
Automated Microprocessor Stressmark Generation

Ajay M. Joshi* Lieven Eeckhout** Lizy K. John* Ciji Isen*

*The University of Texas at Austin

**Ghent University, Belgium
ajoshi@ece.utexas.edu, leeckhou@elis.ugent.be, ljohn@ece.utexas.edu

Abstract

Estimating the maximum power and thermal

characteristics of a processor is essential for designing

its power delivery system, packaging, cooling, and

power/thermal management schemes. Typical

benchmark suites used in performance evaluation do

not stress the processor to its limit though, and current

practice in industry is to develop artificial benchmarks

that are specifically written to generate maximum

processor (component) activity. However, manually

developing and tuning so called stressmarks is

extremely tedious and time-consuming while requiring

an intimate understanding of the processor.

A synthetic program that can be tuned to produce

a variety of benchmark characteristics would

significantly help in addressing this problem by

enabling the automatic exploration of the large

temperature and power design space. This paper

demonstrates that with a suitable choice of only 40

hardware-independent program characteristics related

to the instruction mix, instruction-level parallelism,

control flow behavior, and memory access patterns, it

is possible to generate a synthetic benchmark whose

performance relates to that of general-purpose and

commercial applications. Leveraging this abstract

workload modeling approach, we propose

StressMaker, a framework that uses machine learning

for the automated generation of stressmarks. A

comparison with an exhaustive exploration of a large

power design space demonstrates that StressMaker is

very effective in automatically generating stressmarks

in a limited amount of time.

1. Introduction

In recent years, energy, power, power density,

thermal hot spots, voltage variation, etc., have emerged

as first-class constraints in the design of high-

performance microprocessors [5][12][13][14][18][30].

As a result, along with performance, it has become

extremely important to measure and analyze power,

energy, and temperature related design concerns at all

stages in a microprocessor design flow – from early-

stage exploration, microarchitecture definition,

register-transfer-level (RTL) description, to circuit-

level implementation.

In order to design a power- and temperature-aware

microprocessor it is not only important to evaluate the

design’s power, energy and thermal characteristics

when executing a typical workload, but also to evaluate

its maximum power and operating temperature

characteristics. In other words, it is also important to

analyze the impact of application code sequences that

could stress the processor’s power and thermal

characteristics – although these code sequences are

infrequent and may only occur in a short burst

[13][28][34]. Worst-case maximum power dissipation

and operating temperature characterization is essential

for evaluating dynamic power and temperature

management strategies. Also, large instantaneous and

localized power dissipation can cause overheating

(hotspots) that can reduce the lifetime of a chip,

degrade circuit performance, introduce timing errors,

or even result in chip failure [30]. Estimating the

maximum power dissipation and operating temperature

of a processor is also vital for designing the thermal

package (heat sink, cooling, etc.) for the chip and the

power supply for the system [34]. As such,

characterizing the maximum thermal characteristics

and power limits is greatly needed by microarchitects,

circuit designers, and electrical engineers.

Industry-standard benchmarks though do not stress

a processor to its limit, and are not particularly useful

when characterizing the maximum power and thermal

requirements of a design. Benchmarking committees

such as the Standard Performance Evaluation

Consortium (SPEC) and the EDN Embedded

Microprocessor Benchmark Consortium (EEMBC)

have recognized the need for power and energy

oriented benchmarks, and are in the process of

developing such benchmark suites [21][32]. However,

these benchmarks too will only represent typical power

consumption and not the worst-case maximum power

dissipation. Due to the lack of any standardized stress

benchmarks, current practice in industry is to develop

hand-coded synthetic ‘max-power’ benchmarks, or

stressmarks, that are specifically written to generate

maximum power consumption for a particular

processor [2][13][28][34].

Developing stressmarks is both time-consuming

and tedious. For example, a max-power stressmark has

to generate maximum and simultaneous activity in each

of the processor components; similarly, a thermal

stressmark not only has to deal with power

consumption but also with lateral coupling among

microarchitecture blocks, role of the heat sink, etc.

[30]. This requires a very detailed knowledge of the

processor design [13], and given the complexity of

modern day high-performance superscalar

microprocessors, writing and tuning a stressmark can

take up to several weeks [2]. In addition, given that a

stressmark is tied to a specific processor, exploring

multiple processor architectures in terms of their

maximum power consumption and/or thermal

characteristics quickly becomes infeasible and may

stretch the time-to-market.

In this paper we propose StressMaker, a

framework for the automated generation of

stressmarks. The key enabler to StressMaker is the

ability to generate a synthetic benchmark from an

abstract workload model. Stressmaker explores the

workload space by ‘turning knobs’ in the abstract

workload model, and uses machine learning for driving

the search for stressmarks.

In this paper, we make three major contributions:

• We identify a limited set of hardware-independent

program characteristics that collectively represent

the abstract workload model. The key program

characteristics relate to the instruction mix,

instruction-level parallelism, control flow

behavior, and memory access patterns. When used

to generate a synthetic benchmark, the abstract

workload model represents real-world workload

behavior. Our experimental results using the SPEC

CPU2000 benchmarks and three commercial

workloads (SPECjbb2005, DBT2, and DBMS)

report an average performance and power

deviation of 10% and 7%, respectively, when

comparing a real workload against its synthetic

clone.

• We propose StressMaker, a novel approach to

automatically generate synthetic stressmarks for

microprocessor design studies. StressMaker uses

machine learning to explore the workload space by

varying the program characteristics in the abstract

workload model in search for stressmarks. The

important advantage of StressMaker, next to being

fully automated, is that it enables generating

stressmarks for cases where manually writing a

stressmark is difficult because of the complex

hardware/software interactions in today’s high-

performance microprocessors. We demonstrate the

feasibility and value of StressMaker by designing

max-power, max-temperature, and dI/dt

stressmarks. These stressmarks stress the processor

much more than typical workloads, are close to

optimal compared to an exhaustive search of the

workload behavior space, and could serve as a

starting point for detailed power/thermal analysis.

• We develop a framework, BenchMaker, which is

parameterized to generate synthetic benchmarks

that can be executed on real hardware, execution-

driven simulators, and RTL models. StressMaker

is just one of the many useful applications of

BenchMaker. The parameterized nature of

BenchMaker makes it an invaluable tool for

exploring the workload space, and for gaining

insight into how performance is affected by high-

level program characteristics. The computer

architecture research community has recognized

the need for developing parameterized workloads

[31], and we believe that BenchMaker is a

significant step towards achieving that goal.

2. BenchMaker: Generating Parameterized

Synthetic Workloads

The key enabler to StressMaker is the ability to

describe a synthetic benchmark from an abstract

workload model. Figure 1 illustrates BenchMaker, our

framework for generating synthetic benchmarks from a

set of hardware-independent program characteristics.

The program characteristics measure the inherent

behavioral properties of the program, and, collectively,

form the abstract workload model. This abstract

workload model serves as input to the synthetic

benchmark generator. The goal of parameterized

synthetic workload modeling is to maintain good

representativeness and good accuracy with a limited

number of workload characteristics. To do so, we

capture them at a coarse granularity using average

statistics over the entire program. This is in contrast to

prior work on synthetic benchmark generation [1][20]

which models program characteristics at a fine

granularity by capturing characteristics at the basic

block and/or path level. Although measuring

characteristics at a coarse granularity likely reduces the

representativeness of the synthetic benchmarks

compared to fine grained characteristics, this is key to

enable the flexibility for generating benchmarks with

characteristics of interest by simply ‘turning’ workload

behavior ‘knobs’ – this property will be exploited in

StressMaker for the automatic generation of

stressmarks. In the next two subsections we describe

the workload characteristics and the synthesis

algorithm.

Figure 1: BenchMaker framework for constructing

parameterized synthetic benchmarks.

2.1. Abstract Workload Model

We use a collection of fundamental program

characteristics that are independent of the underlying

microarchitecture, and which relate to the instruction

mix, control flow predictability, instruction-level-

parallelism (ILP), data locality, and instruction locality.

We now describe these workload characteristics.

Instruction Mix. The instruction mix of a program

captures the relative frequency of short-latency and

long-latency integer and floating-point operations,

loads, stores and branches occurring in the dynamic

instruction stream of a program.

Instruction-Level Parallelism (ILP). The ILP is

modeled by means of the inter-operation dependency

distance, defined as the number of instructions in the

dynamic instruction stream between the production

(write) and consumption (read) of a register and/or

memory value. We describe the inter-operation

dependency distance as a cumulative distribution

organized in eight buckets.

Instruction and Data Footprint. We measure the

instruction and data footprint of a program in terms of

the total number of unique instruction and data

addresses referenced by the program.

Data Stream Strides. We model the data stream by

means of a distribution of the local data strides, which

was shown to be accurate for a variety of workloads,

including pointer-chasing codes, see [19]. A local

stride is defined as the delta in data memory addresses

between successive memory accesses by a single static

instruction. We describe the local strides in terms of

32-byte block sizes (analogous to a cache line size),

i.e., stride 0 refers to a local data stride of 0 to 31 bytes

(consecutive addresses are within one cache line

distance). The local strides are summarized as a

histogram showing the percentage of memory access

instructions with stride values of 0, 1, 2, etc.

Branch Transition Rate. In order to model varying

levels of control flow predictability we use an attribute

called the branch transition rate [15]. The transition

rate of a static branch is defined as the number of times

it switches between taken and not-taken directions as it

is executed, divided by the total number of times that

the branch is executed. By definition, branches with

very low transition rates are always biased towards

either taken or not-taken, and are easy to predict.

However, branches that transition between taken and

not-taken sequences at a moderate rate are relatively

more difficult to predict.

To summarize, the 40 workload characteristics

constituting the abstract workload model are described

in Table 1. These workloads characteristics cover a

wide range of program characteristics that affect

overall workload behavior. If needed, the abstract

workload model can be enhanced to model additional

characteristics such as operand data values, hamming

distances between consecutive instruction opcodes, etc.

Table 1. Microarchitecture-independent characteristics

constituting an abstract workload model.

Category No. Characteristic

insn mix 8 fraction integer short-latency insns

fraction integer long-latency insns

fraction fp short-latency insns

fraction fp long-latency insns

fraction integer loads

fraction integer stores

fraction fp loads

fraction fp stores

ILP 8

8 probabilities constituting the register

dependency distance distribution:

dependency distance equal to 1 insn (insn is

dependent on the previous insn in the

dynamic insn stream), smaller than 2, 4, 6, 8,

16, 32, and greater than 32 insns

data locality 1

10

data footprint

distribution of local stride values organized

in 10 buckets

insn locality 1 instruction footprint

predictability 10

2

distribution of branch transition rate

organized in 10 buckets

avg and stdev of the dynamic basic block

size

2.2. Workload Synthesis Algorithm

We now describe the algorithm to synthesize a

synthetic benchmark from the abstract workload model

– this algorithm is based on our prior work [20].

Benchmark synthesis comprises of five sub steps: (i)

generating the synthetic benchmark spine using

instruction mix and basic block analysis, (ii) memory

access modeling, (iii) modeling branch predictability,

(iv) register assignment, and (v) code generation.

2.2.1. Generating Program Spine. A normal

distribution function based on the average basic block

size and its standard deviation is used to generate a

linear chain of basic blocks. This linear chain of basic

blocks forms the spine of the synthetic benchmark

program. We use the instruction footprint of the

program to decide on the length of the spine. After the

spine has been instantiated, each basic block is

populated based on the instruction mix characteristics,

and each instruction operand is assigned a dependency

distance – this is done using random number

generation on the cumulative dependency distance

distribution.

2.2.2. Modeling Memory Access Patterns. For each

memory access instruction in the synthetic benchmark

we assign a stride value from the stride distribution

function. The load or store instruction’s memory access

patterns are modeled as a bounded stream of circular

references, i.e., each memory operation walks through

an array using the stride value assigned to it and then

restarts from the first element of the array. The length

of each array is simply the ratio of the data footprint of

the program and the total number of static load or store

instructions in the program.

2.2.3. Modeling Branch Predictability. For each

static branch in the spine of the program we assign a

transition rate based on the specified transition rate

distribution. We achieve this by configuring each basic

block in the synthetic stream of instructions to alternate

between taken and not-taken directions, such that the

branch exhibits the desired transition rate at run time.

A counter is incremented on each iteration count, and a

modulo operation is used to decide whether the branch

is taken or not taken.

2.2.4. Register Assignment. In this step we use the

dependency distances that were assigned to each

instruction to assign register names. The number of

registers that are used to satisfy the dependency

distances is typically kept to a small value (typically

around 10) to prevent the compiler from generating

spill code.

2.2.5. Code Generation. During the code generation

phase, the instructions are emitted out with a header

written in C, which contains initialization code that

allocates memory using the malloc library call for

modeling the memory access patterns. Each instruction

is then emitted out with assembly code using asm

statements embedded in C code. The instructions are

targeted towards a specific ISA, Alpha in our case.

However, the code generator can be modified to emit

instructions for an ISA of interest. The volatile

directive is used to prevent the compiler from

reordering the sequence of instructions and changing

the program characteristics in the synthetic benchmark.

The entire program spine is executed in a loop whose

number of iterations can be configured to control the

dynamic instruction count of the program. This value is

tuned to ensure that the synthetic benchmark’s

execution characteristics converge to a stable value.

Based on our experiments, for the workload

characteristics used in this study, the synthetic

benchmark execution converges to steady state in a

maximum of 10 million dynamic instructions.

3. StressMaker: Building Stressmarks

The flow chart in Figure 2 illustrates the approach

used by StressMaker to automatically generate

stressmarks. In the first step, a synthetic benchmark is

synthesized using BenchMaker from randomly chosen

values for all the program characteristics in the abstract

workload model. In the second step, the synthetic

benchmark is run on the microprocessor model, and the

value of the optimization objective to be stressed, such

as power or temperature, is measured. The model used

for simulation can be a high-level performance/power

model, an RTL-level Verilog model, or a circuit-level

implementation. In the third step, a decision to

continue or stop is made based on the stress level

placed by the synthetic benchmark. In the fourth step,

machine learning is used to alter the values of the

program characteristics in order to improve the stress

level of the corresponding synthetic benchmark. This

iterative process continues until the search process

converges. The end result is a stressmark, a synthetic

benchmark that optimizes the stress criterion of

interest.

Figure 2: StressMaker framework.

The workload space built up by the abstract

workload model is extremely large, and by

consequence it is impossible to evaluate every design

point. Therefore, we use a genetic algorithm to

automatically search and prune the workload space to

converge on a set of workload attributes that maximize

an objective function of interest, such as power,

temperature, etc. The goal of the genetic algorithm is to

intelligently search the workload space by varying the

workload characteristics in the abstract workload

description, and optimize those characteristics towards

a stressmark. Genetic Search initially randomly selects

a set of design points, called a generation: these design

points are randomly chosen abstract workload

configurations. These design points are subsequently

evaluated according to the objective function, also

called the fitness function, e.g., maximum average

power, maximum temperature, etc. – evaluating the

fitness function of a design point requires simulating

the corresponding synthetic benchmark. A new

population, an offspring, which is a subset of these

design points, is probabilistically selected by weighting

the design points’ fitness functions, i.e., a fitter design

point is more likely to be selected. Selection alone

cannot introduce new design points in the search space,

therefore mutation and crossover are performed to

build the offspring generation. Crossover is performed,

with probability pcross, by randomly exchanging parts of

two selected design points from the current generation.

The mutation operator prevents premature convergence

to local optima by randomly altering parts of a design

point, with a small probability pmut. The generational

process is continued until a specified termination

condition has been reached. In our experiments we

specify the termination condition as the point when

there is little or no improvement in the objective

function across successive generations. We use the

genetic search algorithm with pcross and pmut set to 0.95

and 0.02, respectively. The end result of the genetic

algorithm is an abstract workload configuration of

which its synthetic benchmark stresses the objective

function the most – this is the stressmark.

4. Experimental Setup

4.1. Simulation Infrastructure

For evaluating BenchMaker, we use the sim-

alpha simulator that has been validated against the

superscalar out-of-order Alpha 21264 processor [9].

For our StressMaker experiments we use the sim-

outorder simulator from the SimpleScalar Toolset

v3.0. In order to estimate the power characteristics of

the benchmarks we use an architectural power

modeling tool, namely Wattch v1.02 [5] which was

shown to provide good relative accuracy, and consider

an aggressive clock gating mechanism (cc3). We use

the hotfloorplanner tool to develop a layout for

the sim-outorder pipeline, and use the HotSpot

v3.1 tool to estimate the steady-state operating

temperature based on average power [30]. The

stressmarks are compiled using gcc, and are simulated

for 10 million dynamic instructions. This small

dynamic instruction count serves the needs in this

paper, however, in case longer-running applications

need to be considered, e.g., when studying the effect of

temperature on (leakage) power consumption, the

stressmarks can also be executed in a loop for a longer

time. It should also be noted that StressMaker is

agnostic to the underlying simulation model, and can

be easily ported to a more accurate industry-standard

simulators and/or power/temperature models.

4.2. Benchmarks

In order to evaluate the parameterized workload

synthesis framework, we consider the SPEC CPU2000

benchmarks and select one representative 100M-

instruction simulation point selected using SimPoint

[29]. We also use traces from three commercial

workloads – SPECjbb2005 (Java server workload),

DBT2 (OLTP workload), and DBMS (a database

management system workload). The commercial

workload traces represent 30 million instructions once

steady-state has been reached (all warehouses have

been loaded), and were generated using the Simics full-

system simulator.

4.3. Stressmark Design Space

The workload characteristics form a multi-

dimensional space (instruction mix, ILP, branch

predictability, instruction footprint, data footprint, and

data stream strides). We bound the stressmark search

space by discretizing and restricting the values along

each dimension, see Table 2. This discretization does

not affect the generality of the proposed methodology

though – its purpose is to keep the evaluation in this

paper tractable. The total design space comprises of

250K points. We will evaluate the efficacy of the

genetic search algorithm used in StressMaker against

an exhaustive search in this 250K-points search space.

4.4. Microarchitecture Configurations

Table 3 summarizes the three different

microarchitecture configurations considered in this

paper, ranging from a modest 2-way configuration

representative of an embedded microprocessor, to a

very aggressive 8-way issue high-performance

microprocessor. We use Config 2, a 4-wide superscalar

processor, as the base configuration for our

experiments.

Table 2. Stressmark design space.

Dimension No. Values/Ranges

instruction mix

and basic block

size

10 Combinations where int, fp, load,

store, and branch insns are set to low

(10%), moderate (40%), and high

(80%)

instruction-level-

parallelism

10

Varying from all instructions with

virtually no dependencies

(dependency distance > 32

instructions) to all instructions are

dependent on the prior instruction

(dependency distance of 1)

data footprint 5 50K, 100K, 500K, 2M, and 5M

unique data addresses

data stream stride

distribution

10 Varying from 100% references with

stride 0, up to 10% with stride 0 and

90% with stride 10.

instruction

footprint

5 600, 1800, 6000, and 20,000 unique

instructions

branch

predictability

10 Varying from 100% branches with

transition rate below 10% to equal

distribution of transition rate across all

10 transition rate categories (0-10%,

10-20%, etc.)

Table 3. Microarchitecture configurations evaluated.

 Config 1 Config 2 Config 3
L1 I- and D-cache 16 KB

2-way

32 KB

4-way

64 KB

4-way

Processor width 2-wide 4-wide 8-wide

Branch predictor 2-level hybrid 4KB hybrid 4KB

L2 cache 256KB

4-way

4MB

8-way

4MB

8-way

ROB / LSQ 16 / 8 128 / 64 256 / 128

Functional units 2 int

1 fp

4 int

2 fp

8 int

4fp

MEM access time 40 cycles 150 cycles 150 cycles

5. Evaluation of BenchMaker

In this section we evaluate BenchMaker’s

accuracy by using it to generate synthetic benchmark

versions of general-purpose (SPEC CPU2000 integer)

and commercial (SPECjbb2005, DBT2, and DBMS)

workloads – we obtain similar results for the SPEC

CPU2000 floating-point benchmarks, and refer to [19]

for a detailed analysis. We measure the program

characteristics of the SPEC CPU2000 and commercial

workloads and feed this abstract workload model to the

BenchMaker framework to generate a synthetic clone

benchmark with a 10M dynamic instruction count; we

then compare the performance/power characteristics of

the synthetic benchmark against the original workload.

Figure 3 evaluates the accuracy of BenchMaker for

estimating the pipeline instruction throughput

measured in Instructions-Per-Cycle (IPC). We observe

that the synthetic benchmark performance numbers

track the real benchmark performance numbers very

well. The average IPC prediction error is 10.9% and

the maximum error is observed for mcf (19.9%).

Figure 4 shows similar results for the Energy-Per-

Instruction (EPI) metric. The average error in

estimating EPI from the synthetic benchmark is 7.5%,

with a maximum error of 13.1% for mcf.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

b
z
ip

2

c
ra

ft
y

g
c
c

g
z
ip

m
c
f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

d
b

t2

d
b

m
s

S
P

E
C

jb
b

2
0

0
5

In
s
tr

u
c
ti
o

n
s
-P

e
r-

C
y
cl

e

Original Benchmark Synthetic Benchmark

Figure 3: IPC for original and synthetic benchmarks.

0

5

10

15

20

25

30

35

b
z
ip

2

c
ra

ft
y

g
c
c

g
z
ip

m
c
f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

d
b

t2

d
b

m
s

S
P

E
C

jb
b

2
0

0
5

E
n

e
rg

y
-P

e
r-

In
s
tr

u
c
ti
o

n
Original Benchmark Synthetic Benchmark

Figure 4: EPI for original and synthetic benchmarks.

Parameterization of workload metrics makes it

possible to succinctly describe an application’s

behavior using an abstract model with only a limited

number (40) of fundamental coarse-grain program

characteristics. This is in contrast to prior work in

synthetic benchmark generation, which requires several

thousands of fine-grain program characteristics [1][20].

BenchMaker trades accuracy (10.9% average error in

IPC compared to less than 6% error in our prior work

[20]) for flexibility to enable one to easily alter

program characteristics and workload behavior.

6. Evaluation of StressMaker

We now evaluate StressMaker by generating

various flavors of power and thermal stressmarks.

Specifically, we apply StressMaker to automatically

construct stressmarks for characterizing maximum

average and single-cycle power, dI/dt stressmarks,

thermal hotspots, and thermal stress patterns. We also

evaluate the efficacy of StressMaker by comparing it

against an exhaustive search of 250K points in the

power design space.

6.1. Maximum Sustainable Power

The maximum sustainable power is the maximum

average power that can be sustained indefinitely over

many clock cycles. Estimating the maximum

sustainable power is important for the design of the

power delivery system and also the packaging

requirements for the microprocessor. We use

StressMaker to construct a stressmark for

characterizing the maximum sustainable power of the

baseline 4-wide microarchitecture (Config 2).

Figure 5 shows a plot of the value of the best

fitness function (maximum power consumption) in

each generation during the iterative process of stress

benchmark synthesis using the genetic algorithm. We

terminate the search after 15 generations, requiring a

total of 225 simulations. The number of generations

required before the fitness function can be accepted

depends on the search space and the microarchitecture.

However, our experiments on three very different

microarchitectures suggest that there is little

improvement beyond 15 generations, and therefore for

our experiments we terminate the search after 15

generations.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Generation

P
o
w

e
r
(W

a
tt
s
)

Figure 5: Convergence of StressMaker: the maximum

average power consumption for the stressmark across the

multiple generations of the genetic search algorithm.

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Point in Design Space (Unit: Hundreds)

P
o

w
e
r

(W
a
tt

s
)

Figure 6: Power consumption for all 250K points in the

workload design built up from Table 2.

This ‘maximum sustainable power’ search process

results in a stressmark that has a maximum average

sustainable power-per-cycle of 48.8W. Figure 6 shows

the results of an exhaustive search across all the 250K

design points. These results show that the power of the

stressmark is within 1% of the maximum power from

the exhaustive search, i.e., the stressmark obtained

through genetic searching achieves 99% of the

maximum power observed from an exhaustive

stressmark enumeration. In other words, StressMaker is

highly effective in finding a stressmark, and also

results in a three orders of magnitude speedup

compared to exhaustive searching (225 versus 250K

simulations). Automatically generating the stressmark

on a 2GHz Intel Pentium Xeon processor using a cross

compiler for Alpha and the sim-outorder performance

model, takes 2.5 hours. Therefore, we believe

StressMaker is an invaluable approach for an expert,

because it can quickly narrow down a design space,

and provide a stressmark that can be hand tuned to

exercise worst-case behavior.

Figure 7: Comparison of the power dissipation in the

various microarchitecture units using stressmarks versus

the max power consumption observed across all SPEC

CPU2000 and commercial benchmarks.

Figure 7 shows the maximum power dissipation of

different microarchitecture units using the stressmark,

along with the maximum power dissipation of that unit

across all SPEC CPU2000 and commercial

benchmarks – the benchmark labels in Figure 7 state

which benchmark achieves the highest max power per

microarchitecture unit, e.g., art achieves the highest

power consumption (18W) in the issue logic across all

benchmarks whereas the stressmark consumes 28W.

The stressmark exercises all the microarchitecture units

more than any of these benchmarks. In particular, the

stressmark causes significantly higher power

dissipation in the instruction window, L1 data cache,

clock tree, and the issue logic.

The workload characteristics of the max power

stressmark are: (1) Instruction mix of 40% short-

latency floating-point operations, 40% short-latency

0

5

10

15

20

25

30
re

n
a
m

e

b
p

re
d

w
in

d
o

w

ls
q

re
g

fi
le

ic
a
c
h

e

d
c
a
c
h

e

d
c

a
c
h

e
2

re
s
u

lt
b

u
s

c
lo

c
k

a
lu

fe
tc

h

d
is

p
a
tc

h

is
s
u

e

P
o

w
e
r

(W
a
tt

s
)

StressBench SPEC CPU / Commercial

e
o
n

S
P

E
C

jb
b
2
0
0
5

g
z
ip

p
e
rl
b
m

k

a
rt g
z
ip

p
e
rl
b
m

k

m
c
f

m
e
s
a

m
e
s
a

g
z
ip

d
b
t2

p
e
rl
b
m

k

a
rt

integer operations, 10% branch instructions, and 10%

memory operations; (2) Mostly register dependency

distances of greater than 32 instructions, i.e., very high

level of ILP, however there still are some dependencies

to fill up the issue queue; (3) 80% of branches having a

transition rate of less than 10%, and the remaining 20%

branches have a transition rate between 10-20% –

recall that branches with very low transition rates are

highly predictable; (4) Data strides having 95% of the

references to the same cache line and 5% with

references to the next cache line; (5) Instruction

footprint of 1800 instructions; and (6) Data Footprint

of 100K bytes. These workload characteristics suggest

that the stressmark creates a scenario where the control

flow of the program is highly predictable and hence

there are no pipeline flushes, the functional units are

kept busy, the issue logic does not stall due to large

dependency distances, and the locality of the program

is such that the data and instruction cache hit rates are

extremely high. The characteristics of this stress

benchmark are similar to the hand-crafted tests [2][13]

that are tuned to maximize processor activity by fully

and continuously utilizing the instruction issue logic,

all of the execution units, and the major buses.

However, the advantage over current practice in

building hand-coded max-power stressmarks is that

StressMaker provides an automatic process, resulting

in substantial savings in time and effort. Also, the

automated search process through a large workload

space increases confidence in the results.

6.2. Maximum Single-Cycle Power

Maximum single-cycle power is defined as the

maximum total power consumed during one clock

cycle, and is important to estimate the maximum

instantaneous current that can be drawn by the

microprocessor from the power supply. We apply the

StressMaker framework to automatically construct a

stressmark that maximizes single-cycle power. The

search process results in a benchmark that has a

maximum single-cycle power dissipation of 72W. The

workload characteristics of this benchmark are: (1)

Instruction mix of 40% long-latency operations, 20%

branches, and 40% memory operations; (2) Register

dependency distance of greater than 32 instructions,

i.e., very high level of ILP; (3) Equal distribution of

branch transition rate across all the 10 categories; (4)

10% of the data references have a local stride of 0,

10% a stride of 1, and 80% have a stride of 3 cache

lines; (5) Instruction footprint of 1800 instructions; and

(6) Data footprint of 5M unique address. These

characteristics suggest that the stressmark does not

yield the best possible performance due to a mix of

easy and difficult to predict branches (evenly

distributed transition rates), possible issue stalls (large

percentage of long-latency operations), and data cache

misses (large footprint and strides). Therefore, it is not

surprising that the average power consumption of this

stressmark is only 32W. However, the overlapping of

various events creates a condition where all units are

simultaneously busy within a single cycle.

Interestingly, the stressmark that maximizes the

average sustainable power (Section 6.1) only has a

maximum single-cycle power of 59.5W, and cannot be

used to estimate maximum single-cycle power. Also,

the maximum single-cycle power requirement of a

SPEC CPU benchmark, mgrid, is only 57W. This

demonstrates that the sequence of instructions resulting

in maximum single-cycle power is very timing

sensitive – even benchmarks that run for billions of

cycles may not probabilistically hit upon this condition.

To further validate StressMaker, the maximum

instantaneous power consumption assuming all units

are 100% active is 85W – this was computed by

summing the power consumption of all the individual

microarchitecture units and reflects the theoretical

maximum. The 72W attained by the single-cycle max-

power stressmark achieves almost 85% of this

maximum theoretical power consumption.

6.3. dI/dt Stressmarks

The dI/dt problem refers to large current swings

leading to ripples on the supply voltage lines that may

cause circuits to fail; the power delivery system should

be able to handle these current swings. A dI/dt

stressmark, which alternates high and low power

consumption over short periods of time, can be used to

characterize a microprocessor’s susceptibility to the

dI/dt problem. Joseph et al. [18] have expressed the

need for constructing dI/dt stressmarks and state that

manually developing such a stressmark is extremely

difficult due to knowledge required about the power,

packaging, and timing characteristics of the processor.

In order to study the applicability of StressMaker to

automatically construct a dI/dt stressmark, we use

StressMaker to generate two sequences of 200

instructions – one for maximum single-cycle power

and the other for minimum single-cycle power. We

then concatenate these two sequences of instructions

and evaluate its power characteristics. Our experiments

show that the power consumption in the benchmark

shows a cyclic behavior at a period of 400 instructions

– with 72W and 16W as the maximum and minimum

single-cycle power consumption, respectively. Also, it

is possible to change the frequency of the power

oscillations by varying the number of instructions of

the individual (maximum and single-cycle power)

stressmarks. These experiments show that it is indeed

possible to automatically generate a dI/dt stressmark,

which is typically very difficult to hand-craft and tune.

6.4. Comparing Stressmarks Across

Microarchitectures

We now study the sensitivity of stressmarks to a

specific processor. We therefore generate max-power

stressmarks for the three different microarchitectures

described in Table 3, and analyze whether the

stressmarks are similar across microarchitectures. The

stressmarks generated for the three microarchitecture

configurations are called stressmarks 1, 2 and 3,

respectively. We then execute the three stressmarks on

all three microarchitecture configurations. Figure 8

shows the power consumption for each of the

stressmarks on all three configurations. We observe

that the stressmark synthesized for each

microarchitecture configuration always results in

maximum power consumption compared to the other

two stressmarks, i.e., a stress benchmark generated for

one microarchitecture does not result in maximum

power for a different microarchitecture. In fact, a

stressmark developed for one microarchitecture can

result in extremely low power consumption on another

microarchitecture, see for example Stressmark1 on

Config3.

The three stress benchmarks are similar in that

they have highly predictable branches, small

instruction and data footprints, and very large register

dependency distances. However, their instruction

mixes of computational operations are very different,

depending on the number of functional units available

per type.

We conclude that the characteristics of stressmarks

vary across microarchitecture designs. Therefore,

separate custom stressmarks have to be constructed for

different microarchitectures. This further motivates the

importance of having an automated framework for

generating stressmarks.

0

10

20

30

40

50

60

70

80

90

100

Conf iguration 1 Configuration 2 Conf iguration 3

P
o

w
e
r

(W
a
tt

s
)

stressmark1 stressmark2 stressmark3

Figure 8: Mutual comparison of stressmarks and

microarchitectures.

6.5. Creating Thermal Hotspots

Applications can cause localized heating of

specific units of a microarchitecture design, called

hotspots, which can cause timing errors, and/or

permanent chip damage. Therefore, to study the impact

of hotspots in different microarchitecture units it is

important to design stressmarks that can be used to

vary the location of a hotspot [30].

0

20

40

60

80

100

120

140

160

fe
tc

h

is
s
u

e

b
p

re
d

ls
q

re
g

fi
le

ic
a

c
h

e

d
c
a

c
h

e

a
lu

m
a

p

L
2

L
2

_
le

ft

L
2

_
ri

g
h

t

T
e
m

p
e
ra

tu
re

 (
d

e
g

 C
)

StressBench SPEC CPU / commercial

g
z
ip

a
rt

S
P

E
C

jb
b
2
0
0
5

m
e
s
a

p
e
rl
b
m

k

g
c
c

e
o
n

m
e
s
a

p
e
rl
b
m

k

d
b
t2

m
c
f

m
c
f

Figure 9: Comparison of the hotspots created by the

stressmarks versus the SPEC CPU2000 and commercial

benchmarks.

We apply StressMaker to generate stressmarks that

can create hotspots across different microarchitecture

units on the floorplan. Figure 9 compares hotspots

generated by StressMaker with the hotspots generated

by the SPEC CPU2000 and commercial benchmarks.

As compared to these benchmarks, the stressmarks are

very effective in creating hotspots in the issue, register

file, execution, and register remap units.

6.6. Thermal Stress Patterns

In order to support dynamic thermal management

schemes it has become important to place on-chip

sensors to monitor temperature at different locations on

the chip. Conceptually, there can be applications that

only stress a particular unit that is far from a sensor,

causing hotspots that may not be visible to the distant

sensor causing permanent damage to the chip [14][23].

Typically, only a few sensors can be placed on a chip.

Therefore, the placement of sensors needs to be

optimized based on the maximum thermal differential

that can exist between different units on the chip.

Hand-crafted tests have been typically used to develop

such differentials [23]. StressMaker seems to be a

natural way to optimize a complex objective function

such as the temperature differential between two

microarchitecture units. We selected a set of

microarchitecture units and generated stressmarks to

maximize the temperature difference between units that

are not adjacent to each other. Table 4 shows the pair

of units, maximum temperature differential created by

the automatically generated stressmark, and the

stressmark’s key behavioral characteristics.

Table 4. Developing thermal stress patterns using

StressMaker.

Pair of

Units
T Diff

(ºC)
Workload characteristics of the stressmarks

L2 & I-

Fetch

44.6 (1) Small data footprint and short local strides

that result in high L1 D-cache hit rates and no

stress on L2, and (2) 80% short-latency insns

with high ILP and highly predictable branches

– keeping fetch busy without pipeline stalls.

L2 &

Register

Remap

48.4 (1) 40% memory operations, large data

footprint, and long local strides to miss in L1

and stress L2, and (2) 40% memory operations

with very large dependency distances that put

minimal stress on the register remap

L2 &

Exec

44.4 (1) No memory operations, so no stress on L2,

and (2) 40% short latency integer operations

and 40% short latency floating-point

operations that stress the execution unit.

Branch

Predictor

& L2

41.3 (1) 80% branches with transition rate equally

distributed across all buckets (0-10%, … , 90-

100%) – a mix of difficult and easy to predict

branches that stress the branch predictor, and

(2) No memory operations, no stress on L2

Issue &

LSQ

61.0 (1) 80% memory operations with small data

footprint and short local strides stressing the

load/store queue, and (2) limited activity in

issue queue.

7. Related Work

Characterizing Power Consumption of CMOS circuits.

A lot of work has been done in the VLSI community to

develop techniques for estimating the power

dissipation of a CMOS circuit. The primary approach

in these techniques is to use statistical approaches and

heuristics and to develop a test vector pattern that

causes maximum switching activity in the circuit

[8][16][22][24][27][28][33]. Although the objective of

this paper is the same, there are two key differences

compared to our work. First, our technique aims at

developing an assembly test program (as opposed to a

test vector) that can be used for maximum power

estimation at the microarchitecture level. Second,

developing stressmarks provides insights into the

interaction between workload behavior and

power/thermal stress, which is not possible with a bit

vector.

Manually Developed Stressmarks. [11][12][13][34]

refer to hand-crafted synthetic test cases developed in

industry that have been used for estimating maximum

power dissipation of a microprocessor. The Alpha

Toast and Thumper hand-crafted stressmarks [11]

stressed total power and dI/dt, respectively. In [23],

stress benchmarks have been developed to generate

temperature differentials across microarchitecture

units.

Tests for Performance & Functional Validation.
Automatic test case synthesis for functional

verification of microprocessors [3] has been proposed

and there has been prior work on hand-crafting

microbenchmarks for performance validation [4][9].

Statistical Simulation and Benchmark Synthesis. The

primary objective of prior work in statistical simulation

[10][25][26] and workload synthesis [1][17][20] is to

reduce simulation time by cloning the performance of a

program in a synthetic trace or benchmark,

respectively. The key idea of these techniques is to

capture the behavioral characteristics of a program

execution in a statistical profile, and generate a

synthetic trace or benchmark to reproduce the

performance of the program. In contrast to this prior

work, BenchMaker generates a synthetic benchmark

from an abstract workload model consisting of a

limited number of program characteristics. This

enables exploring the workload space in search for

stressmarks in the StressMaker framework.

8. Conclusions

Characterizing the maximum power dissipation

and thermal characteristics of a microarchitecture is an

important problem in industry. However, due to the

complexity of modern microprocessors, and the need to

construct synthetic test cases for various complex

power and temperature phenomena, it is extremely

tedious to manually develop and tune stressmarks for

different stress criteria and microarchitectures.

In this paper, we developed BenchMaker, a

framework for constructing parameterized synthetic

benchmarks from an abstract workload model. One of

the key results from this paper is that it is possible to

fully characterize a workload from a limited number of

microarchitecture-independent program characteristics,

and still maintain good accuracy with respect to real

workloads.

We subsequently leveraged BenchMaker by

proposing a novel approach for automating the

development process of stressmarks. StressMaker is a

stressmark generation framework that uses

BenchMaker and machine learning to automatically

synthesize a stressmark from fundamental program

characteristics by exploring the workload design space.

We showed that StressMaker is very effective (1%

deficiency) in constructing stress benchmarks for

measuring max-power dissipation. And we provided

case studies in which we constructed stressmarks for

maximum average and single-cycle power

consumption, dI/dt stressmarks, temperature hotspot

stressmarks and thermal stress patterns.

We believe StressMaker is a promising first step

towards the automated generation of stressmarks. As

part of our future work, we plan on evaluating

StressMaker in an industrial environment and compare

the stressmarks generated by StressMaker against

manually developed stressmarks. Also, we will

continue fine-tuning the abstract workload model in

order to capture additional workload characteristics

such as bit toggling in data values and instruction

opcodes, as well as interactions between co-executing

threads and programs in multi-threaded and multi-core

processors.

Acknowledgements
The authors would like to thank the anonymous

reviewers for their valuable feedback. Ajay Joshi was

supported by an IBM Fellowship. Lieven Eeckhout is

supported by a Postdoctoral Fellowship with the Fund

for Scientific Research in Flanders (Belgium). This

work is also supported in part through the NSF award

numbers 0429806 and 0702694, an IBM Faculty

Partnership Award, the UGent-BOF project 01J14407,

the FWO project G.0255.08, and HiPEAC.

References

[1] R. Bell Jr. and L. John. Improved Automatic Test Case

Synthesis for Performance Model Validation. In ICS, 2005.

[2] Personal communication with Aparajita Bhattacharya

(Senior Design Engineer) and David Williamson (Consulting

Engineer), ARM Inc.

[3] P. Bose. Performance Test Case Generation for

Microprocessor. In the IEEE VLSI Test Symposium, 1998.

[4] P. Bose and J. Abraham. Performance and Functional

Verification of Microprocessors. In the IEEE VLSI Design

Conference, 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A

Framework for Architecture-Level Power Analysis and

Optimization. In ISCA, 2000.

[6] D. Brooks and M. Martonosi. Dynamic Thermal

Management for High-Performance Microprocessors. In

HPCA, 2001.

[7] D. Burger and T. Austin. The SimpleScalar ToolSet,

version 2.0. University of Wisconsin-Madison Tech Report

#1342, 1997.

[8] T. Chou and K. Roy. Accurate Power Estimation of

CMOS Sequential Circuits. IEEE Transactions on VLSI

Systems, 1996.

[9] R. Desikan, D. Burger, and S. Keckler. Measuring

Experimental Error in Microprocessor Simulation. In ISCA,

2001.

[10] L. Eeckhout and K. De Bosschere. Hybrid Analytical-

Statistical Modeling for Efficiently Exploring Architecture

and Workload Design Spaces. In PACT, 2001.

[11] Personal communication with Joel Emer, Intel, on the

Alpha Toast (max power) and Thumper (dI/dt) stress tools.

[12] W. Felter and T. Keller. Power Measurement on the

Apple Power Mac G5. IBM Tech Report RC23276, 2004.

[13] M. Gowan, L. Biro, D. Jackson, Power Considerations

in the Design of the Alpha 21264 Microprocessor. In DAC,

1998.

[14] S. H. Gunther, F. Binns, D. M. Carmean and J. C. Hall,

Managing the Impact of Increasing Microprocessor Power

Consumption. Intel Technology Journal, Q1 2001.

[15] M. Haungs, P. Sallee and M. Farrens. Branch Transition

Rate: A New Metric for Improved Branch Classification

Analysis. In HPCA, 2000.

[16] M. Hsiao, E. Rudnick, and J. Patel. Peak Power

Estimation of VLSI Circuits: New Peak Power Measures.

IEEE Transactions on VLSI Systems, 2000.

[17] C. Hsieh and M. Pedram. Microprocessor Power

Estimation using Profile-Driven Program Synthesis. IEEE

Transactions on Computer Aided Design of Integrated

Circuits and Systems, 1998.

[18] R. Joseph, D. Brooks, and M. Martonosi. Control

Techniques to Eliminate Voltage Emergencies in High

Performance Processors. In HPCA, 2003.

[19] A. Joshi, Constructing Adaptable and Scalable Synthetic

Benchmarks for Microprocessor Performance Evaluation,

PhD thesis, The University of Texas at Austin, 2007.

[20] A. Joshi, L. Eeckhout, R. H. Bell Jr., L. K. John.

Performance Cloning: A Technique for Disseminating

Proprietary Applications as Benchmarks. In IISWC, 2006.

[21] D. Kanter. EEMBC Energizes Benchmarks.

Microprocessor Report. July 2006.

[22] C. Lim, W. Daasch, and G. Cai. A Thermal-Aware

Superscalar Microprocessor. In ISQED, 2002.

[23] K. Lee, K. Skadron, and W. Huang. Analytical Model

for Sensor Placement on Microprocessors. In ICCD, 2005.

[24] F. Najm, S. Goel, and I. Hajj. Power Estimation in

Sequential Circuits. In DAC, 1995.

[25] S. Nussbaum and J. E. Smith. Modeling Superscalar

Processors via Statistical Simulation. In PACT, 2001.

[26] M. Oskin, F. Chong, and M. Farrens. HLS: Combining

Statistical and Symbolic Simulation to Guide Microprocessor

Design. In ISCA, 2000.

[27] Q. Qui, Q.Wu, and M. Pedram. Maximum Power

Estimation Using the Limiting Distributions of Extreme

Order Statistics. In DAC, 1998.

[28] S. Rajgopal. Challenges in Low-Power Microprocessor

Design. In VLSI Design, 1996.

[29] T. Sherwood, E. Perelman, G. Hamerley, and B. Calder.

Automatically Characterizing Large Scale Program

Behavior. In ASPLOS, 2002.

[30] K. Skadron, M. Stan, W. Huang, S. Velusamy, K,

Sankaranarayanan, and D. Tarjan. Temperature-Aware

Microarchitecture. In ISCA, 2003.

[31] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja,

and V. Pai, Challenges in Computer Architecture Evaluation,

IEEE Computer, 2003.

[32] http://www.spec.org/specpower/

[33] C. Tsui, J. Monteiro, M. Pedram, A Despain, and B. Lin.

Power Estimation Methods for Sequential Logical Ciruits.

IEEE Transactions on VLSI Systems, 1995.

[34] R. Vishwanath, V. Wakharkar, A. Watwe, V.

Lebonheur. Thermal Performance Challenges from Silicon to

Systems. Intel Technology Journal, 2000.

