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Abstract 
 

Estimating the maximum power and thermal 

characteristics of a processor is essential for designing 

its power delivery system, packaging, cooling, and 

power/thermal management schemes. Typical 

benchmark suites used in performance evaluation do 

not stress the processor to its limit though, and current 

practice in industry is to develop artificial benchmarks 

that are specifically written to generate maximum 

processor (component) activity. However, manually 

developing and tuning so called stressmarks is 

extremely tedious and time-consuming while requiring 

an intimate understanding of the processor. 

A synthetic program that can be tuned to produce 

a variety of benchmark characteristics would 

significantly help in addressing this problem by 

enabling the automatic exploration of the large 

temperature and power design space. This paper 

demonstrates that with a suitable choice of only 40 

hardware-independent program characteristics related 

to the instruction mix, instruction-level parallelism, 

control flow behavior, and memory access patterns, it 

is possible to generate a synthetic benchmark whose 

performance relates to that of general-purpose and 

commercial applications. Leveraging this abstract 

workload modeling approach, we propose 

StressMaker, a framework that uses machine learning 

for the automated generation of stressmarks. A 

comparison with an exhaustive exploration of a large 

power design space demonstrates that StressMaker is 

very effective in automatically generating stressmarks 

in a limited amount of time. 

 

1. Introduction 
 

In recent years, energy, power, power density, 

thermal hot spots, voltage variation, etc., have emerged 

as first-class constraints in the design of high-

performance microprocessors [5][12][13][14][18][30]. 

As a result, along with performance, it has become 

extremely important to measure and analyze power, 

energy, and temperature related design concerns at all 

stages in a microprocessor design flow – from early-

stage exploration, microarchitecture definition, 

register-transfer-level (RTL) description, to circuit-

level implementation.  

In order to design a power- and temperature-aware 

microprocessor it is not only important to evaluate the 

design’s power, energy and thermal characteristics 

when executing a typical workload, but also to evaluate 

its maximum power and operating temperature 

characteristics. In other words, it is also important to 

analyze the impact of application code sequences that 

could stress the processor’s power and thermal 

characteristics – although these code sequences are 

infrequent and may only occur in a short burst 

[13][28][34]. Worst-case maximum power dissipation 

and operating temperature characterization is essential 

for evaluating dynamic power and temperature 

management strategies. Also, large instantaneous and 

localized power dissipation can cause overheating 

(hotspots) that can reduce the lifetime of a chip, 

degrade circuit performance, introduce timing errors, 

or even result in chip failure [30]. Estimating the 

maximum power dissipation and operating temperature 

of a processor is also vital for designing the thermal 

package (heat sink, cooling, etc.) for the chip and the 

power supply for the system [34]. As such, 

characterizing the maximum thermal characteristics 

and power limits is greatly needed by microarchitects, 

circuit designers, and electrical engineers.  

Industry-standard benchmarks though do not stress 

a processor to its limit, and are not particularly useful 

when characterizing the maximum power and thermal 

requirements of a design. Benchmarking committees 

such as the Standard Performance Evaluation 

Consortium (SPEC) and the EDN Embedded 

Microprocessor Benchmark Consortium (EEMBC) 

have recognized the need for power and energy 

oriented benchmarks, and are in the process of 

developing such benchmark suites [21][32].  However, 

these benchmarks too will only represent typical power 

consumption and not the worst-case maximum power 

dissipation.  Due to the lack of any standardized stress 

benchmarks, current practice in industry is to develop 

hand-coded synthetic ‘max-power’ benchmarks, or 

stressmarks, that are specifically written to generate 



maximum power consumption for a particular 

processor [2][13][28][34]. 

Developing stressmarks is both time-consuming 

and tedious. For example, a max-power stressmark has 

to generate maximum and simultaneous activity in each 

of the processor components; similarly, a thermal 

stressmark not only has to deal with power 

consumption but also with lateral coupling among 

microarchitecture blocks, role of the heat sink, etc. 

[30]. This requires a very detailed knowledge of the 

processor design [13], and given the complexity of 

modern day high-performance superscalar 

microprocessors, writing and tuning a stressmark can 

take up to several weeks [2]. In addition, given that a 

stressmark is tied to a specific processor, exploring 

multiple processor architectures in terms of their 

maximum power consumption and/or thermal 

characteristics quickly becomes infeasible and may 

stretch the time-to-market.  

In this paper we propose StressMaker, a 

framework for the automated generation of 

stressmarks. The key enabler to StressMaker is the 

ability to generate a synthetic benchmark from an 

abstract workload model. Stressmaker explores the 

workload space by ‘turning knobs’ in the abstract 

workload model, and uses machine learning for driving 

the search for stressmarks. 

 

In this paper, we make three major contributions: 

• We identify a limited set of hardware-independent 

program characteristics that collectively represent 

the abstract workload model. The key program 

characteristics relate to the instruction mix, 

instruction-level parallelism, control flow 

behavior, and memory access patterns. When used 

to generate a synthetic benchmark, the abstract 

workload model represents real-world workload 

behavior. Our experimental results using the SPEC 

CPU2000 benchmarks and three commercial 

workloads (SPECjbb2005, DBT2, and DBMS) 

report an average performance and power 

deviation of 10% and 7%, respectively, when 

comparing a real workload against its synthetic 

clone. 

• We propose StressMaker, a novel approach to 

automatically generate synthetic stressmarks for 

microprocessor design studies. StressMaker uses 

machine learning to explore the workload space by 

varying the program characteristics in the abstract 

workload model in search for stressmarks. The 

important advantage of StressMaker, next to being 

fully automated, is that it enables generating 

stressmarks for cases where manually writing a 

stressmark is difficult because of the complex 

hardware/software interactions in today’s high-

performance microprocessors. We demonstrate the 

feasibility and value of StressMaker by designing 

max-power, max-temperature, and dI/dt 

stressmarks. These stressmarks stress the processor 

much more than typical workloads, are close to 

optimal compared to an exhaustive search of the 

workload behavior space, and could serve as a 

starting point for detailed power/thermal analysis. 

• We develop a framework, BenchMaker, which is 

parameterized to generate synthetic benchmarks 

that can be executed on real hardware, execution-

driven simulators, and RTL models. StressMaker 

is just one of the many useful applications of 

BenchMaker. The parameterized nature of 

BenchMaker makes it an invaluable tool for 

exploring the workload space, and for gaining 

insight into how performance is affected by high-

level program characteristics. The computer 

architecture research community has recognized 

the need for developing parameterized workloads 

[31], and we believe that BenchMaker is a 

significant step towards achieving that goal.  

 

2. BenchMaker: Generating Parameterized 

Synthetic Workloads 
 

The key enabler to StressMaker is the ability to 

describe a synthetic benchmark from an abstract 

workload model. Figure 1 illustrates BenchMaker, our 

framework for generating synthetic benchmarks from a 

set of hardware-independent program characteristics. 

The program characteristics measure the inherent 

behavioral properties of the program, and, collectively, 

form the abstract workload model. This abstract 

workload model serves as input to the synthetic 

benchmark generator. The goal of parameterized 

synthetic workload modeling is to maintain good 

representativeness and good accuracy with a limited 

number of workload characteristics. To do so, we 

capture them at a coarse granularity using average 

statistics over the entire program. This is in contrast to 

prior work on synthetic benchmark generation [1][20] 

which models program characteristics at a fine 

granularity by capturing characteristics at the basic 

block and/or path level. Although measuring 

characteristics at a coarse granularity likely reduces the 

representativeness of the synthetic benchmarks 

compared to fine grained characteristics, this is key to 

enable the flexibility for generating benchmarks with 

characteristics of interest by simply ‘turning’ workload 

behavior ‘knobs’ – this property will be exploited in 

StressMaker for the automatic generation of 

stressmarks. In the next two subsections we describe 

the workload characteristics and the synthesis 

algorithm.  
 



 
Figure 1: BenchMaker framework for constructing 

parameterized synthetic benchmarks. 
 

2.1. Abstract Workload Model 
 

We use a collection of fundamental program 

characteristics that are independent of the underlying 

microarchitecture, and which relate to the instruction 

mix, control flow predictability, instruction-level-

parallelism (ILP), data locality, and instruction locality.  

We now describe these workload characteristics. 

Instruction Mix. The instruction mix of a program 

captures the relative frequency of short-latency and 

long-latency integer and floating-point operations, 

loads, stores and branches occurring in the dynamic 

instruction stream of a program. 

Instruction-Level Parallelism (ILP). The ILP is 

modeled by means of the inter-operation dependency 

distance, defined as the number of instructions in the 

dynamic instruction stream between the production 

(write) and consumption (read) of a register and/or 

memory value. We describe the inter-operation 

dependency distance as a cumulative distribution 

organized in eight buckets.  

Instruction and Data Footprint. We measure the 

instruction and data footprint of a program in terms of 

the total number of unique instruction and data 

addresses referenced by the program. 

Data Stream Strides. We model the data stream by 

means of a distribution of the local data strides, which 

was shown to be accurate for a variety of workloads, 

including pointer-chasing codes, see [19]. A local 

stride is defined as the delta in data memory addresses 

between successive memory accesses by a single static 

instruction. We describe the local strides in terms of 

32-byte block sizes (analogous to a cache line size), 

i.e., stride 0 refers to a local data stride of 0 to 31 bytes 

(consecutive addresses are within one cache line 

distance). The local strides are summarized as a 

histogram showing the percentage of memory access 

instructions with stride values of 0, 1, 2, etc. 

Branch Transition Rate. In order to model varying 

levels of control flow predictability we use an attribute 

called the branch transition rate [15]. The transition 

rate of a static branch is defined as the number of times 

it switches between taken and not-taken directions as it 

is executed, divided by the total number of times that 

the branch is executed. By definition, branches with 

very low transition rates are always biased towards 

either taken or not-taken, and are easy to predict. 

However, branches that transition between taken and 

not-taken sequences at a moderate rate are relatively 

more difficult to predict. 

To summarize, the 40 workload characteristics 

constituting the abstract workload model are described 

in Table 1. These workloads characteristics cover a 

wide range of program characteristics that affect 

overall workload behavior. If needed, the abstract 

workload model can be enhanced to model additional 

characteristics such as operand data values, hamming 

distances between consecutive instruction opcodes, etc. 
 

Table 1. Microarchitecture-independent characteristics 

constituting an abstract workload model. 

 

Category No. Characteristic 

insn mix 8 fraction integer short-latency insns 

fraction integer long-latency insns 

fraction fp short-latency insns 

fraction fp long-latency insns 

fraction integer loads 

fraction integer stores 

fraction fp loads 

fraction fp stores 

ILP 8 

 

 

8 probabilities constituting the register 

dependency distance distribution: 

dependency distance equal to 1 insn (insn is 

dependent on the previous insn in the 

dynamic insn stream), smaller than 2, 4, 6, 8, 

16, 32, and greater than 32 insns 

data locality 1 

10 

data footprint 

distribution of local stride values organized 

in 10 buckets 

insn locality 1 instruction footprint 

predictability 10 

 

2 

distribution of branch transition rate 

organized in 10 buckets 

avg and stdev of the dynamic basic block 

size 

 

2.2. Workload Synthesis Algorithm 
 

We now describe the algorithm to synthesize a 

synthetic benchmark from the abstract workload model 

– this algorithm is based on our prior work [20]. 

Benchmark synthesis comprises of five sub steps: (i) 

generating the synthetic benchmark spine using 

instruction mix and basic block analysis, (ii) memory 

access modeling, (iii) modeling branch predictability, 

(iv) register assignment, and (v) code generation. 



2.2.1. Generating Program Spine. A normal 

distribution function based on the average basic block 

size and its standard deviation is used to generate a 

linear chain of basic blocks. This linear chain of basic 

blocks forms the spine of the synthetic benchmark 

program. We use the instruction footprint of the 

program to decide on the length of the spine. After the 

spine has been instantiated, each basic block is 

populated based on the instruction mix characteristics, 

and each instruction operand is assigned a dependency 

distance – this is done using random number 

generation on the cumulative dependency distance 

distribution. 

 

2.2.2. Modeling Memory Access Patterns. For each 

memory access instruction in the synthetic benchmark 

we assign a stride value from the stride distribution 

function. The load or store instruction’s memory access 

patterns are modeled as a bounded stream of circular 

references, i.e., each memory operation walks through 

an array using the stride value assigned to it and then 

restarts from the first element of the array. The length 

of each array is simply the ratio of the data footprint of 

the program and the total number of static load or store 

instructions in the program. 

 

2.2.3. Modeling Branch Predictability. For each 

static branch in the spine of the program we assign a 

transition rate based on the specified transition rate 

distribution. We achieve this by configuring each basic 

block in the synthetic stream of instructions to alternate 

between taken and not-taken directions, such that the 

branch exhibits the desired transition rate at run time. 

A counter is incremented on each iteration count, and a 

modulo operation is used to decide whether the branch 

is taken or not taken.  

 

2.2.4. Register Assignment. In this step we use the 

dependency distances that were assigned to each 

instruction to assign register names. The number of 

registers that are used to satisfy the dependency 

distances is typically kept to a small value (typically 

around 10) to prevent the compiler from generating 

spill code.  

 

2.2.5. Code Generation. During the code generation 

phase, the instructions are emitted out with a header 

written in C, which contains initialization code that 

allocates memory using the malloc library call for 

modeling the memory access patterns. Each instruction 

is then emitted out with assembly code using asm 

statements embedded in C code. The instructions are 

targeted towards a specific ISA, Alpha in our case. 

However, the code generator can be modified to emit 

instructions for an ISA of interest. The volatile 

directive is used to prevent the compiler from 

reordering the sequence of instructions and changing 

the program characteristics in the synthetic benchmark. 

The entire program spine is executed in a loop whose 

number of iterations can be configured to control the 

dynamic instruction count of the program. This value is 

tuned to ensure that the synthetic benchmark’s 

execution characteristics converge to a stable value. 

Based on our experiments, for the workload 

characteristics used in this study, the synthetic 

benchmark execution converges to steady state in a 

maximum of 10 million dynamic instructions.  

 

3. StressMaker: Building Stressmarks 
 

The flow chart in Figure 2 illustrates the approach 

used by StressMaker to automatically generate 

stressmarks. In the first step, a synthetic benchmark is 

synthesized using BenchMaker from randomly chosen 

values for all the program characteristics in the abstract 

workload model. In the second step, the synthetic 

benchmark is run on the microprocessor model, and the 

value of the optimization objective to be stressed, such 

as power or temperature, is measured. The model used 

for simulation can be a high-level performance/power 

model, an RTL-level Verilog model, or a circuit-level 

implementation. In the third step, a decision to 

continue or stop is made based on the stress level 

placed by the synthetic benchmark. In the fourth step, 

machine learning is used to alter the values of the 

program characteristics in order to improve the stress 

level of the corresponding synthetic benchmark. This 

iterative process continues until the search process 

converges. The end result is a stressmark, a synthetic 

benchmark that optimizes the stress criterion of 

interest. 

 

 

Figure 2: StressMaker framework. 

The workload space built up by the abstract 

workload model is extremely large, and by 

consequence it is impossible to evaluate every design 



point. Therefore, we use a genetic algorithm to 

automatically search and prune the workload space to 

converge on a set of workload attributes that maximize 

an objective function of interest, such as power, 

temperature, etc. The goal of the genetic algorithm is to 

intelligently search the workload space by varying the 

workload characteristics in the abstract workload 

description, and optimize those characteristics towards 

a stressmark. Genetic Search initially randomly selects 

a set of design points, called a generation: these design 

points are randomly chosen abstract workload 

configurations. These design points are subsequently 

evaluated according to the objective function, also 

called the fitness function, e.g., maximum average 

power, maximum temperature, etc. – evaluating the 

fitness function of a design point requires simulating 

the corresponding synthetic benchmark. A new 

population, an offspring, which is a subset of these 

design points, is probabilistically selected by weighting 

the design points’ fitness functions, i.e., a fitter design 

point is more likely to be selected. Selection alone 

cannot introduce new design points in the search space, 

therefore mutation and crossover are performed to 

build the offspring generation. Crossover is performed, 

with probability pcross, by randomly exchanging parts of 

two selected design points from the current generation. 

The mutation operator prevents premature convergence 

to local optima by randomly altering parts of a design 

point, with a small probability pmut. The generational 

process is continued until a specified termination 

condition has been reached. In our experiments we 

specify the termination condition as the point when 

there is little or no improvement in the objective 

function across successive generations. We use the 

genetic search algorithm with pcross and pmut set to 0.95 

and 0.02, respectively. The end result of the genetic 

algorithm is an abstract workload configuration of 

which its synthetic benchmark stresses the objective 

function the most – this is the stressmark. 

 

4. Experimental Setup 

 
4.1. Simulation Infrastructure 
 

For evaluating BenchMaker, we use the sim-

alpha simulator that has been validated against the 

superscalar out-of-order Alpha 21264 processor [9]. 

For our StressMaker experiments we use the sim-

outorder simulator from the SimpleScalar Toolset 

v3.0. In order to estimate the power characteristics of 

the benchmarks we use an architectural power 

modeling tool, namely Wattch v1.02 [5] which was 

shown to provide good relative accuracy, and consider 

an aggressive clock gating mechanism (cc3). We use 

the hotfloorplanner tool to develop a layout for 

the sim-outorder pipeline, and use the HotSpot 

v3.1 tool to estimate the steady-state operating 

temperature based on average power [30]. The 

stressmarks are compiled using gcc, and are simulated 

for 10 million dynamic instructions. This small 

dynamic instruction count serves the needs in this 

paper, however, in case longer-running applications 

need to be considered, e.g., when studying the effect of 

temperature on (leakage) power consumption, the 

stressmarks can also be executed in a loop for a longer 

time. It should also be noted that StressMaker is 

agnostic to the underlying simulation model, and can 

be easily ported to a more accurate industry-standard 

simulators and/or power/temperature models.  

 
4.2. Benchmarks 
 

In order to evaluate the parameterized workload 

synthesis framework, we consider the SPEC CPU2000 

benchmarks and select one representative 100M-

instruction simulation point selected using SimPoint 

[29]. We also use traces from three commercial 

workloads – SPECjbb2005 (Java server workload), 

DBT2 (OLTP workload), and DBMS (a database 

management system workload). The commercial 

workload traces represent 30 million instructions once 

steady-state has been reached (all warehouses have 

been loaded), and were generated using the Simics full-

system simulator. 

 

4.3. Stressmark Design Space 
 

The workload characteristics form a multi-

dimensional space (instruction mix, ILP, branch 

predictability, instruction footprint, data footprint, and 

data stream strides). We bound the stressmark search 

space by discretizing and restricting the values along 

each dimension, see Table 2. This discretization does 

not affect the generality of the proposed methodology 

though – its purpose is to keep the evaluation in this 

paper tractable. The total design space comprises of 

250K points. We will evaluate the efficacy of the 

genetic search algorithm used in StressMaker against 

an exhaustive search in this 250K-points search space. 

 

4.4. Microarchitecture Configurations 
 

Table 3 summarizes the three different 

microarchitecture configurations considered in this 

paper, ranging from a modest 2-way configuration 

representative of an embedded microprocessor, to a 

very aggressive 8-way issue high-performance 

microprocessor. We use Config 2, a 4-wide superscalar 

processor, as the base configuration for our 

experiments. 



Table 2.  Stressmark design space. 

 
Dimension No. Values/Ranges 

instruction mix 

and basic block 

size 

10 Combinations where int, fp, load, 

store, and branch insns are set to low 

(10%), moderate (40%), and high 

(80%) 

instruction-level-

parallelism 

10 

 

 

Varying from all instructions with 

virtually no dependencies 

(dependency distance > 32 

instructions) to all instructions are 

dependent on the prior instruction 

(dependency distance of 1) 

data footprint 5 50K, 100K, 500K, 2M, and 5M 

unique data addresses 

data stream stride 

distribution 

10 Varying from 100% references with 

stride 0, up to 10% with stride 0 and 

90% with stride 10. 

instruction 

footprint 

5 600, 1800, 6000, and 20,000 unique 

instructions 

branch 

predictability 

10 Varying from 100% branches with 

transition rate below 10% to equal 

distribution of transition rate across all 

10 transition rate categories (0-10%, 

10-20%, etc.) 

 
Table 3.  Microarchitecture configurations evaluated. 

 
 Config 1 Config 2 Config 3 
L1 I- and D-cache  16 KB 

2-way 

32 KB 

4-way 

64 KB 

4-way 

Processor width 2-wide  4-wide  8-wide 

Branch predictor 2-level  hybrid 4KB hybrid 4KB 

L2 cache 256KB 

4-way 

4MB 

8-way 

4MB 

8-way 

ROB / LSQ 16 / 8 128 / 64  256 / 128  

Functional units 2 int 

1 fp 

4 int 

2 fp 

8 int 

4fp 

MEM access time 40 cycles 150 cycles 150 cycles 

 

 

5. Evaluation of BenchMaker 

 
In this section we evaluate BenchMaker’s 

accuracy by using it to generate synthetic benchmark 

versions of general-purpose (SPEC CPU2000 integer) 

and commercial (SPECjbb2005, DBT2, and DBMS) 

workloads – we obtain similar results for the SPEC 

CPU2000 floating-point benchmarks, and refer to [19] 

for a detailed analysis. We measure the program 

characteristics of the SPEC CPU2000 and commercial 

workloads and feed this abstract workload model to the 

BenchMaker framework to generate a synthetic clone 

benchmark with a 10M dynamic instruction count; we 

then compare the performance/power characteristics of 

the synthetic benchmark against the original workload. 

Figure 3 evaluates the accuracy of BenchMaker for 

estimating the pipeline instruction throughput 

measured in Instructions-Per-Cycle (IPC). We observe 

that the synthetic benchmark performance numbers 

track the real benchmark performance numbers very 

well. The average IPC prediction error is 10.9% and 

the maximum error is observed for mcf (19.9%). 

Figure 4 shows similar results for the Energy-Per-

Instruction (EPI) metric. The average error in 

estimating EPI from the synthetic benchmark is 7.5%, 

with a maximum error of 13.1% for mcf. 
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Figure 3: IPC for original and synthetic benchmarks. 
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Figure 4: EPI for original and synthetic benchmarks. 

 
Parameterization of workload metrics makes it 

possible to succinctly describe an application’s 

behavior using an abstract model with only a limited 

number (40) of fundamental coarse-grain program 

characteristics. This is in contrast to prior work in 

synthetic benchmark generation, which requires several 

thousands of fine-grain program characteristics [1][20]. 

BenchMaker trades accuracy (10.9% average error in 

IPC compared to less than 6% error in our prior work 

[20]) for flexibility to enable one to easily alter 

program characteristics and workload behavior.  

 

6. Evaluation of StressMaker  
 

We now evaluate StressMaker by generating 

various flavors of power and thermal stressmarks. 

Specifically, we apply StressMaker to automatically 

construct stressmarks for characterizing maximum 

average and single-cycle power, dI/dt stressmarks, 

thermal hotspots, and thermal stress patterns. We also 

evaluate the efficacy of StressMaker by comparing it 



against an exhaustive search of 250K points in the 

power design space. 

 

6.1. Maximum Sustainable Power  
 

The maximum sustainable power is the maximum 

average power that can be sustained indefinitely over 

many clock cycles. Estimating the maximum 

sustainable power is important for the design of the 

power delivery system and also the packaging 

requirements for the microprocessor. We use 

StressMaker to construct a stressmark for 

characterizing the maximum sustainable power of the 

baseline 4-wide microarchitecture (Config 2). 

Figure 5 shows a plot of the value of the best 

fitness function (maximum power consumption) in 

each generation during the iterative process of stress 

benchmark synthesis using the genetic algorithm. We 

terminate the search after 15 generations, requiring a 

total of 225 simulations. The number of generations 

required before the fitness function can be accepted 

depends on the search space and the microarchitecture. 

However, our experiments on three very different 

microarchitectures suggest that there is little 

improvement beyond 15 generations, and therefore for 

our experiments we terminate the search after 15 

generations. 
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Figure 5: Convergence of StressMaker: the maximum 

average power consumption for the stressmark across the 

multiple generations of the genetic search algorithm. 
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Figure 6: Power consumption for all 250K points in the 

workload design built up from Table 2. 

This ‘maximum sustainable power’ search process 

results in a stressmark that has a maximum average 

sustainable power-per-cycle of 48.8W. Figure 6 shows 

the results of an exhaustive search across all the 250K 

design points. These results show that the power of the 

stressmark is within 1% of the maximum power from 

the exhaustive search, i.e., the stressmark obtained 

through genetic searching achieves 99% of the 

maximum power observed from an exhaustive 

stressmark enumeration. In other words, StressMaker is 

highly effective in finding a stressmark, and also 

results in a three orders of magnitude speedup 

compared to exhaustive searching (225 versus 250K 

simulations). Automatically generating the stressmark 

on a 2GHz Intel Pentium Xeon processor using a cross 

compiler for Alpha and the sim-outorder performance 

model, takes 2.5 hours. Therefore, we believe 

StressMaker is an invaluable approach for an expert, 

because it can quickly narrow down a design space, 

and provide a stressmark that can be hand tuned to 

exercise worst-case behavior.  

 

Figure 7: Comparison of the power dissipation in the 

various microarchitecture units using stressmarks versus 

the max power consumption observed across all SPEC 

CPU2000 and commercial benchmarks. 

 

Figure 7 shows the maximum power dissipation of 

different microarchitecture units using the stressmark, 

along with the maximum power dissipation of that unit 

across all SPEC CPU2000 and commercial 

benchmarks – the benchmark labels in Figure 7 state 

which benchmark achieves the highest max power per 

microarchitecture unit, e.g., art achieves the highest 

power consumption (18W) in the issue logic across all 

benchmarks whereas the stressmark consumes 28W. 

The stressmark exercises all the microarchitecture units 

more than any of these benchmarks. In particular, the 

stressmark causes significantly higher power 

dissipation in the instruction window, L1 data cache, 

clock tree, and the issue logic.  

The workload characteristics of the max power 

stressmark are: (1) Instruction mix of 40% short-

latency floating-point operations, 40% short-latency 
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integer operations, 10% branch instructions, and 10% 

memory operations; (2) Mostly register dependency 

distances of greater than 32 instructions, i.e., very high 

level of ILP, however there still are some dependencies 

to fill up the issue queue; (3) 80% of branches having a 

transition rate of less than 10%, and the remaining 20% 

branches have a transition rate between 10-20% – 

recall that branches with very low transition rates are 

highly predictable; (4) Data strides having 95% of the 

references to the same cache line and 5% with 

references to the next cache line; (5) Instruction 

footprint of 1800 instructions; and (6) Data Footprint 

of 100K bytes. These workload characteristics suggest 

that the stressmark creates a scenario where the control 

flow of the program is highly predictable and hence 

there are no pipeline flushes, the functional units are 

kept busy, the issue logic does not stall due to large 

dependency distances, and the locality of the program 

is such that the data and instruction cache hit rates are 

extremely high. The characteristics of this stress 

benchmark are similar to the hand-crafted tests [2][13] 

that are tuned to maximize processor activity by fully 

and continuously utilizing the instruction issue logic, 

all of the execution units, and the major buses. 

However, the advantage over current practice in 

building hand-coded max-power stressmarks is that 

StressMaker provides an automatic process, resulting 

in substantial savings in time and effort. Also, the 

automated search process through a large workload 

space increases confidence in the results. 

 

6.2. Maximum Single-Cycle Power 
 

Maximum single-cycle power is defined as the 

maximum total power consumed during one clock 

cycle, and is important to estimate the maximum 

instantaneous current that can be drawn by the 

microprocessor from the power supply. We apply the 

StressMaker framework to automatically construct a 

stressmark that maximizes single-cycle power. The 

search process results in a benchmark that has a 

maximum single-cycle power dissipation of 72W. The 

workload characteristics of this benchmark are: (1) 

Instruction mix of 40% long-latency operations, 20% 

branches, and 40% memory operations; (2) Register 

dependency distance of greater than 32 instructions, 

i.e., very high level of ILP; (3) Equal distribution of 

branch transition rate across all the 10 categories; (4) 

10% of the data references have a local stride of 0, 

10% a stride of 1, and 80% have a stride of 3 cache 

lines; (5) Instruction footprint of 1800 instructions; and 

(6) Data footprint of 5M unique address. These 

characteristics suggest that the stressmark does not 

yield the best possible performance due to a mix of 

easy and difficult to predict branches (evenly 

distributed transition rates), possible issue stalls (large 

percentage of long-latency operations), and data cache 

misses (large footprint and strides). Therefore, it is not 

surprising that the average power consumption of this 

stressmark is only 32W. However, the overlapping of 

various events creates a condition where all units are 

simultaneously busy within a single cycle. 

Interestingly, the stressmark that maximizes the 

average sustainable power (Section 6.1) only has a 

maximum single-cycle power of 59.5W, and cannot be 

used to estimate maximum single-cycle power. Also, 

the maximum single-cycle power requirement of a 

SPEC CPU benchmark, mgrid, is only 57W. This 

demonstrates that the sequence of instructions resulting 

in maximum single-cycle power is very timing 

sensitive – even benchmarks that run for billions of 

cycles may not probabilistically hit upon this condition.  

To further validate StressMaker, the maximum 

instantaneous power consumption assuming all units 

are 100% active is 85W – this was computed by 

summing the power consumption of all the individual 

microarchitecture units and reflects the theoretical 

maximum. The 72W attained by the single-cycle max-

power stressmark achieves almost 85% of this 

maximum theoretical power consumption. 

 

6.3. dI/dt Stressmarks 
 

The dI/dt problem refers to large current swings 

leading to ripples on the supply voltage lines that may 

cause circuits to fail; the power delivery system should 

be able to handle these current swings. A dI/dt 

stressmark, which alternates high and low power 

consumption over short periods of time, can be used to 

characterize a microprocessor’s susceptibility to the 

dI/dt problem. Joseph et al. [18] have expressed the 

need for constructing dI/dt stressmarks and state that 

manually developing such a stressmark is extremely 

difficult due to knowledge required about the power, 

packaging, and timing characteristics of the processor. 

In order to study the applicability of StressMaker to 

automatically construct a dI/dt stressmark, we use 

StressMaker to generate two sequences of 200 

instructions – one for maximum single-cycle power 

and the other for minimum single-cycle power. We 

then concatenate these two sequences of instructions 

and evaluate its power characteristics. Our experiments 

show that the power consumption in the benchmark 

shows a cyclic behavior at a period of 400 instructions 

– with 72W and 16W as the maximum and minimum 

single-cycle power consumption, respectively. Also, it 

is possible to change the frequency of the power 

oscillations by varying the number of instructions of 

the individual (maximum and single-cycle power) 

stressmarks. These experiments show that it is indeed 

possible to automatically generate a dI/dt stressmark, 

which is typically very difficult to hand-craft and tune. 



6.4. Comparing Stressmarks Across 

Microarchitectures 
 

We now study the sensitivity of stressmarks to a 

specific processor. We therefore generate max-power 

stressmarks for the three different microarchitectures 

described in Table 3, and analyze whether the 

stressmarks are similar across microarchitectures. The 

stressmarks generated for the three microarchitecture 

configurations are called stressmarks 1, 2 and 3, 

respectively. We then execute the three stressmarks on 

all three microarchitecture configurations. Figure 8 

shows the power consumption for each of the 

stressmarks on all three configurations. We observe 

that the stressmark synthesized for each 

microarchitecture configuration always results in 

maximum power consumption compared to the other 

two stressmarks, i.e., a stress benchmark generated for 

one microarchitecture does not result in maximum 

power for a different microarchitecture. In fact, a 

stressmark developed for one microarchitecture can 

result in extremely low power consumption on another 

microarchitecture, see for example Stressmark1 on 

Config3. 

The three stress benchmarks are similar in that 

they have highly predictable branches, small 

instruction and data footprints, and very large register 

dependency distances. However, their instruction 

mixes of computational operations are very different, 

depending on the number of functional units available 

per type. 

We conclude that the characteristics of stressmarks 

vary across microarchitecture designs. Therefore, 

separate custom stressmarks have to be constructed for 

different microarchitectures. This further motivates the 

importance of having an automated framework for 

generating stressmarks.  
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Figure 8: Mutual comparison of  stressmarks and 

microarchitectures. 

 

 

 

6.5. Creating Thermal Hotspots 
 

Applications can cause localized heating of 

specific units of a microarchitecture design, called 

hotspots, which can cause timing errors, and/or 

permanent chip damage. Therefore, to study the impact 

of hotspots in different microarchitecture units it is 

important to design stressmarks that can be used to 

vary the location of a hotspot [30]. 
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Figure 9: Comparison of the hotspots created by the 

stressmarks versus the SPEC CPU2000 and commercial 

benchmarks. 

 
We apply StressMaker to generate stressmarks that 

can create hotspots across different microarchitecture 

units on the floorplan. Figure 9 compares hotspots 

generated by StressMaker with the hotspots generated 

by the SPEC CPU2000 and commercial benchmarks. 

As compared to these benchmarks, the stressmarks are 

very effective in creating hotspots in the issue, register 

file, execution, and register remap units. 

 

6.6. Thermal Stress Patterns  
 

In order to support dynamic thermal management 

schemes it has become important to place on-chip 

sensors to monitor temperature at different locations on 

the chip. Conceptually, there can be applications that 

only stress a particular unit that is far from a sensor, 

causing hotspots that may not be visible to the distant 

sensor causing permanent damage to the chip [14][23]. 

Typically, only a few sensors can be placed on a chip. 

Therefore, the placement of sensors needs to be 

optimized based on the maximum thermal differential 

that can exist between different units on the chip. 

Hand-crafted tests have been typically used to develop 

such differentials [23]. StressMaker seems to be a 

natural way to optimize a complex objective function 

such as the temperature differential between two 

microarchitecture units. We selected a set of 

microarchitecture units and generated stressmarks to 

maximize the temperature difference between units that 

are not adjacent to each other. Table 4 shows the pair 

of units, maximum temperature differential created by 



the automatically generated stressmark, and the 

stressmark’s key behavioral characteristics. 

 
Table 4. Developing thermal stress patterns using 

StressMaker. 

 
Pair of 

Units 
T Diff 

(ºC) 
Workload characteristics of the stressmarks 

L2 & I-

Fetch 

44.6  (1) Small data footprint and short local strides 

that result in high L1 D-cache hit rates and no 

stress on L2, and (2) 80% short-latency insns 

with high ILP and highly predictable branches 

– keeping fetch busy without pipeline stalls. 

L2 & 

Register 

Remap 

48.4  (1) 40% memory operations, large data 

footprint, and long local strides to miss in L1 

and stress L2, and (2) 40% memory operations 

with very large dependency distances that put 

minimal stress on the register remap 

L2 & 

Exec 

44.4  (1) No memory operations, so no stress on L2, 

and (2) 40% short latency integer operations 

and 40% short latency floating-point 

operations that stress the execution unit.  

Branch 

Predictor 

& L2 

41.3  (1) 80% branches with transition rate equally 

distributed across all buckets (0-10%, … , 90-

100%) – a mix of difficult and easy to predict 

branches that stress the branch predictor, and 

(2) No memory operations, no stress on L2 

Issue & 

LSQ 

61.0 (1) 80% memory operations with small data 

footprint and short local strides stressing the 

load/store queue, and (2) limited activity in 

issue queue.  

 

7. Related Work 
 
Characterizing Power Consumption of CMOS circuits. 

A lot of work has been done in the VLSI community to 

develop techniques for estimating the power 

dissipation of a CMOS circuit. The primary approach 

in these techniques is to use statistical approaches and 

heuristics and to develop a test vector pattern that 

causes maximum switching activity in the circuit 

[8][16][22][24][27][28][33]. Although the objective of 

this paper is the same, there are two key differences 

compared to our work. First, our technique aims at 

developing an assembly test program (as opposed to a 

test vector) that can be used for maximum power 

estimation at the microarchitecture level. Second, 

developing stressmarks provides insights into the 

interaction between workload behavior and 

power/thermal stress, which is not possible with a bit 

vector. 

 

Manually Developed Stressmarks. [11][12][13][34] 

refer to hand-crafted synthetic test cases developed in 

industry that have been used for estimating maximum 

power dissipation of a microprocessor. The Alpha 

Toast and Thumper hand-crafted stressmarks [11] 

stressed total power and dI/dt, respectively. In [23], 

stress benchmarks have been developed to generate 

temperature differentials across microarchitecture 

units. 

 

Tests for Performance & Functional Validation.  
Automatic test case synthesis for functional 

verification of microprocessors [3] has been proposed 

and there has been prior work on hand-crafting 

microbenchmarks for performance validation [4][9]. 

 

Statistical Simulation and Benchmark Synthesis. The 

primary objective of prior work in statistical simulation 

[10][25][26] and workload synthesis [1][17][20] is to 

reduce simulation time by cloning the performance of a 

program in a synthetic trace or benchmark, 

respectively. The key idea of these techniques is to 

capture the behavioral characteristics of a program 

execution in a statistical profile, and generate a 

synthetic trace or benchmark to reproduce the 

performance of the program. In contrast to this prior 

work, BenchMaker generates a synthetic benchmark 

from an abstract workload model consisting of a 

limited number of program characteristics. This 

enables exploring the workload space in search for 

stressmarks in the StressMaker framework. 

 

8. Conclusions 
 

Characterizing the maximum power dissipation 

and thermal characteristics of a microarchitecture is an 

important problem in industry. However, due to the 

complexity of modern microprocessors, and the need to 

construct synthetic test cases for various complex 

power and temperature phenomena, it is extremely 

tedious to manually develop and tune stressmarks for 

different stress criteria and microarchitectures.   

In this paper, we developed BenchMaker, a 

framework for constructing parameterized synthetic 

benchmarks from an abstract workload model. One of 

the key results from this paper is that it is possible to 

fully characterize a workload from a limited number of 

microarchitecture-independent program characteristics, 

and still maintain good accuracy with respect to real 

workloads. 

We subsequently leveraged BenchMaker by 

proposing a novel approach for automating the 

development process of stressmarks. StressMaker is a 

stressmark generation framework that uses 

BenchMaker and machine learning to automatically 

synthesize a stressmark from fundamental program 

characteristics by exploring the workload design space. 

We showed that StressMaker is very effective (1% 

deficiency) in constructing stress benchmarks for 

measuring max-power dissipation. And we provided 

case studies in which we constructed stressmarks for 

maximum average and single-cycle power 



consumption, dI/dt stressmarks, temperature hotspot 

stressmarks and thermal stress patterns. 

We believe StressMaker is a promising first step 

towards the automated generation of stressmarks. As 

part of our future work, we plan on evaluating 

StressMaker in an industrial environment and compare 

the stressmarks generated by StressMaker against 

manually developed stressmarks. Also, we will 

continue fine-tuning the abstract workload model in 

order to capture additional workload characteristics 

such as bit toggling in data values and instruction 

opcodes, as well as interactions between co-executing 

threads and programs in multi-threaded and multi-core 

processors. 
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