R3, R2, R5

DIV R10, R2, R1
SUB R3, R5, R6

ADD R1, R2, R3
SUB R3, R5, R1

…………
ADD R1, R2, R3
SUB R3, R5, R1…………

DIV R5, R6, R2

ADD R8, R1, R2
MUL R1, R1, R6

DIV R3, R8, R1
MUL R2, R7, R3

…………

FORK

JOIN

...
ADD R1, R4, R5
SUB R5, R0, R5

MUL R3, R3, R2

Figure 1.1: Adaptable synthetic benchmark generation framework

10

!"#$%&'()*

+,-.$%&'()*

/0$%&'()*

1!2$%&'()*

+3)$%&'()*

(a)

!"#$%&'()*

+,-.$%&'()*

/0$%&'()*

1!2$%&'()*

+3)$%&'()*

(b)

Figure 1.2: Breakdown of power consumption of the PARSEC benchmark
fluidanimate on typical octcore and sixteen core systems

not be reverse engineered in any way to obtain any useful information about

their original counterparts. Secondly, such a framework can be used to auto-

matically create maximum power consuming code snippets to be able to help

in fixing the Thermal Design Point, heat sinks, cooling system and other power

related features of the system. The synthetic benchmarks that are provided

are space efficient in terms of storage and do not require any special capability

in a simulator as required by other simulation time reduction techniques [7]

[8].

Though the applications of an automatic system-level synthetic bench-

mark generation framework are numerous, there has not been any efforts to-

wards synthesizing workloads at system-level or for multicore systems. All

the previous efforts towards synthesizing workloads [20] [21] [22] are all re-

stricted to only the behavior of a single core CPU. It is to be noted that

there are many components like the interconnection network, shared caches,

memory subsystem and cache coherence directory other than the CPU that

11

significantly contribute to the overall performance and power consumption of

a multicore parallel system. To emphasize the importance of the components

other than the CPU, the breakdown of power consumption of the PARSEC

[5] benchmark fluidanimate is shown on two typical modern multicore systems

with eight and sixteen cores in Figures 1.2(a) and 1.2(b) respectively. The eight

core system has eight 4-wide out-of-order cores with 4MB L2 and 8GB DRAM

and the sixteen core system has sixteen 2-wide out-of-order cores with 8MB

L2 and 16GB DRAM. One can see that the total power consumption of all the

cores sum up to only 41% and 21% of the whole system power for the oct-core

and sixteen-core systems showing the importance of the other components in

the system. In today’s multicore systems, it is important to characterize the

behavior of the workloads in the shared caches, inter-connection network, co-

herence logic and the DRAM to be able to generate reasonable proxies for

modern workloads. To achieve this, the synthetic benchmarks should be mul-

tithreaded and access shared addresses to be able to exercise various shared

data access patterns.

1.2.1 Power Virus Generation

The objective is to automatically generate stressmarks by using a ma-

chine learning based search through a workload space constructed with mi-

croarchitecture independent characteristics broadly classified into instruction

mix, thread level parallelism, instruction level parallelism, control flow behav-

ior, shared and private memory access patterns and memory level parallelism.

12

Joshi et al. [22] also presented an automatic approach to the generation of

power viruses, but Joshi’s work was limited to the power consumption of the

CPUs and has a few more limitations: 1) they had not modeled the burstiness

of memory accesses or the Memory Level Parallelism (MLP) of the workloads

3) the framework was tested only by comparing with SPEC workloads and

not with industry standard hand crafted power viruses 4) the results were

only based on a simulator and was not validated on real hardware 5) it was

done only for the Alpha ISA.

This dissertation aims at overcoming the aforementioned limitations

and generating system level power stressmarks including components outside

the CPU. Though the CPU consumes the maximum power among the various

subsystems of a system, recent trends have shown that the power consumption

of other subsystems like the DRAM is also significantly high [23] [24] and is

predicted to increase in the future. Thus, it is important to characterize the

power consumption of the entire system rather than just the CPU while con-

structing max-power viruses. Our metrics include the burstiness of accesses to

DRAM by characterizing the memory level parallelism of the synthetic. The

metrics used in this dissertation also include characteristics of workloads to

stress the shared caches, coherence logic and the interconnection network. The

granularity of the instruction mix in the generated synthetic is very important

to generate good power viruses and our synthetic benchmark generation is

more robust in terms of the number of instruction types generated than com-

pared to Joshi et al’s work [22]. In this work, we validate the power virus

13

generation framework using real hardware than just simulators. Three ISAs

namely Alpha, SPARC and x86 are used for validation against industry grade

power viruses than regular workloads.

The results in this work has shown that running multiple copies of these

single-core power viruses like MPrime [25] on multiple cores is not even close

to the power consumption of a power virus generated specifically for a given

multicore parallel system. This is due to fact that such a single-core power

virus like MPrime is very compute-bound lacking in data movement resulting

in a reduced activity in the shared caches and the interconnection network.

Due to upcoming memory hungry technologies like virtualization, the continu-

ously more memory-seeking nature of today’s search and similar Internet based

applications along with a shift in paradigm from multicore to many-core, we

see that only the power levels of processors being controlled and capped, while

we do not see any signs of slow down in the increase in power consumption

of memory and interconnects making it more important to be aware of their

worst-case power characteristics. This is the first attempt towards answering

many questions about how to efficiently search for a power virus for multicores

viz., i) which are the most important dimensions of the abstract workload

space that should be modeled for a multicore system, ii) what is the required

amount of granularity in each dimension and especially the detail at which

the core level out-of-order execution related workload characteristics should

be modeled iii) if it is worthwhile to make the threads heterogeneous and deal

with state space explosion problem or should the threads be homogeneous iv)

14

what are the data sharing patterns (producer-consumer, migratory etc) that

should be exercised to stress the interconnection network, shared caches and

DRAM effectively, and many other similar questions, each of which are further

elaborated later in this paper.

1.2.2 Workload Cloning

In terms of workloads cloning, the objective is to characterize the long

running original workloads for the identified metrics of interest. Then, these

metrics are fed to the synthetic benchmark generation framework to generate

a clone for each of these workloads. The fidelity of each of these clones are

verified by comparing the most important microarchitecture dependent metrics

like Instruction Per Cycle (IPC), total power consumption, missrates at caches,

branch predictability etc. These clones should also be evaluated for their

relative accuracy or the sensitivity to design changes, proving their utility

in design space exploration for systems. The speedup achieved in using the

provided miniaturized clones over using the original applications are reported

to show the reduction in runtime.

The cloning framework is validated by cloning applications in three

benchmark suites namely SPEC CPU2006, ImplantBench and PARSEC, rep-

resenting the single threaded compute intensive application, embedded appli-

cation and multithreaded parallel application domains respectively.

15

1.3 Thesis Statement

With knobs for thread-level parallelism, memory level parallelism, com-

munication characteristics, synchronization characteristics and data sharing

patterns included, a parameterized workload synthesis framework is a valu-

able tool in the design stage of multicore computer systems to generate rep-

resentative miniaturized clones for long running modern applications and to

automatically generate max-power stressmarks to help in fixing the Thermal

Design Power for a given microarchitecture design.

1.4 Contributions

In this research, a system-level synthetic benchmark generation frame-

work targeting both single-core and multicore systems is proposed. Amongst

the different applications of such a framework, its efficacy for miniaturized

workload clone generation and power virus generation are evaluated, each of

which is elaborated below:

The workloads cloning framework will be very useful for architects, val-

idation engineers, benchmarking engineers and performance architects in the

design stage to miniaturize the long running workloads. Also, it should be

noted that such a workload cloning framework will be more useful to software

vendors who would like to disseminate their software to processor manufactur-

ers even if it is proprietary. The synthetic clones that are generated cannot be

reverse engineered in anyway as they only have the performance characteristics

of the applications and do not retain any of the higher level information like

16

identifier names, function names or even instruction sequences. This cloning

framework can significantly miniaturize applications and will also promote ar-

chitecture research in both industry and academia by making simulations more

feasible.

The power virus generation framework will be very useful for architects

who manually write code snippets for power virus generation. This automation

can reduce a lot of tedium and also provide enough confidence in the worst

case behavior exercised by the synthetic power virus, avoiding the need to

over-provision power related utilities. This need to over-provisioning the power

related utilities will save a lot of power in data centers and reduce the cooling

costs significantly.

The major contributions of this dissertation are,

• Proposal of the system-level synthetic benchmark generation framework,

which includes an abstract workload model and a code generator to syn-

thesize workloads for modern systems including multicores.

• The proposed framework is evaluated to show its superiority over the ex-

isting cloning methodologies for single-core systems by generating minia-

turized clones for CPU2006 and ImplantBench workloads with only an

average error of 2.9% in performance for up to five orders of magnitude

of simulation speedup. The correlation coefficient predicting the sen-

sitivity to design changes is 0.95 and 0.98 for performance and power

consumption.

17

• The proposed framework is evaluated by cloning parallel applications im-

plemented based on p-threads and OpenMP in the PARSEC benchmark

suite. The average error in predicting performance is 4.87% and that of

power consumption is 2.73%. The correlation coefficient in tracking the

performance for design changes by the synthetic is 0.92.

• The proposed framework is further leveraged with the help of machine

learning to build SYstem-Level Max POwer (SYMPO) and MAximum

Multicore POwer (MAMPO) to automatically generate power viruses for

single-core and multicore systems respectively.

• Validation of these power virus generation frameworks using SPARC,

Alpha and x86 ISAs using full system simulators and also using real

hardware. The results show that the usage of SYMPO results in the

generation of power viruses that consume 14-41% more power com-

pared to MPrime on SPARC ISA for single-core systems. Similarly,

the MAMPO power viruses consume 45-98%, 40-89% and 41-56% more

power than PARSEC workloads, running multiple copies of MPrime and

multithreaded SPECjbb respectively.

1.5 Organization

• Chapter 2 elaborates on the synthetic benchmark generation framework

starting with the most significant metrics relevant to the performance

and power consumption of systems that are used in the abstract work-

18

load model for this dissertation. Later in the chapter, the synthetic code

generation is explained, which is the process of translating the charac-

teristics provided in the abstract workload model into synthetic code.

• Chapter 3 first provides an overview of the workload cloning framework

which includes a profiler to profile the characteristics of the original ap-

plication, the benchmark generator and the processor simulators used

to evaluate the representativeness of the synthetics. The chapter also

provides the accuracies of the clones generated for SPEC CPU2006, Im-

plantBench and PARSEC workloads.

• Chapter 4 discusses the power virus generation framework including the

genetic algorithm toolset, simulators used to estimate the power con-

sumption, the experimental setup to evaluate the power virus generation

framework along with the results.

• Chapter 5 provides a brief overview of previous research in this area and

along with related work.

• Chapter 6 summarizes the dissertation with conclusions and provides

future directions

19

Chapter 2

Related Research and Background

2.1 Statistical Simulation, Benchmark Synthesis
and Workload Cloning

Oskin et al. [26] and Nussbaum et al. [27] introduced the idea of sta-

tistical simulation to guide the process of design space exploration. Eeckhout

et al [28] proposed the use of Statistical Flow Graphs (SFG) in characterizing

the control flow behavior of a program in terms of the execution frequency

of basic blocks annotated with their mutual transition probabilities. A SFG

consists of nodes that are the basic blocks in the program and the edges rep-

resent the mutual transition probabilities between the basic blocks. Wong et

al. introduced the idea of synthesizing benchmarks [29] [30] [31] based on

the workload profiles. Bell and John [21] and Joshi et al. [20] synthesized

benchmark clones for the workloads in the SPEC CPU2000 suite by using a

technique in which one loop is populated with embedded assembly instructions

based on the instruction mix, control flow behavior, the memory behavior and

the branch behavior of the original workload. This generated synthetic loop

was iterated until the performance characteristics became stable. In the work

by Bell and John [21], most of the metrics that were used to characterize the

behavior in the caches were based on microarchitecture dependent metrics like

20

miss rates. They used branch misprediction rate to characterize the control

flow predictability, which is also a microarchitecture dependent metric. Since

the synthetic clones that are generated are proposed to be used for design

space exploration, a more robust framework was employed by Joshi et al. [20]

by using metrics that were independent of the underlying microarchitecture

like branch transition rate, a stride access pattern in terms of static load stores

etc.

Even for single-core systems, the previous synthetic benchmark gen-

eration efforts [20] [21] suffer from a major limitation. Their methodologies

characterize the memory access, control flow and the instruction level paral-

lelism information of the workload, but do not characterize or use the miss

pattern information of the last level cache, viz., Memory Level Parallelism

(MLP) information. As a result, the synthetics generated using these previous

approaches always have misses in the last level cache happening at a constant

frequency without much burstiness. For example, when cloning workloads

that have high MLP (bursty misses), the generated synthetic results in hav-

ing an entirely different execution behavior compared to the original workload

even in single core systems as shown in Figure 3.2. The proposed system-level

multithreaded synthetic benchmark generation methodology overcomes this

important shortcoming by modeling the MLP in the synthetic using load-load

dependencies.

21

2.2 Other Simulation Time Reduction Techniques

Simulation time problem has been addressed by the computer architec-

ture community and there has been a lot of previous work aimed at solving

this problem. To reduce simulation time, sampling techniques like simulation

points [7] and SMARTS [8] are well known and widely used. Considerable

work has been done in investigating the dynamic behavior of the current day

programs to address the prohibitive simulation time problem. It has been seen

that the dynamic behavior varies over time in a way that is not random, rather

structured [32] [33] as sequences of a number of short reoccurring behaviors.

The SimPoint [7] [34] tool tries to intelligently choose and cluster these rep-

resentative samples together, so that they represent the entire execution of

the program. These small set of samples are called simulation points that,

when simulated and weighted appropriately provide an accurate picture of the

complete execution of the program with large reduction in the simulation time.

To analyze the similarity between two execution intervals in a microar-

chitecture independent manner, the Simpoint tool uses a signature for an ex-

ecution interval called as a Basic Block Vector [35]. A basic block vector

characterizes an execution interval based on the parts of the underlying static

code, which is absolutely microarchitecture independent. The SimPoint tool

[34][7][36] employs the K-means clustering algorithm to group intervals of ex-

ecution such that the intervals in one cluster are similar to each other and

the intervals in different clusters are different from one another. The Man-

hattan distance between the Basic Block Vectors serve as the metric to know

22

the extent of similarity between two intervals. The SimPoint tool takes the

maximum number of clusters as the input and generates a representative sim-

ulation point for each cluster. The representative simulation point is chosen

as the one which has the minimum distance from the centroid of the cluster.

Each of the simulation points is assigned a weight based on the number of

intervals grouped into its corresponding cluster. These weights are normalized

such that they sum up to unity.

But, the problem with such sampling techniques is that huge trace files

for the particular dynamic execution interval have to be stored or requires the

simulator to have the capability to fast-forward until it reaches the particular

interval of execution that is of interest to the user. But rather, the synthetic

benchmarks that we provide are space efficient in terms of storage and do not

require any special capability in a simulator. Also, most of these sampling

techniques are restricted to single threaded applications and there has been

very little work regarding runtime reduction for multithreaded applications.

It is to be noted that most of these sampling techniques, when applied to

different threads of multithreaded applications separately, still result in so

many combinations of execution scenarios due to different possible starting

points for each threads in the multithreaded program. The problem with

other techniques like benchmark subsetting [10] is that the results are still

whole programs and are too big to be directly used with design models.

23

2.3 Power Virus Generation

Joshi et al. [22] introduced the idea of automatic stressmark generation

using an abstract workload generator. Joshi et al. also show that the char-

acteristics of stressmarks significantly vary across microarchitecture designs,

emphasizing the fact that separate custom stressmarks should be developed

for different microarchitectures. In the same paper, they also show that ma-

chine learning can be used to generate stressmarks with maximum single cycle

power. They also generated dI/dt stressmarks that will have an alternating

behavior of maximum power in one cycle and minimum power in the next

cycle, causing ripples in the power delivery network. Similarly, hotspots were

created in various parts of the chip using the same methodology.

In the VLSI community, there has been a lot of research to estimate

the power consumption of a given CMOS circuit [37] [38]. To maximize the

switching activity in these circuits, test vector patterns are generated using

heuristics and statistical methods. Our approach and goals in this paper are

similar to these previous research, except the fact that we generate embedded

assembly instructions that can be compiled into a legal program instead of the

generation of test vectors. The advantage of using legal programs to search

for a stressmark is that it guarantees that the maximum power consumption

is achieved within the normal operating constraints. Industry has developed

hand-crafted power viruses [39] [40] [41] [42] [43] to estimate the maximum

power dissipation and thermal characteristics of their microprocessors. Hand-

crafted benchmarks are also used in generating temperature differentials across

24

microarchitecture units [44]. Stability testing tools written for overclockers

like CPUBurnin [17] and CPUBurn [18] are also popular power viruses. The

program MPrime [25], which searches for mersenne prime number is popularly

called the torture test and is a well known power virus used in the industry.

2.4 Hiding Intellectual Property in Applications

There has been a lot of efforts towards hiding the intellectual property

in software applications [45] [46] [47] when distributing the binary. Most of

these techniques try to confuse some one that is trying to reverse engineer

the application by using many code obfuscation techniques. Some of the most

popular techniques are,

• Layout Obfuscation: The higher level information like the identifier

names, comments etc are altered to make them less meaningful. The

C shroud system [48] is an example of a code obfuscator that does lay-

out obfuscation.

• Data Storage Obfuscation: This technique aims at garbling the way in

which data is stored in the memory to confuse some one that is reverse

engineering. The data structures used by the program are altered for

obfuscation. For example a two dimensional array can be converted to

a one dimensional array, convert local variables to global variables etc.

• Control Aggregation Obfuscation: This technique tries to change the

way in which the statements of a program are grouped together. A good

25

example is inlining some procedures.

• Control Ordering Obfuscation: Control ordering obfuscations change the

order in which the statements of a program get executed. A good exam-

ple is to iterate a loop backward instead of forward.

• Control Computation Obfuscation: These techniques try to alter the

control flow of the program by performance code changes. Some ex-

amples are inserting dead code, adding unnecessary loop termination

instructions that will not possibly happen etc.

All of the aforementioned techniques are used to avoid reverse engi-

neering of code without any concern about changing the performance or power

characteristics of the workloads. But, our aim in this approach is to dissemi-

nate intellectual property applications with the same power/performance char-

acteristics for better processor design. Though the aforementioned techniques

throw perspectives on what are the characteristics that should be looked at

when it comes to hiding intellectual applications, they are aimed at something

completely different than what is targeted in this dissertation.

2.5 ImplantBench Workloads

Further in this Section, we provide some background on the Implant-

Bench suite. The ImplantBench suite proposed by Jin et al. [6] is a col-

lection of futuristic applications that will be used in bio-implantable devices.

Bio-implantable devices are planted into human body to collect, process and

26

communicate realtime data to aid human beings in recovering from various

types of defects. A few examples are retina implants, functional electrical

stimulation implants and deep brain stimulation implants. ImplantBench is a

collection of applications falling into the categories: security, reliability, bioin-

formatics, genomics, physiology and heart activity. Security algorithms are

used in these devices for a safe and secure transfer of data from these im-

planted devices to the outside world. Reliability algorithms take care of the

integrity of the data transferred to and from the implanted devices due to us-

ing wireless techniques. Bioinformatics applications are the ones that extract

and analyze genomic information. At times a part of a genomic application

may be added into the implanted device for some real time uses. Physiology

includes the job of collecting and analyzing physiological signals like Electro-

cardiography (ECG) and Electroencephalography (EEG). Heart activity ap-

plications diagnose heart problems by analyzing the heart activity. Jin et al.

[6] provide a detailed characterization of these applications, but most of their

characterization is based on microarchitecture dependent metrics, whereas our

characterization is mostly independent of the microarchitecture.

27

Chapter 3

Synthetic Benchmark Generation Framework

Our synthetic benchmark generation framework consists of two main

components, namely, an abstract workload model and a code generator. The

abstract workload model is formulated based on the most important character-

istics of modern workloads in terms of performance and power consumption.

A code generator is developed to synthesize workloads for a given set of char-

acteristics in terms of the defined abstract workload model.

3.1 Abstract Workload Model

For both the purposes of cloning and power virus generation, the effec-

tiveness of the synthetic benchmark generation framework lies in the efficacy

of the abstract workload model that is formulated. The dimensions of this

abstract workload space should be as much microarchitecture independent as

possible to enable this framework to be able to generate synthetic benchmarks

for different types of microarchitectures for the purposes of design space ex-

ploration. These dimensions should also be robust enough to be able to vary

the execution behavior of the generated workload in every part of a multicore

system. In earlier approaches for synthetic benchmark generation at core-level

28

for uniprocessors, researchers came up with metrics to characterize the execu-

tion behavior of programs on single core processors [20] [49] [50] [21]. In this

research, we come up with similar metrics for the generation of system-level

synthetics and for multicore systems. We first begin by explaining the intu-

ition behind the design of this abstract workload space in terms of our memory

access model, branching model and shared data access patterns.

Investigation in previous research [51][52][53][54][55] about the commu-

nication characteristics of the parallel applications has showed that there are

four significant data sharing patterns that happen, namely,

1. Producer-consumer sharing pattern: One or more producer threads

write to a shared data item and one or more consumers read it. This

kind of sharing pattern can be observed in the SPLASH-2 benchmark

ocean.

2. Read-only sharing pattern: This pattern occurs when the shared

data is constantly being read and is not updated. SPLASH-2 benchmark

raytrace is a good example exhibiting this kind of a behavior.

3. Migratory sharing pattern: This pattern occurs when a processor

reads and writes to a shared data item within a short period of time and

this behavior is repeated by many processors. A good example of this

behavior will be a global counter that is incremented by many processors.

4. Irregular sharing: There is not any regular pattern into which the this

access behavior can be classified into. A good example will be a global

29

!

!"#$ %&'()*$ +,'&-"(.$
"! #$%&'()!*+*),-(.%!/0*12!./!3&4()!35.)64!
7! 89*0&:*!3&4()!35.)6!4(;*!
<! =0&%)>!-&6*%!0&-*!/.0!*&)>!30&%)>!
?! =0&%)>!-0&%4(-(.%!0&-*!!

@.%-0.5!/5.A!!
B0*C()-&3(5(-$!

D! E%4-0,)-(.%!B&--*0%!(%!&!3&4()!35.)6!
F! EGH!8IJ!B0.B.0-(.%!
K! EGH!LJI!B0.B.0-(.%!
M! EGH!#EN!B0.B.0-(.%!
O! PQ!8##!B0.B.0-(.%!
"R! PQ!LJI!B0.B.0-(.%!
""! PQ!#EN!B0.B.0-(.%!
"7! PQ!LSN!B0.B.0-(.%!
"<! PQ!TUVH!B0.B.0-(.%!
"?! IS8#!B0.B.0-(.%!
"D! THSVW!B0.B.0-(.%!

E%4-0,)-(.%!'(+!

"F! #*B*%C*%)$!C(4-&%)*!C(4-0(3,-(.%!!
B*0!(%4-0,)-(.%!-$B*!

E%4-0,)-(.%!5*9*5!
B&0&55*5(4'!

"K! Q0(9&-*!4-0(C*!9&5,*!B*0!4-&-()!5.&CX4-.0*!
"M! #&-&!P..-B0(%-!./!->*!A.065.&C! #&-&!5.)&5(-$!

"O! L*&%!&%C!4-&%C&0C!C*9(&-(.%!./!->*!LIQ!
7R! LIQ!/0*1,*%)$!

L*'.0$!I*9*5!!
Q&0&55*5(4'!YLIQZ!

7"! G,'3*0!./!->0*&C4! H>0*&C!5*9*5!B&0&55*5(4'!
77! H>0*&C!)5&44!&%C!B0.)*44.0!&44(:%'*%-!
7<! Q*0)*%-&:*!5.&C4!-.!B0(9&-*!C&-&!
7?! Q*0)*%-&:*!5.&C4!-.!0*&C[.%5$!C&-&!
7D! Q*0)*%-&:*!'(:0&-.0$!5.&C4!
7F! Q*0)*%-&:*!).%4,'*0!5.&C4!
7K! Q*0)*%-&:*!(00*:,5&0!5.&C4!
7M! Q*0)*%-&:*!4-.0*4!-.!B0(9&-*!C&-&!
7O! Q*0)*%-&:*!B0.C,)*0!4-.0*4!
<R! Q*0)*%-&:*!(00*:,5&0!4-.0*4!
<"! T>&0*C!4-0(C*!9&5,*!B*0!4-&-()!5.&CX4-.0*!
<7! #&-&!B..5!C(4-0(3,-(.%!3&4*C!.%!4>&0(%:!B&--*0%4!

T>&0*C!C&-&!&))*44!!
B&--*0%!&%C!
).'',%()&-(.%!
)>&0&)-*0(4-()4!

<<! G,'3*0!./!5.)6X,%5.)6!B&(04!
<?! G,'3*0!./!',-*+!.3*)-4!
<D! G,'3*0!./!E%4-0,)-(.%4!3*-A**%!5.)6!&%C!,%5.)6!

T$%)>0.%(;&-(.%!
@>&0&)-*0(4-()4!

Figure 3.1: List of metrics to characterize the execution behavior of workloads
that significantly affect the performance and power consumption

30

task queue, which can be enqueued or dequeued by any processor which

does not follow a particular order.

Though the above said patterns are the most commonly occurring shar-

ing patterns, subtle variations of each one or more than one sharing pattern

may be occurring in a multicore system.

3.1.1 Stride Based Memory Access Behavior

Capturing the data access pattern of the workload is critical to replay

the performance of the workload using a synthetic benchmark. The data

access pattern of a benchmark affects the amount of locality that could be

captured at various levels of the memory hierarchy. Though locality is a global

metric characterizing the memory behavior of the whole program, our memory

access model is mainly based on a ’stride’ based access pattern [20] in terms

of static loads and stores in the code. When profiling a modern workload,

one can observe that each of the static loads/stores access the memory like in

an arithmetic progression, where the difference between the addresses of two

successive accesses is called the stride. It is known that the memory access

pattern of most of the SPEC CPU2000 and the SPEC CPU2006 workloads

can be safely approximated to be following a few dominant stride values [56]

[49].

In our abstract workload model, the stride values of the memory ac-

cesses to the private and shared data are handled separately. Each of the

static loads and stores in the synthetic benchmark walk one of the allocated

31

shared/private memory arrays in a constant strided pattern until the required

data foot print of the application is touched and after which, they again

start from the beginning of the array. The other integer ALU instructions in

the generated synthetic are used to perform the address calculation for these

loads/stores. Along with the stride access patterns, the proportion of loads

and stores in each thread also affect the data sharing pattern of the synthetic

workload. For example, to achieve the producer-consumer sharing pattern be-

tween two threads, one will have to configure the instruction mix in such a

way that the loads to shared data in the consumer and the stores to shared

data in producer are in the right proportion and also configure the remaining

knobs like the percent memory accesses to shared data, strides to shared data,

thread assignment to processors and data footprint to enable these threads

to communicate the right amount of data between each other in a given pat-

tern. Though our model is robust enough to model parallel applications and

their behavior, it can also be configured to model loosely related threads of

commercial applications by increasing the private data accesses high enough.

3.1.2 Model for the Memory Level Parallelism

Even for single-core systems, the previous synthetic benchmark gen-

eration efforts [20] [21] suffer from a major limitation. Their methodologies

characterize the memory access, control flow and the instruction level paral-

lelism information of the workload, but do not characterize or use the miss

pattern information of the last level cache, viz., Memory Level Parallelism

32

# 
lo
ng
 la
te
nc
y 
m
is
se
s 

Time ‐> 

Original 

Prior synth  
approaches 

Figure 3.2: Comparison of the MLP behavior of synthetics generated by pre-
vious approaches to that of a real single-threaded workload

(MLP) information. The memory model used by the previous approaches [20]

[21] consists of a set of static loads/stores that access a series of memory lo-

cations in a stride based access pattern. Even though the loads within this

single loop are populated in such a way that they match the miss rates of the

original application, they may not necessarily match the performance of the

original application precisely. We classify loads into two categories. The loads

that miss in the last level of the on-chip cache and result in an off-chip memory

access are called ’long-latency’ loads and the other set of loads that hit in the

caches. Since these previous synthetic benchmark generation approaches do

not model the burstiness of these long-latency loads, the long-latency loads are

distributed randomly throughout the synthetic loop. These long-latency loads

keep missing in a constant frequency as this loop is being iterated without

much overlap in their execution. But the original workloads with the same

miss rates may not necessarily have such a behavior. As already shown in

Figure 3.2, the typical memory access behavior of the synthetics generated by

the previous techniques can be entirely different compared to the case of many

33

of the original workloads. The original workloads can have a set of bursty

long-latency loads in one time interval of execution and none of them at all

for another interval of execution. In the original, though the pipeline may

be clogged in this first interval due to the long-latency miss, the instructions

may flow freely through the pipeline in the second. Rather, in the synthetic

generated by previous approaches, there is a constant clog in the pipeline

throughout the execution resulting in an entirely different execution behavior.

In Section 3, we characterize the burstiness of misses in the target workloads

and show real cases with the behavior (high MLP) as shown in Figure 3.2.

Since a long-latency load incurs hundreds of cycles due to the off-chip

memory access, the performance of a workload varies significantly based on the

amount of overlap present in the execution of these long-latency load instruc-

tions. The average number of such long-latency loads outstanding when there

is at least one long-latency load outstanding is called the Memory Level Par-

allelism (MLP) present in a workload. Both of the cited previous approaches

only characterize and model the Instruction-Level-parallelism in the workloads

and fail to characterize and to model the Memory Level Parallelism (MLP) in

the workloads. Eyerman and Eeckhout [57] show the impact of MLP on the

overall performance of a workload. They show that there can be performance

improvements ranging from 10% to 95% for various SPEC CPU2000 workloads

if we harness the amount of MLP in the applications efficiently. This brings

out the importance of characterizing the MLP in workloads. We character-

ize and model this MLP information in our synthetic generation framework.

34

For some workloads, we also require more than one loop to mimic the MLP

behavior of the original workloads, upon which we elaborate in Section 3.

3.1.3 Transition Rate Based Branch Behavior

The branch predictability of the benchmark can be captured indepen-

dent of the microarchitecture by using the branch transition rate [58]. The

branch transition rate captures the information about how quickly a branch

transitions between taken and not-taken paths. A branch with a lower transi-

tion rate is easier to predict as it sides towards taken or not-taken for a given

period of time and rather a branch with a higher transition rate is harder to

predict. First, the branches that have very low transition rates, can be gener-

ated as always taken or always not taken as they are easily predictable. The

rest of the branches in the synthetic need to match the specified distribution

of transition rate, which is further explained in the next Subsection.

3.1.4 Dimensions of the Abstract Workload Model

Our workload space consists of a set of 17 dimensions falling under

the categories of control flow predictability, instruction mix, instruction level

parallelism, data locality, memory level parallelism, shared access patterns,

synchronization as shown in Figure 3.1. Further in this Subsection, each of

these dimensions or what we call as the ’knobs’ of our workload generator in

this framework are explained along with their importance based on their power

consumption compared to the overall power of the processor:

35

1. Number of threads: The number of threads knob controls the amount

of thread level parallelism of the synthetic workload. This varies from

only one thread up to 32 threads executing in parallel.

2. Thread class and processor assignment: This knob controls how

the threads are mapped to different processors in the system. There are

many thread classes to which each thread gets assigned. The threads

in the same class share the same characteristics. This dimension is very

useful when searching for a power virus, which will be detailed in Chapter

4.

3. Number of basic blocks: The number of basic blocks in the program

combined with the basic block size determines the instruction footprint

of the application. The number of basic blocks present in the program

has a significant impact on the usage of the instruction cache affecting

the performance and power consumption based on the Instruction cache

missrates.

4. Shared memory access stride values: As mentioned earlier, two bins

of stride values are specified for the shared memory accesses and every

such memory access can be configured to have any one of the two bins

with equal probability. This knob can also be configured separately for

each of the different threads, to be able to allow each one of them to

uniquely stress differ levels in the memory hierarchy.

36

5. Private memory access stride values: Similar to the stride values to

the shared memory, two bins of stride values are specified for the private

memory accesses and every such memory access can be configured to

have the stride from any one of the two bins with equal probability.

This knob can also be configured separately for each thread class to be

able to stress different levels of the memory hierarchy separately.

6. Data footprint: This knob controls the data footprint of the synthetic.

The data footprint of the application controls the number of cache lines

that will be touched by the different static loads and stores. Also, it has

a direct impact on the power consumption of the data caches. The cor-

respondence of this knob to the real implementation in terms of number

of iterations of one of the nested loops in the synthetic will be explained

in detail in the next Subsection. This knob can be configured separately

for different thread classes to be able to allow various cache resource

sharing patterns in terms of varying data footprints.

7. Memory Level Parallelism (MLP): This knob controls the amount

of Memory Level Parallelism (MLP) in the workload, which is defined

as the number of memory operations that can happen in parallel and

is typically used to refer to the number of outstanding cache misses

at the last level of the cache. The number of memory operations that

can occur in parallel is controlled by introducing dependency between

memory operations. The memory level parallelism of a workload also

37

affects the power consumption due to its impact on the DRAM power

and also the pipeline throughput. This knob can also be configured

separately for every thread class to enable the threads to have various

access patterns to the DRAM.

8. MLP frequency: Though the MLP knob controls the burstiness of the

memory accesses, one needs one more knob to control how frequently

these bursty behaviors happen.

9. Basic block size and execution frequency: Basic block size refers

to the average and standard deviation of number of instructions in a

basic block in the generated embedded assembly based synthetic code.

Execution frequency of basic block is used when detailed instruction

pattern information has to be reproduced in the synthetic while cloning.

The power consumption of a typical branch predictor which depends on

the basic block size is usually around 4%-5% of the overall processor

power.

10. Branch predictability: The branch predictability of a workload is an

important characteristic that also affects the overall throughput of the

pipeline. When a branch is mispredicted, the pipeline has to be flushed

and this results in a reduced activity in the pipeline.

11. Instruction mix: The Instruction mix is decided based on the propor-

tions of each of the instruction types INT ALU, INT MUL, INT DIV,

38

FP ADD, FP MUL, FP DIV, FP MOV and FP SQRT. Each of the in-

struction type in the abstract workload model has a weight associated

with it ranging from 0 to 4. The proportion of this instruction type in

the generated synthetic is not only governed by this weight, but also

based on the weights associated with the remaining instruction types

as they are correlated with each other. As different instruction types

have different latencies and power consumption, the instruction mix has

a major effect on the overall power consumption of a workload. Since

the code generator generates embedded assembly, we have direct control

over the instruction mix of the generated workload. Based on a static

analysis of the power consumption, the typical power consumption of in-

teger and floating point ALUs for an out-of-order superscalar processor

is around 4%-6% and 6%-12% respectively. Some restrictions are placed

on the instruction mix by writing rules in the code generator like a min-

imum number of INT ALU instructions should be present if there are

any memory operations in the code to be able to perform the address

calculation for these memory operations.

12. Register dependency distance: This knob refers to the average num-

ber of instructions between the producer and consumer instruction for

a register data. The proportion of instructions that have an immediate

operand is also used along with this distribution. This distribution is

binned at a granularity of 1, 2, ... 20, 20-100 and greater than 100. This

knob is required to be configured separately for different thread classes,

39

as different threads having different memory latencies may need to have

different amounts of ILP. If the register dependency distance is high, the

Instruction Level Parallelism (ILP) in the synthetic is high resulting in

a high activity factor in the pipeline of the core. But, if the register

dependency distance is low, the out-of-order circuitry like the ROB and

other buffers may have higher occupancy resulting in a higher activity

factor in these parts of the core. The activity factor also affects the clock

power of a processor. The instruction window and the clock power are

significant contributors to the power consumption of a processor ranging

around 8% and 20% respectively.

13. Random seed: This knob controls the random seed that is used as

an input to the statistical code generator, which will generate different

code for the same values for all the other knobs. It mostly affects the

alignment of the code or the order in which the instructions are arranged.

14. Percentage loads to private data: This dimension refers to the pro-

portion of load accesses are to the private data and the rest of the memory

accesses are directed to shared data. This knob can be configured sepa-

rately for each thread class to allow the sharing percentage to be hetero-

geneous across thread classes. This heterogeneity may help the threads

to be configured to differently stress the private and shared caches.

15. Percentage loads to read-only data: This dimension refers to the

percentage of loads that access read-only data. Since this part of the

40

data does not have any writes, they do not cause any invalidation traffic

in the interconnection network. The main traffic that will be generated

by this kind of data will be capacity misses and data refills from other

caches.

16. Percentage migratory loads: This dimension refers to the percentage

of loads that are coupled with stores to produce a migratory sharing

pattern. We not separately use a knob for migratory store percentage

as it is co-dependent on this knob. This migratory sharing pattern can

create huge amounts of traffic when coherence protocols like MESI is

used where there is not a specific state for a thread to own the data.

17. Percentage consumer loads: This dimension refers to the percent-

age of loads that access the producer consumer data. The stores are

configured to write to this producer consumer data and some loads are

configured to read from them to reproducer the producer-consumer shar-

ing pattern.

18. Percentage irregular loads: This dimension refers to the percentage

of loads that fall into the irregular sharing pattern category and they

just access the irregular data pool based on the shared strides specified.

19. Percentage stores to private data: This knob controls what propor-

tion of stores access the private data and the rest of the memory accesses

are directed to shared data. This knob can be configured separately for

each thread class to allow the sharing percentage to be heterogeneous

41

across thread classes. This heterogeneity may help the threads to be

configured to differently stress the private and shared caches.

20. Percentage producer stores: This dimension refers to the percent-

age of stores that write to the producer consumer data to replay the

producer-consumer sharing pattern.

21. Percentage irregular stores: This dimension refers to the percentage

of stores that fall into the irregular sharing pattern category and they

write to the irregular data pool.

22. Data pool distribution based on sharing patterns: This dimen-

sion controls how the spatial data is divided in terms of the different

sharing pattern access pools. It determines the number of arrays that

are assigned to private, read-only, migratory, producer-consumer and the

irregular access pools for the synthetic.

23. Number of lock/unlock pairs: This dimension refers to the number of

lock/unlock pairs present in the code for every million instructions. This

dimension is very important to make synthetics that are representative

of multithreaded programs that have threads synchronizing with each

other using locks.

24. Number of mutex objects: This dimension controls the number of

objects that will be used by the locks in the different threads. It controls

the conflict density between the threads when trying to acquire a lock.

42

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br
a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fm,a,m,m,ld,ld,ld ,a,a,a,Br

a,fa,m,m,a, ld,st ,Br

m,m,ld ,a,a,Br

m,m,ld ,a,a,Br
a,x,ld,ld,ld ,s,s,Br

a,x,ld,ld,ld ,s,s,Br

a,fa,a,a,a, ld,st ,Br

a,fa,a,a,a, ld,st ,Br

Inner
Loop 1

Inner
Loop 2

Outer
 Loop

Array 1

Array n
Array 3
Array 2

...
...
...
...

B
R
A
N
C
HE
S

a,fa,m,m,a, ld,st ,Br
C
O
N
D
I
T
I

O
NA
L

D
E
P
E
N
D
E
N
C
Y

pthread_barrier_t barr;
void** shared_array_ptrs;
main_function()
{
 shared_array_ptrs =
 allocate_arrays(sizes[]);
 //Barrier synchronization
 init_barrier(barr,
 number_of_threads);
 for every thread i in N; do
 create_pthread(thr_function_i);
 done
 join_pthreads (num_threads);
}

void thr_function_i()
{
 private_array_ptrs =
 allocate_arrays(sizes[]);
 processor_bind(My_threadID,
 prscr_number);

pthread_barrier_wait(&barr);

 while(out_cntr <= loop_count)
 {
 out_cntr++;

 /*....EMBEDDED...
 ASSEMBLY...
 ..INNER LOOPS..*/

 Reset_array_pointers();
 }
 }

:

Figure 3.3: Multithreaded synthetic workload generation

The more the number of mutex objects, lesser is the conflict density and

in turn the workload executes much more efficiently resulting in a higher

per-thread IPC.

25. Number of Instructions between lock and unlock: This dimension

controls the number of instructions in the critical section of the workload.

The bigger the critical section, the longer will be the wait to acquire locks

by threads as it takes longer to finish executing all the instructions in

the critical section and release a lock.

43

3.2 Code Generation

This section elaborates on how the final code generation happens based

on the knob settings given in terms of the abstract workload parameters. Fig-

ure 3.3 shows an overview of code generation. The generated code consists of

the main function and a function for each thread that is spawned from the

main function using the pthread create() system call. The required amount

of shared data is declared and allocated in the main function as a set of in-

teger/floating point arrays and the pointers to these arrays are available to

each of the threads. The private data that is supposed to be used by every

thread is declared and allocated within the function for each thread. Each of

the threads also bind themselves with the processor number specified when

the code was generated based on the thread class and processor assignment

knob. A barrier synchronization is used to synchronize all the threads after

they finish their respective system calls for allocating their private data arrays

and binding themselves to the assigned processor.

The body of each thread consists of two inner loops filled with embed-

ded assembly and one outer loop encompassing these inner loops. As previ-

ously mentioned, our memory model is a stride based access model, where

the loads and stores in the generated synthetic access the elements of the pri-

vate/shared arrays, each static load/store with a constant stride. The address

calculation for the next access of each load/store is done by using other ALU

instructions in the generated code for each of the array pointers by using the

assigned stride value. When the specified data footprint is covered, the point-

44

ers that are used are reset to the beginning of the array. This pointer reset is

done outside the inner loops and inside the encompassing outer loop enabling

us to control the data footprint with the number of iterations of the inner loop

and the number of dynamic instructions with the number of iterations of the

outer loop. The embedded assembly contents of the two inner loops are the

same if the MLP frequency knob is set to high. If the MLP frequency knob is

set to low, the memory operations in the second loop are removed so that the

bursty memory access behavior happening in the first loop occurs at a lower

frequency.

Out of the total number of registers in the ISA, a set of registers are

allocated to hold the base addresses of these allocated memory arrays and an-

other set of registers are used to implement the predictability of the branches.

The structure of our inner most loop is similar to that of the one proposed

by Bell, et al. [21], but with an improved memory access, branching and ILP

models. The required branch predictability or the control flow behavior in the

synthetic is achieved by grouping branches into pools with each pool assigned

to a constantly incremented register and a modulo operation on the register is

used to decide if that branch is taken or not taken. The only information that

is required to generate the main function is the biggest shared data footprint

amongst the different threads to be able to allocate the shared arrays. The

following steps are followed to generate the code for every thread based on the

corresponding knob settings for each:

1. Generate the code to allocate the required amount of space for private

45

data accesses based on the percent private accesses, proportion of mem-

ory operations in instruction mix and the data footprint. The number

of 1-D shared arrays are further subdivided into pools for each of the

sharing patterns based on the spatial shared data access information.

2. Generate the processor bind() system call using the assigned processor

number and then a barrier synchronization system call is generated.

3. Generate the code for outer-loop based on the dynamic number of in-

structions desired taking into account the average basic block size and

the number of basic blocks.

4. Fix the code spine for the first inner loop based on a fixed number of

basic blocks and the average basic block size knob.

5. For each of the basic block in the first inner loop, configure the instruc-

tion type of each instruction by stochastically choosing from the instruc-

tion mix information. If the coupled load-stores is true, the instructions

are swapped based on a bubble sort fashion in such a way that a store

is made to follow a load and they are made to access the same address.

6. The basic blocks are bound together by using conditional branches at

the end of each of the basic block. The number of branch groups and

the modulo operation are fixed based on the required average branch

predictability. The modulo operation for each of the branch groups are

generated at the beginning of the inner loop based on the loop count

46

and a register is set/unset to decide if those branches for this particular

group are going to be taken or not taken for this loop iteration. Branches

are generated to fall through or take the target to another basic block

based on their assigned register value.

7. Using the average dependency distance knob, each of the operands of

every instruction is assigned with a previous producer instruction. Some

rules are used to check the compatibility between producer and the con-

sumer in terms of the data that is produced by the producer instruction

and that consumed by the consumer. If two instructions are found to be

not compatible, the dependency distance is incremented or decremented

until a matching producer is found for every instruction. The memory

level parallelism information is also used to assign load-load dependen-

cies in this process.

8. Based on the percent private accesses knob, each of the memory opera-

tions are classified into the ones that access shared data and the ones that

access private data. Based on the stride value of the corresponding mem-

ory operation (shared or private and based on the assigned bin), their

corresponding address calculation instructions are given the stride val-

ues as immediate operands. If a load, store is classified to access shared

data, the sharing pattern pool that they should access is determined by

rolling a dice and using the shared data access pattern information.

9. Register assignment happens by first assigning the destination registers

47

in a round robin fashion. The source register for each operand of an

instruction is assigned as the destination register of the producer in-

struction based on the corresponding dependency assignment.

10. The loop counters for the inner loops are set based on the specified

data footprint and the compare instructions for loop termination are

generated by choosing an integer ALU instruction in the code.

11. The second inner loop is also generated, which is a copy of the first loop

without the memory operations if the MLP frequency is low or if it is set

to be high, the second loop is generated just as a copy of the first loop.

12. Outside each of these inner loops, the memory base registers are reset

to the first element of the memory arrays to enable temporal locality for

the next loop or the next iteration of the outer wrapper loop.

13. Based on the number of locks, instructions between lock/unlock pairs

provided as input to the code generator, the pthread lock and pthread unlock

function calls are inserted in between the embedded assembly instruc-

tions. The mutex object to be used is determined by rolling a dice and

choosing from the number of mutex objects specified.

During the synthesis of the workload, one can achieve the desired MLP

in the synthetic by having control over the following: 1) the placement of highly

strided loads (closer to each other or farther from each other) 2) the number

of load-load dependencies. The highly strided loads are the long-latency loads

48

which miss in the last level of the cache. By grouping these long-latency loads,

MLP of the synthetic can be controlled. When a load is dependent on another

load, these two load instructions cannot be outstanding misses at the same

time and thus, this also controls the amount of MLP in the synthetic. Though

the first of the above said techniques are relatively easier to implement, it is not

trivial to make a load instruction dependent on another load in our memory

model due to walking an uninitialized memory array. If such a dependency is

assigned directly, the ’consumer’ load could access an invalid memory location.

Initializing the memory array in the header of the synthetic alters the locality

behavior of the synthetic. These special dependencies are handled as indirect

dependencies in our framework by introducing an existing ALU instruction in

the dependence chain to ensure the access to a valid memory location.

49

Chapter 4

Workload Cloning

Figure 4.1 shows the cloning methodology that is used. As the first

step, the target application is profiled to collect the range of characteristics as

specified in the abstract workload model. Then, this information is fed to the

code generator to generate the synthetic. This final synthetic is compared with

the original and the accuracies are reported for various machine configurations.

4.1 Improved Workload cloning for Single-cores

To clone the workloads for single core systems, a subset of the metrics

(first 20) that are only relevant to single core systems in the abstract workload

model are used.

4.1.1 Benchmark Characterization

To capture the various profile information of the workloads, we use

modified versions of the different simulators in the SimpleScalar [59] simula-

tion framework. Figure 3.1 delineates the different metrics, amongst which a

subset of the metrics relevant to single-core systems are recorded for each of

the workloads. Further in this Section, we explain each of these metrics and

50

Figure 4.1: Overall workload cloning methodology

in tandem, provide the corresponding information captured for each of the

metrics for the target workloads.

To capture the control flow behavior of a workload, the locality in the

underlying static code being executed needs to be captured. A Statistical Flow

Graph (SFG) [28] of the workload is constructed for capturing the control flow

behavior of the workload. A SFG consists of nodes that are the basic blocks

in the program and the edges represent the mutual transition probabilities be-

tween the basic blocks. We also record the average and the standard deviation

of the size of the basic block along with the instruction pattern in the basic

block in terms of the instruction type. The instruction mix of the original

workload is a significant microarchitecture-independent metric that captures

51

the frequencies of various instruction types, namely: integer ALU operation,

integer multiply, integer divide, floating point ALU operation, floating point

multiply, floating point divide, load, store and branch.

For our experiments, we use the alpha binaries generated on an alpha

machine running the Tru64 UNIX operating system using gcc 4.2 with an

optimization level of -O2. A few of the SPEC CPU2006 workloads could not

be compiled on the alpha architecture and we show the results for a set of 22

SPEC CPU2006 workloads. The tables in Figures 4.2(a) and 4.2(b) show the

SFG information captured for the most representative 100 million instruction

simulation point of the workloads in the CPU2006 benchmark suite and that

of the ImplantBench suite respectively. We can see that the number of basic

blocks that account for 90% of execution are only 6% of the total number of

basic blocks in that interval of execution showing the amount of redundancy.

The tables also show the average basic block size calculated based on both the

number of instructions in each of the basic blocks and their dynamic execution

frequency. As seen in 4.2(a), the floating point benchmarks of CPU2006 tend

to have bigger basic block sizes compared to their integer counterparts in the

same suite. The average number of successor basic blocks is another measure of

the control flow complexity of the program. Programs that have complicated

switch statements result in more successors and predicting the control flow

becomes complicated. Also, when a function is called at multiple sites and

each time it returns to different locations, it results in more successors.

The branch predictability of the benchmark can be captured indepen-

52

(a) SPEC CPU2006 workloads

(b) ImplantBench workloads

Figure 4.2: Captured SFG information and branch transition rate for CPU2006
and ImplantBench workloads on a single-core system

53

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

42
9.

m
cf

40
3.

gc
c

%
 D

ep
en

de
nc

y
D

is
ta

nc
e

>100

20 – 100

12 – 20

8 – 11

4 – 7

2 – 3

1

Figure 4.3: Dependency distance distribution for SPEC CPU2006 on a single-
core system

dent of the microarchitecture by using the branch transition rate [58]. The

branch transition rate captures the information about how quickly a branch

transitions between taken and not-taken paths. A branch with a lower tran-

sition rate is easier to predict as it sides towards taken or not-taken for a

given period of time and rather a branch with a higher transition rate is

harder to predict. The branch transition rates for the CPU2006 workloads as

given in Figure 4.2(a) average around 0.11 with few benchmarks like 433.milc,

410.bwaves having a transition rate above 0.25. Similarly, the branch tran-

sition rates of the ImplantBench suite are shown in Figure 4.2(b). It can be

noted that the a few reliability applications have branches with high transition

rates.

To capture the Instruction Level Parallelism (ILP) in the workload, we

capture the dependency distance or the register reuse distance of the workload

as a distribution. This information is captured for each type of instruction.

54

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

A
I_

B
P

N

A
I_

G
A

B
io

in
f_

E
LO

B
io

in
f_

LM
G

C

G
en

_H
M

M

G
en

_N
J

H
rtA

ct
_p

N
N

x

P
hy

s_
A

FV
P

P
hy

_E
C

G
S

Y
N

R
el

_c
rc

R
el

_r
ee

d_
so

l

S
ec

_h
av

al

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

%
 D

ep
en

de
nc

y
D

is
ta

nc
e

> 100

20 – 100

12 – 20

8 – 11

4 – 7

2 – 3

1

Figure 4.4: Dependency distance distribution for ImplantBench workloads on
a single-core system

This corresponds to the number of instructions between the production and

the consumption of a data value at the register level. The proportion of in-

structions that have an immediate operand is also recorded along with this dis-

tribution. This distribution is binned at a granularity of 1, 2, ... 20, 20-100 and

greater than 100. The Figures 4.3 and 4.4 show a histogram of the dependency

distances for the workloads in CPU2006 and the ImplantBench respectively. It

can be observed that a few benchmarks like 436.cactusADM and 435.gromacs,

which have very large basic block sizes (518 and 247 respectively), tend to

have larger dependency distances. 435.gromacs and 436.cactusADM have re-

spectively 50% and 40% of their dependencies that can be potentially resolved

before 100 instructions. Still, it is to be noted that 436.cactusADM has more

than 20% of dependencies just before one instruction. Such benchmarks with

high instruction level parallelism will be sensitive to the out-of-order resources

available in a processor and modeling their dependency distance distribution

55

plays a key role in mimicking the behavior of the original workload. In general,

it can be observed that the ImplantBench and SPEC CINT2006 workloads that

have smaller basic block sizes have shorter dependency distances compared to

the SPEC CFP2006 workloads that have larger basic block sizes. For the Im-

plantBench and the CINT2006 workloads, more than 50% of their dependency

distances are within 2-3 instructions.

Capturing the data access pattern of the workload is critical to re-

play the performance of the workload using a synthetic benchmark. The data

access pattern of a benchmark affects the amount of locality that could be cap-

tured at various levels of the memory hierarchy. Though locality is a global

metric characterizing the memory behavior of the whole program, previous

studies [20] have resorted to characterizing the access behavior at per static

load/store basis in terms of strides (differences between two consecutive effec-

tive addresses) to effectively model it again in the synthetic. Joshi et al. [49]

identify that for the SPEC CPU2000 workloads, most of the load and store

instructions have a dominant stride based memory access. We also observe

a similar behavior in the SPEC CPU2006 workloads. Figure 4.5 shows the

breakdown of the stride access patterns at a granularity of a 64Byte block by

different load/store instructions binned into categories 0, 1-3, 4-7, 8-15, 16-31

and > 31. This way of characterizing and portraying the stride access patterns

in terms of 64 byte block sizes is similar to the previous work as in Joshi et

al. [49] for SPEC CPU2000. It is clearly evident that most of the benchmarks

exhibit a stride based behavior. Benchmarks 456.hmmer, 473.astar, 436.cac-

56

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

45
6.

hm
m

er

46
4.

h2
64

re
f

47
3.

as
ta

r

46
2.

lib
q.

44
5.

go
bm

k

48
2.

sp
hi

nx
3

44
4.

na
m

d

43
7.

le
sl

ie
3d

45
8.

sj
en

g

43
4.

ze
us

.

40
1.

bz
ip

2

47
1.

om
ne

tp
p

40
0.

pe
rlb

en
ch

45
9.

G
em

s

45
0.

so
pl

ex

43
5.

gr
om

ac
s

43
3.

m
ilc

41
0.

bw
av

es

43
6.

ca
ct

us
.

48
3.

xa
la

nc
bm

k

40
3.

gc
c

42
9.

m
cf

%
 S

tr
id

e
D

is
tr

ib
ut

io
n

> 31
16-31
8-15
4-7
1-3
0

Figure 4.5: Memory access stride distribution for SPEC CPU2006 on single-
core systems

tusADM have a dominant stride of zero for more than 90% of the memory

accesses meaning that 90% of their accesses are within the same 64 byte block

and will probably result in a lot of hits in the cache due to spatial locality. To-

tally, 12 benchmarks out of the 22 benchmarks studied have dominant stride

for more than 75% of the memory accesses. For the ImplantBench suite, Fig-

ure 4.6 shows the break down of the stride at a 64 byte block granularity and

it can be observed that the ImplantBench suite also has the same dominant

stride behavior as CPU2006 and CPU2000 suites.

Capturing Memory Level Parallelism Information: Memory Level Parallelism

information of the workloads is captured and the Figures 4.7 and 4.8 show

the distribution of number of outstanding long-latency loads as box plots for

the different workloads in the CPU2006 and ImplantBench suites respectively.

By using the stride information, the synthetics mimic the hit/miss rate be-

havior of the original workloads. The impact of these hit/miss rates on the

57

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

A
I_

B
P

N

A
I_

G
A

B
io

in
f_

E
LO

B
io

in
f_

LM
G

C

G
en

_H
M

M

G
en

_N
J

H
rtA

ct
_p

N
N

x

P
hy

s_
A

FV
P

P
hy

_E
C

G
S

Y
N

R
el

_c
rc

R
el

_r
ee

d_
so

l

S
ec

_h
av

al

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

%
 S

tr
ie

 D
is

tr
ib

ut
io

n

> 31
16-31
8-15
4-7
1-3
0

Figure 4.6: Memory access stride distribution for ImplantBench workloads on
single-core systems

execution time is taken care of by capturing the memory level parallelism in-

formation. It can be noted that 483.xalancbmk, 410.bwaves, 436.cactusADM,

433.milc, 437.leslie3d, 459.GemsFDTD, 462.libquantum have relatively higher

amounts of MLP compared to other benchmarks. It is to be noted that most

of these benchmarks are floating point benchmarks except 462.libquantum and

483.xalancbmk. We also record the number of consecutive dynamic instruc-

tions when there are no outstanding long-latency loads to model the frequency

of the bursty misses.

Also, to match the MLP of the original workloads, recording and mod-

eling the load-to-load dependencies that exist in the original application plays

a significant role. When a long-latency load is dependent on another long-

latency load, there cannot be any overlap in execution between these loads.

The previous synthetic benchmark generation approaches modeled the depen-

dency distances only at the detail of the consumer instruction type and did

58

Figure 4.7: Captured MLP information as box plots showing the distribution
of the burstiness of long-latency loads for CPU2006 workloads on a single-core
system

Figure 4.8: Captured MLP information as box plots showing the distribution
of the burstiness of long-latency loads for ImplantBench workloads on a single-
core system

59

Figure 4.9: Machine configurations used for cloning experiments on singlecore
systems: Machine-A for SPEC CPU2006 and Machine-B for ImplantBench
workloads

not record the type of the producer. Our experimental results (next section)

show that, at least this information has to be captured for load instructions

to be able to match the memory behavior of some of the modern workloads.

By feeding this profiled data to the code generator as described in the pre-

vious chapter, clones were generated for SPEC CPU2006 and ImplantBench

workloads. In the rest of this chapter, we compare both the microarchitecture

dependent and microarchitecture-independent characteristics of the synthetic

benchmark to that of the original workload.

To show the superiority of the proposed framework over previous cloning

methodologies, SPEC CPU2006 and the ImplantBench workloads are cloned

and the clones are evaluated for the machine configurations as shown in Figure

60

1	

10	

100	

1000	

40
0.
pe

rl
be

nc
h	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
5.
gr
om

ac
s	

43
6.
ca
ct
us
A
D
M
	

43
7.
le
sl
ie
3d

	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sj
en

g	

45
9.
G
em

sF
D
TD

	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

Ba
si
c	

Bl
oc
k	

Si
ze
	
 (#

	
 in
st
)	

Orig	

Synth	

Figure 4.10: Comparison of the basic block size between the synthetic and the
original workloads for CPU2006 on single-core systems

4.9.

4.1.2 Results and Analysis

4.1.2.1 Accuracy in the representativeness of the synthetic clones

The accuracies of the synthetic benchmarks in capturing the perfor-

mance of the original application is evaluated by comparing both microarchi-

tecture dependent and independent metrics. First, we compare the microarchitecture-

independent metrics like the basic block size, instruction mix, and dependency

distance distribution of the original to that of the synthetic. Figure 4.10 shows

the arithmetic mean of the basic block sizes of the original and the synthetic

in the logarithmic scale. These arithmetic means were calculated based on the

number of instructions in the basic blocks and the dynamic frequency of exe-

cution of each of the basic blocks. It can be observed that the basic block sizes

of the synthetic match the basic block sizes of the original with an average

error of 3.9%.

61

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

43
5.

gr
om

ac
s

48
3.

xa
la

nc
bm

k

42
9.

m
cf

40
3.

gc
c

%
 In

st
ru

ct
io

ns

Branch
Store
Load
Float
Integer

Figure 4.11: Comparison of the Instruction mix of the original (bar on left)
and the synthetic workloads (bar on right) for CPU2006

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

B
io

in
f_

E
LO

B

io
in

f_
LM

G
C

H
rtA

ct
_p

N
N

x
P

hy
_A

FV
P

P
hy

_E
C

G
S

Y
N

A

I_
B

P
N

G
en

_N
J

R
el

_r
ee

d_
so

l

G
en

_H
M

M

A
I_

G
A

S
ec

_h
av

al

R
el

_c
rc

%
 In

st
ru

ct
io

ns

Branch
Store
Load
Floating
Integer

Figure 4.12: Comparison of the Instruction mix of the original (bar on left)
and the synthetic workloads (bar on right) for ImplantBench

62

The Figures 4.11 and 4.12 show the instruction mix of the synthetic

benchmark and that of the original benchmarks for the CPU2006 and Implant-

Bench workloads. It can be found that the instruction mix of the synthetic

matches that of the original very closely and the average errors are within 5%.

Even the minimal error in the instruction mix occurs when the effective ad-

dress calculation for loads/stores or the modulo operation for the branch needs

to be done and there are not enough integer ALU instructions in the original

benchmark. The dependency distances of the original and the synthetic are

compared based on each of the instruction type and the error is evaluated.

Usually the dependency assigning algorithm does not have to move up/down

more than 2-3 instructions before it successfully assigns the dependency for our

target workloads. While the average error in dependency distances for various

types is within 7%, the main source of the error is the first operand of the in-

teger ALU operations. This is due to the changes in the dependency distances

that happen when an integer ALU instruction is made as a load/store effective

address calculation instruction. In that case, the original dependency distance

of the integer instruction is overridden by the distance from the producer of

the base address.

The execution time and power consumption of a benchmark are the first

class performance metrics used in computer architecture to assess the perfor-

mance of a benchmark on a processor/system. Since, we aim at miniaturiza-

tion of the workloads in terms of the execution time, Instruction-Per-Cycle

(IPC) and power-per-cycle are the metrics that we have used to compare the

63

Figure 4.13: Machine configurations used: Machine-A for SPEC CPU2006 and
Machine-B for ImplantBench workloads

performance of the original and the synthetic workloads to show the efficacy

of the generated synthetics. We determine both the accuracies of using the

synthetics as proxies to evaluate the performance of a given microarchitecture

and the sensitivity to various micro-architectural design changes. To evaluate

the performance of the CPU2006 workloads, we simulate both the original and

the synthetic on the simoutorder simulator of SimpleScalar [59] for a typical

modern machine configuration (Machine-A) given in the figure 5.10. For the

experiments on ImplantBench, we use a typical configuration of an embedded

processor (Machine-B) as given in Figure 5.10. These machine configurations

are the same as used in some previously published work [49].

As shown in Figure 4.14(a), the synthetics for CPU2006 have an aver-

age error of 2.8% and a maximum error of 7.7% for the benchmark 464.h264ref

64

0	

0.5	

1	

1.5	

2	

2.5	

3	

40
0.
pe

rlb
en

ch
	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
5.
gr
om

ac
s	

43
6.
ca
ct
us
AD

M
	

43
7.
le
sl
ie
3d

	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sj
en

g	

45
9.
G
em

sF
DT

D
	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

IP
C	

CPU2006	

Orig	

MLP	
 aware	

synth	

MLP	

unaware	

synth	

(a) SPEC CPU2006

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

AI
_A

da
lin
e	

Se
c_
KH

AZ
AD

	

Se
c_
sh
a2
	

Bi
oi
nf
_E
LO

	

Bi
oi
nf
_L
M
GC

	

Hr
tA
ct
_p

N
N
x	

Ph
y_
AF

VP
	

Ph
y_
EC
GS

YN
	

AI
_B

PN
	

Ge
n_

N
J	

Re
l_
re
ed

_s
ol
	

Ge
n_

HM
M
	

AI
_G

A	

Se
c_
ha
va
l	

Re
l_
cr
c	

IP
C	

ImplantBench	

Orig	

MLP	
 aware	

synth	

MLP	

unaware	

synth	

(b) ImplantBench

Figure 4.14: Comparison of IPC between the synthetic and the original work-
loads on single-core system configurations for Alpha ISA

65

when using the MLP information in the synthetics. While using the previous

synthetic generation methodologies (without MLP information) as in previous

work [21] [20], the average error in IPC is 15.3% clearly showing the impor-

tance of an MLP aware workload generation. It should be noted that the

benchmarks 410.bwaves, 456.cactusADM and 483.xalancbmk that have high

MLP as shown in Figure 4.7 have decreased error rates while using our MLP

aware synthetic clone generation. The importance of modeling the type of

the producer instruction for a consumer load instruction while modeling the

dependency distances can be explained with 450.soplex as an example. The

benchmark 450.soplex solves a linear program using a simplex algorithm and

sparse linear algebra and it has a lot of load instructions that are dependent on

other load instructions. When this load-load dependency information is not

incorporated into the synthetic, this benchmark results in 40% error compared

to 2.7% when using this information. For IPC and power results, 15 bench-

marks benefit from the 3 automated MLP techniques, 4 benchmarks benefit

from all the 4 MLP techniques (with two loops) and 6 benchmarks do not ben-

efit from the MLP techniques. There is an error of 4.43% in IPC when only

automatic MLP techniques are used as opposed to 15.3% for MLPunaware.

The usage of two loops with manual intervention reduces the IPC error further

to 2.8%. The accuracies in the IPCs of the ImplantBench suites are given in

Figure 4.14(b). The average IPC error for the workloads in the ImplantBench

suite is 2.9% and a maximum error of 7.2%.

To evaluate the power consumption of the synthetic and the original

66

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

40
0.
pe

rlb
en

ch
	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
6.
ca
ct
us
AD

M
	

43
7.
le
sl
ie
3d

	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sj
en

g	

45
9.
G
em

sF
DT

D
	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

43
5.
gr
om

ac
s	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

Po
w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

CPU2006	

Orig	

MLP	
 aware	

synth	

MLP	

unaware	

synth	

Figure 4.15: Comparison of power-per-cycle between the synthetic and the
original workloads for CPU2006 on single-core system configuration for Alpha
ISA

workloads, we use the Wattch [60] simulator extension of the SimpleScalar tool

set. We use the most aggressive clock gating setting in Wattch and compare

the average power consumption per cycle of the synthetic and that of the orig-

inal workload. Figure 4.15 shows this comparison for CPU2006 and it is to be

noted that the average error in power per cycle is 14% and the maximum error

is 33% for the benchmark 435.gromacs. The average size of basic blocks in this

benchmark is 512 instructions in the original and when we try to miniaturize

the benchmark based on the execution frequencies of the basic blocks, we lose

some long basic blocks that have a significant impact on the power characteris-

tics. If a user is more concerned about the errors in these benchmarks being so

high, the only solution is to compromise on the speedup to achieve higher accu-

racies by including more basic blocks into the synthetic. The other significant

source of error in power-per-cycle for the remaining benchmarks is due to the

fact that the long running original applications have higher power consump-

67

0	

2	

4	

6	

8	

10	

12	

14	

AI
_A

da
lin
e	

Se
c_
KH

AZ
AD

	

Se
c_
sh
a2
	

Bi
oi
nf
_E
LO

	

Bi
oi
nf
_L
M
GC

	

Hr
tA
ct
_p

N
N
x	

Ph
y_
AF

VP
	

Ph
y_
EC
GS

YN
	

AI
_B

PN
	

Ge
n_

N
J	

Re
l_
re
ed

_s
ol
	

Ge
n_

HM
M
	

AI
_G

A	

Se
c_
ha
va
l	

Re
l_
cr
c	

Po
w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

ImplantBench	

Orig	

MLP	
 aware	

synth	

MLP	

unaware	

synth	

Figure 4.16: Comparison of power-per-cycle between the synthetic and the
original workloads for ImplantBench on single-core system configuration for
Alpha ISA

tion in the instruction cache than these relatively very small synthetic clones.

It can be observed that power consumption is mostly underestimated by the

synthetic, bringing up the possibility of correcting it. For the ImplantBench

suite, the average error in power consumption is 2.5% and a maximum error

of 9.2% which can be seen in Figure 4.16. This error is less than CPU2006,

since these workloads have relatively lower dynamic number of instructions.

Figures 4.17(a) and 4.17(c) show the error in the miss rates in the Data

Level 1 (DL1) cache and the branch misprediction rates of the synthetic com-

pared to the original workload for SPEC CPU2006. The average error in the

DL1 hit rate for CPU2006 is 1.06% and that in the branch predictability is

1.7%. The DL1 miss rate comparison for ImplantBench is shown in Figure

4.17(b). Most of the ImplantBench workloads being simple have very low L2

miss rates and high branch predictability. Thus, we only show the accura-

cies in L2 cache miss rates and branch predictability of the SPEC CPU2006

68

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

40
0.
pe

rlb
en

ch
	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
5.
gr
om

ac
s	

43
6.
ca
ct
us
AD

M
	

43
7.
le
sli
e3
d	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sje

ng
	

45
9.
Ge

m
sF
DT

D	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

DL
1	

m
iss

ra
te
	

CPU2006	

Orig	

Synth	

(a) DL1 missrate comparison for CPU2006

-­‐0.01	

0.01	

0.03	

0.05	

0.07	

0.09	

0.11	

0.13	

0.15	

AI
_A

da
lin
e	

Se
cu
rit
y_
KH

AZ
AD

	

Se
c_
sh
a2
	

Bi
oi
nf
_E
LO

	

Bi
oi
nf
_L
M
GC

	

Hr
tA
ct
_p

NN
x	

Ph
y_
AF

VP
	

Ph
y_
EC
GS

YN
	

AI
_B

PN
	

Ge
n_

NJ
	

Re
l_
re
ed

_s
ol
	

Ge
n_

HM
M
	

AI
_G

A	

Se
c_
ha
va
l	

Re
l_
cr
c	

DL
1	

m
iss

	
 ra
te
	

ImplantBench	
 workloads	

Orig	

Synth	

(b) DL1 missrate comparison for ImplantBench

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

40
0.
pe

rlb
en

ch
	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
5.
gr
om

ac
s	

43
6.
ca
ct
us
AD

M
	

43
7.
le
sli
e3
d	

44
4.
na
m
d	

44
5.
go
bm

k	

45
0.
so
pl
ex
	

45
6.
hm

m
er
	

45
8.
sje

ng
	

45
9.
Ge

m
sF
DT

D	

46
2.
lib
qu

an
tu
m
	

46
4.
h2

64
re
f	

47
1.
om

ne
tp
p	

47
3.
as
ta
r	

48
2.
sp
hi
nx
3	

48
3.
xa
lan

cb
m
k	

42
9.
m
cf
	

40
3.
gc
c	

br
an

ch
	
 p
re
d.
	
 ra

te
	

CPU2006	

Orig	

Synth	

(c) Branch misprediction rate comparison for CPU2006

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

40
1.
bz
ip
2	

41
0.
bw

av
es
	

43
3.
m
ilc
	

43
4.
ze
us
m
p	

43
7.
le
sli
e3
d	

45
0.
so
pl
ex
	

45
9.
Ge

m
sF
DT

D	

46
2.
lib
qu

an
tu
m
	

47
1.
om

ne
tp
p	

48
2.
sp
hi
nx
3	

48
3.
xa
la
nc
bm

k	

42
9.
m
cf
	

40
3.
gc
c	

UL
2	

m
iss

ra
te
	

CPU2006	

	
 Orig	

	
 Synth	

(d) UL2 miss rate comparison for CPU2006

Figure 4.17: Comparison of DL1 missrate, UL2 missrate and branch mispredic-
tion rate for CPU2006 and ImplantBench on single-core system configurations
for Alpha ISA 69

workloads. Figure 4.17(d) shows the error the miss rate in the Unified Level

2 (UL2) cache compared to the originals for those benchmarks that have at

least more than 3% of the DL1 accesses reaching UL2. When the number of

UL2 accesses are too small, the impact of the accuracy in UL2 miss rates on

IPC is also small. The benchmark 434.zeusmp has a high error in the UL2

miss rate compared to the original benchmark. It is a computational fluid dy-

namics application that is used for the simulation of astrophysical phenomena.

This benchmark has a very large data footprint compared to any of the other

benchmarks that we have used in this study. It has an almost 1GB of data foot

print for the top 100 million instruction simulation point. This benchmark has

a miss rate of 8.5% in the DL1 and has a miss rate of only 10% in the UL2. A

very detailed modeling of the working set size at a much smaller granularity

in terms of the dynamic execution interval is required for this benchmark to

capture its overall memory access behavior more precisely than what is dealt

with, in this paper. We do not show the error rates in the Instruction Level 1

cache because we found that the number of misses is very small for a typical

modern processor configuration.

4.1.2.2 Accuracy in the sensitivity to design changes

In an architecture study, the accuracy in assessing the performance

impact of design changes [61] [62] is more important than assessing the per-

formance for a particular microarchitecture. We evaluate the synthetics to see

the sensitivity to various design changes. We study accuracies for changes in

70

the size of the Register Update Unit (RUU), Load Store Queue (LSQ), Branch

Target Buffer (BTB), the type of the branch predictor used, size of the Uni-

fied L2 cache, Unified L2 associativity, Data L1 cache size, Data L1 associa-

tivity, issue width, decode width and the commit width of the machine. The

IPC and power variation for the CPU2006 floating point benchmark 433.milc

to design changes are given in the Figures 4.18(a) and 4.18(b) respectively.

433.milc is one of the benchmarks that is very sensitive to the different design

changes under study. The IPC and power variation for the CPU2006 bench-

mark 445.gobmk to design changes are given in Figures 4.19(a) and 4.19(b)

repectively. 445.gobmk is one of the benchmarks that has the least of the

correlation coefficients in terms of IPC.

The correlation coefficients in IPC between the synthetic and the orig-

inal for the set of 19 design points as used in Figure 4.18(a) are shown in the

Figure 4.20(a) for CPU2006 workloads. The correlation coefficient is directly

proportional to correctness of the synthetic in following the trends of the orig-

inal for the different design points. The average of the correlation coefficient

for IPC is 0.95 for all the workloads in CPU2006. Similarly, Figure 4.20(b)

shows the correlation coefficients of the synthetic with the original in assessing

the power per cycle metric for CPU2006 workloads. The average correlation

coefficient for power is 0.98 for all the workloads in CPU2006. Figures 4.20(c)

and 4.20(d) show the correlation coefficients for IPC and power consumption

for the ImplantBench workloads. The average correlation coefficient for IPC

is 0.94 and that for power-per-cycle is 0.97 for the ImplantBench workloads.

71

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

RU
U	

0.
5x
	

RU
U	

0.
25
x	

RU
U	

0.
12
5x
	

LS
Q	

0.
5x
	

LS
Q	

0.
25
x	

LS
Q	

0.
12
5x
	

BT
B	

2x
	

BT
B	

0.
5x
	

Co
m
b	
 B
P	

gs
ha
re
	
 B
P	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 A
ss
oc
	
 2x
	

L2
	
 A
ss
oc
	
 0.
5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 A
ss
oc
	
 2x
	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m
.	
 W
idt
h	
 2
x	

Ba
se
lin
e	

IP
C
	

Machine	
 configura1ons	

Orig	

Synth	

(a) IPC

0	

5	

10	

15	

20	

25	

30	

35	

RU
U	

0.
5x
	

RU
U	

0.
25
x	

RU
U	

0.
12
5x
	

LS
Q	

0.
5x
	

LS
Q	

0.
25
x	

LS
Q	

0.
12
5x
	

BT
B	

2x
	

BT
B	

0.
5x
	

Co
m
b	
 B
P	

gs
ha
re
	
 B
P	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 A
ss
oc
	
 2x
	

L2
	
 A
ss
oc
	
 0.
5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 A
ss
oc
	
 2x
	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m
.	
 W
idt
h	
 2
x	

Ba
se
lin
e	

P
o
w
e
r	

p
e
r	

cy
cl
e
	
 (
W
)	

Machine	
 configura6ons	

Orig	

Synth	

(b) Power-per-cycle

Figure 4.18: Comparison of the variation of IPC and power-per-cycle for
433.milc between the synthetic and the original on single-core system con-
figurations for Alpha ISA

72

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

RU
U	

0.
5x
	

RU
U	

0.
25
x	

RU
U	

0.
12
5x
	

LS
Q	

0.
5x
	

LS
Q	

0.
25
x	

LS
Q	

0.
12
5x
	

BT
B	

2x
	

BT
B	

0.
5x
	

Co
m
b	
 B
P	

gs
ha
re
	
 B
P	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 A
ss
oc
	
 2x
	

L2
	
 A
ss
oc
	
 0.
5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 A
ss
oc
	
 2x
	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m
.	
 W
idt
h	
 2
x	

Ba
se
lin
e	

IP
C
	

Machine	
 configura1ons	

Series1	

Series2	

(a) IPC

0	

5	

10	

15	

20	

25	

30	

RU
U	

0.
5x
	

RU
U	

0.
25
x	

RU
U	

0.
12
5x
	

LS
Q	

0.
5x
	

LS
Q	

0.
25
x	

LS
Q	

0.
12
5x
	

BT
B	

2x
	

BT
B	

0.
5x
	

Co
m
b	
 B
P	

gs
ha
re
	
 B
P	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 A
ss
oc
	
 2x
	

L2
	
 A
ss
oc
	
 0.
5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 A
ss
oc
	
 2x
	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m
.	
 W
idt
h	
 2
x	

Ba
se
lin
e	

P
o
w
e
r	

p
e
r	

cy
cl
e
	
 (
W
)	

Machine	
 configura6ons	

Series1	

Series2	

(b) Power-per-cycle

Figure 4.19: Comparison of the variation of IPC and power-per-cycle for
445.gobmk between the synthetic and the original on single-core system con-
figurations for Alpha ISA

73

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ctu

sA
DM

43
7.

les
lie

3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sje
ng

45
9.

Ge
m

sF
DT

D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
tar

48
2.

sp
hi

nx
3

40
3.

gc
c

42
9.

m
cf

48
3.

xa
lan

cb
m

k Co
rr

el
at

io
n

co
ef

fic
ie

nt

CPU2006

(a) IPC for CPU2006

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ctu

sA
DM

43
7.

les
lie

3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sje
ng

45
9.

Ge
m

sF
DT

D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
tar

48
2.

sp
hi

nx
3

40
3.

gc
c

42
9.

m
cf

48
3.

xa
lan

cb
m

k Co
rr

el
at

io
n

co
ef

fic
ie

nt

CPU2006

(b) Power-per-cycle for CPU2006

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ad
ali

ne

BP
N GA

EL
O

LM
GC

HM
M

NJ

pN
Nx

EC
GS

YN

Re
ed

So

lom
on

ha
va

l

KH
AZ

AD

sh
a2

av
g

Co
rre

lat
ion

 co
ef

fic
ien

t

ImplantBench Workloads

(c) IPC for ImplantBench

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ad
ali

ne

BP
N GA

EL
O

LM
GC

HM
M

NJ

pN
Nx

EC
GS

YN

Re
ed

So

lom
on

ha
va

l

KH
AZ

AD

sh
a2

av
g

Co
rre

lat
ion

 co
ef

fic
ien

t

ImplantBench workloads

(d) Power-per-cycle for ImplantBench

Figure 4.20: Correlation coefficient between synthetic and the original for
design changes on single-core system configurations for Alpha ISA

74

0	

0.5	

1	

1.5	

2	

2.5	

400.perlbench	
 456.hmmer	
 458.sjeng	
 462.libquantum	
 471.omnetpp	
 473.astar	

IP
C	

Orig	

Synth	

Figure 4.21: Comparison of IPC between the synthetic and the original full
runs for CPU2006 on single-core system configuration for Alpha ISA

4.1.2.3 Cloning selected full runs of CPU2006

Previously, we have shown the efficacy of our synthetic benchmark gen-

eration methodology by cloning the top simulation point of the different work-

loads in the SPEC CPU2006 suite. This was due to the prohibitive simulation

time that is required to profile the CPU2006 workloads completely for vari-

ous machine configurations used in this study. To bring out the effectiveness

of the methodology for cloning complete runs, we have profiled the complete

runs of six workloads that have relatively less simulation time than others and

generated synthetics for these workloads. We have compared the performance

of these synthetics with the original complete run in terms of the IPC. Figure

4.21 shows the IPC comparison results. The average error is 3.74% in IPC.

The table in Figure 4.22 shows the dynamic number of instructions in the full

run and that of the synthetic and the speedup that is achieved. An average

speedup of 5 million (in terms of instructions) is achieved for the six selected

workloads.

75

Benchmark
of Instns
in billions
(original)

of Instns in
millions
(synthetic)

Speedup

400.perlbench 184.5 0.19 936238
456.hmmer 2593.1 0.29 8724843
458.sjeng 3187.7 0.30 10357323

462.libquantum 1989.0 0.56 3495214
471.omnetpp 730.0 0.12 5692522

473.astar 966.5 0.25 3830291

Figure 4.22: Speedup information for complete runs of some CPU2006 work-
loads on single-core system configuration for Alpha ISA

Our methodology is found to be superior in both accuracy and minia-

turization compared to simulation points. For the 100 Million instruction

simpoints used in the study [1], the average error when using all the simula-

tion points (generated with max number of simpoints=30) is around 5%. If,

say a typical benchmark had 15 simulation points, the number of dynamic

instructions simulated will be 1500 million instructions. It is very common

to use only one simulation point and the error should be much higher when

only one simulation point is used. Rather our methodology gives only an

error of 3.7% for synthetics of length less than a million instructions. This

could be attributed to the reason that these synthetic instruction sequences

are constructed based on characteristics of the whole program, rather simpoint

methodology is forced to leave some characteristics to be able to choose one

contiguous dynamic instruction chunk.

76

4.2 Workload cloning for Multicores

Amongst the various applications that target Multicore systems, mul-

tithreaded applications are becoming increasingly common. Multithreaded

applications have a varied set of characteristics in terms of the sharing pat-

terns etc that have an impact in the performance of the shared caches, the

interconnection network, coherence logic and DRAM. We use all the charac-

teristics as specified in the abstract workload model specified in 3.1 in Chapter

3. The cloning methodology is the same as specified for the single threaded ap-

plications, consisting of a profiler that is used to get the characteristics of the

long running original applications, which are fed to the synthetic benchmark

generation framework to generate clones. These clones are compared with the

original applications based on both micro-architecture dependent and inde-

pendent characteristics to evaluate their representativeness to their original

counterparts.

To show the efficacy of the proposed multithreaded synthetic bench-

mark generation to clone the multithreaded applications, clones are generated

for the benchmarks of the PARSEC suite. The PARSEC benchmark suite is a

collection of applications targeting a shared memory multicore systems. Most

of these applications are representative of the workloads that will be running

on multicore desktop and server systems. The PARSEC suite also includes

many emerging workloads that are expected to be more commonly used in

the future than today. The benchmarks in the suite are not restricted to any

single application domain, rather they are quite varied in terms of that usage.

77

For example, PARSEC includes applications from the finance domain namely

Blackscholes and Swaptions, that target option pricing using partial differential

equations and a portfolio of swaptions respectively. The suite includes data

mining applications like Streamcluster, Freqmine and Ferret targeting data

clustering algorithms, itemset mining and content similarity search server re-

spectively. The suite includes a workload Canneal that is used extensively

in the chip design industry for optimizing routing cost of a chip design using

simulated annealing. Compression algorithms are included like the benchmark

Dedup. Image processing, video encoding and real time ray tracing algorithms

are included, which are Vips, X264 and Raytrace respectively in the suite. A

few applications from the physics domain like fluid dynamics for animation

(Fluidanimate), body tracking of a person (Bodytrack) and simulation of face

movements as in Facesim are also included. Further in this chapter, the first

step in cloning, which is the benchmark characterization is explained followed

by clone generation and analysis.

4.2.1 Benchmark Characterization

This subsection elaborates on how each of the different metrics of the

abstract workload model are captured and also provide the characterized data

for the PARSEC workloads. The full system simulator called Windriver Sim-

ics is used along with the processor, memory and interconnection network

simulation model called GEMS from Wisconsin Madison University for profil-

ing the workloads. An instruction trace and a memory access address trace

78

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Bl
ac

ks
ch

ol
es

Bo
dy

tra
ck

Fe
rre

t

Fr
eq

m
in

e

R
ay

tra
ce

Sw
ap

tio
ns

Fl
ui

da
ni

m
at

e

Vi
ps

C
an

ne
al

D
ed

up

St
re

am
cl

us
te

r

X2
64

Fa
ce

si
m

In
st

ru
ct

io
ns

store
load
branch
fltmov
fltsqrt
fltdiv
fltmul
fltadd
intdiv
intmul
intalu

Figure 4.23: Instruction mix distribution for a 8-threaded version of various
PARSEC workloads

are captured to record most of the significant characteristics. The instruction

mix, register dependency distance distribution and the various synchronization

characteristics are recorded based on the instruction trace. The figure 4.23

shows the distribution of the instruction into various categories of instruction

types for the Parsec workloads. It can be noted that most of the PARSEC

applications are quite compute intensive in terms of the integer operations.

Only a few workloads have a considerable amount of floating point operations

namely Blackscholes, Bodytrack and Canneal. Most of the Parsec workloads

have 20% to 25% load operations and mostly less than 10% stores operations.

It can be noted that Raytrace is the only application that has a considerable

amount of stores of 29%, which is even greater than the percentage load oper-

ations in Raytrace. Most of these workloads have a high percentage of branch

instructions. The basic block sizes vary between 4 instructions to at most 18

79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bl
ac

ks
ch

ol
es

C
an

ne
al

Bo
dy

tra
ck

D
ed

up

Fa
ce

si
m

Fe
rre

t

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

R
ay

tra
ce

Vi
ps

St
re

am
cl

us
te

r

Sw
ap

tio
ns

X2
64

Ad
dr

es
se

s
Irregular high
comm

Irregular low
comm

Producer
Consumer

Migratory

Read-only

Private

Figure 4.24: Spatial distribution of the accessed memory addresses into sharing
patterns for various a 8-threaded version of PARSEC workloads

instructions, showing that these workloads will be quite sensitive to the branch

predictability of a machine configuration.

For the synchronization characteristics, the calls to the system call

functions pthread mutex lock and pthread mutex unlock are recorded using

the instruction trace. The number of instructions between the lock and unlock

calls is recorded and is averaged to be the size of the critical section. Inside the

lock and unlock function calls, the mutex object address to which the exclusive

locks and unlocks happen are also recorded. This information gives an idea

about the conflict density in across the synchronization events happening in

various threads of the workload. All the synchronization metrics are recorded

relative to the dynamic number of instructions to be able to replay it in the

synthetic to clone these workloads.

80

The memory access trace is post processed to record the memory ac-

cess strides. The same memory access trace is then post processed to classify

the different addresses that are accessed into various categories of producer-

consumer, migratory, read-only and irregular sharing patterns. Each address

is examined to see if the accesses follow any of the three major sharing pat-

terns and are added to that particular class. If the addresses do not show

any conceivable pattern, they are classified to be following an irregular access

pattern. Based on the spatial distribution of this data, i.e, the number of

addresses that belong to each of the sharing pattern classes, the data foot-

print of the synthetic will also be distributed. The category irregular is once

again broken into two classes, one which has a high communication overhead

and the one that has low communication overhead based on the fact whether

the data is accessed by more than one processors within a given number of

accesses. The figure 4.24 shows this spatial distribution of the accesses data

in terms of various sharing patterns. Based on this data, we can see that the

private data footprint of applications like Blacksholes, Facesim, Fluidanimate,

Freqmine, Vips and X264 are considerably high compared to the shared data

footprint. The workloads Canneal, Bodytrack and Streamcluster are the only

workloads where the shared data footprint is higher than the private data

footprint. In the cases of Canneal and Bodytrack the read-only shared data

content is considerably high compared to other workloads. Bodytrack also has

a considerable amount of data that are classified into migratory pattern.

Then, based on the number of accesses to each of these addresses, the

81

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
la

ck
sc

ho
le

s

C
an

ne
al

B
od

yt
ra

ck

D
ed

up

Fa
ce

si
m

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

R
ay

tra
ce

Vi
ps

S
tre

am
cl

us
te

r

S
w

ap
tio

ns

X
26

4

R
ea

d
A

cc
es

se
s

Irregular high
comm

Irregular low
comm

Producer
Consumer

Migratory

Read-only

Private

Figure 4.25: Temporal distribution of the various memory accesses in a 8-
threaded version of PARSEC workloads into different sharing patterns for
reads

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
la

ck
sc

ho
le

s

C
an

ne
al

B
od

yt
ra

ck

D
ed

up

Fa
ce

si
m

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

R
ay

tra
ce

Vi
ps

S
tre

am
cl

us
te

r

S
w

ap
tio

ns

X
26

4

W
rit

e
A

cc
es

se
s

Irregular high
comm

Irregular low
comm

Producer
Consumer

Migratory

Private

Figure 4.26: Temporal distribution of the various memory accesses in a 8-
threaded version of PARSEC workloads into different sharing patterns for
writes

82

proportion of load accesses and store accesses to each of these sharing patterns

is determined. This information is much more important than the spatial

distribution of the data into different sharing patterns. Many workloads may

not have a huge shared data footprint, but can have more shared data accesses

than private data accesses. The Figures 4.25 and 4.26 show this temporal

distribution of the accesses into various sharing patterns. Good examples of a

workloads with a low shared data footprint, but with a high amount of accesses

to shared data are Facesim, Freqmine and Vips. The memory level parallelism,

control flow predictability metrics are recorded using the information provided

by the processor and memory models in the GEMS infrastructure.

4.2.2 Results and Analysis

The characterized data for the PARSEC applications are fed to the

synthetic benchmark generation framework to generate clones for the differ-

ent PARSEC applications. To be able to assess the efficacy of the cloning

methodology for multithreaded applications, the next step is to assess the rep-

resentativeness of the generated clones to that of their original counterparts.

This is accomplished by comparing the microarchitecture dependent and in-

dependent characteristics of the clones to the original applications.

4.2.2.1 Accuracy in assessing performance

An typical 8-core modern system configuration is used to get the mi-

croarchitecture dependent metrics for comparison. The machine configuration

83

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

IP
C	

Thread	
 Id	

PARSEC	
 Blackscholes	

Orig	

Synth	

Figure 4.27: Comparison of IPC between original and synthetic for various
threads of benchmark Blackscholes in the PARSEC suite on a 8-core system
configuration

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

Bla
cks
ch
ole
s	

Bo
dy
tra
ck	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim

	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm

ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
ter
	

Sw
ap
Bo
ns
	

Vip
s	

X2
64
	

IP
C	

Orig	

Synth	

Figure 4.28: Average Error in IPC between synthetic and original for the
PARSEC benchmarks on a 8-core system configuration

84

that is used has a 8GB DRAM, 32KB, 4-way, 1 cycle latency L1 cache, a 4MB,

8-way 8-banked L2 cache, 32 MSHRS, 64 entry reorder buffer size with a ma-

chine width of 4 instructions per cycle. The branch predictor used is a YAGS

branch predictor with a 11 bit addressable Pattern History Table (PHT). The

configuration has a 512 entry Branch Target Buffer (BTB), 3 integer ALUs

with one integer divide, 2 floating point ALUs with one FP multiply and one

FP divide units. The topology that is used to connect the various memory com-

ponents is a hierarchical switch. The original and the synthetic workloads are

run on this configuration and the execution time in terms of number of cycles

is recorded. Based on the number of instructions executed, the Instruction-

Per-Cycle is computed for each of the threads. The Figure 4.27 shows the

comparison of IPC between the synthetic and the original for various threads

of a randomly chosen PARSEC benchmark Blackscholes. The average error

when considering all the threads is 2.9% for Blackscholes. The Figure 4.28

shows the comparison of IPC between original and synthetic averaged over all

the threads. The error in the IPC when averaged over all the 13 benchmarks

is 4.87% with a maximum error of 10.8% for the workload Raytrace. It should

be noted that Raytrace is unique in terms of the number of writes that it does

to memory as previously discussed about the instruction mix of Raytrace.

Other microarchitecture metrics like the miss rates in L1 and the branch

prediction rates are also compared between the original and synthetic work-

loads for various PARSEC applications. The Figure 4.29 shows the comparison

of the L1 cache missrate between the original and the synthetic applications.

85

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

Bla
cks
ch
ole
s	

Bo
dy
tra
ck
	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim

	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm
ine
	

Ra
ytr
ac
e	

Str
ea
mc
lus
ter
	

Sw
ap
Ao
ns
	

Vip
s	

X2
64
	

L1
	
 m

iss
	
 ra

te
	

Orig	

Synth	

Figure 4.29: Comparison of L1 missrate between the synthetic clones and that
of the original PARSEC workloads on a 8-core system configuration

Since the L1 missrates for many of the applications are quite small, the average

in the L1 hit rate is computed to assess the representativeness. The average

error in the L1 hit rate across all the PARSEC workloads is 0.67% with a

maximum of 1.83% for the application Facesim. The Figure 4.30 shows the

comparison of the branch prediction rate between the original and the syn-

thetic applications. The average error in the branch prediction rate is 0.52%.

4.2.2.2 Accuracy in assessing power consumption

To see how effectively the synthetic benchmarks can be used as proxies

for the original PARSEC workloads for power modeling, the power consump-

tion of various workloads is compared to that of their synthetic clones. The

figure 4.31 shows the comparison of the total system power consumption be-

tween the original and synthetic workloads. To show how effectively the syn-

thetic models the execution behavior in each of the system components, the

86

90	

91	

92	

93	

94	

95	

96	

97	

98	

99	

100	

Bla
cks
ch
ole
s	

Bo
dy
tra
ck	

Ca
nn
ea
l	

De
du
p	

Fa
ce
sim

	

Fe
rre
t	

Flu
ida
nim

ate
	

Fre
qm

ine
	

Ra
ytr
ace

	

Str
ea
mc
lus
ter
	

Sw
ap
Eo
ns
	

Vip
s	

X2
64
	

Br
an

ch
	
 p
re
di
c,
on

	
 ra
te
	

Orig	

Synth	

Figure 4.30: Comparison of branch prediction rate between the synthetic
clones and that of the original PARSEC workloads on a 8-core system config-
uration

same figure is also annotated with the breakdown of the power consumption

in the different system components for both the synthetics and the originals.

The average error in the total power consumption between the synthetic and

the original workloads is 2.73% with a maximum error of 5.5% for the ap-

plication Raytrace. It should be noted that Raytrace is the application that

also has a maximum error in performance and in most of the cases the power

consumption of workloads are quite proportional to their performance.

4.2.2.3 Accuracy in assessing sensitivity to design changes

In computer architecture, estimating the performance of a workload on

one machine configuration is less important comparing to the ability to esti-

mate the sensitivity of a workload’s performance to various design changes.

Thus, it is important to evaluate the representativeness of the synthetic work-

loads to their original counterparts in terms of their sensitivity to design

87

0
10
20
30
40
50
60
70
80
90

100
Bl

ac
ks

ch
ol

es

Sy
nt

he
tic

Bo
dy

tra
ck

Sy

nt
he

tic

C
an

ne
al

Sy

nt
he

tic

D
ed

up

Sy
nt

he
tic

Fa
ce

si
m

Sy

nt
he

tic

Fe
rre

t
Sy

nt
he

tic

Fl
ui

da
ni

m
at

e
Sy

nt
he

tic

Fr
eq

m
in

e
Sy

nt
he

tic

R
ay

tra
ce

Sy

nt
he

tic

St
re

am
cl

us
te

r
Sy

nt
he

tic

Sw
ap

tio
ns

Sy

nt
he

tic

Vi
ps

Sy

nt
he

tic

X2
64

Sy

nt
he

tic

 P
ow

er
 (W

at
ts

l)

DRAM power

ICN power

Dir power

L2 power

CPU power

Figure 4.31: Power-per-cycle for various PARSEC workloads along with a
breakdown of the power consumption in various components on a 8-core system

!"#"$%&%#' ()*&%$'+',' ()*&%$'+'-' ()*&%$'+'.'
!"#$"%$&"'()$ *$ *$ *$
+,-.$ /0$12$ *12 3$12$
4/$&5&6($ 03$728$3$95:8$;$&:&<()$ =;$728$3$95:8$/$&:&<($ /0$728$;$95:8$/$&:&<($
4;$&5&6($ *$.28$/0$95:8$/0$>5?@)$ 3$.28$*$95:8$*$>5?@)$;$.28$*$95:8$*$>5?@)$
4/8$4;$.AB,)$ 3*$ =;$;3$
,C2$ /;*$ 03$ =;$
.5&6D9EFG6$ *$ 3$;$
2'5?&6$H'(F#$ I-1A8$/;$>EGJBK I-1A8$//$>EGJBK I-1A8$/L$>EGJBK
2K2$)EM($ /L;3$ N/;$;N0$
O?G$-4P)$ 3-4P8$;$O?GFEQ $=$-4P8$/$O?GFEQ $;$-4P8$/$O?G$FEQ$$
K"H"<"R:$ S'"))>5'$ BE('5'&6E&5<$)9EG&6$ BE('5'&6E&5<$)9EG&6$
TJ$-4P)$;$-4P8$;$.U<8$;FEQ ;$-4P8$/$.U<8$/FEQ /$-4P8$/$.U<8$/FEQ
$

Figure 4.32: Multicore machine configurations used to evaluate the accuracy
in assessing the impact of design changes by the synthetic in comparison to
original PARSEC workloads

88

0.75	

0.8	

0.85	

0.9	

0.95	

1	

flu
ida
nim

at
e	

str
ea
m
clu
ste
r	

ra
yt
ra
ce
	

fre
qm
ine
	

sw
ap
;o
ns
	

vip
s	

ca
nn
ea
l	

de
du
p	

x2
64
	

fac
es
im
	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

fer
re
t	

Av
er
ag
e	

Co
rr
el
a'

o
n
	
 c
o
effi

ci
en

t	

PARSEC	
 Workloads	

Figure 4.33: Correlation coefficients for the sensitivity to design changes be-
tween the synthetic and the original using various multicore machine configu-
rations for the workloads in the PARSEC suite

changes. To accomplish this, we use three system configurations as shown

in Figure 4.32 to analyze performance variations for design changes. The

three system configurations have varying microarchitecture settings in terms

of cache sizes, machine width, branch predictor, topology of the interconnec-

tion network etc. To make more design points, the system configuration B was

mutated as following to form nine more configurations: 0.5X L1 cache size, 2X

DRAM size, 2X L2 cache size, 2X machine width and ROB size, 2X PHT size

for branch predictor, more ALUS, ICN crossbar and 0.5X L2 cache size. The

performance of the workloads on each of these configurations were recorded for

both original and synthetic workloads using the metric IPC. The correlation

between the trends followed by original and the synthetic is determined by

finding the correlation coefficient.

89

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

Sy
st
em

-­‐A
	

Sy
st
em

-­‐C
	

Sy
st
em

-­‐B
	

B	

-­‐	
 2

X	

D
RA

M
	

B	

-­‐	
 0

.5
X	

L2
	

B	

-­‐	
 0

.5
X	

L1
	

B	

-­‐	
 2

X	

O
O
	
 R
es
	

B	

-­‐	
 2

X	

Bp

re
d	

B	

-­‐	
 M

or
e	

AL
U
s	

B	

-­‐	
 I
CN

	
 C
ro
ss
ba
r	

B	

-­‐	
 2

X	

L2
	

IP
C	

Streamcluster	

Synth	

Orig	

Figure 4.34: Comparison of sensitivity to design changes using various multi-
core machine configurations for the workload Streamcluster in PARSEC suite

The Figure 4.33 shows the correlation coefficient between the trends

followed by the synthetic and the original workloads for the various design

changes. The average of the correlation coefficient for all the workloads in

the PARSEC suite is 0.92. The Figures 4.35 and 4.34 show the comparison of

sensitivity to design changes using various multicore machine configurations by

mutating system configuration B for the randomly chosen workloads Raytrace

and Streamcluster in PARSEC suite respectively. This brings out the utility

value of the synthetics to be used as proxies for the PARSEC workloads for

the most invasive design space exploration studies.

4.2.2.4 Speedup achieved in using the synthetics

The most important advantage of using the synthetic proxies over the

long running original PARSEC applications is the speedup achieved in simu-

90

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

Sy
st
em

-­‐A
	

Sy
st
em

-­‐C
	

Sy
st
em

-­‐B
	

B
	
 -­‐	

2X

	
 D
R
A
M
	

B
	
 -­‐	

2X

	
 L
2	

B
	
 -­‐	

0.
5X

	
 L
1	

B
	
 -­‐	

2X

	
 O
O
	
 R
es
	

B
	
 -­‐	

2X

	
 B
pr
ed

	

B
	
 -­‐	

M
or
e	

A
LU

s	

B
	
 -­‐	

IC
N
	
 C
ro
ss
ba
r	

B
	
 -­‐	

0.
5X

	
 L
2	

IP
C	

Design	
 points	

Raytrace	

Synth	

Orig	

Figure 4.35: Comparison of sensitivity to design changes using various multi-
core machine configurations for the workload Raytrace in PARSEC suite

No. of Instructions (Millions) Benchmarks
Synthetic Original

Speedup

Blackscholes 3.80 13028 3429
Bodytrack 5.96 56918 9552
Canneal 8.29 10484 1264
Dedup 4.41 8428 1912
Facesim 7.45 1151026 154450
Ferret 4.42 58398 13227
Fluidanimate 7.81 72669 9300
Freqmine 6.93 5588 807
Raytrace 4.02 223560 55585
Streamcluster 4.51 52527 11641
Swaptions 7.01 11020 1572
Vips 7.50 37135 4952
X264 3.75 13001 3465
!

Figure 4.36: Speedup achieved by using the synthetic proxies over the full run
of the PARSEC workloads on a 8-core system configuration

91

lations when using these miniaturized clones. The table in Figure 4.36 shows

the speedup achieved in terms of reduction in the number of instructions when

using the synthetic proxies over the original PARSEC applications. The syn-

thetic benchmarks generally have three to eight million instructions, when the

original workloads have a few thousand million instructions. The speedup

achieved is at least four orders of magnitude to a maximum of about 5 orders

of magnitude for the application Facesim.

4.2.3 Proxies for Proprietary Applications

As described before, one of the applications of our cloning methodol-

ogy is to disseminate proprietary applications to processor architects for better

performance analysis of target workloads. The most important feature about

our synthetic benchmark generation is the claim that they cannot be reverse

engineered to find any information about the original applications. There has

been a lot of related research in terms of code obfuscation techniques where

one tries to obfuscate the code to hide the intellectual property in applications

when distributing binaries to make it harder to reverse engineer. Though these

techniques have been researched a lot, most of them suffer from increasing the

execution time of the program or code size in some way. In our synthetic

benchmark generation case, it is to be noted that only the performance char-

acteristics of the workloads are distilled into the synthetic benchmark and all

the other higher level information about the original workload are lost, making

any kind of reverse engineering quite meaningless. We majorly obfuscate the

92

organization of the data in the original applications, which is popularly called

’Data storage obfuscation’ by converting all the data structures into a single

one dimensional array. This removes the information like the presence of a

class (in C++ or Java) and the presence of a structure in C. Also the name of

the identifiers, function calls etc are also not passed on to the synthetic. This

final piece of code is independent of most of the higher level constructs of loops,

function calls and other possible organization in the code. The most relevant

information related to reverse engineering that is passed on the synthetic are

instruction sequence information and control flow behavior. But, it is to be

noted that the instruction sequence information is in terms of instruction types

than real instruction at all. For example, in our synthetic benchmark genera-

tion, all single cycle latency integer operations are grouped into one category,

and are generated as just integer adds. Regarding the control flow informa-

tion, reverse engineering any algorithm just based on the basic block size or

branch predictability is quite impossible. Thus, the proposed synthetic bench-

mark cloning is quite robust to disseminate proprietary applications without

the need to worry about being reverse engineered for information about the

original applications.

93

Chapter 5

Power Virus Generation

A power virus for a modern multicore system has to stress different

parts of the system in such a way that the overall power consumption is max-

imized. As mentioned already, keeping all the components of a system simul-

taneously active is not possible. For example, to be able to stress the DRAM

of a system, the processor may have to stall for many cycles for those long-

latency loads to complete. Any program that is completely memory-bound

cannot consume much power in the cores and a program that is completely

compute-bound cannot consume much power in the memory, caches or the

interconnection network. Thus, the power virus has to strike the right balance

between stressing different power consuming components in the system to be

able to maximize the overall power. There are many latency hiding mecha-

nisms implemented throughout a modern computer system starting from the

out-of-order execution circuitry in the cores, various buffers, the miss status

handling registers in the caches, pipelining in the interconnection network to

various optimizations implemented in the DRAM controller and all these nu-

merous features should be exploited to the right extent by this power virus to

achieve maximum overall power. Mainly to avoid the need to model all these

complex interactions, we propose the use of a black-box approach that employs

94

max
generations
reached ?

Create next
generation

GENETIC ALGORITHM

No

Yes

BEST POWER VIRUS
Thread 1: spec 1 ... spec m
Thread 2:...

 :
:

Thread n:
 Multithreaded Synthetic 1
 Multithreaded Synthetic 2

:
 :
 Multithreaded Synthetic D

ABSTRACT WORKLOAD PARAMETERS

CODE
GENERATOR

C-Code for D
n-threaded syntheticsCOMPILERAssembly for D

n-threaded synthetics

ASM POST
PROCESSOR

Post processed
Assembly for D

n-threaded synthetics
ASSEMBLER

n-thr
binary 1

n-thr
binary D

....

FULL SYSTEM
SIMULATOR

Fitness
Values for all
D synthetics

in this
generation

Figure 5.1: Multithreaded power virus generation framework

a machine learning based search technique along with the previously proposed

multithreaded workload generator to automatically search for a power virus

given a system configuration. Our power virus generation framework to gen-

erate power viruses for multicores is called Multicore MAx POwer (MAMPO)

and the same for single-core systems which uses only a subset of the abstract

workload parameters is called SYstem-level Max POwer (SYMPO).

The main components of the MAMPO framework are, i) the machine

learning technique employed in the framework, Genetic Algorithm (GA), ii)

the abstract workload model along with the code generator, compiler and the

assembly post processor iii) the full system simulator with detailed power mod-

els used to evaluate the power consumption of the multithreaded synthetics.

Figure 5.1 shows the flowchart of the power virus generation framework. The

95

Genetic Algorithm (GA) [63] generates the parameter values for the potential

candidates for the synthetic power virus case as it iteratively searches through

the abstract workload space. These generated abstract workload characteris-

tics are fed to the code generator that generates a multi-threaded synthetic

workload based on these specified characteristics. This multi-threaded C code

is then translated to direct assembly code with the help of a compiler. At

times, the compiler introduces some spurious stack operations amidst the set

of instructions that are incorporated as embedded assembly and this assembly

code has to be post processed to remove such unnecessary instructions and

then it is further compiled into a binary. This multi-threaded binary is then

executed on a full system simulator with cycle accurate power models for var-

ious system components to evaluate the power consumption of the generated

synthetic on the system configuration under study. These power consumption

numbers are fed back to the Genetic Algorithm to intelligently choose the next

set of potential candidates for the power virus and this process iteratively con-

tinues until the search converges to find the best power virus for a given system

configuration. Each of the components of this framework will be explained in

detail further in this Section.

5.1 Abstract Workload Model

The effectiveness of this kind of power virus generation framework lies

mainly in the efficacy of the abstract workload space that is being searched

through by machine learning. Firstly, the dimensions of this abstract workload

96

!" #$%&"$'()" #$%&"*'$+)" !",-*"
./'00)0"" 1'2)+%*3"

!" #$%&'(")*"+,('-./" !0"10"20"!30"45" 1" 6-(-77'78/%"
5" 9,('-.":7-//";"<():="-//8>?%'?+"" !0"50"@"!5"" A"
4" 6'(:'?+"-::'//'/"+)"/,-('.".-+-" !B0"4B0"CB0"3B0"DB0"EB" 1""

1" F,-('."%'%)(G"-::'//"/+(8.'/"8?"
+H)"&$:I'+/" B0"10"20"!50"!30"450"31" 1""

C" J)$<7'."7)-.A/+)('/" 9($'K*-7/'"" !"

F,-('.".-+-"
-::'//"<-++'(?"
-?."
:)%%$?8:-+8)?"
:,-(-:+'(8/+8:/"

3" 6(8L-+'"%'%)(G"-::'//"/+(8.'/"8?"
+H)"&$:I'+/"

"B0"10"20"!50"!30"450"31"" 1" 6(8L-+'".-+-"
-::'//"<-++'(?"

D" M)(I8?>"/'+"/8N'"OP"7))<"
8+'(-+8)?/"&'*)('"-((-G"<+(="('/'+Q"

!0"!B0"5B0"1B0"!BB0"5BB" 1" R'%)(G"
*))+<(8?+"

2" R'%)(G"S'L'7"6-(-77'78/%"ORS6Q" !0"50"40"10"3" 1"
E" RS6"*('T$'?:G" U8>,0"7)H" !"

R'%)(G"7'L'7"
<-(-77'78/%"

!B" "VL'(->'"&-/8:"&7):I"/8N'" !B0"5B0"4B0"CB0"!BB" !"

!!" "VL'(->'"&(-?:,"<('.8:+-&878+G" B=20"B=230"B=E50"B=E30"
B=E20"B=EE0"!=B"

1"
J)?+()7"*7)H"
<('.8:+-&878+G"

!5" "W#9"VSX"<()<)(+8)?" B"A"1" 1"
!4" "W#9"RXS"<()<)(+8)?" B"A"1" 1"
!1" "W#9"YWZ"<()<)(+8)?" B"A"1" 1"
!C" "[6"VYY"<()<)(+8)?" B"A"1" 1"
!3" "[6"RXS"<()<)(+8)?" B"A"1" 1"
!D" "[6"YWZ"<()<)(+8)?" B"A"1" 1"
!2" "[6"R\Z"<()<)(+8)?" B"A"1" 1"
!E" "[6"F]^9"<()<)(+8)?" B"A"1" 1"

W?/+(="%8_"

5B" "S\VY"<()<)(+8)?" B"A"1" 1"

5!" "F9\^`"<()<)(+8)?" B"A"1" 1"

W?/+($:+8)?"%8_0"
.-+-"-::'//"
<-++'(?"-?."
:)%%$?8:-+8)?"
:,-(-:+'(8/+8:/"

55" ^'>8/+'(".'<'?.'?:G".8/+-?:'"
O?$%&'(")*"8?/+($:+8)?/Q" !0"50"10"20"!30"450"31" 1" W?/+(="7'L'7"

<-(-77'78/%"
54" ^-?.)%"/''." !0"50"4" !" J).'"-78>?%'?+"

"
Figure 5.2: Abstract workload space searched through by the machine learning
algorithm including the range of values used for each of the different knobs

97

space should be as much microarchitecture independent as possible to enable

this framework to be able to generate the best power virus for different types of

microarchitectures. It is the job of the machine learning algorithm to take care

of tailoring the parameters of the abstract workload model to maximize the

power consumption for a given microarchitecture based on power estimates

provided by the simulator for this microarchitecture under study. But, it

is also important that these dimensions of the abstract workload space be

robust enough to be able to vary the execution behavior of the generated

workload in every part of the multicore system. It is to be noted that the

dimensions should also not be too many as it could also result in a situation

where the search would never converge due to a state space explosion. The

characteristics of real-world programs that affect performance and in turn the

power consumption are carefully studied and is used as a guide to design these

dimensions as it is important that the generated power virus should still be a

realistic workload depicting the practically attainable maximum power.

In the abstract workload model, we have the choice of searching for a

multithreaded power virus with homogeneous thread characteristics or provide

the GA with the flexibility to configure the threads to be heterogeneous. It is to

be noted that, when the threads are made heterogeneous, almost we multiply

the number of dimensions in the abstract workload space for every thread by

the number of threads. This could possibly result in a state space explosion

and the GA may never converge. But, on the other hand, most of the real world

parallel applications have heterogeneous thread characteristics [5] at least in

98

their data access pattern. For example, one of the most commonly used data

access pattern is the producer-consumer relationship between simultaneously

executing threads, where one or more producer threads write data, which is

read by one or more consumer threads. To be able to exercise such a behavior

in the synthetic, there should be some amount of heterogeneity in the threads

to be able to act as a producer and a consumer thread. At a minimum, there

should be some heterogeneity in the instruction mix in terms of the number of

loads or stores. But, due to this heterogeneity in the instruction mix, the other

core-level dimensions may also need be adjusted heterogeneously to be able

to consume maximum power. For example, the producer threads may need to

have a different register dependency distance or branch predictability than the

consumer thread to be able maximize the power consumption of the core, in

turn to keep the system at its maximum attainable power. Figure 5.2 shows

the different dimensions of our abstract workload model and their granularity.

Further in this Section, we explain each of these dimensions or what we call

as the ’knobs’ of our workload generator. We first begin by explaining the

intuition behind the design of this abstract workload space.

In our abstract workload model, we have a controlled amount of hetero-

geneity, where only a few heterogeneous classes of threads can be configured

and all the threads in the system have to belong to one of these few heteroge-

neous classes. The threads within a class are homogeneous. This controls the

state space explosion and we will also be able to mimic the communication

characteristics of the real parallel applications. We have found that a rea-

99

sonable number for heterogeneous classes is four, up to which the state space

is tractable and also allows to control power for the major power consuming

components.

5.2 Genetic Algorithm

The machine learning approach we use in our framework is popularly

called the Genetic Algorithm (GA) [63]. Among the various machine learning

techniques, Genetic Algorithm (GA) is known to be very effective with respect

to global optimization problems. GA is a particular class of search heuris-

tics that use techniques like mutation, crossover, inheritance and selection to

solve optimization problems. GA is a search technique inspired by evolution-

ary biology where problem solutions are encoded as chromosomes and these

chromosomes are mutated and recombined to form newer chromosomes. A

population in the genetic space is defined as a set of chromosomes or possible

outcomes of the problem under investigation. The algorithm proceeds by first

choosing a set of D random chromosomes as the initial population, where D is

the deme size or the population size used in the algorithm. These D random

chromosomes (multithreaded synthetics) form the first generation of individ-

uals for the algorithm to get started. These individuals of the first generation

are evaluated for their fitness and the fitness values represent the quality of

these individuals in the population and are fed back to the GA. Based on the

fitness values of these synthetics, there are different operators that are applied

on them like mutation, crossover and elite reproduction to produce the chro-

100

mosomes of the individuals of the next generation, which are again evaluated

for their fitness and fed back to the GA. This evolutionary process continues

until the Genetic Algorithm converges with the same value for each of the

different dimensions and is repeated by seeding the GA with different random

seeds to make sure that the results are robust. Though one may argue that

this process of GA does not necessarily guarantee to achieve the best theoret-

ically maximum power virus as it is still a heuristic based global optimization

technique, by seeding the GA with different starting points and running it un-

til convergence does guarantee a tight upper-bound for the maximum power

for practical purposes.

The GA tool set, IBM SNAP [64] [65] takes in the description of the

search space in terms of the bounds for the various parameters in the abstract

workload model given as input by the user. For our power virus search, a chro-

mosome will refer to the set of parameters in the abstract workload space for a

candidate multithreaded synthetic workload. SNAP initializes the individuals

of the first population with random workload characteristics and these indi-

viduals are crossed over or randomly mutated to form a new population for the

next generation. After the workload parameters of the individuals for the next

generation are constructed, they are fed to the code generator to generate the

synthetic clone. This synthetic clone is automatically compiled and run on the

corresponding processor/full-system simulator to evaluate the fitness, which is

the power consumption for the design under study. These power consumption

values are used as feedback to generate the next generation of individuals and

101

this process of evolution continues until each characteristic of the workloads

converge to the maximum power consuming synthetic workload.

The most significant operators used in GA are mutation and crossover.

Mutation operator probabilistically chooses parts of the chromosome and mod-

ifies them to form new chromosomes. In our case, the specifications of the

multithreaded synthetics in terms of abstract workload parameters are modi-

fied randomly to form new multithreaded synthetics. The crossover operator

recombines parts of two chosen chromosomes in some way to form a new chro-

mosome for the offspring. The specifications of two chosen multithreaded syn-

thetics are combined in a meaningful way to form the specifications of the new

multithreaded synthetic offspring. SNAP provides the following parameters

to control how the individuals are chosen for the next generation, i) Mutation

rate: number of individuals that should be probabilistically chosen to mutate

ii) Reproduction rate: number of individuals that should be probabilistically

chosen to copy into new population iii) Elite reproduction rate: number of

fittest individual of previous generations that should be copied into new gen-

eration iv) Crossover rate: number of individuals probabilistically chosen to

serve as parents for point crossover, where a crossover point within a parent

is selected and then interchange the two parent chromosomes at this point to

produce two new offsprings. v) Uniform crossover rate: number of individuals

probabilistically chosen to serve as parents for uniform crossover. Uniform

crossover is the process in which individual bits in the chromosome are com-

pared between two parents and are swapped with a fixed probability of 0.5.

102

The values used for these GA parameters like the mutation rate, crossover rate

and reproduction rate for our power virus search problem will be explained in

next section.

In this Subsection, we further explain why we chose GA over other

search techniques. Firstly, as a general rule of thumb, a directed search tech-

nique like Genetic Algorithm (GA) is more efficient than a random search

technique or a brute force methodology. Through various experiments, we

have found that the crossover operator employed in GA is very effective when

searching through the workload space for a power virus. This is because when

we cross over two good solutions in our space, the characteristics of the parents

can be very meaningfully merged and hence the offspring is also usually good,

when compared to a random sample in the same space. In the rest of this

Section, we elaborate on the abstract workload model that is employed and

the process of code generation for the multithreaded synthetic workload.

5.3 Simulation Infrastructure

To evaluate the power consumption of a synthetic workload on a given

design, the Virtutech Simics full system simulator is used along with Wisconsin

Multifacet GEMS [66] to evaluate the power consumption of the multithreaded

synthetic workloads for the SPARC ISA using Solaris 10 operating system.

The cycle accurate out-of-order processor simulator Opal, the detailed memory

simulator Ruby and the network simulator Garnet, all of which are a part of

GEMS was used to model a typical Chip-MultiProcessor (CMP). The power

103

consumption in the core is evaluated using the power models provided by

Wattch [60] for the most aggressive clock gating ’cc3’ in Wattch. The power

consumption of the shared L2 cache and the directory is modeled with help of

the latest power models for caches using CACTI [67].

The power consumption of the network was evaluated using the net-

work power model Orion [68]. The DRAMsim [69] is integrated with Ruby

to accurately simulate the memory controller and a DDR2 DRAM and also

provides power consumption estimates. The power models used for all the

components of the CMP are for a 90nm technology. It is to be noted that

this power virus generation methodology aims to help a system designer in

the design stage of a system, when only the simulators will be available than

real hardware. The GNU gcc compiler for SPARC ISA with the optimization

level of O2 is used for compiling the synthetics and an optimization level of O3

for compiling other workloads. For the experiments using the Alpha ISA, the

Sim-wattch [60] simulator built on the SimpleScalar [59] simulation framework

is used to evaluate the CPU power consumption and the workloads are com-

piled on an alpha machine running the Tru64 UNIX operating system using

gcc 4.2 with an optimization level of -O2.

5.4 State-of-the-art Power viruses

There have been many industry efforts towards writing power viruses

and stress benchmarks. Among them, MPrime [25], CPUburn-in [17], CPUb-

urn [18] are the most popular benchmarks.

104

MPrime [25] is a BSD software application that searches for a Mersenne

prime number using an efficient Fast Fourier Transform (FFT) algorithm. For

the past few years, MPrime has been popularly called the torture test and

has been used for testing the stability of a computer system by overclockers,

PC enthusiasts and the processor design industry. This is because of the fact

that this program is designed to subject the processor and memory to an in-

credibly intense workload resulting in errors. The amount of time a processor

remains successfully stable while executing this workload is used as a measure

of that system’s stability by a typical overclocker. MPrime has been used in

testing the CPU, memory, L1 and L2 caches, CPU cooling, and case cooling

efficiencies.

CPUburn-in [17] is advertised as an ultimate stability testing tool

written by Michal Mienik, which is also written for overclockers. This program

attempts to heat up any x86 processor to the maximum possible operating

temperature. It allows the user to adjust the CPU frequency to the practi-

cal maximum while still being sure that stability is achieved even under the

most stressful conditions. The program continuously monitors for erroneous

calculations ensuring the CPU does not generate errors during calculations. It

employs FPU intensive functions to heat up the CPU.

CPUburn [18] is a power virus suite written in assembly language,

copyrighted but freely licensed under the GNU Public License by Robert Re-

delmeier. The purpose of these programs is also to heat up x86 CPUs as much

as possible. Unlike CPUburn-in, they are specifically optimized for different

105

Figure 5.3: Single-threaded power viruses widely used in the industry

processors. FPU and ALU instructions are coded at the assembly level into an

infinite loop. The goal has been to maximize CPU temperature, stressing the

cooling system, motherboard and power supply. The programs are BurnP5,

BurnP6, BurnK6, BurnK7, BurnMMX. The description of each of the power

viruses are given in Figure 5.3.

But, all these power viruses are single-threaded benchmarks targeting

single-core systems. Due to the unavailability of any power viruses for multi-

core systems, as a first step, our power virus generation framework is evalu-

ated by generating single-threaded power viruses and compare them with the

aforementioned state-of-the-art viruses. The effectiveness of the power viruses

generated using our singl-core power virus generation framework SYstem-level

Max-POwer (SYMPO) are validated on the SPARC and the Alpha ISAs by

comparing with the industry grade power virus MPrime torture test along

106

with measurements on the instrumented quadcore AMD system. Among the

different industry grade power viruses discussed previously, MPrime is the only

benchmark for which the source code is available. Most of the other power

viruses discussed were handcrafted using x86 assembly and can only be used

on x86 machines. Due to this limitation, we compare the power consumption

of the SYMPO viruses only with that of MPrime on SPARC and Alpha ISAs.

But, on x86 ISA, we use all the industry grade power viruses for comparison.

5.5 SYstem-level Max POwer (SYMPO) - Power Viruses
for Single-core systems

In the process of generation of power viruses for single-core systems,

we only use a subset of the knob of the abstract workload model that are only

relevant to single-core systems excluding the knobs falling under the category

thread level parallelism, shared memory access patterns and communication

characteristics.

5.5.1 Results on SPARC ISA

To see the efficacy of using SYMPO to find power viruses, we compare

the power consumption of the industry grade MPrime torture test with that of

the individuals chosen by SYMPO for a set of 3 entirely different microarchi-

tecture configurations using the GEMS full system processor simulator. The 3

microarchitecture configurations used are given in Figure 5.10. The microar-

chitectures differ in terms of number of functional units, cache sizes, instruction

107

65	

70	

75	

80	

85	

90	

95	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	
 81	
 86	
 91	

Po
w
er
	
 p
er
	
 cy

cle
	
 (W

)	

Genera1ons	

SYMPO	

MPrime	

(a) Config 1

40	

50	

60	

70	

80	

90	

SY
MP

O	

ast
ar	

bw
av
es
	

bz
ip2
	

ca
ctu
sA
DM

	

ca
lcu
lix
	

de
alI
I	

ga
me
ss	
 gc

c	

Ge
ms
FD
TD
	

go
bm
k	

gro
ma
cs	

h2
64
ref
	

hm
me
r	

lbm

	

les
lie
3d
	

lib
qu
an
tum

	

mc
f	

mi
lc	

na
md
	

om
ne
tpp

	

pe
rlb
en
ch
	

po
vra
y	

sje
ng
	

so
ple
x	

sp
hin
x3
	

ton
to	
 wr

f	

xa
lan
cb
mk
	

Po
w
er
	
 (W

)	

SPEC	
 CPU2006	
 and	
 SYMPO	

(b) Comparison with SPEC CPU2006

30	

32	

34	

36	

38	

40	

42	

44	

46	

48	

50	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	

Po
w
er
	
 p
er
	
 cy

cl
e	

(W

)	

Genera1ons	

SYMPO	

MPrime	

(c) Config 2

15	

20	

25	

30	

35	

40	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	

Po
w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

Genera1ons	

SYMPO	

MPrime	

(d) Config 3

Figure 5.4: Evaluation of SYMPO on SPARC ISA for single-core systems

108

(a) SPARC ISA

! "#$%&'!(! "#$%&'!)! "#$%&'!*!

+,-! .!/$01!2!34! 2!/$01!)!34!)!/$01!(!34!

,(!"5678! 92!:;1!2<=5>! *)!:;1!2<=5>! (9!:;1!)<=5>!

,)!"5678! 2!?;1!.<=5>! 2!?;1!.<=5>!)@9!:;1!2<=5>!
AB;!C!,DE!)@9C().! ().C92! (9C.!

?567&$8!F&G07! .! 2!)!

;H5$67!IH8G&60#H! J>KH&G!2!:;! J>KH&G!2!:;!)<L8M8L!

?8N!5668OO!0&N8! (@P!6>6L8O! (@P!6>6L8O! 2P!6>6L8O!

!
(b) Alpha ISA

Figure 5.5: Single-core machine configurations used to evaluate SYMPO

window size, DRAM size and the machine width. Figures 5.4(a), 5.4(c) and

5.4(d) show the increase in the power consumption of the best power virus as

SYMPO progresses with each generation for each of the 3 microarchitectures

respectively. The same figures also show the power consumption of MPrime

torture test for comparison. The power viruses generated by SYMPO con-

sume 14%, 24% and 41% more power than MPrime for microarchitectures 1,

2 and 3 respectively. For the above results, the genetic algorithm was seeded

with random workloads and run for 91, 69 and 79 generations for each of the

microarchitectures resulting in 728, 552 and 632 simulations. The number of

dynamic instructions in the power viruses were set to be 10 million. It is to be

noted that the caches get warmed up in just a few thousand instructions in the

synthetic and the power consumption converges to steady state in not more

109

than 10 million dynamic instructions. Since these simulations were done on a

Xeon parallel machine, the fitness evaluation for the individuals in a genera-

tion were let to run in parallel resulting in an efficient exploration consuming

a total simulation time of 15 hours, 11 hours and 13 hours for SYMPO to gen-

erate the viruses for the machine configurations 1, 2 and 3 respectively. The

genetic algorithm parameters that were used and found to be well suited to

explore this particular search problem are a mutation rate of 0.03, reproduc-

tion rate of 0.01, elite reproduction rate of 0.125, crossover rate of 0.825 and

a uniform crossover rate of 0.01. Since many parameters in our search space

are correlated with each other, having a higher non-disruptive point crossover

rate performs better than having higher disruptive uniform crossover rate.

To further compare the power consumption of the generated power

virus to that of the real world applications, the SPEC CPU2006 workloads

were simulated on our full system simulation infrastructure for 1 billion dy-

namic instructions after fast forwarding for 2 billion instructions on machine

configuration 1. Figure 5.4(b) shows the power consumption of the SYMPO

virus compared to real world SPEC workloads. The SPEC workloads have an

average power consumption of 53.4 Watts compared to 89.8 Watts consumed

by the SYMPO virus.

It is to be noted that the power viruses generated for each of the con-

figurations are different. For instance the characteristics of the power virus

generated for machine configuration 1 are a basic block size of 10 instructions,

200 static basic blocks, the memory pointers are reset to beginning every 200

110

iterations, a branch transition rate of 0.98, 10% of the memory access instruc-

tions having a stride of 12 and 90% of the memory access instructions have

a stride of zero, a memory level parallelism of 1. The instruction mix of this

power virus was int ALU-19.5%, int mul-6.5%, int div-19.5%, FP mov-19.5%,

load-6.5%, store-19.5% and branch-10%. The characteristics of the virus gen-

erated for machine configuration 3 was significantly different in its instruction

mix compared to that generated for machine configuration 1. The instruc-

tion mix of the power virus generated for machine configuration 3 was int

ALU-18%, load-36.3%, store-36.3% and branch-10%. It is very hard to make

general inferences about the importance of the characteristics of the synthetics

for the various hot cases as they vary extensively based on the targeted ma-

chine configuration. The main aim of using micro-architecture independent

characteristics along with machine learning for this problem is to be able to

have a black box approach towards the generation of the power virus and avoid

making models/inferences about how the power virus should be designed given

a machine configuration.

5.5.2 Results on Alpha ISA

Figures 5.6(a) 5.6(b) 5.6(c) show the results of using SYMPO for gen-

erating power viruses in the Alpha ISA to maximize the power consumption

in the processor core for configurations 1, 2 and 3 as given in Figure 5.5(b).

The machine configurations used for the experiments on the Alpha ISA are

the same as used in the previous work by Joshi et. al [22] to enable us to

111

0	

5	

10	

15	

20	

25	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	

Po
w
er
	
 p
er
	
 cy

cle
	
 (W

)	

Genera1ons	

SYMPO	

MPrime	

(a)

30	

35	

40	

45	

50	

55	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	

Po
we

r	
 p
er
	
 cy

cle
	
 (W

)	

Genera1ons	

SYMPO	

Mprime	

(b)

0	

20	

40	

60	

80	

100	

120	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	
 41	
 46	
 51	
 56	
 61	
 66	
 71	
 76	

Po
w
er
	
 p
er
	
 cy

cle
	
 (W

)	

Genera1ons	

SYMPO	

MPrime	

(c)

20	

40	

60	

80	

100	

120	

SY
M
BO
	

as
tar
	

bw
av
es
	

bz
ip2
	

ca
ctu
sA
DM

	

gc
c	

Ge
ms
FD
TD
	

go
bm
k	

gro
ma
cs	

h2
64
ref
	

hm
me
r	

les
lie
3d
	

lib
qu
an
tu
m	

mi
lc	

na
md
	

om
ne
tp
p	

pe
rlb
en
ch
	

sje
ng
	

so
ple
x	

sp
hin
x3
	

xa
lan
cb
mk
	

ze
us
mp
	

Po
w
er
	
 (W

)	

SPEC	
 CPU2006	
 and	
 SYMPO	

(d) Comparison with SPEC CPU2006

Figure 5.6: Evaluation of SYMPO on Alpha ISA using SimpleScalar for single-
core systems 112

do a direct comparison of the power consumption of the generated viruses.

The power virus generated using SYMPO consumes 30%, 7.5% and 29% more

power in the processor core than MPrime torture test on Alpha ISA. To be

able to make a fair comparison to the stressmarks of the previous approach [22]

we compare only the CPU power for all the experiments in the Alpha ISA. It

is to be noted that the power viruses generated using SYMPO consume 15%,

9%, and 24% more power than the stressmarks generated for the same set of

machine configurations using the Sim-Wattch simulator by the previous ap-

proach. This improvement in the power consumption is attributed to the fact

that we model the instruction mix at a finer granularity and we also model the

memory level parallelism in the synthetic. The memory level parallelism of a

workload is shown to be a very significant factor when modeling the perfor-

mance and power consumption of a workload even at the core level by Ganesan

et al [56]. Ganesan et al show an improvement of 12.5% in the accuracy of the

workload model when including the Memory Level Parallelism. It should also

be noted that our genetic algorithm framework (SNAP) is more sophisticated,

enabling us to explore a larger search space than what was used in [22].

Figure 5.6(d) shows the power consumption of the SYMPO virus com-

pared to real world SPEC workloads. The SPEC workloads have an average

power consumption of 63.22 Watts compared to 111.79 Watts consumed by the

SYMPO virus. The sum of the power consumption numbers of all the units

present in a machine defines the ’theoretical maximum’ for this max-power

search problem. Since all the units of a machine cannot be kept busy all the

113

time by any practical real world workload, reaching this theoretical maximum

is almost an impossible event. For example, the theoretical maximum for the

machine configuration 3 is 220 Watts and the power virus generated for this

configuration consumes a sustainable average power of 112 Watts. Designing

a system with a worst case power behavior equal to that of the theoretical

maximum can result in highly wasteful over provisioning. This further moti-

vates the necessity towards using an automatic search to be able to design a

system for a reasonable worst case behavior.

5.5.3 Suitability of Genetic Algorithm for SYMPO

Figures 5.7(a) and 5.7(b) show the break down of the power consump-

tion in each individual component of the system including the DRAM for the

SPARC configurations 1 and 3 respectively. From this breakdown, It can be

observed that SYMPO leverages the power consumption in the DRAM to max-

imize the overall system level power consumption. This shows that a power

virus generated specifically for the CPU may not be the best power virus at

the system level. It is to be noted that the virus generated by SYMPO does

not always consume more power than MPrime in various components. This is

due to the reason that the fitness function that the search algorithm targets to

maximize is the total power consumption of the system. The same framework

can be used to generate different types of stressmarks as in [22] by changing

the fitness function evaluation.

114

For the Alpha ISA, Figures 5.7(c) and 5.7(d) show the components of

the power consumption in the various parts of the CPU. These power con-

sumption breakdown results shows that each of the synthetic workloads have

interacted with the different microarchitectures in a unique fashion. This

shows that how non-trivial it is to hand craft a max-power virus by speculat-

ing about this complex interaction, thus emphasizing the need for an automatic

search methodology. Machine learning based approaches are considered to be

more efficient than most of the brute force searches and genetic algorithm has

proven to be a promising solution to this problem. In the machine configura-

tions, SPARC config-3 has a lesser access latency for L1 cache than config-1

and one can observe that SYMPO is aware of this and generates a power virus

that stresses the L1 cache effectively.

These breakdown results show that how non-trivial it is to hand craft

a max-power virus by speculating about these complex interactions, thus em-

phasizing the need for an automatic search methodology.

5.5.4 Validation of SYMPO using measurement on instrumented
real hardware

Having validated the power consumption of the viruses generated using

SYMPO on 2 simulators and 2 ISAs, the next step is to measure the power

consumption of the viruses on real hardware. To see the effectiveness of these

power viruses on real hardware, we measure their power and thermal charac-

teristics on the AMD Phenom II X4 Processor Model 945 system. Figure 5.8

115

0	

5	

10	

15	

20	

25	

re
na
m
e	

bp
re
d	

in
st
n	

w
in
do

w
	

lsq
	

re
g	

fil
e	

IL
1	

DL
1	
 L2
	

AL
U	

re
su
lt	

bu

s	

clo
ck
	

DR
AM

	

Av
er
ag
e	

po

w
er
	
 p
er
	
 cy

cl
e	

(W

)	

SYMPO	

Mprime	

(a) SPARC config 1

0	

2	

4	

6	

8	

10	

12	

14	

re
na
m
e	

bp
re
d	

in
st
n	

w
in
do

w
	

lsq
	

re
g	

fil
e	

IL
1	

DL
1	
 L2
	

AL
U
	

re
su
lt	

bu

s	

cl
oc
k	

DR
AM

	
 Av
er
ag
e	

po

w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

SYMPO	

MPrime	

(b) SPARC config 3

0	

2	

4	

6	

8	

10	

12	

14	

16	

re
na
m
e	

bp
re
d	

in
st
n	

w
in
do

w
	

lsq
	

re
g	

fil
e	

IL
1	

DL
1	
 L2
	

AL
U
	

re
su
lt	

bu

s	

cl
oc
k	
 Av
er
ag
e	

po

w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

SYMPO	

Mprime	

(c) Alpha config 2

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

re
na
m
e	

bp
re
d	

in
st
n	

w
in
do

w
	

lsq
	

re
g	

fil
e	

IL
1	

DL
1	
 L2
	

AL
U	

re
su
lt	

bu

s	

clo
ck
	
 Av

er
ag
e	

po

w
er
	
 p
er
	
 cy

cl
e	

(W

)	

SYMPO	

Mprime	

(d) Alpha config 3

Figure 5.7: Breakdown of power consumption of SYMPO and MPrime for
single-core systems on SPARC and Alpha ISAs

116

Figure 5.8: Machine configuration of AMD Phenom II

shows the configuration of this system. The CPU core power of this system

is measured using in-system instrumentation. A specialized AMD-designed

system board is used which provides fine-grain power instrumentation for all

power rails, including CPU core. Each high-power rail, such as CPU core, con-

tains a Hall-Effect current sensor connected at its origin. The sensor provides

a 0-5V signal that is linearly proportional to the power flowing into the rail.

The 5V signal is measured by a National Instruments PCI-6255 data logger.

The data logger attaches to the current sensor through a small twisted pair

conductor. The data logger samples current and voltage applied to each rail

at a rate of 10KHz. Since the voltage cannot be assumed to be a constant due

to droops, spikes and drifts, we measure both voltage and current to calcu-

late power. Using the data logs, application power is calculated off-line with

post-processing software.

The power measurements of the various power viruses are shown in

117

20	

30	

40	

50	

60	

70	

80	

0	
 200	
 400	
 600	
 800	
 1000	
 1200	
 1400	
 1600	

W
a#

s	

Seconds	

MPrime	
 	
 	
 	
 	
 	
 cpu-­‐	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 burnk6	
 	
 	
 	
 	
 	
 	
 burnk7	
 	
 	
 	
 	
 burnmmx	
 	
 	
 	
 	
 burnp5	
 	
 	
 	
 	
 	
 	
 	
 burnp6	
 	
 	
 	
 	
 	
 	
 	
 SYMPO	

	
 	
 burnin	
 	

Figure 5.9: Power measurement on quad-core AMD Phenom II

Figure 5.9. Four copies of these benchmarks were run on the quad-core hard-

ware until the power consumption reached a stable state, which was around

200 seconds. Among the industry standard power viruses, it can be noted

that burnk7 consumes the maximum power on this hardware of 72.1 Watts

after reaching a steady state. Even the maximum power consuming two SPEC

CPU2006 workloads, 416.gamess and 453.povray consume only 63.1 and 59.6

Watts respectively. Burnk7 consuming high power on this hardware can be

attributed to the fact that the machine configurations of the AMD Phenom

II (K10) and K7 are to some extent similar to each other. It can be observed

that the power viruses generated for other machines like the burnp5, burnp6

do not consume as much power as burnk7, again showing the importance of

developing a specialized power virus for each of the microarchitectures.

Since our code generator was not equipped to generate code using CISC

ISAs, we constructed a microarchitecturally equivalent system for the instru-

118

mented AMD Phenom II system on GEMS full system infrastructure and first

generated power viruses in SPARC ISA. These viruses were ported to x86 ISA

with the help of the LLVM [70] compiler infrastructure and the power con-

sumption was measured on real hardware. These indirectly generated virus

has a power consumption of 72.5 Watts on the cores, which is more than all the

other hand crafted power viruses that were executed on this hardware, viz.,

CPUburnin-68.42 W, MPrime-68.1 W, CPUburnK6-64.2 W, CPUburnK7-72.1

W, CPUburnMMX-58.4 W, CPUburnP5-48.7 W and CPUburnP6-62.4 W as

in Figure 5.9. The difference in the way the power viruses were generated for

the SPARC/Alpha ISAs and the x86 ISA is that the automatic feed back loop

was complete in the case of SPARC/Alpha ISAs due to the usage of the cycle

accurate simulators and there was no automatic feedback to SYMPO in the

case of x86. The hardware power readings were manually fed to the genetic

algorithm and since this process was too tedious, the genetic algorithm was

run only for 3 generations. If the feedback loop could have been automated in

x86, the generated power virus is expected to consume much high amounts of

power. This shows the importance of automating the process of a max-power

virus generation as compared to the usage of enormous human effort.

5.6 MAximum Multicore POwer (MAMPO) - Power
Viruses for Multicores

The power virus generation framework targeting multicores is called

MAximum Multicore POwer (MAMPO) and we use all the dimensions spec-

119

!"##$%&'$%()*+&*,&-.$&-"/#$0&
&
1"%"2$-$%& 34(-$2&5&6& 34(-$2&5&66& 34(-$2&5&666&
7*8&*,&9*%$(& :& ;& <=&
>?@A& :&BC& ;&BC& <=&BC&

D<&9"9.$& =:&ECF&:&G"4F&&
H&949#$(&

IH&ECF&:&G"4F&&
<&949#$&

<=&ECF&H&G"4F&&
<&949#$&

DH&9"9.$& :&ACF&:&G"4F&
:&/"+J(&

:&ACF&;&G"4F&
;&/"+J(&

;&ACF&<=&G"4F&&
<=&/"+J(&

D<F&DH&A3K?(& :;& IH& H:&
?LC& <H;& =:& IH&
A"9.MG)N-.& ;& :& H&
C%"+9.&O%$N8& P@B3F&<H&/)-&1K!& P@B3F&<<&/)-&1K!& P@B3F&<Q&/)-&1K!&
C!C&()R$& <QH:& S<H& HS=&
6+-&@DT(& &:&@DTF&H&6+-&N)'& &I&@DTF&<&6+-&N)'& &H&@DTF&<&6+-&N)'&&

!*O*#*U4& V%*((/"%& K)$%"%9.)9"#&
(G)-9.& W)#$M(O$9),)$N&

W1&@DT(& H&@DTF&H&AX#F&&
H&N)'&

H&@DTF&<&AX#F&&
<&N)'&

<&@DTF&<&AX#F&&
<&N)'&

&
&
Y)N$%&'$%()*+&*,&-.$&-"/#$0&
&
&

!"#"$%&%#' ()*&%$'+',' ()*&%$'+',,' ()*&%$'+',,,'
7*8&*,&9*%$(& :& ;& <=&
>?@A& :&BC& ;&BC& <=&BC&
D<&9"9.$& =:&ECF&:&G"4F&H&949#$(& IH&ECF&:&G"4F&<&949#$& <=&ECF&H&G"4F&<&949#$&
DH&9"9.$& :&ACF&:&G"4F&:&/"+J(& :&ACF&;&G"4F&;&/"+J(& ;&ACF&<=&G"4F&<=&/"+J(&
D<F&DH&A3K?(& :;& IH& H:&
?LC& <H;& =:& IH&
A"9.MG)N-.& ;& :& H&
C%"+9.&O%$N8& P@B3F&<H&/)-&1K!& P@B3F&<<&/)-&1K!& P@B3F&<Q&/)-&1K!&
C!C&()R$& <QH:& S<H& HS=&
6+-&@DT(& &:&@DTF&H&6+-&N)'& &I&@DTF&<&6+-&N)'& &H&@DTF&<&6+-&N)'&&
!*O*#*U4& V%*((/"%& K)$%"%9.)9"#&(G)-9.& W)#$M(O$9),)$N&
W1&@DT(& H&@DTF&H&AX#F&H&N)'& H&@DTF&<&AX#F&<&N)'& <&@DTF&<&AX#F&<&N)'&

&
& Figure 5.10: Multicore system configurations for which power viruses are gen-

erated to evaluate the efficacy of MAMPO on SPARC ISA

ified in the abstract workload model other than the ones related to synchro-

nization. Since having locks, mutex in the code will only slow down the appli-

cations resulting in lesser power consumption, we do not include these knobs

in the power virus search.

5.6.1 Experimental Setup

The Figure 5.10 shows the three multicore system configurations that

are used to evaluate the efficacy of MAMPO. Figure 5.11 shows the various

interconnection networks used in these multicore systems. We use the most

popular MOESI cache coherence protocol for all our experiments, which has

the states Modified, Owned, Exclusive, Shared and Invalid for every cache

block. We use a multibanked shared L2 cache and a Non-Uniform Memory

Access protocol with a directory size of 1 MB. Our power models were val-

120

GEMS CROSSBAR GEMS FILE-SPECIFIED GEMS HIERARCHICAL SWITCHL1

L2

DRAM

Figure 5.11: Interconnection networks used in the multicore system configu-
rations for evaluating the efficacy MAMPO

idated against published power numbers for the Sun Microsystem’s Niagara

and the Rock systems by constructing an equivalent system using our infras-

tructure. For the machine learning, we use IBM’s Genetic Algorithm toolset

called SNAP [65] [71]. We have used a mutation rate of 0.05, crossover rate

of 0.85 and a reproduction rate of 0.10. A population size of 48 individuals

per generation was found to be the most optimal deme size for this problem.

Increasing it beyond 48 does not help as the execution time of each generation

becomes high due to the increased number of chromosomes to evaluate and

when the deme size is smaller than 48, the population size is not big enough

to search such a large abstract workload space in the same time.

We compare the power consumption of the generated MAMPO virus

with that of the power consumption of the PARSEC workloads. In the mul-

tithreaded synthetic, we use a feature called MAGIC instruction in Simics to

be able to perform detailed simulation for only the core part of the synthetic

121

code. We start the detailed simulation after all the threads have reached the

barrier after the initial memory allocation and processor bind system calls.

The first thread that reaches the end of it’s execution signals Simics to stop

the simulation and the profiled data is used to calculate the power consump-

tion using the power models. Typically the number of dynamic instructions

in the multithreaded synthetic is around a few million instructions per thread.

For PARSEC workloads, we use the input set provided for detailed microar-

chitectural simulations called ’simsmall’.

5.6.2 Results and Analysis

Figure 5.12(a) shows the power consumption of the best power virus

at the end of each generation for approximately 30 generations, after which

there is negligible increase in power consumption due to the convergence of

the GA. It is to be noted that there are not any known power viruses targeting

multicores and so we compare our generated viruses against running multiple

copies of single-core power viruses. MPrime [25], which is popularly called the

torture test is one of the system-level industry grade power viruses for single-

core systems. SYMPO [71] is the most recent previous work by Ganesan

et. al to generate a max-power virus for a given single-core system. We have

implemented the SYMPO framework to enable us to generate SYMPO viruses

for each of our configurations and compare the overall power consumption of

running multiple copies of SYMPO viruses, one on each core, with that of

MAMPO viruses. Other than these power viruses, we also compare our power

122

viruses with that of the commercial Java benchmark SPECjbb. The number

of threads in SPECjbb was set to be equal to the number of processors in the

system configuration.

Figures 5.12(b), 5.12(c) and 5.12(d) show the comparison of the power

consumption of MAMPO viruses with that of the power consumption of the

workloads in the PARSEC benchmark suite, MPrime, SYMPO, multithreaded

Linpack and that of SPECjbb for the three machine configurations as in Figure

5.10. It can be noted that the MAMPO viruses consume 45%, 52% and 98%

more power than the average power consumption of the workloads in the PAR-

SEC suite. The MAMPO viruses consume 63%, 72% and 89% more power than

that of MPrime and 40%, 49% and 69% more power than that of the SYMPO

virus for the three machine configurations respectively, clearly bringing out the

importance of such a multithreaded synthetic power virus generation frame-

work compared to running multiple single-core power viruses. The MAMPO

viruses consume 41%, 48% and 56% more power than that of the SPECjbb.

The MAMPO viruses consume 68%, 76% and 85% more power than that of

the Linpack. From these results, it can be observed that the MAMPO virus

outperforms the other workloads as the number of cores increases due to the

reason that MAMPO is very effective in stressing the interconnection network.

It is to be noted that the energy spent in terms of data transfer through the

interconnection network is predicted to increase many folds [72] due to global

wire scaling problems compared to the energy spent in computation bringing

out the significance of their contribution to the power consumption of future

123

systems.

Since the fitness evaluation of the individuals in a generation is inde-

pendent of each other, they can be run in parallel. Thus, when we use a

modern parallel system with many cores, this process of finding a power virus

can be done with a good amount of parallelism resulting in a quicker conver-

gence of the GA. The time taken for MAMPO to generate these power viruses

for the three system configurations range between 8 to 12 hours on a 3.4 GHz

Intel Xeon system with 16 cores. Though we use a full system simulator with

cycle accurate models to evaluate the power consumption, the total number

of dynamic instructions in the synthetic is restricted to be less than 16 mil-

lion instructions, to enable this search happen within a reasonable time frame.

Rather, to find the same virus manually, a system architect will have to typi-

cally spend a few weeks of manpower and can still not be sure if it is a good

power virus or not.

The power viruses generated for each of these configurations are found

to be having exactly the same number of threads as that of the number of

processors. For example, a four-threaded workload is found to be a more

suitable candidate for a quad-core system than an eight or sixteen threaded

workload. This can be attributed to the fact that the time taken for even a

DRAM access in our framework is not enough to force a context switch in the

thread scheduler used in Solaris 10. But, a knob like number of threads may

be utilized more effectively when a hard disk access is also modeled, where the

access latency could force the scheduler to do a context switch. We do not

124

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28 31 34

To
ta

l s
ys

te
m

 p
ow

er

(W
at

ts
)

Generations

16-core

8-core

4-core

(a) Genetic algorithm convergence

35
40
45
50
55
60
65
70
75
80

bla
ck

sc
ho

les

bo
dy

tra
ck

fac
es

im

fer
ret

fre
qm

ine

ray
tra

ce

sw
ap

tio
ns

flu
ida

nim
ate

vip

s

ca
nn

ea
l

de
du

p

str
ea

mclu
ste

r
x2

64

PARSEC av
era

ge

Lin
pa

ck

MPrim
e

SPECjbb

SYMPO

MAMPO

To
ta

l s
ys

te
m

 p
ow

er

(W
at

ts
)

Workloads and MAMPO virus

(b) 4-core system power

60
70
80
90

100
110
120
130

bla
cks

ch
ole

s

bo
dy

tra
ck

fer
ret

fre
qm

ine

ray
tra

ce

sw
ap

tio
ns

flu
ida

nim
ate

vip

s

ca
nn

ea
l

de
du

p

str
ea

mclu
ste

r
x2

64

fac
es

im

PARSEC av
era

ge

Lin
pa

ck

MPrim
e

SYMPO

SPECjbb

MAMPO To
ta

l s
ys

te
m

 p
ow

er

(W
at

ts
)

Workloads and MAMPO virus

(c) 8-core system power

100
125
150
175
200
225
250
275
300
325

blacks
ch

oles

bodytr
ack

ferre
t

fre
qmine

raytr
ace

sw
aptio

ns

flu
idanim

ate
vip

s

ca
nneal

dedup

str
eamclu

ste
r

x2
64

face
sim

PARSEC ave
rage

Mprim
e

Linpack

SYMPO

SPECjbb

MAMPO

To
ta

l s
ys

te
m

 p
ow

er

(W
at

ts
)

Workloads and MAMPO virus

(d) 16-core system power

Figure 5.12: MAMPO virus generation and evaluation on multicore systems
on SPARC ISA 125

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

,-./01" 2-34566" ,7,-8"
9/.:;"

!"
#$
%&'
('
#)
*
&+
",

)-
&./

$0
'1
&

(a) 4-core

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

()*+,-" .)/0122" (3()4"
5+*67"

!"
#$
%&'
('
#)
*
&+
",

)-
&./

$0
'1
&

(b) 8-core

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'()*+," -(./011"'2'(3"4*)56"

!"
#$
%&'
('
#)
*
&+
",

)-
&./

$0
'1
&

7*)89:;,)"

</=89:;,)"

>%89:;,)"

7?2'89:;,)"

/(@89:;,)"

(c) 16-core

Figure 5.13: Breakdown of power consumption of MAMPO virus for various
multicore system configurations and comparison to MPrime on SPARC ISA

model the components like the chipset and the disk subsystem in this study

due to the reason that they have nearly constant power consumption over

various range of workloads [73].

It would be interesting to see how the characteristics of the finally gen-

erated power viruses vary across the different system configurations. Figures

5.13(a), 5.13(b) and 5.13(c) show the breakdown of the power consumption

126

of the MAMPO viruses, SYMPO, MPrime and SPECjbb in various parts of

the system. It can be noted that the single-core power viruses SYMPO and

MPrime consume maximum power in the cores, rather the MAMPO viruses

stress different parts of the system in such a way that the total power is max-

imized. Some common characteristics of these power viruses are that they

have 10-20% of the memory accesses to shared data and they try to move as

much data as possible through the interconnection network, besides making

sure that the slowdown caused to the CPUs due to this is minimum. The

maximum power achieved by our tool is still ‘realistically attainable‘ as the

characteristics of the power viruses still map to the range for the abstract

workload model parameters of realistic workloads. It is to be noted that the

power viruses for each of these systems configurations have different settings

for most of the knobs other than the aforementioned ones and it is wasteful to

analyze this further due to their sensitivity to the microarchitecture changes

and the aim of this whole machine learning based framework is to make this

power virus generation a completely automated black-box approach to avoid

the need to model the complex interactions involved in the execution of a

workload within a multicore system.

127

Chapter 6

Conclusions and Future Research

Automating computer system design has been a major area of research

in the past few decades due to the ever increasing complexity involved in

designing modern systems. This has resulted in the usage of simulation models

at varying levels of abstraction to characterize the performance and power

consumption of designs. Most of these simulation models are slower than real

hardware by several orders of magnitude and running a typical user workload

on them completely has become almost impossible due to longer run times.

Generating synthetic benchmark clones for target applications has proven to

be a very good solution to this prohibitive run time problem. Todays ever

increasing number of applications and a need to design processors tailored to a

particular class of applications along with a faster time-to-market necessitates

the need for a framework to automate the process of generating synthetic

benchmark clones for the target workloads. Such a framework will enable

architects to be up-to-date with their applications, as they keep evolving and

also have proxies for futuristic applications generated. Such a framework can

also be a valuable tool to exercise different execution behaviors to specifically

test and understand the working of different subsystems. For example, with

our synthetic benchmark generation framework, one can generate various types

128

of Inter-Connection Network (ICN) traffic, which can be very valuable in ICN

design. Also,

Modern computer systems are limited by power delivery and cooling

costs than critical path delay, bringing out the importance of design param-

eters like the Thermal Design Power (TDP). One of the applications of the

synthetic benchmark generation framework proposed in this dissertation is to

simplify the effort to find the practically attainable maximum power for a de-

sign. Though this dissertation is limited to finding power viruses that have

maximum sustained power, a small change to the way in which the fitness

function is evaluation for the power virus search can open doors to exercise

many other types of workload behaviors. Some examples are to generating

dI/dT stressmarks that will create cycles of maximum and minimum power

droops, causing ripples in the power delivery lines. One can also use such a

framework to cause hotspots in the chip to test various heat sinks and cooling

features.

Thus, in this dissertation, I propose a system level synthetic benchmark

generation framework targeting single core and multicore systems. This frame-

work is evaluated for it’s efficacy for two major applications namely, workload

cloning and max-power stressmark generation. Each of these contributions are

elaborated further in this section.

129

6.1 Workload Cloning

A characterization of the SPEC CPU2006 workloads mostly based on

microarchitecture-independent characteristics have been provided and minia-

turized synthetic clones [74] for these workloads have been formulated and pro-

vided to aid in accelerating architecture simulations with simulation speedups

of up to 6 orders of magnitude. Along with that, the absolute and the relative

accuracies of these synthetics in predicting the performance and the power

consumption of various microarchitectures is provided. The proposed MLP

aware synthetic benchmark generation methodology is compared with previ-

ous approaches [20] [21] and is shown that the synthetic benchmarks generated

using this proposed methodology have 12.5% more accuracy in terms of IPC

in the representativeness of the synthetics to that of the original workloads.

The synthetics generated using this methodology have a correlation coefficient

of 0.95 and 0.98 for IPC and power-per-cycle for the sensitivity to changes in

microarchitecture. The availability of the provided synthetic clones will enable

computer architects to use these latest workloads instead of the older SPEC

suites for future studies. The futuristic workloads to be used in bio-implantable

systems have also been characterized and the clones are provided.

A characterization of the PARSEC workloads have been provided and

miniaturized clones for these workloads have been generated and provided

to help solve the prohibitive runtime problem of multithreaded applications.

These clones have been validated by assessing their performance in comparison

to the original applications on a 8-core typical modern system configuration.

130

The average error in the IPC for these workloads is 4.87% and maximum error

is 10.8% for Raytrace in comparison to the original workloads. Similarly, the

average errors in the L1 cache hitrates and branch prediction rates are 0.67%

and 0.53% respectively. It is also shown that the generated synthetic clones

also have very similar power consumption to that of the original workloads,

opening the doors for using these synthetic clones for power modeling. The

average error in the power-per-cycle metric is 2.73% with a maximum of 5.5%

when compared to original workloads. To further show how faithfully the

synthetic benchmark follows the execution behavior of the original workloads

in various system components, the breakdown of the power consumption of

the synthetic is graphically compared with that of the original workloads. The

representativeness of the synthetic clones to that of the original workloads in

terms of their sensitivity to design changes is also shown to be quite good by

finding the correlation coefficient between the trends followed by the synthetic

and the original for design changes. The correlation coefficient is 0.92 for

performance. Finally, the speedup achieved by using the synthetic proxies

instead of the original workloads is shown to be around 4 orders of magnitude

and up to 6 orders of magnitude for some specific workloads. A small amount

of manual intervention in terms of tuning the code generator was done during

generation of clones. It would be a good extension to this work if this tuning

process can be automated using machine learning.

131

Figure 6.1: Summary of the power consumption of the single-threaded power
virus generated by SYMPO in comparison to MPrime on Alpha, SPARC and
x86 ISAs

6.2 Power Viruses for Single-core Systems

In this dissertation I have proposed the usage of SYMPO, a framework

to automatically generate system level max-power viruses for a given machine

configuration. I have shown that with the proposed workload space along with

the machine learning based search, I can automatically generate reasonably

good power viruses for any given microarchitecture within a few hours. I have

shown the efficacy of the power viruses by comparing their power consumption

with that of MPrime for various microarchitectures in the SPARC, Alpha

and x86 ISAs. A summary of these results are shown in Figure 6.1. These

results clearly show that SYMPO is very effective in leveraging the power

consumption on the SPARC, Alpha ISAs compared to the x86 ISA. If the

feedback loop could have been completed in x86, the generated power virus

might have consumed much high amounts of power. This shows the importance

of automating the process of a max-power virus generation as compared to the

usage of time consuming human effort.

I also show that the power viruses generated by SYMPO are superior

compared to the automatically generated power viruses using the previously

132

proposed methodology as in [22]. I measure the power consumption of the

various industry grade hand crafted power viruses on an instrumented AMD

Phenom II system and compare it with that of an x86 power virus generated

by SYMPO. I also provide a detailed analysis of these various industry grade

hand crafted power viruses and the x86 virus generated by SYMPO based on

a set of microarchitecture independent characteristics.

6.3 Power Viruses for Multicore Systems

In this dissertation, I proposed the usage of MAMPO, which is a mul-

tithreaded synthetic power virus generation framework targeting multicore

processors. I validate the efficacy of MAMPO by comparing the power con-

sumption of the generated virus with that of the workloads in PARSEC for

three different multicore system configurations and show that the MAMPO

virus consumes 45%, 52% and 98% more power than the average power con-

sumption of the PARSEC workloads. I also show that the single core power

viruses, when run on muticore systems do not serve the purpose as a multi-

core system virus by comparing the power consumption of the MAMPO virus

with that of the previously proposed SYMPO viruses and the well known

power virus MPrime. The MAMPO virus consumes 40% to 89% more power

than running multiple copies of single-core viruses in parallel. I also provide

a comparison of the power consumption of the MAMPO virus with that of

SPECjbb and show that the MAMPO virus consumes 41%, 48% and 56%

more power than that of SPECjbb. Though the power viruses generated by

133

MAMPO cannot theoretically guarantee to be the absolute worst-case, based

on the convergence of the Genetic Algorithm run with multiple seeds, we can

be sure that the generated power viruses will serve as a tight upper-bound for

the maximum power for all practical purposes and such a framework will be a

very useful tool for the system designers.

134

Bibliography

[1] Karthik Ganesan, Deepak Panwar, and Lizy K John. Generation,Validation

and Analysis of SPEC CPU2006 Simulation Points Based on Branch,

Memory, and TLB Characteristics. SPEC Benchmark Workshop 2009,

Austin, TX, Lecture Notes in Computer Science 5419 Springer pages 121-

137, January 2009.

[2] SPEC. Standard performance evaluation corporation. http://www.spec.org.

[3] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal

Singh, and Anoop Gupta. The SPLASH-2 Programs: Characteriza-

tion and Methodological Considerations. In Proceedings of the 22nd

International Symposium on Computer Architecture, pages 24-36, Santa

Margherita Ligure, Italy, June 1995.

[4] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:

Stanford Parallel Applications for Shared-Memory. In Computer Archi-

tecture News, vol. 20, no. 1, pages 5-44.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The

PARSEC Benchmark Suite: Characterization and Architectural Impli-

cations. Proceedings of the 17th International Conference on Parallel

Architectures and Compilation Techniques, October 2008.

135

[6] Zhanpeng Jin and Allen C. Cheng. ImplantBench: Characterizing and

Projecting Representative Benchmarks for Emerging Bio-Implantable Com-

puting. IEEE Micro (IEEE Micro), 28(4):71-91, July/August 2008.

[7] Greg Hamerly, Erez Perelman, and Brad Calder. How to Use SimPoint

to Pick Simulation Points. ACM SIGMETRICS Performance Evaluation

Review, March 2004.

[8] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.

Hoe. SMARTS: Accelerating microarchitecture simulation via rigorous

statistical sampling. Proceedings of the International Symposium on

Computer Architecture, (ISCA 2003), p. 84 - 95.

[9] M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phase matrix to

guide simultaneous multithreading simulation. In Proceedings of the 2004

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS04), March 2004.

[10] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of Re-

dundancy and Application Balance in the SPEC CPU2006 Benchmark

Suite. The 34th International Symposium on Computer Architecture

(ISCA 2007), June 2007.

[11] Stuart Berke, David Moss, and Randy Randall. Understanding the chal-

lenges of delivering cost-effective, high- efficiency power supplies. http:

// www. dell. com/ downloads/ global/ power/ ps2q07-20070270-PowerTCO.

pdf , May 2007.

136

[12] Xiao Ping Wu, Masataka Mochizuki, Koichi Mashiko, Thang Nguyen, Vi-

jit Wuttijumnong, Gerald Cabsao, and Aliakbar Akbarzadeh Randeep Singh.

Energy conservation approach for data center cooling using heat pipe

based cold energy storage system. 26th Annual IEEE Semiconduc-

tor Thermal Measurement and Management Symposium, 2010. SEMI-

THERM 2010 Page(s): 115 - 122, March 2010.

[13] Michael K Patterson. The Effect of Data Center Temperature on Energy

Efficiency. 11th Intersociety Conference on Thermal and Thermomechan-

ical Phenomena in Electronic Systems, 2008. ITHERM 2008 Page(s):

1167 - 1174, May 2008.

[14] Amip Shah, Chandrakant Patel, Cullen Bash, Ratnesh Sharma, and Rocky

Shih. Impact of rack-level compaction on the data center cooling ensem-

ble. 11th Intersociety Conference on Thermal and Thermomechanical

Phenomena in Electronic Systems, 2008. ITHERM 2008 Page(s): 1175

- 1182, May 2008.

[15] The industry changing impact of accelerated computing http://sites.

amd.com/us/Documents/AMD_fusion_Whitepaper.pdf.

[16] Stephen L. Smith. Intel roadmap overview. intel developer’s forum

2009 san francisco, ca. http://download.intel.com/pressroom/kits/

events/idffall_2009/pdfs/IDF_SSmith_Briefing.pdf. September 2009.

[17] http://www.softpedia.com/get/System/Benchmarks/CPU-Burnin.shtml.

137

[18] http://pages.sbcglobal.net/redelm.

[19] Private Communication with Advanced Micro Devices (AMD) Design En-

gineer.

[20] Ajay Joshi, Lieven Eeckhout, Robert H. Bell Jr., and Lizy K. John. Per-

formance Cloning: A Technique for Disseminating Proprietary Applica-

tions as Benchmarks. International Symposium on Workload Character-

ization, October 2006.

[21] Jr Robert H. Bell, Rajiv R. Bhatia, Lizy K. John, Jeff Stuecheli, John

Griswell, Paul Tu, Louis Capps, Anton Blanchard, and Ravel Thai. Au-

tomatic Testcase Synthesis and Performance Model Validation for High

Performance PowerPC Processors. IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS 2006), March

2006.

[22] Ajay Joshi, Lieven Eeckhout, Lizy K. John, and Ciji Isen. Automated mi-

croprocessor stressmark generation. The 14th International Symposium

on High Performance Computer Architecture (HPCA), February 2008.

[23] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T.W.

Keller. Energy management for commercial servers. IEEE Computer,

36(12):3948, December 2003.

[24] J. Laudon. UltraSPARC T1: Architecture and Physical Design of a 32-

threaded General Purpose CPU. Proceedings of the ISSCC Multi-Core

138

Architectures, Designs, and Implementation Challenges Forum, 2006.

[25] http://www.mersenne.org/freesoft.

[26] Mark Oskin, Frederic T. Chong, and Matthew Farrens. HLS: Combining

Statistical and Symbolic Simulation to Guide Microprocessor Design. In

Proceedings of the International Symposium on Computer Architecture

(ISCA 2000), 2000.

[27] Sebastien Nussbaum and James E. Smith. Modeling Superscalar Pro-

cessors via Statistical Simulation. International Conference on Parallel

Architectures and Compilation Techniques (PACT 2001), 2001.

[28] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De Boss-

chere, and Lizy K. John. Control Flow Modeling in Statistical Simula-

tion for Accurate and Efficient Processor Design Studies. Proceedings.

31st Annual International Symposium on Computer Architecture, (ISCA

2004), 2004.

[29] Wing Shing Wong and Robert J. T. Morris. Benchmark Synthesis Using

the LRU Cache Hit Function. IEEE Transactions on Computers, 1988.

[30] Cheng-Ta Hsieh and M. Pedram. Microprocessor power estimation using

profile-driven program synthesis. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,, November 1998.

139

[31] E.S. Sorenson and J.K. Flanagan. Evaluating synthetic trace models us-

ing locality surfaces. 2002. WWC-5. 2002 IEEE International Workshop

on Workload Characterization, November 2002.

[32] T. Sherwood and B. Calder. Time varying behavior of programs. Tech-

nical Report UCSD-CS99-630, UC San Diego,, August 1999.

[33] Jeremy Lau, Jack Sampson, Erez Perelman, Greg Hamerly, and Brad

Calder. The Strong Correlation Between Code Signatures and Perfor-

mance. IEEE International Symposium on Performance Analysis of Sys-

tems and Software, March 2005.

[34] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. SimPoint

3.0: Faster and More Flexible Program Analysis. Workshop on Modeling,

Benchmarking and Simulation, June 2005.

[35] E. Perelman, T. Sherwood, and B. Calder. Basic block distribution

analysis to find periodic behavior and simulation points in applications.

International Conference on Parallel Architectures and Compilation Tech-

niques, September 2001.

[36] Erez Perelman, Greg Hamerly, and Brad Calder. Picking Statistically

Valid and Early Simulation Points. International Conference on Parallel

Architectures and Compilation Techniques, September 2003.

[37] T. Chou and K. Roy. Accurate power estimation of cmos sequential

circuits. IEEE Transactions on VLSI Systems,, 1996.

140

[38] C. Lim, W. Daasch, and G. Cai. A thermal-aware superscalar micropro-

cessor. ISQED, 2002.

[39] W. Felter and T. Keller. Power measurement on the apple power mac

g5. IBM Tech Report RC23276, 2004.

[40] M. Gowan, L. Biro, and D. Jackson. Power considerations in the design

of the alpha 21264 microprocessor. Design Automation Conference, 1998.

[41] R. Vishwanath, V. Wakharkar, A. Watwe, and V.Lebonheur. Thermal

performance challenges from silicon to systems. Intel Technology Journal,

2000.

[42] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate

voltage emergencies in high performance processors. High Performance

Computer Architectures, 2003.

[43] F. Najm, S. Goel, and I. Hajj. Power estimation in sequential circuits.

Design Automation Conference, 1995.

[44] K. Lee, K. Skadron, and W. Huang. Analytical model for sensor place-

ment on microprocessors. ICCD, 2005.

[45] Eron Jokipii. Jobe - The Java obfuscator - http://www.primenet.com/

~ej/index.html. 1996.

[46] John J. Marciniak. Encyclopedia of Software Engineering. chapter

Reverse Engineering, pp 1077-1084. John Wiley & Sons, Inc, 1994. ISBN

0-471-54004-8.

141

[47] Amir Herzberg and Shlomit S. Pinter. Public protection of software.

ACM Transactions on Computer Systems, vol. 5, no. 4, pp 371-393,

November 1987.

[48] Rex Jaeschke. Encrypting C source for distribution. Journal of C

Language Translation, vol. 2, no. 1, 1990.

[49] Ajay Joshi, Lieven Eeckhout, Jr. Robert H. Bell, and Lizy K. John.

Distilling the essence of proprietary workloads into miniature benchmarks.

ACM Transactions on Architecture and Code Optimization (TACO 2008),

August 2008.

[50] Robert H Bell and Lizy K John. Improved Automatic Test Case Synthe-

sis For Performance Model Validation. Proceedings of the International

Conference on Supercomputing 111-120, 2005.

[51] Nick Barrow-Williams, Christian Fensch, and Simon Moore. A commu-

nication Characterization of Splash-2 and Parsec. IEEE International

Symposium on Workload Characterization, October 2009.

[52] Michael C. Huang Hemayet Hossain, Sandhya Dwarkadas. Improving

support for Locality and fine-grain sharing in chip multiprocessors. Pro-

ceedings of the 17th international conference on Parallel architectures and

compilation techniques, October 2008.

[53] Liqun Cheng, John B. Carter, and Donglai Dai. An Adaptive Cache Co-

herence Protocol Optimized for Producer-Consumer Sharing. IEEE 13th

142

International Symposium on High Performance Computer Architecture,

2007. HPCA 2007, February 2007.

[54] Umakishore Ramachandran, Gautam Shah, Anand Sivasubramaniam, Aman

Singla, and Ivan Yanasak. Architectural Mechanisms for Explicit Com-

munication in Shared Memory Multiprocessors. Proceedings of the IEEE/ACM

Supercomputing Conference, 1995.

[55] Guhan Viswanathan and James R. Larus. Compiler-directed Shared-

Memory Communication for Iterative Parallel Applications. Proceedings

of the ACM/IEEE Conference on Supercomputing, 1996.

[56] Karthik Ganesan, Jungho Jo, and Lizy K John. Synthesizing Memory-

Level Parallelism Aware Miniature Clones for SPEC CPU2006 and Im-

plantBench Workloads. International Symposium on Performance Anal-

ysis of Systems and Software (ISPASS), March 2010.

[57] Stijn Eyerman and Lieven Eeckhout. A Memory-Level Parallelism Aware

Fetch Policy for SMT Processors. IEEE 13th International Symposium on

High Performance Computer Architecture, 2007. (HPCA 2007), February

2007.

[58] Haungs M, Sallee P, and Farrens M. Branch transition rate: a new met-

ric for improved branchclassification analysis. Sixth International Sympo-

sium on High-Performance Computer Architecture (HPCA 2000), Volume

, Issue , 2000 Page(s):241 - 25, January 2000.

143

[59] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

Technical Report CS-TR-97-1342. University of Wisconsin, Madison,

June 1997.

[60] Margaret Martonosi, Vivek Tiwari, and David Brooks. Wattch: A Frame-

work for Architectural-Level Power Analysis and Optimizations. isca,

pp.83, 27th Annual International Symposium on Computer Architecture

(ISCA 2000).

[61] Engin Ipek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and

Martin Schulz. ASPLOS-XII: Proceedings of the 12th international con-

ference on Architectural support for programming languages and operating

systems, Oct 2006.

[62] Benjamin C. Lee and David M. Brooks. Accurate and efficient regres-

sion modeling for microarchitectural performance and power prediction.

ASPLOS-XII: Proceedings of the 12th international conference on Archi-

tectural support for programming languages and operating systems, Oct

2006.

[63] L D Davis and Melanie Mitchel. Handbook of genetic algorithms. Van

Nostrand Reinhold, 1991.

[64] Private Communication with Jason F Cantin, IBM.

[65] Sameh Sharkawi, Don Desota, Raj P, Rajeev Indukuru, Stephen Stevens,

and Valerie Taylor. Performance Projection of HPC Applications Using

144

SPEC CFP2006 Benchmarks. IEEE International Parallel & Distributed

Processing Symp., May 2009.

[66] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R.

Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, ,

and David A. Wood. Multifacet’s General Execution-driven Multipro-

cessor Simulator (GEMS) Toolset. Computer Architecture News (CAN),,

September 2005.

[67] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi.

Optimizing NUCA Organizations and Wiring Alternatives for Large Caches

With CACTI 6.0. Proc. 40th Annual IEEE/ACM Intl Symp. on Mi-

croarchitecture (MICRO 07), IEEE CS Press pp. 3-14., December 2007.

[68] Hangsheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad Malik. Orion:

A Power-Performance Simulator for Interconnection Networks. In Pro-

ceedings of MICRO 35, Istanbul, Turkey, November 2002.

[69] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen, Katie Baynes,

Aamer Jaleel, and Bruce Jacob. DRAMsim: A memory-system simula-

tor. Computer Arch. News, vol. 33, no. 4, pp. 100-107, Sep 2005.

[70] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. Proc. of the 2004 Interna-

tional Symposium on Code Generation and Optimization (CGO’04), Palo

Alto, California, March 2004.

145

[71] Karthik Ganesan, Jungho Jo, W. Lloyd Bircher, Dimitris Kaseridis, Zhibin

Yu, and Lizy K. John. System-level Max Power (SYMPO) - A systematic

approach for escalating system-level power consumption using synthetic

benchmarks. In the 19th International Conference on Parallel Architec-

tures and Compilation Techniques (PACT), Vienna, Austria, September

2010.

[72] Michele Petracca, Benjamin G. Lee, Keren Bergman, and Luca P. Car-

loni. Design Exploration of Optical Interconnection Networks for Chip

Multiprocessors. IEEE Symposium on High Performance Interconnects

pages:31-40, September 2008.

[73] W. Lloyd Bircher and Lizy K.John. Complete System Power Estima-

tion: A Trickle-Down Approach Based on Performance Events. Inter-

national Symposium on Performance Analysis of Systems and Software,

April 2007.

[74] http://users.ece.utexas.edu/~kganesan/snth.tgz.

[75] Valentina Salapura, Karthik Ganesan, Alan Gara, Michael Gschwind

James C. Sexton, and Robert E. Walkup. Next-Generation Performance

Counters: Monitoring Over Thousand Concurrent Events. Performance

Analysis of Systems and software, 2008. ISPASS 2008. IEEE Interna-

tional Symposium, pages 139-146, April 2008.

[76] AJ KleinOsowski and David Lilja. MinneSPEC: A New SPEC bench-

146

mark Workload Simulation-Based Computer Architecture Research. Com-

puter Architecture Letters, vol. 1, June 2002.

[77] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent

workload characterization. IEEE Micro Hot Tutorials, (Vol. 27, No. 3)

pp. 63-72, May/June 2007.

[78] R. Desikan, D. Burger, and S. Keckler. Measuring experimental error in

microprocessor simulation. ISCA, 2001.

[79] P. Bose and J. Abraham. Performance and functional verification of

microprocessors. In the IEEE VLSI Design Conference, 2000.

[80] P. Bose. Performance test case generation for microprocessor. In the

IEEE VLSI Test Symposium, 1998.

[81] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, Wallace S. and Vijay

Janapa Reddi Lowney, G., and K. Hazelwood. Pin: building customized

program analysis tools with dynamic instrumentation.

147

Vita

Karthik Ganesan was born in Chennai, India. He did his schooling

at A.V. Meiyappan Matriculation Higher Secondary School. He received his

Bachelor of Engineering from Anna University, Chennai, India in May 2006

and Master of Science in Engineering in 2008 from the University of Texas

at Austin. During his undergraduate study, he was also working as a part

time research trainee at Waran Research Foundation (2004 - 2006) in the

high performance computer architecture group directed towards designing the

Memory in Processor Super Computer On Chip architecture. He joined the

graduate program of the ECE department at the University of Texas at Austin

in Fall 2006. He was working as a Research Assistant in the Laboratory

for Computer Architecture directed by Dr. Lizy K John. In Summer 2007,

he interned at the T. J. Watson research labs of IBM in the BlueGene/P

design team. In Summer 2008, he interned at IBM Austin, where he was

involved in improving the open source tool Performance Inspector from IBM.

In Summer 2011, he was a performance architect intern at ARM Inc., Austin,

working on multicore ARM processor designs to aid in identifying performance

bottlenecks. He is currently working in the performance team at Oracle Austin.

Email address: kganesan@utexas.edu

148

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

149

