
Synthesizing Memory-Level Parallelism Aware
Miniature Clones for SPEC CPU2006 and

ImplantBench Workloads
Karthik Ganesan, Jungho Jo and Lizy K John

Department of Electrical and Computer Engineering, University of Texas at Austin,
{karthik, jungho.jo}@mail.utexas.edu, ljohn@ece.utexas.edu

Abstract—We generate and provide miniature synthetic bench-
mark clones for modern workloads to solve two pre-silicon
design challenges, namely: 1) huge simulation time (weeks to
months) when using complete runs of modern workloads like
SPEC CPU2006 having trillions of instructions on pre-silicon
design models 2) unavailability of access to their specific target
applications for computer architects, as some of them are pro-
prietary in nature and vendors hesitate to share them. We first
provide a detailed characterization of the SPEC CPU2006 and
the ImplantBench suites based on microarchitecture-independent
metrics. Our metrics include the Memory Level Parallelism
(MLP) of these workloads to estimate the burstiness of accesses
to the main memory. Secondly, our proposed framework, that
uses this characterized information (including MLP) to generate
synthetic clones is explained and evaluated. We provide the
synthetic clones generated for CPU2006 workloads for download
and use. The efficacy of the synthetic clones for CPU2006 and
ImplantBench is demonstrated by comparing their performance
and power characteristics with their original counterparts. We
show that the synthetic clones generated using our MLP-aware
methodology have an error of only 2.8% in terms of Instruction
Per Cycle (IPC) as compared to an error of 15.3% when using
the previous MLP-unaware approaches for CPU2006. We also
evaluate their effectiveness in assessing the change in performance
and power consumption for various microarchitecture design
changes. For CPU2006, with synthetics limited to 1 million dy-
namic instructions, the average correlation coefficient for assessing
design changes for IPC is 0.95 (0.98 for power-per-cycle). For
ImplantBench, we have an average error of 2.9% in assessing the
IPC and the correlation coefficient for assessing design changes is
0.94 (0.97 for power-per-cycle).

I. INTRODUCTION

The SPEC CPU2006 [1] suite released in August 2006
contains many programs, each with thousands of billions of
dynamic instructions taking weeks to months of time on cycle
accurate simulators like the SimpleScalar [2] as detailed by
Ganesan et al [3]. Pre-silicon design models are many orders
slower than cycle accurate simulators and it is almost impossi-
ble to use full runs of such modern workloads/benchmarks for
design space exploration. The advent of the multicore proces-
sors and heterogeneity in the cores has made the design space
exploration even more challenging, resulting in a prohibitively
large amount of simulation time. This has driven architects to
use samples/traces of important parts of the target applications
instead of complete runs. It is to be noted that even after
3 years after the release of the SPEC CPU2006 suite, we

do not see many simulation based papers using these more
representative modern workloads and rather architects tend
to use the older version CPU2000 due to the availability of
miniaturized samples/traces.

We generate and provide miniaturized synthetic benchmark
clones using an improved methodology for these huge SPEC
CPU2006 workloads and also clones for the futuristic em-
bedded workloads in the ImplantBench suite. During the pre-
silicon design stage of a processor, having miniaturized syn-
thetic clones (not more than 1 million dynamic instructions)
for large target applications enables an architect to use them
with slow low level simulation models (e.g., RTL models
in VHDL/Verilog) and helps in making confident decisions
in designing processors tailored for the targeted applications.
Another important application of synthetic benchmark clones
is that they can be distributed to architects and designers even
if the original applications are intellectual property that are
not publicly available. The synthetic benchmark clones are
carefully generated such that they do not reveal the functionality
of the original application, but still capture the essence of
the performance and power characteristics of the application.
Today’s ever increasing number of applications and a need to
design processors tailored to a particular class of applications
along with a faster ’time-to-market’ necessitates the need for
a framework to automate the process of generating synthetic
benchmark clones for the target workloads. Such a framework
will enable architects to be ’up-to-date’ with their applications,
as they keep evolving and also have proxies for futuristic
applications generated. These synthetic clones are highly space
efficient and easy to use compared to other simulation time
reduction techniques (elaborated in Section-2).

Previous efforts towards synthesizing workloads [4] [5]
utilize the memory access, control flow and the instruction
level parallelism information of the original workload, but
do not characterize or use the miss pattern information of
the last level cache, viz., Memory Level Parallelism (MLP)
information. As a result, the synthetics generated using these
previous approaches always have misses in the last level cache
happening at a constant frequency without much burstiness.
When the original workload has high MLP (bursty misses),
the generated synthetic results in having an entirely different
execution behavior compared to the original workload as shown

33978-1-4244-6022-9/10/$26.00 ©2010 IEEE

# 
lo
n
g 
la
te
n
cy
 m

is
se
s 

Time ‐> 

Original 

Prior synth  
approaches 

Fig. 1. Comparison of the MLP behavior of synthetics generated by previous
approaches to that of a typical workload

in Figure 1. Our synthetic benchmark generation methodology
overcomes this important shortcoming by incorporating the
MLP information to model the burstiness of accesses to the
main memory and significantly improves the representative-
ness of the clone. We show that the synthetic benchmarks
generated using our methodology have 12% more accuracy
in their representativeness to the original application in terms
of IPC compared to the previous approaches [4] and [5]. The
significant contributions of this paper are,

• We provide an improved methodology for synthetic bench-
mark generation incorporating the MLP information, us-
ing multiple loops and modeling load-load dependencies
to generate miniaturized synthetic clones for any target
workload and more importantly provide the clones [6] for
SPEC CPU2006 workloads for the architecture community
to download and to use.

• We provide a detailed microarchitecture-independent char-
acterization of the CPU2006 and ImplantBench workloads.

• We also provide the accuracy in using the provided
synthetic clones as proxies to evaluate the performance
and power consumption of the original CPU2006 and the
ImplantBench workloads for a typical modern microarchi-
tecture.

• We also validate the sensitivity of these synthetic bench-
marks to microarchitecture design changes with the sen-
sitivity of their corresponding original counterparts.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the related work, elaborating on the previous
work in synthetic benchmark generation and the motivation
behind an MLP aware synthetic generation. Section 3 provides
the summary of the information captured in the process of
characterizing the workloads under study and explains our
framework to generate the synthetic clones. Section 4 elaborates
on the experimental results regarding the representativeness of
the generated synthetic clones to that of the original bench-
marks. We summarize and provide future directions in Section
5.

II. RELATED WORK AND MOTIVATION

To reduce simulation time, sampling techniques like sim-
ulation points [7] and SMARTS [8] are well known and
widely used. But, the problem with such sampling techniques
is that huge trace files for the particular dynamic execution
interval have to be stored or requires the simulator to have

the capability to fast-forward until it reaches the particular
interval of execution that is of interest to the user. But rather,
the synthetic benchmarks that we provide are space efficient in
terms of storage and do not require any special capability in a
simulator. The problem with other techniques like benchmark
subsetting [9] is that the results are still whole programs and
are too big to be directly used with pre-silicon design models.

Oskin et al. [10] and Nussbaum et al. [11] introduced the idea
of statistical simulation to guide the process of design space
exploration. Eeckhout et al [12] proposed the use of Statistical
Flow Graphs (SFG) in characterizing the control flow behavior
of a program in terms of the execution frequency of basic blocks
annotated with their mutual transition probabilities. Wong et
al. introduced the idea of synthesizing benchmarks [13] [14]
[15] based on the workload profiles. Bell and John [5] and
Joshi et al. [4] synthesized benchmark clones for the workloads
in the SPEC CPU2000 suite by using a technique in which
one loop is populated with embedded assembly instructions
based on the instruction mix, control flow behavior, the memory
behavior and the branch behavior of the original workload.
This generated synthetic loop was iterated until the performance
characteristics became stable.

The memory model used by the previous approaches [4] [5]
consists of a set of static loads/stores that access a series of
memory locations in a stride based access pattern. Even though
the loads within this single loop are populated in such a way
that they match the miss rates of the original application, they
may not necessarily match the performance of the original
application precisely. We classify loads into two categories.
The loads that miss in the last level of the on-chip cache and
result in an off-chip memory access are called ’long-latency’
loads and the other set of loads that hit in the caches. Since
these previous synthetic benchmark generation approaches do
not model the burstiness of these long-latency loads, the long-
latency loads are distributed randomly throughout the synthetic
loop. These long-latency loads keep missing in a constant
frequency as this loop is being iterated without much overlap in
their execution. But the original workloads with the same miss
rates may not necessarily have such a behavior. As already
shown in Figure 1, the typical memory access behavior of
the synthetics generated by the previous techniques can be
entirely different compared to the case of many of the original
workloads. The original workloads can have a set of bursty
long-latency loads in one time interval of execution and none
of them at all for another interval of execution. In the original,
though the pipeline may be clogged in this first interval due
to the long-latency miss, the instructions may flow freely
through the pipeline in the second. Rather, in the synthetic
generated by previous approaches, there is a constant clog in
the pipeline throughout the execution resulting in an entirely
different execution behavior. In Section 3, we characterize the
burstiness of misses in the target workloads and show real cases
with the behavior (high MLP) as shown in Figure 1.

Since a long-latency load incurs hundreds of cycles due to
the off-chip memory access, the performance of a workload

34

(a) (b)

Fig. 2. (a) Overall methodology (b) Metrics profiled to characterize the workloads

varies significantly based on the amount of overlap present
in the execution of these long-latency load instructions. The
average number of such long-latency loads outstanding when
there is at least one long-latency load outstanding is called the
Memory Level Parallelism (MLP) present in a workload. Both
of the cited previous approaches only characterize and model
the Instruction-Level-parallelism in the workloads and fail to
characterize and to model the Memory Level Parallelism (MLP)
in the workloads. Eyerman and Eeckhout [16] show the impact
of MLP on the overall performance of a workload. They show
that there can be performance improvements ranging from 10%
to 95% for various SPEC CPU2000 workloads if we harness
the amount of MLP in the applications efficiently. This brings
out the importance of characterizing the MLP in workloads. We
characterize and model this MLP information in our synthetic
generation framework. For some workloads, we also require
more than one loop to mimic the MLP behavior of the original
workloads, upon which we elaborate in Section 3.

Further in this Section, we provide some background on the
ImplantBench suite. The ImplantBench suite proposed by Jin
et al. [17] is a collection of futuristic applications that will
be used in bio-implantable devices. Bio-implantable devices
are planted into human body to collect, process and commu-
nicate realtime data to aid human beings in recovering from
various types of defects. A few examples are retina implants,
functional electrical stimulation implants and deep brain stim-
ulation implants. ImplantBench is a collection of applications
falling into the categories: security, reliability, bioinformatics,
genomics, physiology and heart activity. Security algorithms
are used in these devices for a safe and secure transfer of data
from these implanted devices to the outside world. Reliability
algorithms take care of the integrity of the data transferred
to and from the implanted devices due to using wireless
techniques. Bioinformatics applications are the ones that extract

and analyze genomic information. At times a part of a genomic
application may be added into the implanted device for some
real time uses. Physiology includes the job of collecting and
analyzing physiological signals like Electrocardiography (ECG)
and Electroencephalography (EEG). Heart activity applications
diagnose heart problems by analyzing the heart activity. Jin et
al. [17] provide a detailed characterization of these applications,
but most of their characterization is based on microarchitecture
dependent metrics, whereas our characterization is mostly in-
dependent of the microarchitecture.

III. CLONING FRAMEWORK

Figure 2(a) shows the cloning methodology that is used in
this paper. As the first step, the target application is profiled to
collect a wide range of characteristics. Then, this information
is fed to the code generator to generate the synthetic. This final
synthetic is compared with the original and the accuracies are
reported.

A. Benchmark Characterization

To capture the various profile information of the workloads,
we use modified versions of the different simulators in the
SimpleScalar [2] simulation framework. Figure 2(b) delineates
the different metrics that are recorded for each of the workloads.
Further in this Section, we explain each of these metrics and
in tandem, provide the corresponding information captured for
each of the metrics for the target workloads.

To capture the control flow behavior of a workload, the
locality in the underlying static code being executed needs to be
captured. A Statistical Flow Graph (SFG) [12] of the workload
is constructed for capturing the control flow behavior of the
workload. A SFG consists of nodes that are the basic blocks
in the program and the edges represent the mutual transition
probabilities between the basic blocks. We also record the
average and the standard deviation of the size of the basic

35

(a) SPEC CPU2006 workloads

(b) ImplantBench workloads

Fig. 3. Captured SFG information and branch transition rate

block along with the instruction pattern in the basic block
in terms of the instruction type. The instruction mix of the
original workload is a significant microarchitecture-independent
metric that captures the frequencies of various instruction types,
namely: integer ALU operation, integer multiply, integer divide,
floating point ALU operation, floating point multiply, floating
point divide, load, store and branch.

For our experiments, we use the alpha binaries generated on
an alpha machine running the Tru64 UNIX operating system
using gcc 4.2 with an optimization level of -O2. A few of
the SPEC CPU2006 workloads could not be compiled on
the alpha architecture and we show the results for a set of
22 SPEC CPU2006 workloads. The tables in Figures 3(a)
and 3(b) show the SFG information captured for the most
representative 100 million instruction simulation point of the
workloads in the CPU2006 benchmark suite and that of the
ImplantBench suite respectively. We can see that the number
of basic blocks that account for 90% of execution are only
6% of the total number of basic blocks in that interval of
execution showing the amount of redundancy. The tables also
show the average basic block size calculated based on both
the number of instructions in each of the basic blocks and their
dynamic execution frequency. As seen in 3(a), the floating point

benchmarks of CPU2006 tend to have bigger basic block sizes
compared to their integer counterparts in the same suite. The
average number of successor basic blocks is another measure of
the control flow complexity of the program. Programs that have
complicated switch statements result in more successors and
predicting the control flow becomes complicated. Also, when
a function is called at multiple sites and each time it returns to
different locations, it results in more successors.

The branch predictability of the benchmark can be captured
independent of the microarchitecture by using the branch
transition rate [18]. The branch transition rate captures the
information about how quickly a branch transitions between
taken and not-taken paths. A branch with a lower transition rate
is easier to predict as it sides towards taken or not-taken for a
given period of time and rather a branch with a higher transition
rate is harder to predict. The branch transition rates for the
CPU2006 workloads as given in Figure 3(a) average around
0.11 with few benchmarks like 433.milc, 410.bwaves having a
transition rate above 0.25. Similarly, the branch transition rates
of the ImplantBench suite are shown in Figure 3(b). It can be
noted that the a few reliability applications have branches with
high transition rates.

To capture the Instruction Level Parallelism (ILP) in the
workload, we capture the dependency distance or the register
reuse distance of the workload as a distribution. This informa-
tion is captured for each type of instruction. This corresponds
to the number of instructions between the production and the
consumption of a data value at the register level. The proportion
of instructions that have an immediate operand is also recorded
along with this distribution. This distribution is binned at a
granularity of 1, 2, ... 20, 20-100 and greater than 100. The
Figures 4(a) and 4(b) show a histogram of the dependency
distances for the workloads in CPU2006 and the ImplantBench
respectively. It can be observed that a few benchmarks like
436.cactusADM and 435.gromacs, which have very large basic
block sizes (518 and 247 respectively), tend to have larger
dependency distances. 435.gromacs and 436.cactusADM have
respectively 50% and 40% of their dependencies that can be po-
tentially resolved before 100 instructions. Still, it is to be noted
that 436.cactusADM has more than 20% of dependencies just
before one instruction. Such benchmarks with high instruction
level parallelism will be sensitive to the out-of-order resources
available in a processor and modeling their dependency distance
distribution plays a key role in mimicking the behavior of
the original workload. In general, it can be observed that
the ImplantBench and SPEC CINT2006 workloads that have
smaller basic block sizes have shorter dependency distances
compared to the SPEC CFP2006 workloads that have larger
basic block sizes. For the ImplantBench and the CINT2006
workloads, more than 50% of their dependency distances are
within 2-3 instructions.

Capturing the data access pattern of the workload is critical
to replay the performance of the workload using a synthetic
benchmark. The data access pattern of a benchmark affects
the amount of locality that could be captured at various levels

36

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

42
9.

m
cf

40
3.

gc
c

%
 D

ep
en

de
nc

y
D

is
ta

nc
e

CPU2006 Workload

>100
20 – 100
12 – 20
8 – 11
4 – 7
2 – 3
1

(a) SPEC CPU2006

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

A
I_

B
P

N

A
I_

G
A

B
io

in
f_

E
LO

B
io

in
f_

LM
G

C

G
en

_H
M

M

G
en

_N
J

H
rtA

ct
_p

N
N

x

P
hy

s_
A

FV
P

P
hy

_E
C

G
S

Y
N

R
el

_c
rc

R
el

_r
ee

d_
so

l

S
ec

_h
av

al

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

%
 D

ep
en

de
nc

y
D

is
ta

nc
e

ImplantBench Workload

> 100
20 – 100
12 – 20
8 – 11
4 – 7
2 – 3
1

(b) ImplantBench

Fig. 4. Dependency distance distribution

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

45
6.

hm
m

er

46
4.

h2
64

re
f

47
3.

as
ta

r

46
2.

lib
q.

44
5.

go
bm

k

48
2.

sp
hi

nx
3

44
4.

na
m

d

43
7.

le
sl

ie
3d

45
8.

sj
en

g

43
4.

ze
us

.

40
1.

bz
ip

2

47
1.

om
ne

tp
p

40
0.

pe
rlb

en
ch

45
9.

G
em

s

45
0.

so
pl

ex

43
5.

gr
om

ac
s

43
3.

m
ilc

41
0.

bw
av

es

43
6.

ca
ct

us
.

48
3.

xa
la

nc
bm

k

40
3.

gc
c

42
9.

m
cf

%
 S

tr
id

e
D

is
tr

ib
ut

io
n

CPU2006 workload

> 31
16-31
8-15
4-7
1-3
0

(a) SPEC CPU2006

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

A
I_

B
P

N

A
I_

G
A

B
io

in
f_

E
LO

B
io

in
f_

LM
G

C

G
en

_H
M

M

G
en

_N
J

H
rtA

ct
_p

N
N

x

P
hy

s_
A

FV
P

P
hy

_E
C

G
S

Y
N

R
el

_c
rc

R
el

_r
ee

d_
so

l

S
ec

_h
av

al

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

%
 S

tr
ie

 D
is

tr
ib

ut
io

n

Implantbench Workload

> 31
16-31
8-15
4-7
1-3
0

(b) ImplantBench

Fig. 5. Stride based memory access behavior in the target workloads

of the memory hierarchy. Though locality is a global metric
characterizing the memory behavior of the whole program,
previous studies [4] have resorted to characterizing the access
behavior at per static load/store basis in terms of strides
(differences between two consecutive effective addresses) to
effectively model it again in the synthetic. Joshi et al. [19]
identify that for the SPEC CPU2000 workloads, most of
the load and store instructions have a dominant stride based
memory access. We also observe a similar behavior in the
SPEC CPU2006 workloads. Figure 5(a) shows the breakdown
of the stride access patterns at a granularity of a 64Byte block
by different load/store instructions binned into categories 0,
1-3, 4-7, 8-15, 16-31 and > 31. This way of characterizing
and portraying the stride access patterns in terms of 64 byte
block sizes is similar to the previous work as in Joshi et al.
[19] for SPEC CPU2000. It is clearly evident that most of
the benchmarks exhibit a stride based behavior. Benchmarks
456.hmmer, 473.astar, 436.cactusADM have a dominant stride
of zero for more than 90% of the memory accesses meaning that
90% of their accesses are within the same 64 byte block and
will probably result in a lot of hits in the cache due to spatial
locality. Totally, 12 benchmarks out of the 22 benchmarks
studied have dominant stride for more than 75% of the memory
accesses. For the ImplantBench suite, Figure 5(b) shows the
break down of the stride at a 64 byte block granularity and it
can be observed that the ImplantBench suite also has the same
dominant stride behavior as CPU2006 and CPU2000 suites.

Capturing Memory Level Parallelism Information: Memory
Level Parallelism information of the workloads is captured and
the Figures 6(a) and 6(b) show the distribution of number

of outstanding long-latency loads as box plots for the dif-
ferent workloads in the CPU2006 and ImplantBench suites
respectively. By using the stride information, the synthetics
mimic the hit/miss rate behavior of the original workloads. The
impact of these hit/miss rates on the execution time is taken
care of by capturing the memory level parallelism information.
It can be noted that 483.xalancbmk, 410.bwaves, 436.cactu-
sADM, 433.milc, 437.leslie3d, 459.GemsFDTD, 462.libquan-
tum have relatively higher amounts of MLP compared to
other benchmarks. It is to be noted that most of these bench-
marks are floating point benchmarks except 462.libquantum
and 483.xalancbmk. We also record the number of consecutive
dynamic instructions when there are no outstanding long-
latency loads to model the frequency of the bursty misses.

Also, to match the MLP of the original workloads, recording
and modeling the load-to-load dependencies that exist in the
original application plays a significant role. When a long-
latency load is dependent on another long-latency load, there
cannot be any overlap in execution between these loads. The
previous synthetic benchmark generation approaches modeled
the dependency distances only at the detail of the consumer
instruction type and did not record the type of the producer.
Our experimental results (Section 4) show that, at least this
information has to be captured for load instructions to be able to
match the memory behavior of some of the modern workloads.

In the rest of the paper, we explain how we use the profiled
data of the benchmarks to generate the synthetic clones that
will have a similar behavior as the original. We then compare
both the microarchitecture dependent and microarchitecture-
independent characteristics of the synthetic benchmark to that

37

(a)

(b)

Fig. 6. Captured MLP information as box plots showing the distribution of the burstiness of long-latency loads for (a) CPU2006 workloads (b) ImplantBench
workloads

of the original workload.

B. Code Generation Framework

The generated synthetic program will be a C code with a
header and an outer wrapper loop with a set of two inner
loops, each populated with embedded assembly instructions.
The number of iterations of the outer most wrapper loop
controls the number of dynamic instructions in the generated
synthetic. The number of times each of the inner loops are
iterated controls the data footprint of the generated synthetic.
Each of these inner loops are similar in everything except their
memory access model. The header part of the C code consists
of declaration and memory allocation for the data structures,
which are primarily a set of single dimensional arrays. Out of
the total number of registers in the ISA, a set of registers are
allocated to hold the base addresses of these allocated memory
arrays and another set of registers are used to implement the
predictability of the branches. The structure of our inner most
loop is similar to that of the one proposed by Bell, et al. [5], but
with an improved memory access, branching and ILP models.
Our code generation algorithm uses the information captured
in the profiling phase (as in Figure 2(b)) and synthesizes code
for each of these inner loop as follows,

1) Based on the instruction footprint (SFG information) of
the original workload, the number of basic blocks to be
included in each of the inner most loops is determined.

2) For each basic block to be generated, the instruction
pattern (in terms of instruction type - int, float etc) is
randomly chosen from the pool of instruction patterns (of
the basic blocks) in the original workload. The execution
frequency of each of the patterns in the original workload

governs the number of times that particular pattern is
chosen to be included in the synthetic.

3) If detailed instruction pattern information for the basic
blocks are not available, using the mean, standard devia-
tion of basic block size and the overall global instruction
mix information is used to populate the instructions into
the basic blocks.

4) The basic blocks are bound together by using conditional
branches at the end of each of the basic block. Our
branching model is explained in detail in the later part of
this Section.

5) Using the dependency distance distribution for each of the
instruction types, each instruction in each basic block is
assigned a producer instruction for each of its operands
within the loop. If these producer-consumer instructions
are not compatible with each other, the algorithm moves
above/below, one or more instructions until it finds a
matching producer for each instruction.

6) Destination registers are assigned to each of the instruc-
tions in a round robin fashion using the pool of available
registers. Based on the previously assigned dependencies,
the registers are assigned to various input operands.

7) Each of the load/store instructions is configured based
on the memory model explained in Subsection 2 of this
Section.

8) The number of times this particular inner loop has to be
iterated is decided based on the data foot print of the
original workload as explained in the memory model in
Subsection 2.

9) Outside each of these inner loops, the memory base
registers are reset to the first element of the memory

38

arrays to enable temporal locality for the next loop or
the next iteration of the outer wrapper loop.

1) Transition Rate Based Branch Behavior: Some previous
synthetic benchmark generation approaches [5] used the branch
misprediction rate of the different branches of the original
workloads to mimic the branching behavior. In our case, instead
of using the branch predictability, we use the microarchitecture-
independent metric, branch transition rate [18] as used by Joshi
et. al [19] to make the model more robust to microarchitecture
changes. First, the branches that have very low transition rates,
can be generated as always taken or always not taken as they
are easily predictable. The rest of the branches in the synthetic
need to match the transition rate of the corresponding static
branch in the original workload. Those transition rates of the
branch instructions are grouped into a few pools and each of
them is assigned a register. This register is incremented every
iteration of the loop and a modulo operation is used to decide
if a branch is taken or not taken to mimic the transition rate of
that particular pool of branches.

2) Stride Based Memory Access Behavior: Our stride based
memory access model is similar to that of the model used
by Joshi, et al. [4], except for the fact that our model is
more robust as we also use the MLP information of the
workloads along with the stride information to generate the
synthetic. Each of the static loads and stores in the synthetic
benchmark walk one of the allocated memory arrays in a
constant strided pattern until the required data foot print of the
application is touched and after which, they again start from
the beginning of the array. The other integer ALU instructions
in the generated synthetic are used to perform the address
calculation for these loads/stores. Since we have a limitation
on the number of registers that we can use to hold addresses
for these loads/store instructions, we cluster the different stride
values of the loads/stores of the original program and assign
only one register for each of these clusters. A representative
stride value for each of the clusters is chosen. The integer
ALU address calculation instructions add the stride value of
the particular cluster to the allocated register and write the sum
(new address) back into the same register. The loads/stores are
synthesized in such a way that they access the address in this
register assigned to their corresponding cluster.

3) Model for the Memory Level Parallelism: During the
synthesis of the clone, we can achieve the desired MLP in the
synthetic by having control over the following: 1) the placement
of highly strided loads (closer to each other or farther from
each other) 2) the cluster to which these loads get assigned
(i.e., whether they use the same base register or not) and 3) the
number of load-load dependencies 4) Usage of more than one
loop in the synthetic. The highly strided loads are the long-
latency loads which miss in the last level of the cache. By
grouping these long-latency loads, MLP of the synthetic can be
controlled. When two loads share the same base register, the
possibility of the second load accessing the same block as that
of the first load is high and hence, it has an impact on the MLP
of the synthetic. When a load is dependent on another load,

these two load instructions cannot be outstanding misses at the
same time and thus, this also controls the amount of MLP in
the synthetic. Though the first two of the above said techniques
are relatively easier to implement, it is not trivial to make a load
instruction dependent on another load in our memory model due
to walking an uninitialized memory array. If such a dependency
is assigned directly, the ’consumer’ load could access an invalid
memory location. Initializing the memory array in the header of
the synthetic alters the locality behavior of the synthetic. These
special dependencies are handled as indirect dependencies in
our framework by introducing an existing ALU instruction in
the dependence chain to ensure the access to a valid memory
location.

Also, some modern workloads have multiple loops with
varying data access behavior. Say, for example a program
has two loops, one loop to initialize a large data structure
and another loop to perform a set of computations using this
data structure. Such a program will see a lot of misses in its
first initialization loop and when the data structure fits into
the cache, the second execution loop exhibits a good locality.
Modeling such a benchmark in the synthetic with only one
loop and limited instruction footprint is not possible. We need
at least two loops to model memory behaviors where there
are bursty misses and big execution intervals without any
misses. This is the reason for capturing the metric of ”mean
number of consecutive dynamic instructions when there are no
outstanding long-latency loads”. The MLP metric only indicates
the burstiness of long-latency loads when there is at least
one outstanding long-latency load. But, the other metric also
explains how frequently these bursty behaviors happen. Since
this kind of initialization-execution behavior happens only in a
few of our target workloads, in our framework, we analyze this
behavior manually and hand tune the number of iterations of the
first and the second loops based on the metric defined above for
these workloads. The number of iterations of the second loop is
determined based on the average interval of execution in terms
of number of instructions for which there are no outstanding
long-latency loads. The first inner loop in the synthetic can
be used like an initialization phase and the second as the
execution phase (only if required). Most of the workloads that
we have characterized can be modeled with only one loop with
an effective usage of the first three techniques to model MLP.
There are a few workloads like 400.perlbench, 435.gromacs,
444.namd, 445.gobmk, that have intervals of thousands of
dynamic instructions without any long-latency loads and, thus,
require the usage of two loops. Since the characteristics of the
programs are statistically modeled, most of the fine-grained
phase behavior gets averaged out in the synthetic. For very
coarse-grained phase behavior, use of two loops, as described
above helps to approximately model this behavior.

IV. RESULTS AND ANALYSIS

A. Accuracy in the representativeness of the synthetic clones

The accuracies of the synthetic benchmarks in capturing
the performance of the original application is evaluated by

39

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

41
0.

bw
av

es

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

45
0.

so
pl

ex

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D

TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

43
5.

gr
om

ac
s

48
3.

xa
la

nc
bm

k

42
9.

m
cf

40
3.

gc
c

%
 In

st
ru

ct
io

ns

Branch
Store
Load
Float
Integer

(a) SPEC CPU2006

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A
I_

A
da

lin
e

S
ec

_K
H

A
ZA

D

S
ec

_s
ha

2

B
io

in
f_

E
LO

B
io

in
f_

LM
G

C

H
rtA

ct
_p

N
N

x

P
hy

_A
FV

P

P
hy

_E
C

G
S

Y

A
I_

B
P

N

G
en

_N
J

R
el

_r
ee

d_
so

l

G
en

_H
M

M

A
I_

G
A

S
ec

_h
av

al

R
el

_c
rc

%
 In

st
ru

ct
io

ns
 Branch

Store
Load
Floating
Integer

(b) ImplantBench

Fig. 8. Comparison of the Instruction mix of the original and the synthetic workloads. Amongst the two bars shown for each benchmark, the bar on the left
is for the original and that on the right is for the synthetic

1 

10 

100 

1000 

40
0.
pe

rl
be

nc
h 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
5.
gr
om

ac
s 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

48
3.
xa
la
nc
bm

k 

42
9.
m
cf
 

40
3.
gc
c 

Ba
si
c 
Bl
oc
k 
Si
ze
 (#

 in
st
) 

CPU2006 

Orig 
Synth 

Fig. 7. Comparison of the basic block size between the synthetic and the
original workloads for CPU2006

comparing both microarchitecture dependent and independent
metrics. First, we compare the microarchitecture-independent
metrics like the basic block size, instruction mix, and de-
pendency distance distribution of the original to that of the
synthetic. Figure 7 shows the arithmetic mean of the basic block
sizes of the original and the synthetic in the logarithmic scale.
These arithmetic means were calculated based on the number
of instructions in the basic blocks and the dynamic frequency of
execution of each of the basic blocks. It can be observed that
the basic block sizes of the synthetic match the basic block
sizes of the original with an average error of 3.9%.

The Figures 8(a) and 8(b) show the instruction mix of the
synthetic benchmark and that of the original benchmarks for the
CPU2006 and ImplantBench workloads. It can be found that
the instruction mix of the synthetic matches that of the original
very closely and the average errors are within 5%. Even the
minimal error in the instruction mix occurs when the effective
address calculation for loads/stores or the modulo operation for
the branch needs to be done and there are not enough integer
ALU instructions in the original benchmark. The dependency
distances of the original and the synthetic are compared based
on each of the instruction type and the error is evaluated.
Usually the dependency assigning algorithm does not have to
move up/down more than 2-3 instructions before it successfully
assigns the dependency for our target workloads. While the
average error in dependency distances for various types is
within 7%, the main source of the error is the first operand
of the integer ALU operations. This is due to the changes in
the dependency distances that happen when an integer ALU
instruction is made as a load/store effective address calculation
instruction. In that case, the original dependency distance of

Fig. 9. Machine configurations used: Machine-A for SPEC CPU2006 and
Machine-B for ImplantBench workloads

the integer instruction is overridden by the distance from the
producer of the base address.

The execution time and power consumption of a bench-
mark are the first class performance metrics used in computer
architecture to assess the performance of a benchmark on
a processor/system. Since, we aim at miniaturization of the
workloads in terms of the execution time, Instruction-Per-Cycle
(IPC) and power-per-cycle are the metrics that we have used
to compare the performance of the original and the synthetic
workloads to show the efficacy of the generated synthetics. We
determine both the accuracies of using the synthetics as proxies
to evaluate the performance of a given microarchitecture and
the sensitivity to various micro-architectural design changes.
To evaluate the performance of the CPU2006 workloads, we
simulate both the original and the synthetic on the simoutorder
simulator of SimpleScalar [2] for a typical modern machine
configuration (Machine-A) given in the figure 9. For the exper-
iments on ImplantBench, we use a typical configuration of an
embedded processor (Machine-B) as given in Figure 9. These
machine configurations are the same as used in some previously
published work [19].

As shown in Figure 10(a), the synthetics for CPU2006 have
an average error of 2.8% and a maximum error of 7.7% for
the benchmark 464.h264ref when using the MLP information
in the synthetics. While using the previous synthetic generation
methodologies (without MLP information) as in previous work
[5] [4], the average error in IPC is 15.3% clearly showing the

40

0 

0.5 

1 

1.5 

2 

2.5 

3 

400.perlbench 

401.bzip2 

410.bw
aves 

433.m
ilc 

434.zeusm
p 

435.grom
acs 

436.cactusA
D
M
 

437.leslie3d 

444.nam
d 

445.gobm
k 

450.soplex 

456.hm
m
er 

458.sjeng 

459.G
em

sFD
TD

 

462.libquantum
 

464.h264ref 

471.om
netpp 

473.astar 

482.sphinx3 

483.xalancbm
k 

429.m
cf 

403.gcc 

IP
C 

CPU2006 

Orig 

MLP aware 
synth 

MLP unaware 
synth 

(a) SPEC CPU2006

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

A
I_
A
da
lin
e 

Se
c_
KH

A
ZA

D
 

Se
c_
sh
a2
 

Bi
oi
nf
_E
LO

 

Bi
oi
nf
_L
M
G
C 

H
rt
A
ct
_p

N
N
x 

Ph
y_
A
FV

P 

Ph
y_
EC
G
SY
N
 

A
I_
BP

N
 

G
en

_N
J 

Re
l_
re
ed

_s
ol
 

G
en

_H
M
M
 

A
I_
G
A
 

Se
c_
ha
va
l 

Re
l_
cr
c 

IP
C 

ImplantBench 

Orig 

MLP aware 
synth 

MLP unaware 
synth 

(b) ImplantBench

Fig. 10. Comparison of IPC between the synthetic and the original workloads

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 

40
0.
pe

rl
be

nc
h 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

43
5.
gr
om

ac
s 

48
3.
xa
la
nc
bm

k 

42
9.
m
cf
 

40
3.
gc
c 

Po
w
er
 p
er
 c
yc
le
 (W

) 

CPU2006 

Orig 

MLP aware 
synth 

MLP unaware 
synth 

(a) SPEC CPU2006

0 
2 
4 
6 
8 

10 
12 
14 

A
I_
A
da
lin
e 

Se
cu
ri
ty
_K

H
A
ZA

D
 

Se
cu
ri
ty
_s
ha
2 

Bi
oi
nf
or
m
aA

cs
_E
LO

 

Bi
oi
nf
or
m
aA

cs
_L
M
G
C 

H
ea
rt
A
cA
vi
ty
_p

N
N
x 

Ph
ys
io
lo
gy
_A

FV
P 

Ph
ys
io
lo
gy
_E
CG

SY
N
 

A
I_
BP

N
 

G
en

om
ic
s_
N
J 

Re
lia
bi
lit
y_
re
ed

_s
ol
om

o
n 

G
en

om
ic
s_
H
M
M
 

A
I_
G
A
 

Se
cu
ri
ty
_h

av
al
 

Re
lia
bi
lit
y_
cr
c 

Po
w
er
 p
er
 c
yc
le
 (W

) 

ImplantBench 

Orig 

MLP aware 
synth 

MLP unaware 
synth 

(b) ImplantBench

Fig. 11. Comparison of power-per-cycle between the synthetic and the original workloads

importance of an MLP aware workload generation. It should
be noted that the benchmarks 410.bwaves, 456.cactusADM
and 483.xalancbmk that have high MLP as shown in Figure
6(a) have decreased error rates while using our MLP aware
synthetic clone generation. The importance of modeling the
type of the producer instruction for a consumer load instruction
while modeling the dependency distances can be explained
with 450.soplex as an example. The benchmark 450.soplex
solves a linear program using a simplex algorithm and sparse
linear algebra and it has a lot of load instructions that are
dependent on other load instructions. When this load-load de-
pendency information is not incorporated into the synthetic, this
benchmark results in 40% error compared to 2.7% when using
this information. For IPC and power results, 15 benchmarks
benefit from the 3 automated MLP techniques, 4 benchmarks
benefit from all the 4 MLP techniques (with two loops) and 6
benchmarks do not benefit from the MLP techniques. There is
an error of 4.43% in IPC when only automatic MLP techniques
are used as opposed to 15.3% for MLPunaware. The usage
of two loops with manual intervention reduces the IPC error
further to 2.8%. The accuracies in the IPCs of the ImplantBench
suites are given in Figure 10(b). The average IPC error for the
workloads in the ImplantBench suite is 2.9% and a maximum
error of 7.2%.

To evaluate the power consumption of the synthetic and the
original workloads, we use the Wattch [20] simulator extension
of the SimpleScalar tool set. We use the most aggressive
clock gating setting in Wattch and compare the average power
consumption per cycle of the synthetic and that of the original
workload. Figure 11(a) shows this comparison for CPU2006
and it is to be noted that the average error in power per cycle is
14% and the maximum error is 33% for the benchmark 435.gro-

macs. The average size of basic blocks in this benchmark is
512 instructions in the original and when we try to miniaturize
the benchmark based on the execution frequencies of the basic
blocks, we lose some long basic blocks that have a significant
impact on the power characteristics. If a user is more concerned
about the errors in these benchmarks being so high, the only
solution is to compromise on the speedup to achieve higher
accuracies by including more basic blocks into the synthetic.
The other significant source of error in power-per-cycle for
the remaining benchmarks is due to the fact that the long
running original applications have higher power consumption in
the instruction cache than these relatively very small synthetic
clones. It can be observed that power consumption is mostly
underestimated by the synthetic, bringing up the possibility of
correcting it. For the ImplantBench suite, the average error in
power consumption is 2.5% and a maximum error of 9.2%
which can be seen in Figure 11(b). This error is less than
CPU2006, since these workloads have relatively lower dynamic
number of instructions.

Figures 12(a) and 13(a) show the error in the miss rates in the
Data Level 1 (DL1) cache and the branch misprediction rates
of the synthetic compared to the original workload for SPEC
CPU2006. The average error in the DL1 hit rate for CPU2006
is 1.06% and that in the branch predictability is 1.7%. The
DL1 miss rate comparison for ImplantBench is shown in Figure
12(b). Most of the ImplantBench workloads being simple have
very low L2 miss rates and high branch predictability. Thus,
we only show the accuracies in L2 cache miss rates and branch
predictability of the SPEC CPU2006 workloads. Figure 13(b)
shows the error the miss rate in the Unified Level 2 (UL2)
cache compared to the originals for those benchmarks that
have at least more than 3% of the DL1 accesses reaching

41

0 
0.05 
0.1 

0.15 
0.2 
0.25 
0.3 
0.35 
0.4 

40
0.
pe

rl
be

nc
h 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
5.
gr
om

ac
s 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

48
3.
xa
la
nc
bm

k 

42
9.
m
cf
 

40
3.
gc
c 

D
L1
 m

is
sr
at
e 

CPU2006 

Orig 
Synth 

(a) SPEC CPU2006

‐0.01 

0.01 

0.03 

0.05 

0.07 

0.09 

0.11 

0.13 

0.15 

A
I_
A
da
lin
e 

Se
cu
ri
ty
_K

H
A
ZA

D
 

Se
c_
sh
a2
 

Bi
oi
nf
_E
LO

 

Bi
oi
nf
_L
M
G
C 

H
rt
A
ct
_p

N
N
x 

Ph
y_
A
FV

P 

Ph
y_
EC
G
SY
N
 

A
I_
BP

N
 

G
en

_N
J 

Re
l_
re
ed

_s
ol
 

G
en

_H
M
M
 

A
I_
G
A
 

Se
c_
ha
va
l 

Re
l_
cr
c 

D
L1
 m

is
s 
ra
te
 

ImplantBench workloads 

Orig 

Synth 

(b) ImplantBench

Fig. 12. Comparison of DL1 miss rate between the synthetic and the original workloads

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

40
0.
pe

rl
be

nc
h 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
5.
gr
om

ac
s 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

48
3.
xa
la
nc
bm

k 

42
9.
m
cf
 

40
3.
gc
c 

br
an

ch
 m

is
pr
ed

. r
at
e 

CPU2006 

Orig 

Synth 

(a) Branch misprediction rate comparison

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
7.
le
sl
ie
3d

 

45
0.
so
pl
ex
 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

47
1.
om

ne
tp
p 

48
2.
sp
hi
nx
3 

48
3.
xa
la
nc
bm

k 

42
9.
m
cf
 

40
3.
gc
c 

U
L2
 m

is
sr
at
e 

CPU2006 

 Orig 

 Synth 

(b) UL2 miss rate comparison

Fig. 13. Comparison of UL2 miss rate and branch misprediction rate between the synthetic and the original workloads for CPU2006

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

RU
U	

0.5
x	

RU
U	

0.2
5x
	

RU
U	

0.1
25
x	

LS
Q	

0.5
x	

LS
Q	

0.2
5x
	

LS
Q	

0.1
25
x	

BT
B	
 2
x	

BT
B	
 0
.5x
	

Co
mb
	
 BP
	

gs
ha
re
	
 BP
	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 As
so
c	
 2
x	

L2
	
 As
so
c	
 0
.5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 As
so
c	
 2
x	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m.
	
 W
idt
h	
 2
x	

Ba
se
lin
e	

IP
C	

Machine	
 configura1ons	

Orig	

Synth	

(a) IPC

0	

5	

10	

15	

20	

25	

30	

35	

RU
U	

0.5
x	

RU
U	

0.2
5x
	

RU
U	

0.1
25
x	

LS
Q	

0.5
x	

LS
Q	

0.2
5x
	

LS
Q	

0.1
25
x	

BT
B	
 2
x	

BT
B	
 0
.5x
	

Co
mb
	
 BP
	

gs
ha
re
	
 BP
	

L2
	
 si
ze
	
 0.
5x
	

L2
	
 As
so
c	
 2
x	

L2
	
 As
so
c	
 0
.5x
	

L1
	
 Si
ze
	
 2x
	

L1
	
 Si
ze
	
 0.
5x
	

L1
	
 As
so
c	
 2
x	

Iss
.	
 W
idt
h	
 2
x	

De
c.	

W
idt
h	
 2
x	

Co
m.
	
 W
idt
h	
 2
x	

Ba
se
lin
e	

Po
w
er
	
 p
er
	
 c
yc
le
	
 (W

)	

Machine	
 configura6ons	

Orig	

Synth	

(b) Power-per-cycle

Fig. 14. Comparison of the variation of IPC and power-per-cycle for 433.milc between the synthetic and the original

UL2. When the number of UL2 accesses are too small, the
impact of the accuracy in UL2 miss rates on IPC is also small.
The benchmark 434.zeusmp has a high error in the UL2 miss
rate compared to the original benchmark. It is a computational
fluid dynamics application that is used for the simulation of
astrophysical phenomena. This benchmark has a very large data
footprint compared to any of the other benchmarks that we
have used in this study. It has an almost 1GB of data foot
print for the top 100 million instruction simulation point. This
benchmark has a miss rate of 8.5% in the DL1 and has a miss
rate of only 10% in the UL2. A very detailed modeling of
the working set size at a much smaller granularity in terms of
the dynamic execution interval is required for this benchmark
to capture its overall memory access behavior more precisely
than what is dealt with, in this paper. We do not show the error
rates in the Instruction Level 1 cache because we found that the
number of misses is very small for a typical modern processor
configuration.

B. Accuracy in the sensitivity to design changes

In an architecture study, the accuracy in assessing the perfor-
mance impact of design changes [21] [22] is more important
than assessing the performance for a particular microarchitec-
ture. We evaluate the synthetics to see the sensitivity to various
design changes. We study accuracies for changes in the size
of the Register Update Unit (RUU), Load Store Queue (LSQ),
Branch Target Buffer (BTB), the type of the branch predictor
used, size of the Unified L2 cache, Unified L2 associativity,
Data L1 cache size, Data L1 associativity, issue width, decode
width and the commit width of the machine. The IPC and power
variation for the CPU2006 floating point benchmark 433.milc
to design changes are given in the Figures 14(a) and 14(b)
respectively. 433.milc is one of the benchmarks that is very
sensitive to the different design changes under study.

The correlation coefficients in IPC between the synthetic
and the original for the set of 19 design points as used in
Figure 14(a) are shown in the Figure 15(a) for CPU2006
workloads. The correlation coefficient is directly proportional
to correctness of the synthetic in following the trends of the

42

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
5.
gr
om

ac
s 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

40
3.
gc
c 

42
9.
m
cf
 

48
3.
xa
la
nc
bm

k 

Co
rr
el
a'

on
 c
oe

ffi
ci
en

t 

CPU2006 

(a) IPC

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

40
1.
bz
ip
2 

41
0.
bw

av
es
 

43
3.
m
ilc
 

43
4.
ze
us
m
p 

43
5.
gr
om

ac
s 

43
6.
ca
ct
us
A
D
M
 

43
7.
le
sl
ie
3d

 

44
4.
na
m
d 

44
5.
go
bm

k 

45
0.
so
pl
ex
 

45
6.
hm

m
er
 

45
8.
sj
en

g 

45
9.
G
em

sF
D
TD

 

46
2.
lib
qu

an
tu
m
 

46
4.
h2

64
re
f 

47
1.
om

ne
tp
p 

47
3.
as
ta
r 

48
2.
sp
hi
nx
3 

40
3.
gc
c 

42
9.
m
cf
 

48
3.
xa
la
nc
bm

k 

Co
rr
el
a'

on
 c
oe

ffi
ci
en

t 

CPU2006 

(b) Power-per-cycle

Fig. 15. Correlation coefficient for IPC and power-per-cycle between the synthetic and original for different machine configurations for SPEC CPU2006

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

A
da
lin
e 

BP
N
 

G
A
 

EL
O
 

LM
G
C 

H
M
M
 

N
J 

pN
N
x 

EC
G
SY
N
 

re
ed

_s
ol
om

on
 

ha
va
l 

KH
A
ZA

D
 

sh
a2
 

av
g 

Co
rr
el
a'

on
 c
oe

ffi
ci
en

t 

ImplantBench Workloads 

(a) IPC

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

A
da
lin
e 

BP
N
 

G
A
 

EL
O
 

LM
G
C 

H
M
M
 

N
J 

pN
N
x 

EC
G
SY
N
 

re
ed

_s
ol
om

on
 

ha
va
l 

KH
A
ZA

D
 

sh
a2
 

av
g 

Co
rr
el
a'

on
 c
oe

ffi
ci
en

t 

ImplantBench workloads 

(b) Power-per-cycle

Fig. 16. Correlation coefficient between the IPC and power-per-cycle of the synthetic and the original for different machine configurations for ImplantBench

original for the different design points. The average of the
correlation coefficient for IPC is 0.95 for CPU2006. Similarly,
Figure 15(b) shows the correlation coefficients of the synthetic
with the original in assessing the power per cycle metric for
CPU2006 workloads. The average correlation coefficient for
power is 0.98 for CPU2006. Figures 16(a) and 16(b) show the
correlation coefficients for IPC and power consumption for the
ImplantBench workloads. The average correlation coefficient
for IPC is 0.94 and that for power-per-cycle is 0.97 for the
ImplantBench workloads.

C. Cloning selected full runs of CPU2006

Previously, we have shown the efficacy of our synthetic
benchmark generation methodology by cloning the top simula-
tion point of the different workloads in the SPEC CPU2006
suite. This was due to the prohibitive simulation time that
is required to profile the CPU2006 workloads completely for
various machine configurations used in this study. To bring out
the effectiveness of the methodology for cloning complete runs,
we have profiled the complete runs of six workloads that have
relatively less simulation time than others and generated syn-
thetics for these workloads. We have compared the performance
of these synthetics with the original complete run in terms of
the IPC. Figure 17(a) shows the IPC comparison results. The
average error is 3.74% in IPC. The table in Figure 17(b) shows
the dynamic number of instructions in the full run and that
of the synthetic and the speedup that is achieved. An average
speedup of 5 million (in terms of instructions) is achieved for
the six selected workloads.

Our methodology is found to be superior in both accuracy
and miniaturization compared to simulation points. For the 100
Million instruction simpoints used in the study [3], the average

error when using all the simulation points (generated with
max number of simpoints=30) is around 5%. If, say a typical
benchmark had 15 simulation points, the number of dynamic
instructions simulated will be 1500 million instructions. It is
very common to use only one simulation point and the error
should be much higher when only one simulation point is
used. Rather our methodology gives only an error of 3.7%
for synthetics of length less than a million instructions. This
could be attributed to the reason that these synthetic instruction
sequences are constructed based on characteristics of the whole
program, rather simpoint methodology is forced to leave some
characteristics to be able to choose one contiguous dynamic
instruction chunk.

V. LIMITATIONS

The provided synthetics are intended to be used by designers,
who honestly want to explore the design space in early design
stage of a processor. The synthetics should not be used as a sole
method to publish final performance numbers. Other methods
should be used after narrowing down the design space. These
synthetics are not meant to be further optimized by the com-
piler, because, we have incorporated some characteristics that
should be exhibited by the synthetic already using embedded
assembly.

VI. SUMMARY

We have characterized the SPEC CPU2006 workloads mostly
based on microarchitecture-independent characteristics and
have formulated and provided miniaturized synthetic clones [6]
for these workloads to aid in accelerating architecture simula-
tions with simulation speedups of up to 6 orders of magnitude.
Along with that, we also provide the absolute and the relative
accuracies of these synthetics in predicting the performance

43

0 

0.5 

1 

1.5 

2 

2.5 

400.perlbench  456.hmmer  458.sjeng  462.libquantum  471.omnetpp  473.astar 

IP
C 

Orig 

Synth 

(a) IPC comparison

Benchmark
of Instns
in billions
(original)

of Instns in
millions
(synthetic)

Speedup

400.perlbench 184.5 0.19 936238
456.hmmer 2593.1 0.29 8724843
458.sjeng 3187.7 0.30 10357323

462.libquantum 1989.0 0.56 3495214
471.omnetpp 730.0 0.12 5692522

473.astar 966.5 0.25 3830291

(b) Dynamic number of instructions and speedup

Fig. 17. IPC comparison and speedup information for complete runs of some CPU2006 workloads

and the power consumption of various microarchitectures.
We compare our MLP aware synthetic benchmark generation
methodology with previous approaches [4] [5] and show that
the synthetic benchmarks generated using our methodology
have 12.5% more accuracy in terms of IPC in the representa-
tiveness of the synthetics to that of the original workloads. The
synthetics generated using our methodology have a correlation
coefficient of 0.95 and 0.98 for IPC and power-per-cycle for the
sensitivity to changes in microarchitecture. The availability of
the provided synthetic clones will enable computer architects
to use these latest workloads instead of the older SPEC suites
for future studies. We have also characterized and provided the
synthetic clones for the futuristic workloads to be used in bio-
implantable systems.

VII. ACKNOWLEDGEMENTS

This work has been supported and partially funded by
SRC under Task ID 1797.001, National Science Foundation
under grant numbers 0702694, 0751112, 0750847, 0750851,
0750852, 0750860, 0750868, 0750884 and 0751091, Lockheed
Martin, Sun Microsystems and IBM. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation or other sponsors.

REFERENCES

[1] Standard Performance Evaluation Corporation http://www.spec.org.
[2] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

Technical Report CS-TR-97-1342. University of Wisconsin, Madison,
June 1997.

[3] Karthik Ganesan, Deepak Panwar, and Lizy K John. Genera-
tion,Validation and Analysis of SPEC CPU2006 Simulation Points Based
on Branch, Memory, and TLB Characteristics. SPEC Benchmark Work-
shop 2009, Austin, TX, Lecture Notes in Computer Science 5419 Springer
pages 121-137, January 2009.

[4] Ajay Joshi, Lieven Eeckhout, Robert H.Bell Jr., and Lizy K. John. Perfor-
mance Cloning: A Technique for Disseminating Proprietary Applications
as Benchmarks. International Symposium on Workload Characterization.
(IISWC), October 2006.

[5] Robert H. Bell Jr., Rajiv R. Bhatia, Lizy K. John, Jeff Stuecheli, John
Griswell, Paul Tu, Louis Capps, Anton Blanchard, and Ravel Thai.
Automatic Testcase Synthesis and Performance Model Validation for
High Performance PowerPC Processors. IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), March 2006.

[6] http://lca.ece.utexas.edu/tools.html.
[7] Greg Hamerly, Erez Perelman, and Brad Calder. How to Use SimPoint

to Pick Simulation Points. ACM SIGMETRICS Performance Evaluation
Review, March 2004.

[8] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. SMARTS: Accelerating Microarchitecture Simulation via Rigorous
Statistical Sampling. Proceedings of the International Symposium on
Computer Architecture, (ISCA 2003), p. 84 - 95.

[9] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of Redun-
dancy and Application Balance in the SPEC CPU2006 Benchmark Suite.
The 34th International Symposium on Computer Architecture (ISCA),
June 2007.

[10] Mark Oskin, Frederic T. Chong, and Matthew Farrens. HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor Design. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), 2000.

[11] Sebastien Nussbaum and James E. Smith. Modeling Superscalar Pro-
cessors via Statistical Simulation. International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2001.

[12] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De Boss-
chere, and Lizy K. John. Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies. Proceedings.
31st Annual International Symposium on Computer Architecture, (ISCA),
2004.

[13] Wing Shing Wong and Robert J. T. Morris. Benchmark Synthesis Using
the LRU Cache Hit Function. IEEE Transactions on Computers, 1988.

[14] Cheng-Ta Hsieh and M. Pedram. Microprocessor power estimation using
profile-driven program synthesis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,, November 1998.

[15] E.S. Sorenson and J.K. Flanagan. Evaluating synthetic trace models using
locality surfaces. 2002. WWC-5. 2002 IEEE International Workshop on
Workload Characterization, November 2002.

[16] Stijn Eyerman and Lieven Eeckhout. A Memory-Level Parallelism Aware
Fetch Policy for SMT Processors. IEEE 13th International Symposium
on High Performance Computer Architecture, 2007. (HPCA), February
2007.

[17] Zhanpeng Jin and Allen C. Cheng. ImplantBench: Characterizing and
Projecting Representative Benchmarks for Emerging Bio-Implantable
Computing. IEEE Micro (IEEE Micro), 28(4):71-91, July/August 2008.

[18] Haungs M, Sallee P, and Farrens M. Branch Transition Tate: A New
Metric For Improved Branch Classification Analysis. Sixth Interna-
tional Symposium on High-Performance Computer Architecture (HPCA)
Page(s):241 - 25, January 2000.

[19] Ajay Joshi, Lieven Eeckhout, Jr. Robert H. Bell, and Lizy K. John. Dis-
tilling the Essence Of Proprietary Workloads Into Miniature Benchmarks.
ACM Transactions on Architecture and Code Optimization (TACO),
August 2008.

[20] Margaret Martonosi, Vivek Tiwari, and David Brooks. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimizations. isca,
pp.83, 27th Annual International Symposium on Computer Architecture
(ISCA 2000).

[21] Engin Ipek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski,
and Martin Schulz. ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and
operating systems, Oct 2006.

[22] Benjamin C. Lee and David M. Brooks. Accurate and efficient regres-
sion modeling for microarchitectural performance and power prediction.
ASPLOS-XII: Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating systems, Oct
2006.

44

