
A Performance Counter Based Workload

Characterization on Blue Gene/P
Karthik Ganesan∗ Lizy John∗ V alentina Salapura† James Sexton†

* Univ. of Texas at Austin † IBM T. J. Watson Research Labs

Abstract—IBM’s Blue Gene/P, the second generation of the
Blue Gene supercomputer is designed with a Universal Perfor-
mance Counter (UPC) Unit at each node capable of monitoring
256 events concurrently [1], unlike many microprocessors that
provide only a few performance counters. In this paper we
demonstrate the efficacy of the interface library that we have
developed, taking advantage of the UPC unit, enabling users to
effortlessly instrument applications and get a profound insight
into its execution on the Blue Gene/P system which could scale
in thousands of nodes. The interface library allows the user to
monitor about 512 performance related events out of a total of
1024 possible events and aggregate the data collected at different
nodes and compute meaningful metrics through data mining.
Using the developed interface, we instrumented the NAS

parallel benchmarks and collected the performance counter data.
We studied the MFLOPS, L3-DDR Traffic and the dynamic
instruction mix based on the counters in the FPU and the
cache hierarchy for different compiler optimizations, modes of
operations of the system and different L3, L2 configurations
for the NAS benchmarks. Our analysis identifies that compiler
optimization O5 along with ”-qarch440d”, which uses the archi-
tectural information of the chip in optimization, is very effective
in incorporating a lot of SIMD instructions and results in the
most efficient execution of the benchmarks. The experiments on
the L3 size indicate that an L3 size of 4MB is optimal for the
NAS benchmarks and they do not benefit by increasing it further.
Also, the virtual node mode of operation of the Blue Gene/P
system is very effective and yields superior performance for the
selected benchmarks taking advantage of the chip multiprocessor
architecture of the quad-core HPC chip.

I. INTRODUCTION

With petascale computing just over the horizon, the super-

computing community is becoming increasingly focused on

developing strategies to take advantage of this new level of

computing power. Petascale computing will eventually impact

all scientific and engineering applications, but to reach its

full potential, the problems of both hardware and software

must be addressed. Among the different HPC providers, the

IBM’s Blue Gene systems occupy the #1 (LLNL Blue Gene/L)

and a total of 4 of the top 10 positions in the TOP500

supercomputer list announced in November 2007. On 26th

June, 2007, IBM Corporation unveiled Blue Gene/P [1], the

second generation of the Blue Gene supercomputer, designed

to run with a sustained performance of one petaflops and

claims to be configured to reach an excess of three petaflops.

Figure 1 gives an overview of the system architecture of the

petaflop machine. Blue Gene/P is also claimed to be very

energy efficient as in [2] when compared to all previous

supercomputers, accomplished by using many small, low-

power chips connected through five specialized networks.

To achieve petaflops performance at the cluster level, a

performance estimate of 13.6 GFLOPS should be achieved

at the node level. Performance at the node level can be

increased substantially based on application optimization and

tuning [3] [4] to the underlying architecture, which requires

an insight into the execution of the corresponding application

on the node.

Though the Blue Gene/P node is based on the traditional

PowerPC architecture, there is enough innovation in the chip

to demand new work in optimizing the application code

run on it. An understanding of the memory hierarchy, the

new floating point operations like the SIMD add-sub, SIMD

floating point multiply-add and SIMD multiply is necessary

to get a near peak performance at the node level.

One way of getting an insight into execution is through

detailed software instrumentation, but it could perturb the

application execution resulting in inaccurate measurements.

But, modern processors include performance counters

integrated into the hardware aiding in performing non-

intrusive application monitoring in realtime. The hardware

performance counters allow counting of performance related

micro-architectural events in the processor [5] [6] [7] [8],

enabling new ways to monitor and analyze performance.

They fill the gap between detailed full system simulation and

software instrumentation because they have lesser perturbation

and can provide detailed information about the performance

of the processor and the memory system.The novelty of this

paper lies in the interface library that brings out the efficacy

of a new performance monitoring paradigm (a PM Unit

on the chip) for high performance computing, capable of

monitoring over thousand concurrent events using the UPC

unit on the Blue Gene/P.

The BlueGene/P performance monitoring unit provides

more advanced features that are best taken advantage of

with hardware-specific functions. Global accessibility of

configuration and count values allowing a single monitoring

thread executing as part of a system service, or as part of an

application, and read the performance counters. This, along

with a feature called thresholding (Raising an interrupt when

specific counters reach corresponding thresholds) dynamically

provides feedback to the various system optimization tasks

like data placements, thread assignment and communication

patterns.

37th International Conference on Parallel Processing

0190-3918 2008

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2008.57

330



Fig. 1. Overview of Blue Gene/P, the first PetaFlop System

The developed interface library takes advantage of all the

new features of the Performance Monitoring Unit on the

chip and mainly helps in providing an isolated analysis of

critical code regions through a set of start/stop function calls.

The various uses of such an interface could be like (1)

the system services can take advantage of these functions

to disable monitoring system code perturbing the results of

the application, (2) look at the change in counter values of

workload specific events for defined program regions that have

significant effect on the execution time (say, specific to data

layout, inter-process communication etc.)

II. RELATED WORK

Considerable work has been done in the last few years using

the performance counters [9] [10] to investigate the behavior

of applications and identify performance bottlenecks [11]

resulting from overly stressed micro-architecture components.

Intel’s Itanium processors [12] has monitoring of counters

based on instruction opcodes, address range of the accessed

data and even the privilege levels of the instructions.

In Blue Gene/L [13], the large number of available events

in the CPU and the complex mapping of events onto possible

physical counters is handled through a user-level API viz.,

BGLperfctr. This API contains a set of predefined mnemonics

for each of the events and provides the user with an abstraction

of 52 counters, unifying the UPC and FPU counters and

extending them to 64-bit counters. But, BGLperfctr has the

drawback of being system-specific. Application code that

uses hardware counter information is normally nonportable.

The Performance counter API (PAPI) [14] addresses the

problem of high cost of maintaining such codes by providing

a platform independent interface to control and read hardware

counters on a large variety of platforms prevalent in HPC.

There have been a lot of analysis tools developed based on

the performance counters [15] [16] [17] [18] for understanding

and optimizing application performance. Most of these tools

rely on software instrumentation of the application to obtain

the values of the hardware performance counters through

kernel services. But, most of the analysis techniques are for

analyzing a single process data and are difficult to scale when

the number of processors run into hundreds of thousands as

explained by [19]. When users execute multiple experiments,

this adds an extra dimension of complexity to this picture.

These problems are addressed in this paper by the use of the

dedicated UPC unit and the proposed interface library.

III. BLUE GENE/P SYSTEM OVERVIEW

The Blue Gene/P computer is a scalable, distributed-

memory system consisting of up to 73,728 nodes. Each

node is built around a single compute ASIC and 2 or 4 GB

DDR2 DRAMs of main store. The Blue Gene/P compute

ASIC is a highly integrated System-on-a-Chip (SoC) chip

multiprocessor (CMP) based on PowerPC 450 processor

cores. The chip contains four processor cores, each with

private L1 instruction and data caches. Each core is coupled

to a dual-pipeline SIMD floating point unit and to a private,

prefetching L2 cache. In addition, the chip integrates a

large, shared L3 cache, two memory controllers, five network

controllers, and a performance monitor, as illustrated in Figure

2. The PowerPC 450 microprocessor is a high-performance,

out-of-order industry-standard PowerPC processor originally

targeted at high-end embedded systems. The processor

331



Fig. 3. Modes of Operations of a Blue Gene/P Node

supports 2-way superscalar instruction execution with a seven

stage pipelined microarchitecture. The processor cores include

highly associative first level instruction and data caches with

a capacity of 32KB each.

A dual-pipeline SIMD floating point unit is attached to each

processor core. The floating point unit pairs two floating-point

register files and two execution pipes. Both primary and

secondary register files are independently addressable, but

they can be jointly accessed by SIMD instructions. SIMD

execution exploits the data-level parallelism often present in

high-performance computing workloads. SIMD reduces the

number of instructions necessary to fetch, issue and complete,

while increasing the number of operations completed.

Blue Gene/P provides five dedicated communication

networks: the torus network, the collective network, the

barrier network, 10Gb/s Ethernet, and IEEE1149.1 (JTAG).

The network interfaces are integrated on the same chip as

the processing units. The main network is the torus, which

provides high performance data communication to nearest

neighbor nodes in a 3D mesh configuration (with ends

wrapped around) with low latency and high throughput. The

collective network supports efficient collective operations,

such as broadcast and reduction.

A Blue Gene Node works in 4 operating modes viz., SMP/1

thread, SMP/4 threads, Dual Mode and the Virtual Node

Mode. The table in figure 3 gives the details about the number

of processes and threads per node in the different modes of

operation.

A. Universal Performance Counter Unit

The Universal Performance Counters Unit (UPC) on the

chip allows for monitoring a set of selected hardware events

generated by a variety of on-chip event sources such as the

processors, the floating point units, the snoop filters, the

L2-caches, the L3-cache, and the network interfaces. For

example, the events in the FPU include the number of single

additions/subtractions, single multiplications, single divisions,

SIMD addition/subtractions, SIMD multiplications, SIMD

divisions, SIMD & single floating point multiply additions etc.

The UPC unit contains 256 64-bit counters. Each

counter is configured with 4 configuration bits located in

the configuration registers which determines the mode of

operation of the counters. All counters and all configuration

Fig. 4. Using the Interface to instrument Code Snippets

registers in the UPC module are mapped into the memory

address space providing memory-mapped access to all

counters and configuration register.

The UPC unit can be programmed to count one of four

set of events in four counter modes 0, 1, 2 and 3, each

having 256 events. Usually, the whole UPC unit is set to a

particular mode, which decides the purpose for which each of

the counter is used. The counter event and interrupt setting is

taken from the configuration register for each of the counter.

Two bits for counter events determine what signaling on the

selected counter input represents a count-event. The user

has the choice between level-sensitive events (low-/or high-

active) and edge-sensitive signaling (low-high-/or high-low

transition).

The encoding of counter events bits is as follows:

• 00 - Use the high level sensitive mode

(BGP UPC CFG LEVEL HIGH1)

• 01 - Use the low-high edge sensitive mode

(BGP UPC CFG EDGE RISE)

• 10 - Use the high-low edge sensitive mode

(BGP UPC CFG EDGE FALL)

• 11 - Use the low level sensitive mode

(BGP UPC CFG LEVEL LOW)

There is an interrupt enable bit in the configuration register that

enables interrupt for this counter if it matches the threshold

value. More details about the UPC unit can be found in [1]

IV. PERFORMANCE COUNTER INTERFACE DESCRIPTION

Although there are 1024 possible events that can be

monitored in total, 256 of them can be measured in one

run by a UPC unit. The interface that is developed to

access the performance counters was designed in such a

way that 512 events can be monitored in one single run

1BGP - Blue Gene/P, UPC - Universal Performance Counter Unit

332



Fig. 2. Blue Gene/P Node Architecture

Fig. 5. Collecting performance information of an application using the
Library

by monitoring the first 256 events in the even numbered

node cards and the second 256 events in the odd numbered

node cards. The developed interface library provides 4 basic

function calls: BGP Initialize(), BGP Start(), BGP Stop()

and BGP Finalize().

The BGP Initialize() function of the interface selects one of

the 4 modes in which the UPC unit should function, selecting

the set of 256 events of the total 1024 possible events and

initializes all the counters of the UPC unit. The code parts

that needs to be monitored are preceded and succeeded by

the BGP Start() and the BGP Stop() functions and each such

pair of Start and Stop functions constitute a set. The functions

BGP Start(set #) and BGP Stop(set #) start and stop moni-

toring all the 256 counters for that particular part of the code

and stores it associated with the set number that is specified.

The function BGP Finalize() dumps the difference in counter

data between the corresponding pairs of BGP Start() and the

BGP Stop() functions of all the sets into a binary file at each

node. A post processing tool was developed for data mining

the dumped binary files. A few sanity checks were performed

to find the overhead associated with the interface compared to

the normal application execution.

Though the application suffers a longer execution time

when instrumented, the overhead incurred is mainly in

printing the data into the binary files. This in no way affects

the accuracy of the counter data because the monitoring of

counters is stopped after the BGP Stop() function and the

time taken after that in printing just increases the execution

time. To know the exact execution time of the run, a

counter to count the clock cycles was used and it’s data is

recorded in the stop() function. It was checked against the

readings of the Time Base Register of the chip to find the

overhead associated with the interface. The total overhead

encountered in initializing the UPC unit, the start() and the

stop() functions were measured to be 196 machine cycles.

This way, the interface is used to instrument simple code

snippets as illustrated in figure 4. It is to be noted that the

overhead mentioned above also includes the initialization

process. To monitor different parts of the application, the

initialize is called once and multiple start() and stop()

calls are added. Thus the overhead incurred should be far

less than 196 cycles for each of the start, stop call pairs.

But, when compared to the number of machine cycles

taken by the scientific applications of today, this number is

negligible. Thus, the application performance is affected to the

least due to the presence of the dedicated UPC unit in the chip.

333



The interface is also integrated with the MPI library

for easy instrumentation of MPI based applications and

is provided as one library. The functions BGP Initialize()

& BGP Start() are added to MPI Init() and the functions

BGP Stop() & BGP Finalize() functions are added to

MPI Finalize() and these new definitions of the functions

in the new MPI library overrides any previous versions.

Linking this library with any MPI based application during

compile time gets the application instrumented. To instrument

sequential applications, the (Initialize, Start) and (Stop,

Finalize) function calls are added to the start and the end of

the main function respectively and the application is compiled

by linking it with the interface library. After getting the raw

counter data dumped into binary files, the post processing

tools provided are used to compute useful metrics. Figure 5

shows the process of collecting the performance data of an

application using the library.

The post processing tools that are provided read all the

files dumped by each node and computes the statistics viz.,

minimum, maximum and the arithmetic mean of each of

the 512 counters. The data is checked based on the number

of records and the length of each record and also for the

range of values in the different counter readings to eliminate

possible errors in the data. Then, based on the counter

data from the 512 counters, different user defined metrics

can be computed. For example, the performance of the

application is computed in terms of MFLOPS based on the

data of all the floating point counters like the counter for

FPAdd-Sub, FPMult, FPDiv, FPFMA, FPSIMDAdd-Sub, and

FPSIMDFMA. Similarly, a metric for the traffic between the

L3 and the DDR (DDR Bandwidth) is computed based on

the different counters associated with L3 and DDR.

The relevant metrics selected by the user are printed as

a record for each application into .csv files, which can be

used with Microsoft Excel or Open office calc for further

investigations. Options can also be specified to print the

statistics of all the 512 counters or print every counter value

read in every node into one massive .csv file along with the

statistics.

The number of events being as large as 1024, the interface

can be used to perform a lot of useful performance related

research. A few example usage of the Developed Interface:

• Analyze the dynamic instruction profile of the applica-

tions for different compiler optimizations and infer their

effectiveness.

• Getting insights into the execution of applications and

tune applications for better performance based on the

counter data.

• Monitor the counters for L3 Cache & DDR by varying the

L3 cache parameters to see their effect on the L3-DDR

traffic.

• Vary the prefetching amount at L2 level and identify

the most effective operation mode for modern workloads

based on the counters for L2.

• Getting a feedback about the effectiveness of various

architectural enhancements and help in improving future

Fig. 6. Dynamic FP Instruction Profile of the NAS Parallel Benchmarks

designs.

It is to be noted that this interface library, along with the

UPC unit on the chip, addresses the scalability problems of

the single process performance monitoring tools of today. For

systems like the Blue Gene/P, the number of nodes will scale

into thousands and these problems have to be addressed.

V. DYNAMIC INSTRUCTION PROFILE OF THE NAS

PARALLEL BENCHMARKS

The class C NAS parallel benchmarks [20] were instru-

mented and the counter data for the different floating point

operations were observed by running it with 128 processes for

MultiGrid (MG), 3-D FFT PDE (FT), Embarrassingly parallel

(EP), Conjugate Gradient (CG), Integer Sort (IS), LU Solver

(LU) on 32 nodes in the Virtual Node Operation mode of

the BG/P node. 121 processes were used for Penta-diagonal

Solver (SP) and Block Tri-diagonal Solver (BT) because the

number of processes are supposed to be a square number

for the two benchmarks. In the process of calculating the

MFLOP rate, the floating point dynamic instruction mix of

the benchmarks on the node was studied. Figure 6 shows

the distribution of the Floating Point operations into single

add-sub, single mult, single FMA, single div, SIMD add-sub,

SIMD FMA and SIMD mult. For the NAS benchmarks viz.,

Multigrid (MG) and 3-D FFT PDE (FT), it is evident that

they exploit the SIMD add-sub and SIMD FMA instructions

of the chip extensively. And for the remaining benchmarks,

viz., Embarrassingly Parallel (EP), Conjugate Gradient (CG),

Integer Sort (IS), LU Solver (LU), Penta-diagonal Solver (SP)

and Block Tri-diagonal Solver (BT), it can be observed that the

Floating Point single multiply-add instruction has been used

largely, bringing out the significance of having the single and

the SIMD FMA units on a HPC chip.

VI. PERFORMANCE FOR VARIOUS LEVELS OF COMPILER

OPTIMIZATIONS

The counters of the floating point SIMD units were

recorded for the usage of different compiler optimization

flags viz., -qarch, -O with -qstrict, -O3, -O4 and -O5.

The -O flag is the default optimization level, in which the

common subexpression elimination, code motion, dead code

elimination, instruction reordering and branch straightening

are performed on the code. The -qstrict option makes sure that

334



Fig. 7. FT - SIMD instructions for different compiler optimizations

Fig. 8. MG - SIMD instructions for different compiler optimizations

the optimizations do not change the semantics of the program.

The -O3 optimization level does all the optimizations

done at the O2 level along with strength reduction, more

aggressive code motion and scheduling. The -O4 optimization

level includes the -qarch, -qtune, -qcache and -qhot along

with O3 optimization. The -qtune flag uses processor specific

information like the cache size, pipelining details etc to tune

the application to give the best performance on the processor.

The -qarch introduces processor specific instructions that

can improve performance, but at the cost of producing an

executable which will run only on that specific processor.

The -qcache option is used to specify the cache configuration

and the -qhot option does a lot of expensive optimizations

on the loops. The -O5 level of optimization does a lot of

inter-procedural analysis in optimization.

The -qarch440d which is used along with O3, O4 and

O5, which uses more specific details about the processor

used in the Blue Gene/P node for optimizing. The counters

for the floating point SIMD units were used along with the

other floating Point unit counters to find the proportion of

the SIMD instructions incorporated into the code due to the

usage of -qarch440 compiler flag. This flag instructs the

compiler to identify and extract the portions of code with

data parallelism, which can be executed on the SIMD floating

point unit operating on two sets of data in parallel.

Figures 7 & 8 illustrate this phenomenon for the FFT (FT)

and the MultiGrid (MG) benchmarks, respectively, when

Fig. 9. Variation in Execution time with different compiler optimizations on
NAS Parallel Benchmarks

Fig. 10. Variation in Execution time with different compiler optimizations
on NAS Parallel Benchmarks

-qarch440d flag is used over the normal optimizations. We

observe that these applications can significantly benefit from

extracting data parallelism, and deploying SIMD FPU. In

addition to SIMD FPU operations, the SIMD compiler option

introduced a lot of quadloads and quadstores in the instruction

mix, further reducing the number of required double and

single store operations.

As a result of extracting data parallelism and more ag-

gressive compiler optimizations, the overall execution time

is reduced. The execution time in cycles for the different

compiler optimizations were also recorded using the CY-

CLE COUNT counter to know the effectiveness of the dif-

ferent compiler optimizations. We list the execution times

for NAS benchmark applications in Figures 9 and 10. Some

applications, like FT and EP, show data parallelism which can

be extracted by compiler efficiently, and the most effective

compiler optimization reduces execution time up to 60%,

compared to the baseline execution. Other applications benefit

lesser from compiler optimizations. Please note that the results

reported are preliminary data, and that we expect the results to

improve with ongoing compiler development. We will report

the updated results for the final paper version.

VII. VARYING L3 CACHE PARAMETERS

By using the performance counters that give insights about

the L3-DDR Traffic, a metric for the L3-DDR traffic was

formulated. This aggregate metric was recorded for various L3

cache sizes. The L3 cache size was varied from 0MB to 8MB

335



Fig. 11. Varying L3 size for class C NAS Parallel Benchmarks

Fig. 12. Ratio of DDR traffic when using 4 processors on a chip to a single
processor on a chip. VNM - Virtual Node Mode, uses 4 processors. SMP -
Uses only 1 processor on a node

in steps of 2MB. The L3 cache size of 0MB is equivalent to a

system without any on-chip L3 cache, but only with private L1

caches. In this configuration, all memory requests have to be

satisfied from the off-chip DDR main memory. The traffic to

DDR for various L3 cache sizes is plotted in fig.11. It is clearly

evident that the Class-C NAS parallel benchmarks benefit a lot

when the cache is increased from 0MB to 2MB and then from

2MB to 4MB. Even adding a small L3 cache of 2MB reduces

significantly the number of requests to the DDR memory. The

misses are reduced to nearly 10% of the total accesses when

the cache size is set to be 4MB, where the application and

data footprint fits in the on-chip L3 cache. But, on the other

hand, the benefit is very less when the cache size is increased

beyond 4MB. But, it is to be noted that today’s real world

scientific applications span a bigger footprint than most of the

NAS benchmarks.

VIII. USING FOUR PROCESSORS ON A CHIP

To determine the impact of using four processors on a

chip, and sharing resources between the four processors, we

compare the execution of the same applications on all four

processor cores and on a single processor core, and measure

execution time, number of requests to the off-chip DDR

memory, and achieved performance for the two configurations.

We observed that even while per-processor performance is

reduced when using all four processors available on a chip,

using all available processors on a chip reduces overall

execution time of applications with a sharp increase in the

Fig. 13. Increase in execution time per node when using 4 processors on
a chip to a single processor on a chip. VNM - Virtual Node Mode, uses 4
processors. SMP - Uses only 1 processor on a node

Fig. 14. Increase in MFLOPS per chip when using all four processors on a
chip to using a single processor.

resource utilization.

More specifically, we compare the execution of the class

C NAS parallel benchmarks with 128 processes on 32 nodes

in Virtual node mode to same 128 processes on 128 nodes

in SMP/1 mode. As listed in Figure 3, Virtual node mode

is the mode in which there are 4 MPI processes that run

in each node, while SMP/1 mode is the mode where one

process with only one thread is run in each node. To perform

a fair comparison, in SMP/1 mode, where one process uses

the whole compute node, we reduced the L3 cache size to

2 MB per node using the svchost options while booting a node.

From a memory perspective, we observed the increase in

traffic to DDR memory when using all four processors on a

chip instead of only one processor. It can be observed from

Figure 12, that there is a 3 times increase in the traffic to

DDR RAM in average. While for most applications increase

in traffic to DDR RAM when using four processors instead

of one is less than 4 times, only for FT and IS applications

the number of requests increased more than four times due to

memory port contention and cache interference.

While using multiple processors on a chip increases

traffic to off-chip memory, the execution time on a single

processor will also increase due to various on-chip resource

sharing, and inter-processor interference. The increase in

the execution time of applications due to sharing on-chip

336



resources when using all four processors (results for 128

processes on 32 nodes VNM) to using only one processor

(results for 128 processes on 128 nodes SMP/1) was found

to be just 30%, as shown in Figure 13. This confirms the

effectiveness of the chip multiprocessor architecture of Blue

Gene/P. If the processes that were executed concurrently

were from different types of applications with heterogenous

characteristics like memory bound, I/O bound, processor

bound etc, the performance of the Virtual Node Mode can be

expected to be far better than 4 copies of the same process

conflicting for the same resources at any point of execution.

There is a a significant increase in the utilization of the

resources in the chip when all the four processors are used.

This phenomenon is illustrated in Figure 14, where delivered

MFLOPS per chip is about 2.5 times higher when using all

available processors on a chip instead only a single processor.

IX. CONCLUSION

Usage of Performance counters has become widespread in

evaluating the performance of applications and in unveiling

the opportunities to improve performance. In this paper, we

have brought out the utility of the developed performance

counter interface library and the presence of a dedicated UPC

unit on a High Performance Computing chip. We aimed at

providing the performance analysis tools as early as possible,

so that applications can be tuned for Blue Gene/P machine,

which is in its final stages of design and assembly. As an

example, we have profiled the NAS parallel benchmarks

using the Interface library and analyzed the results.

The dynamic instruction profile of the benchmarks were

observed with various levels of compiler optimizations on

Blue Gene/P, to provide a feed back to the ongoing compiler

development. The Virtual Node operating Mode and the

SMP modes were studied, bringing out the effectiveness

of the Virtual Node Mode of Operation exploiting Blue

Gene’s chip multiprocessor architecture. It was observed

that a L3 size of 4 MB looks optimal for the NAS benchmarks.

We look forward to use the developed interface to evaluate

the performance of diverse applications by varying the

hardware parameters like prefetch amount in L3, prefetch

amount in L2 etc and conclude on the optimal values for

the modern workloads. The Blue Gene/P chip has a lot

of architectural enhancements over Blue Gene/L and new

features that needs to be evaluated with the help of the

Interface. We are also curious to see the performance of using

OpenMP with MPI on the multicore nodes of this parallel

machine. Since the number of performance counter events

being 1024, there is a lot of scope for research based on these

counters.

It is to be noted that the applications can be instrumented

without any need for changing the code with the help of the

new MPI library that is provided. Also, the presence of the

dedicated UPC unit along with this interface library makes

performance monitoring possible when the number of nodes

scale into thousands.

X. ACKNOWLEDGEMENTS

This work has been supported and partially funded by Ar-

gonne National Laboratory and Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Subcontract No. B554331. I would also like to

acknowledge the University of Texas at Austin for the facilities

provided through the laboratory for computer architecture.

REFERENCES

[1] Valentina Salapura Karthik Ganesan Alan Gara Michael Gschwind
James C. Sexton and Robert E. Walkup. Next-generation performance
counters: Monitoring over thousand concurrent events.

[2] http://en.wikipedia.org/wiki/blue gene. Wikipedia.
[3] N. Garner K. London S. Browne, J. Dongarra and P. Mucci. A scalable
cross-platform infrastructure for application performance tuning using
hardware counters. Proc. SC2000: High Performance Networking and
Computing Conf, 2000.

[4] S. Moore P. Mucci K. Seymour K. London, J. Dongarra and T. Spencer.
Enduser tools for application performance analysis using hardware
counters. Proc. International Conference on Parallel and Distributed
Computing Systems,, 2001.

[5] IBM Corporation. The power4 processor introduction and tuning guide.
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg247041.pdf.

[6] AMD. Athlon processor x86 code optimization guide.
http://www.freewebs.com/gkofwarf/amdperfmon.htm.

[7] Intel Corporation. Intel itanium 2 reference man-
ual for software development and optimization.
http://www.intel.com/design/itanium2/manuals/251110.htm.

[8] B. Sprunt. Pentium 4 performance monitoring features. IEEE Micro,
22(4):72-82,, August 2002.

[9] L. DeRose. The hardware performance monitor toolkit. In Proceedings
of Euro-Par, pages 122131, August 2001.

[10] Robert W. Wisniewski Reza Azimi, Michael Stumm. Online perfor-
mance analysis by statistical sampling of microprocessor performance
counters. Proceedings of the 19th annual international conference on
Supercomputing, 2005.

[11] B. Buck and J. K. Hollingsworth. Using hardware performance monitors
to isolate memory bottlenecks. Proceedings of Supercomputing02,
November 2002.

[12] Intel Corporation. Intel ia-64 architecture software developer’s manual,
volume 4: Itanium processor programmer’s guide,. 2000.

[13] Luiz DeRose Pedro Mindlin, Jose R. Brunheroto and Jose E. Moreira.
Obtaining hardware performance metrics for the bluegene/l supercom-
puter. Lecture Notes in Computer Science - Springer Berlin / Heidelberg,
Volume 2790/2004, 2003.

[14] S. Moore P. Mucci D. Terpstra H. You J. Dongarra, K. London and
M. Zhou. Experiences and lessons learned with a portable interface
to hardware performance counters. Proceedings of PADTAD Workshop,
IPDPS Meeting.

[15] Research Centre Juelich GmbH. The performance counter library:
A common interface to access hardware performance counters on
microprocessors. http://www.fzjuelich.de/zam/PCL/.

[16] J. M. May. Software for multiplexing hardware performance counters
in multithreaded programs. Proceedings of 2001 International Parallel
and Distributed Processing Symposium,, April 2001.

[17] M. Pettersson. Linux x86 performance-monitoring counters.
http://www.freewebs.com/gkofwarf/x86perftools.htm Uppsala University,
2002.

[18] L. DeRose J. Caubet, J. G. J. Labarta and J. Vetter. A dynamic
tracing mechanism for performance analysis of openmp applications.
Proceedings of the Workshop on OpenMP Applications and Tools -

WOMPAT 2001,, July 2001.
[19] D. H. Ahn and J. S. Vetter. Scalable analysis techniques for micropro-

cessor performance counter metrics. Proceedings of SC2002, Baltimore,
Maryland,, November 2002.

[20] W. Saphir R. van der Wijngaart A.Woo D. Bailey, T. Harris and
M.Yarrow. The nas parallel benchmarks 2.0. Technical Report NAS-
95-929, NASA Ames Research Center,, December 1995.

337


