Hamamu: Specializing FPGAs for ML Applications
by Adding Hard Matrix Multiplier Blocks

Aman Arora*, Zhigang Wei', Lizy K. John?
Department of Electrical and Computer Engineering
The University of Texas at Austin
*aman.kbm @utexas.edu, Tzw5259@utexas.edu, iljohn@ece.utexas.edu

Abstract—Designing efficient hardware for accelerating arti-
ficial intelligence (AI) and machine learning (ML) applications
is a major challenge. Rapidly changing algorithms and neural
network architectures make FPGA based designs an attractive
solution. But the generic building blocks available in current
FPGAs (Logic Blocks (LBs), multipliers, DSP blocks) limit
the acceleration that can be achieved. We propose Hamamu,
a modification to the current FPGA architecture that makes
FPGAs specialized for ML applications. Specifically, we propose
adding hard matrix multiplier blocks (matmuls) into the FPGA
fabric. These matmuls are implemented using systolic arrays of
MACs (Multiply-And-Accumulate) and can be connected using
programmable direct interconnect between neighboring matmuls
to make larger systolic matrix multipliers. We explore various
matmul sizes (2x2x2, 4x4x4, 8x8x8, 16x16x16) and various strate-
gies to place these blocks on the FPGA (Columnar, Surround,
Hybrid). We find that providing 4x4x4 hard matrix multiplier
blocks in an FPGA speeds up neural networks from MLPerf
benchmarks by up to “3.9x, compared to a Stratix-10 like FPGA
with equal number of MACs, same MAC architecture and high
DSP:LB ratio. Although the flexibility of the FPGA will reduce
for non-ML applications, an FPGA with hard matrix multipliers
is a faster, and more area efficient hardware accelerator for ML
applications, compared to current FPGAs.

I. INTRODUCTION

Artificial intelligence and machine learning have become
ubiquitous in today’s world. Algorithms and models for these
applications are getting more complex, and data sets are
becoming larger and larger. As such, the computation needs are
growing exponentially. Accelerating the computation required
by AI/ML is a major challenge. Many solutions have been pro-
posed and/or deployed for accelerating deep neural networks
in hardware, ranging from ASICs to fully programmable GPUs
to configurable FPGA based solutions. ASIC based designs
have the best speed and power characteristics (fast and low
power), but they lack configurability and adaptability which is
crucial in the rapid changing world of AI/ML. GPU and CPU
based designs, while highly programmable and adaptable,
are not as fast and power-efficient as ASICs. FPGA based
designs provide the best of both worlds. They provide massive
parallelism, while being flexible and easily configurable, and
also being fast and power-efficient.

A question naturally arises: Can we improve the perfor-
mance of FPGAs for AI/ML? FPGA companies and re-
searchers are exploring and deploying various techniques to
make FPGAs better at accelerating AI/ML applications. These

range from adding vector processors on the FPGA chip (Xilinx
Versal [1]]) to providing for integrating custom tensor tiles in
the same package (Intel Agilex [2]] [3]) to adding support for
smaller ML-friendly precisions (like int4, fp16, etc.) in DSP
slices.

FPGA devices mainly comprise of fine-grained pro-
grammable logic (“soft” LBs), embedded memory structures
(RAMs) and fixed-function math units (“hard” DSP slices).
Coarser heterogeneous blocks like high speed 10 controllers
and processors are also seen on many FPGAs. If we look
back in time, DSP slices were added to FPGAs when it
was realized that designing multipliers and adders using LBs
was not efficient and numerous DSP applications required
multiplication and addition operations. In the same vein, it
is notable that among all the operations executed by state-
of-the-art neural networks (like those in MLPerf [4]), about
80-90% of the operations are matrix multiplications (also
called GEMM - General Matrix Multiply). Designing a matrix
multiplier using LBs and DSP slices leads to a slow and
area (hence, power) inefficient implementation [5]]. So, in the
current era of AI/ML, adding hard matrix multiplier blocks
to the FPGAs could have potentially significant benefits. But
this brings along several interesting aspects - What should be
the size of such blocks? How should they be placed? Should
they replace DSP slices? How should they interface with each
other and other blocks? In this paper, we explore the answers
to these questions.

While the industry and academia have deployed and pro-
posed enhancements to FPGAs for AI/ML, to the best of
our knowledge, no one has added hard matrix multiplier
blocks to FPGAs. In this paper, we present a modified FPGA
architecture, called Hamamu. By converting a small amount
of the area of an FPGA to be hard matmul units, we show
an increased effectiveness for ML/AI applications while still
having sufficient general purpose resources. Although our
proposed changes will make the FPGA slightly less flexible,
the benefits obtained (presented later in this paper) are large
enough to justify making them, especially with the abundance
of AI/ML usecases.

Here is the summary of the contributions of this paper:

1) Propose adding hard matrix multiplier blocks to FPGAs
and show their benefit for AI/ML applications

2) Derive conclusions regarding the size/dimensions of the
hard matrix multiplier blocks

3) Propose adding programmable direct interconnect be-
tween hard matrix multipliers and evaluate its benefit

4) Derive conclusions regarding the placement of the hard
matrix multipliers on the FPGA

The rest of this paper is organized as follows. The next
section provides an overview of related work and mentions
how the proposal in this paper is different and what value
it adds to the existing solutions. In Section we present
the proposal Hamamu and its various aspects in detail. The
methodology followed to perform the experiments is detailed
in Section We discuss the results from these experiments
in Section [V] We discuss the target of our research, as well as
the future work in Section before concluding in Section
V1T

II. RELATED WORK

In this decade, many designs and architectures have been
proposed and deployed for accelerating AI/ML algorithms,
from both the industry and the academia. The focus is on
providing more compute resources as well as higher memory
bandwidth and efficiency. The Google TPU [6], NVIDIA Volta
GV100 GPU [7], DaDianNao [8] are some examples. Many
FPGA based solutions exist as well. Microsoft’s Brainwave
[9] has been deployed in Microsoft’s servers to accelerate a
multitude of tasks. BrainWave uses Intel’s Stratix 10 FPGAs
and the design is a soft NPU (Neural Processing Unit) with
dense matrix-vector multiplication units at its heart. Xilinx’s
xDNN FPGA architecture [10]] is an overlay processor, con-
taining a systolic array based matrix multiplier, that is mapped
onto a generic FPGA. Intel’s DLA [11]] is also an overlay
with a 1-D systolic processing element array at its core which
performs dot product operations to implement general matrix
math. These FPGA based solutions use the programmable
logic that exist on current FPGAs, such as LBs, DSP slices
and RAMs. They do not modify the architecture of the FPGA
itself to make them better for AI/ML applications.

Xilinx recently announced the Versal family of products
[1] which adds dedicated Al engine array (SIMD VLIW
processors) on the same die as the programmable logic. Intel’s
latest Agilex FPGAs [2| provide for flexible integration of
heterogeneous tiles using Embedded Multi-die Interconnect
Bridge (EMIB) in a System-In-Package (SIP). Adding domain-
specific accelerator tiles like Tensor Tiles [3] has been ex-
plored. Flex-Logix’s eFPGAs [12] also support bfloat16 in the
MAC:s in their EFLX tiles, and the MACs can be cascaded
without going through the FPGA interconnect. Their nnMAX
inference IP [[13]] contains hard blocks to perform convolutions
using the Winograd algorithm. Achronix’s Speedster7t FPGAs
[14] include Machine Learning Processor (MLP) blocks in the
FPGA fabric. These blocks have an array of multipliers, an
adder trees and accumulators. They can also be connected
to RAMs and other MLP blocks using hard paths. Native
support for fpl6 and bfloat16 data types in DSP slices has
also been added to recent FPGAs. Boutros et al. [15]] propose

LB enhancements and adds a shadow multiplier in LBs to
increase MAC density in FPGAs improving deep learning
performance. Boutros et al. [[16] and Rasoulinezhad et al. [[17]
propose DSP slice modifications such as flexible precision and
improvements to DSP-DSP interconnect.

In this paper, we propose changing the architecture of
FPGAs by adding hard matrix multiplier blocks to the pro-
grammable logic part of the FPGA. Nurvitadhi et al. [[18]] and
Lacey et al. [|19] make the case for FPGAs as being better than
GPUs for machine learning applications. Our proposal further
improves the performance of FPGAs, making the argument
for using FPGAs for machine learning more compelling.

A matrix multiplier is much larger in size than the
usual building blocks on FPGAs (LBs, DSPs, etc). This
has interesting complexities, challenges and tradeoffs. FPGAs
with coarse-grained units embedded within fine-grained logic
blocks are called hybrid FPGAs [20]. Yu et al. [21] dis-
cuss architectural tradeoffs involved in adding coarse grained
blocks to fine-grained programmable logic on FPGAs. Yu et al.
[22] explore routing optimizations for hybrid FPGAs. Shadow
clusters are proposed by Jamieson et al. [23]], which recover
performance loss that happens when large building blocks are
unused. Ho et al. [20] discuss modelling and architecture of
domain-specific hybrid FPGAs. In this paper, we are propos-
ing architectural modifications to regular FPGAs to form a
domain-specific hybrid FPGA for AI/ML applications.

III. PROPOSED ARCHITECTURE: HAMAMU

Memory
Programmable and 10
logic blocks DSP slices controllers
(LBs)
Flash
memory,
cPUs RF, ADCs,
etc.
Embedded T
RAMSs matrix
multiplier Clocking
blocks logic

Fig. 1: Block diagram representation of the Hamamu FPGA
architecture. Hamamu contains hard matrix multiplier blocks in
addition to LBs, RAMs, DSP slices, CPUs, memory/IO controllers,
etc. in the FPGA. Note that this diagram is not micro-architectural
and is not to scale.

Figure [I] shows a high level block diagram of an FPGA
based on our proposal, Hamamu. Hamamu contains some
hardened matric multiplier blocks in addition to the usual
components of an FPGA such as programmable logic blocks,
block RAMs, DSP slices, programmable interconnect, etc. A
part of the silicon area available for logic blocks or DSP
slices is converted to the hardened matrix multiplier blocks.
We explain the various aspects of the proposal in the sections
below.

A. Hard matrix multipliers as building blocks

A matrix multiplier designed using soft logic (LBs and
interconnect on an FPGA) is slow and area-inefficient. DSP
slices can be used to design matrix multipliers that are faster
than those designed with LBs. A DSP slice usually contains
a multiplier or a MAC. Matrix multiplication requires many
MAC operations. Therefore, multiple DSP slices have to com-
municate using the FPGA interconnect resources to make even
a small matrix multiplier. This makes such matrix multipliers
slower compared to dedicated ASIC matrix multipliers.

In addition to the core multiply-and-accumulate operation,
a matrix multiplier design has some control logic as well that
orchestrates data movement from/to the memories. Designing
this logic using LBs and FPGA interconnect also slows down
the overall operation of the design.

We propose adding hard matrix multiplier blocks to existing
FPGAs. This has the following benefits:

o It increases the compute density of the FPGA fabric,
providing more floating-point operations per unit area
(FLOPs/mm?).

« It reduces the overall silicon area required to implement
a given operation or a layer on the FPGA.

o It can lead to designs with faster frequencies because of
the reduced dependence on LBs, DSP slices and FPGA
interconnect.

B. Implementation of the hard matrix multiplier building block

Multiple implementations of a matrix multiplier are possi-
ble. Systolic arrays [24] have been deployed for performing
matrix multiplications in many designs [6] [[11]. These archi-
tectures have many interesting properties, including reusing a
piece of data multiple times and never having to read it again,
making them very efficient for compute-intensive tasks like
matrix multiplication. A systolic array based implementation
of a matrix multiplier comprises of 3 pieces of logic:

o Processing elements (PEs) arranged in the form of an
array or matrix

o An input data setup circuit that fetches the input data
from the producer or memory and provides the data to
the MACs at the right time

o An output interface circuit that writes the data to the
consumer or memory

There are multiple types of systolic array implementations
as well. For our experiments, we used an adaptation of Design
R1 [24] described in [25]. The elements of one matrix move
from top to bottom and the elements of the second matrix
move from left to right. The result stays in the respective PE
until its computation is done, before shifting out. We assume
input matrix A is stored in RAM in column-major order and
input matrix B is stored in RAM in row-major order.

We use the notation that a Mx/NxK matrix multiplier
multiplies a MxK matrix (matrix A) with a Kx/N matrix
(matrix B) to produce a MxN matrix (matrix C). For a
4x4x4 matmul, our implementation reads 8 input elements
per clock cycle (4 elements of matrix A and 4 elements of

matrix B). There is a grid of 16 PEs, each consisting of a
pipelined MAC unit. The input elements flow through the grid
and accumulated sums stay in the PEs. The output elements
are shifted out along the 4 rows when accumulations have
completed and written to a RAM.

C. Size of the hard matrix multiplier building block

As mentioned in [5], there are area, speed and power
tradeoffs when comparing building blocks of different sizes.
For this work, we considered matmuls with M=N=K and each
of M,N,K were a power-of-2. We considered 2x2x2, 4x4x4,
8x8x8 and 16x16x16.

Designing large matrix multipliers using smaller matmuls
means using the FPGA interconnect (switchboxes and con-
nection boxes) for any communication between the matmuls,
which adds additional delays and slows down the overall fre-
quency of operation. Larger matmuls (e.g. 16x16x16 matmul)
lead to higher speed, less area and reduced power consumption
for a given design, but they also lead to more routing area
per block, increased channel width and increased average net
length [21]].

The problem of under-utilization or fragmentation happens
when we have a big matrix multiplier block (e.g. 16x16x16)
available, but a smaller problem/design size (e.g. 12x12x12).
This also happens when we have a larger problem size (e.g.
14x14x14), but matrix multipliers that are available are smaller
and do not evenly divide the edges of the problem size
(e.g. 8x8x8). Providing smaller sized matrix multipliers on an
FPGA means having less under-utilization and fragmentation
problems, compared to providing larger sized matrix multipli-
ers.

D. Composing building blocks to make bigger matrix multi-
pliers

State-of-the-art neural networks require matrix multiplica-
tions of varying sizes, most of them being very large. Large
matrix multiplications can be done by composing smaller
matmul blocks. We discuss two ways of composing matrix
multipliers below:

« Parallel composition involves using building block mat-
muls for each slice of the larger matrix multiplica-
tion problem. A 8x8x8 matrix multiplication using this
scheme requires 8 4x4x4 matmuls and 4 matrix additions.
This scheme produces the result in fewer cycles (4M-
2+P+1, where M is the size of the matmul used and P
is the number of pipeline stages in the MAC), but needs
more hardware resources.

« Systolic composition involves connecting building block
matmuls in a 2D arrangement systolically, just like indi-
vidual PEs inside a matmul connect. A 8x8x8 matrix mul-
tiplication using this scheme requires 4 4x4x4 matmuls
(see Figure[2)). This scheme takes more number of cycles
than parallel composition to produce the result (4*N-2+P,
where N is the size of the matrices being multiplied and
P is the number of pipeline stages in the MAC), but it
uses fewer hardware resources. This scheme results in a

high compute efficiency because only the matmul blocks
along the top and left edges of the larger multiplier fetch
data from memory, while the other matmul blocks receive
inputs from their neighboring matmuls.

Core matmul
(4x4x4)

Core matmul
(4x4x4)

Building block matmul

Building block matmul
v

e
o

Core matmul
(4x4x4)

Core matmul
(4x4x4)

Building block matmull

W Path taken by data for input matrix A
W Path taken for data for input matrix B
Path taken for data for output matrix C

Building block matmul

—— Data flowing from BRAMs to matmuls and vice-versa, at the edges
= +=+: Data flowing between neighboring matmuls (systolic connections)

Fig. 2: A 8x8x8 matrix multiplication using systolic composition is
done by connecting 4 4x4x4 systolic matmuls. The control logic in
each building block matmul is designed to enable neighboring
matmuls to connect either in a neighbor mode or in a memory
mode, allowing for systolic composition.

A systolic composition can be done using two methods. In
the first method, the connection between the smaller matrix
multipliers is done using soft interconnect (connection boxes
and switch boxes). In the second method, the connection
between the smaller matrix multipliers is done using pro-
grammable direct interconnect. This interconnect is an addi-
tional element of our proposed architecture. This interconnect
is provided from each building block matrix multiplier to four
neighboring building block matrix multipliers - left, right, top
and bottom. These connections are configured at the FPGA
configuration time. From an implementation perspective, these
are basically wire segments with longer length and one switch-
ing element (a pass transistor or transmission gate) controlled
by a single-bit SRAM cell. Most modern FPGAs provide direct
interconnect between DSP slices only in the vertical direction.

E. Placement of hard matrix multiplier building blocks

We explore several placement options for these blocks
alongside the other blocks on the FPGA. The Columnar
placement method (shown in Figure [3| (a)) is inspired by
most commercial FPGAs. In this case, columns of matmuls
are spread evenly between columns of other blocks like LBs
and RAMs. This type of placement is used to analyze the
performance of a dedicated ML-specialized FPGA fabric. The
Surround placement method (shown in Figure El (b)) is the
recommended method from [21]]. The matmuls are placed such
that they are surrounded by RAMs and LBs. The Hybrid
placement method (shown in Figure |§| (c)) is basically a
Columnar placement with columns containing DSP slices as

well. This placement strategy is to study the impact of just
adding matmuls to existing commercial FPGA architectures,
whereas the other 2 strategies replace DSP slices in existing
FPGA architecture with matmuls.

IV. EXPERIMENTAL METHODOLOGY

A. Tools and parameters

We used the following tools to explore the architectures
proposed in this paper:

e VTR 7.0 for FPGA architecture exploration [26]

o Synopsys VCS 2017.12 for Verilog simulations [27]]

o Synopsys Design Compiler 2017.09 for ASIC synthesis

(28]

VTR is an academic tool that enables exploration of FPGA
architectures. VTR takes two inputs. The first input is an archi-
tecture description file, where the information of an FPGA’s
building blocks and interconnect resources is provided. The
second input is a benchmark in form of a Verilog design that
we intend to overlay onto the FPGA. VTR synthesizes and
implements the provided design on to the FPGA with the
provided architecture, and generates area and timing reports.

For all the experiments conducted for this research, here are
some parameters:

e We performed two sets of experiments - one with 8-
bit fixed point (int8) data and another with IEEE Half-
precision Floating Point (fp16). These are the two most
common precisions used in deep neural networks today.

e We ran VTR in its default mode, in which the tool finds
the minimum required value of W (routing channel width)
for the given design, and then routes the design again
at 1.3x the minimum routing channel width. This is a
common practice in research and industry.

o The designs overlayed onto the FPGAs were matrix
multiplier designs, with sizes ranging from 4x4x4 to
64x64x64. The designs were hand coded and building
block multiplier blocks manually instantiated and con-
nected. The designs included RAMs to store the input and
output matrices and logic to interface with the RAMs.

B. FPGA architectures for evaluation

For the FPGA with DSP slices (baseline FPGA architecture
for our experiments), we created an approximation of the Intel
Stratix 10 FPGA architecture (14nm) [29]. We used a Stratix
IV architecture (40nm) available with VTR and modified it to
obtain this architecture. The delays and areas were modified
by scaling based on equations present in [30]. Here are the
important features of this architecture:

o LBs: N=10, fracturable 6-LUT with 3-input LUT mode,
S5-input LUT mode, 6-input LUT mode and arithmetic
mode

o« RAMs: 20 Kbits memory that can operate in multiple
depths/widths in single port and dual port modes

« Routing architecture: L = 4, Fc_in = 0.15, Fc_out = 0.1,
Wilton switches with Fs = 3

1 (o

I I

1 o

0 (O O O
\

(a) Columnar

i
e

(b) Surround

m

EEEEEEEN
PEEEEENE
[

(¢) Hybrid

Fig. 3: Various placement strategies. Three types of blocks (Purple=Matmul, Red=RAM, Blue=LB, Yellow=DSP). The total number of
matmuls in the FPGA was kept the same in our experiments, for each placement strategy. Source: VTR.

The DSP slice in this architecture was a custom designed
unit that has 3 modes: a multiplier mode, an adder mode
and a MAC mode. It supports either int8 operations or fpl6
operations. The MAC operation in the DSP slice is deeply
pipelined (3 stages for int8 and 8 stages for fp16).

For the FPGA with hard matrix multiplier blocks, we
used the architecture mentioned above, but replaced the DSP
slices with matmul blocks. The same deeply pipelined MAC
architecture designed for the DSP slice was used at the heart
of the matmul design. We designed matmul blocks of various
sizes (2x2x2, 4x4x4, 8x8x8 and 16x16x16) and synthesized
them using the FreePDK45 [31] library. The timing and area
numbers obtained were then scaled and annotated into the
14nm FPGA architecture. Note that we assumed 15% area
overhead of place and route [20]. A 4x4x4 matmul was about
12-15 times larger than a DSP slice. We defined the geometry
of the matmuls blocks to be square because [21]] finds that
a square aspect ratio is the most efficient. We defined the
matmuls to have switch boxes inside them because that leads
to better routability [22]. Moreover, we defined them to have
pins evenly distributed along the perimeter [21].

Various architectures were created for different placement
strategies, with different building block sizes and with/without
direct programmable interconnect. VITR’s FPGA architec-
ture specification language supports specifying direct (non-
programmable) inter-block connections. While not exactly the
same, we used this feature to model the programmable direct
interconnections between neighboring matmuls.

To ensure fair comparisons, the total number of MACs in
the baseline FPGA with DSP slices was kept the same as
that in the FPGA with matmuls. The designs overlayed on the
baseline and proposed FPGA architectures were identical.

C. Analyzing end-to-end benefits for neural networks

Various layers in today’s neural networks can be classified

into two categories:

1) GEMM layers. These layers perform matrix multiplica-
tion. Fully connected layers and convolution layers are
expressed as GEMMs. Most commonly, these layers are
compute bound, especially with larger batch sizes. These
are the layers that our proposal tries to improve.

2) Non-GEMM layers. These layers include other tasks
such as batch normalization, element wise additions,
activations (ReLU, Sigmoid, etc). In general, these tasks

are memory bound. The proposal in this paper does not
affect these layers.

We collected attributes for all layers (GEMM dimensions,
number of bytes read, number of bytes written, etc) in 4
MLPerf [4] benchmark networks - Resnet50, GNMT, Trans-
former and Minigo. We wrote an analytical model that took
the attributes for various layers and calculated the number of
cycles taken by each layer on the proposed FPGA and on
the baseline FPGA, assuming that the computation time for
non-GEMM layers can be hidden behind the memory access
time (eg. by using pipelining) and that the memory access
time for GEMM layers can be hidden behind the computation
time (eg. by using double buffering). Using these cycle times,
we calculated the overall speedup provided by the proposed
FPGA for running a neural network.

V. RESULTS
A. Benefits of hard matrix multiplier blocks

Through a simple experiment, we observe that a 4x4x4
matrix multiplier could be designed at a frequency of 1143
MHz and an area of 1.55E07 MWTAs (Minimum Width
Transistor Area) on an FPGA with DSP slices and could be
designed at a frequency of 1932 MHz and an area of 4.69E06
MWTAs on an ASIC.

Figure [shows the clock frequency achieved when
16x16x16 matrix multiplier was implemented using an FPGA
with DSP slices, FPGA with 4x4x4 matmuls (Hybrid place-
ment) and an ASIC. From the figure, we can observe that
as we move from left to right, the clock frequency increases
and the total area reduces. A reduction in power consumption
proportional to the area reduction can be expected.

Table [I] shows the results obtained when larger matrix
multiplier designs are created. We show how the frequency and
the area change for an FPGA with DSP slices vs. an FPGA
with 4x4x4 matmuls (with Columnar placement strategy). For
the 64x64x64 design, we can see a reduction of ~7.3x in total
area and a speedup of “3.6x in clock frequency when 4x4x4
matmuls are used, compared to the baseline FPGA.

B. Evaluating different sizes of matrix multiplier building
blocks

We evaluated different matmul sizes to identify the best
size for an FPGA. We considered two cases. The first case
was a design with fragmentation issues. A 35x35x35 matrix

2500 3.00E+08

2000 2.50E+08
2.00E+08 T
1500 S
1.50E+08 S
1000 /

500

1.00E+08

Frequency (MHz)

5.00E+07

0 0.00E+00
FPGA with DSP FPGA with 4x4x4 AsIC
slices matrix multipliers

=e—Clock frequency (MHz) Area (MWTA)

Fig. 4: Frequency and area of a 16x16x16 design with decreasing

granularity of the compute element. An FPGA with hard matmuls
can close the gap between ASICs and FPGAs.

Design size FPGA with matmuls FPGA with DSP slices
Clk freq | Area Clk freq | Area

(MHz)) (MWTA) | (MHz) (MWTA)

4x4 1932.05 4.29E+06 | 1143.01 1.55E+07

8x8 1927.28 1.19E+07 | 1072.25 6.58E+07

16x16 1685.18 3.84E+07 | 788.78 2.47E+08

24x24 1689.45 7.70E+07 | 658.71 5.35E+08

32x32 1613.75 1.34E+08 | 462.90 9.72E+08

64x64 1213.72 4.92E+08 | 333.56 3.62E+09

TABLE I: Different design sizes using an FPGA with DSP slices
and an FPGA with 4x4x4 matmul blocks

multiplier was designed using various building block sizes.
Table [T shows the results from these experiments. Because of
fragmentation effects, more time was consumed when larger
matmuls are used. The utilization of the matmuls is much
higher with smaller building blocks.

H Matmul [Freq (MHz) [Cycles [Time (us) [Utilization H
2x2x2 1715.27 150 0.0875 0.94
4x4x4 1848.43 150 0.0812 0.94
8x8x8 1872.66 166 0.0886 0.76
16x16x16 1926.12 198 0.1028 0.53

TABLE II: A matrix multiplier with high fragmentation problems
(35x35x35) designed using different matmul sizes

For the second case, a design size without fragmentation
issues was considered. Figure [5 plots the area-delay prod-
uct for a 32x32x32 matrix multiplier design using different
granularities of the main compute element. We find that the
area-delay product significantly improves as we move from
using DSP slices to 2x2x2 matmuls. It further improves as
the building block size increases, because more logic and
interconnect is getting hardened. With larger building block
sizes, we observed larger net length, more wire segments per
net and also a higher channel width.

Considering both fragmentation effects and the area
delay product, we recommend providing 4x4x4 matmuls.

C. Benefits of systolic composition and direct interconnect

Figure [6] compares the time taken and area required to
compose smaller matrix multiplier blocks to form larger matrix
multipliers by using different approaches mentioned in Section
[II-D] In this experiment, the final design was a 16x16x16
multiplier and the size of the matmul blocks was 4x4x4.
Parallel composition requires more than 4 times the area and
systolic composition requires 3x cycles.

2.6E+11
2.50E+10

2.00E+10

0.517
1.18E8

1.50E+10

1.00E+10 "

Area Delay Product

0.583

5.00E+09 1.49E8

1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1

0.00E+00

DSP slices 2x2x2

Axaxd

8x8Bx8 16x16x16
—e— Area delay product

Critical Path Delay (ns) | Total Area (MWTA)

Fig. 5: A matrix multiplier with no fragmentation problems
(32x32x32) designed using varying granularity of the compute
element. Number of clock cycles consumed is 134 in all cases.

Also shown in Figure [6] are the benefits observed by
using direct programmable interconnect. The speedup is higher
when the spacing between matmuls in the FPGA layout is
higher. The figure shows 15% benefit in the case of hybrid
FPGA placement. Another important result we observed was
a reduction in the routing area when direct programmable
interconnect was introduced.

0.06 Systolic composition
./‘L\.
0.05 13% l

— 0.04 12%l

0.03

ime (us]

= 0.02

0.01

(-] = N w » w o
Area [normalized, approx)

Parallel
composition

Columnar Columnar Surround Surround Hybrid
with direct with direct

Hybrid
with direct

Fig. 6: Parallel composition takes smaller time, but a lot of extra
hardware, compared to Systolic composition. The benefit of direct
programmable interconnect is also shown for each placement
strategy. (Columns = Time, Line = Area)

D. Comparison of various placement strategies of matmul
blocks

Figure 7] compares different placement strategies mentioned
in Section [[lI-E} The building block matmul size used for these
experiments was 4x4x4. The Surround placement (Figure [3|
(b)) and Hybrid placement (Figure El (c)) result in large total
area consumption for a given design size because the matmuls
are placed far apart from each other. Columnar placement
yields the lowest total area of the 3 placements. Columnar
placement (Figure [3] (a)) results in the highest channel widths
because matmuls, which are larger building blocks compared
to LBs and DSPs, are close to each other causing higher
routing congestion.

The clock frequencies achieved using Columnar placement
are the highest, because the benefit seen with Columnar
placement is because of a matmul-heavy resource mix, in
addition to hardening of the compute and interconnect within
the matmuls. The ratio of number of LBs to matmuls in
Columnar placement is low and so the FPGA is not going

to be as versatile. The Surround and Hybrid placements have
a more generic resource mix. So, the decision on which type
of placement to deploy depends on the intended usecase of
the FPGA.

E. End-to-end benefits for state-of-the-art neural networks

Using the analytical model described in Section
state-of-the-art networks from MLPerf [4] were evaluated to
measure the speedup of implementing them on an FPGA with
hard matmuls vs. the baseline FPGA. We considered two batch
sizes (1 and 128), we only considered the forward pass, and the
building block for the proposed FPGA was 4x4x4 matmul. For
GEMM layers, we assumed the FPGA has enough resources
for 4 64x64x64 matrix multiplications to happen in parallel.
For non-GEMM layers, we assumed off-chip DRAM bandwith
of 1.5 TB/s. Figure [§| shows the speedup. On an average,
a speedup of 73.9x was obtained by using an FPGA with
hard matrix multiplier blocks with Columnar placement and
with direct programmable interconnect between neighboring
matmuls. The benefits reduce to 2.6x for Surround placement
and "2.8x for Hybrid placement.

FE. Results for experiments with 8-bit fixed point precision

We performed experiments using int8 precision as well.
The trends obtained with int8 precision are very similar
to those obtained with fpl6 precision. A 16x16x16 matrix
multiplier design using an FPGA with 4x4x4 matmuls (Hybrid
placement) was 2.5x faster than the same design using an
FPGA with DSP slices, and took 8.3x smaller area. Comparing
various matmul sizes, we observed 4x4x4 matmul outperform-
ing other matmul sizes, similar to fp16. Direct programmable
interconnect provided a benefit of up to 15%.

VI. DISCUSSION

Target of our research: Admittedly, an FPGA with mat-
muls will still be less performant than ASICs like the Google
TPU. The intent of this proposal is to improve the performance
of FPGA based solutions. In the process of improving the
performance, this proposal makes the FPGA less flexible,
thereby making the FPGA less attractive for applications that
do not require matrix multiplications. However, a matmul-
heavy FPGA fabric could be deployed as a part of bigger
FPGA, the rest of which can have general programmable logic,
or ML-specific FPGA variants with matmuls could be created.

Speeds are much faster than Stratix-10: It can be seen
that the frequencies achieved by our designs are significantly
high (1900 MHz) compared to the frequency at which Stratix-
10 FPGA’s DSP slices can run (750-1000 MHz). There are
several reasons for this. We only support one data precision at
a time (int8 or fp16), unlike DSP slices in Stratix-10, which
support multiple precisions including larger precisions like
fp32. Also, our designs are more deeply pipelined (8 stages
for fp16) compared to the designs in Stratix-10 (°5 pipeline
stages for fp32).

Benefits are pessimistic: The architecture for both com-
parables (proposed FPGA with matmuls and baseline FPGA
with DSP slices) was kept the same to ensure apples-to-apples

comparison. The same pipelined MAC architecture designed
for the DSP slice was used in the matmul design. Even with
that, the benefits we have calculated are actually pessimistic.
That’s because the DSP slice we have used performs much
better than DSP slices on current FPGAs, because it does
not have muxes to support many modes and precisions. In
other words, our baseline is faster than what is commercially
available. Also, many commonly used techniques (hardware
or software) to minimize reading and writing from DRAM
(such as keeping as much data as possible in on-chip RAMs
and reusing it, or fusing memory bound operations, e.g. ReLU,
with compute bound operations, e.g. GEMM) will reduce time
taken by memory bound layers and actually help in amplifying
the overall benefit from our approach.

Future work: Although this research has shown promising
results, we have identified some future work. Currently, we
designed separate matmuls for int8 and fpl6 precisions. We
plan to design matmuls which can support multiple precisions,
but use the least area. We also plan to study the impact of
adding matmuls to the FPGA on non-ML applications, by
using benchmarks available with VTR. We will look into how
this impact can be reduced. Another aspect of future work is to
analyze the routing/crossbar/interconnect requirements inside
the matmul block, as is done in commercial FPGA DSP slices
and LBs.

VII. CONCLUSION

In this paper, we propose adding hard matrix multiplier
blocks to the architecture of existing FPGAs to reduce the gap
between FPGAs and ASICs. We recommend adding systolic
array based 4x4x4 hard matrix multipliers as building blocks
to the fabric of an FPGA. Larger matrix multipliers can
be composed by systolically connecting these building block
matrix multipliers by using direct programmable intercon-
nect provided between neighboring matrix multiplier building
blocks.

Adding matmuls to the FPGA fabric increases the com-
pute density of the FPGA fabric, providing more floating-
point operations per unit area (FLOPs/mm?). We simulate
a 64x64x64 matrix multiplier design on a proposed FPGA
architecture with 4x4x4 hard matrix multiplier blocks using
Columnar placement with direct programmable interconnect.
Experimental results show a clock frequency speedup of "4.1x
and an area improvement of “7.3x on this FPGA, compared
with implementing the same design on a DSP-heavy Stratix
10-like FPGA architecture with equal number of MACsS,
same MAC architecture and high DSP:LB ratio. The changes
proposed in this work lead to a highly performant domain
specific FPGA, and with the abundance of AI/ML applications
where FPGAs can be deployed, implementing these changes
is a cost worth paying.

REFERENCES
[1] Xilinx. (2018) Xilinx AI Engines and Their Applications. [Online].

Available: https://www.xilinx.com/support/documentation/white_papers/
wp506-ai-engine.pdf

https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf

7.00E+08 2500

6.00E+08
2000

- 5.00E+08 F

s
S 4.00E+08 < 1500
2 2
5 3006408 £ 1000
< 2.00E+08 £

g

4x4 8x8 16x16 24x24 32x32 40x40 48x48 64x64

—e—columnar =—e=surround =e=hybrid

50
1.00E+08
0.00E+00 0 o
it

x4 8x8 16x16 24x24 32x32 A40x40 48x48 64x64 4ax4 8x8

m columnar msurround ® hybrid

250

200

150

100

Channel Width

16x16 24x24 32x32 40x40 48x48 64x64

m columnar ®hybrid ®surround

Fig. 7: Comparing different placement strategies. Columnar provides the most benefit, but is very ML-specific. Surround and Hybrid have
lower benefits, but have more versatile resource mix.

e

jroeeen
e

S

o
i
&
|

Transformer

GNMT
m Columnar (BS=1)
m Surround (BS=1)
= Hybrid (BS=1)

Resnet50 Minigo

Columnar (BS = 128)
% Surround (BS=128)
= Hybrid (BS=128)

Average

Fig. 8: Overall speedups for various networks. BS = Batch Size.
Results include the benefits from direct programmable interconnect.

[2]

[3]

[4]
[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Intel. (2019) Intel Agilex FPGAs and SOCs. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/
programmable/fpga/agilex.html

E. Nurvitadhi, S. Shumarayev, A. Dasu, J. Cook, A. Mishra, D. Marr,
K. Nealis, P. Colangelo, A. Ling, D. Capalija, and U. Aydonat, “In-
Package Domain-Specific ASICs for Intel® Stratix® 10 FPGAs: A
Case Study of Accelerating Deep Learning Using TensorTile ASIC,” 02
2018, pp. 287-287.

mlperf.org. (2018) Mlperf. [Online]. Available: http://www.mlperf.org
I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey
and Challenges,” Foundations and Trends® in Electronic Design
Automation, vol. 2, no. 2, pp. 135-253, 2008. [Online]. Available:
http://dx.doi.org/10.1561/1000000005

N. P. Jouppi et al, “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” CoRR, vol. abs/1704.04760, 2017. [Online].
Available: http://arxiv.org/abs/1704.04760

NVIDIA. (2017) NVIDIA TESLA V100 GPU ARCHITEC-
TURE. [Online]. Available: https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture- whitepaper.pdf

Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 609-622. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.58

J. Fowers et al., “A Configurable Cloud-scale DNN Processor for
Real-time AL” in Proceedings of the 45th Annual International
Symposium on Computer Architecture, ser. ISCA ’18. Piscataway,
NJ, USA: IEEE Press, 2018, pp. 1-14. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00012

Xilinx. (2018) Accelerating DNNs with Xilinx Alveo Accelerator Cards.
[Online]. Available: |https://www.xilinx.com/support/documentation/
white_papers/wp504-accel-dnns.pdf

M. S. Abdelfattah et al., “DLA: Compiler and FPGA Overlay for
Neural Network Inference Acceleration,” CoRR, vol. abs/1807.06434,
2018. [Online]. Available: http://arxiv.org/abs/1807.06434

Flex-Logix. (2019) Flex-Logix EFLX eFPGA. [Online].
Available: https://flex-logix.com/wp-content/uploads/2019/09/2019-09-
EFLX-4-page-Overview-TGE.pdf

——. (2019) Flex-Logix nnMAX Inference Acceleration Architecture.
[Online]. Available: https://flex-logix.com/wp-content/uploads/2019/09/
2019-09-nnMAX-4-page-Overview.pdf
Achronix. (2019) Speedster7t FPGAs.
/Iwww.achronix.com/product/speedster7t/
A. Boutros, M. Eldafrawy, S. Yazdanshenas, and V. Betz, “Math Doesn’t

[Online]. Available: https:

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

Have to be Hard: Logic Block Architectures to Enhance Low-Precision
Multiply-Accumulate on FPGAs,” 02 2019, pp. 94-103.

A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity:
Enhanced dsp blocks for low-precision deep learning on fpgas,” in
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 35-357.

S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong, “Pir-
dsp: An fpga dsp block architecture for multi-precision deep neural
networks,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2019, pp. 35-44.
E. Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks?” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA *17. New York, NY, USA: ACM, 2017, pp. 5-14.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021740

G. Lacey, G. W. Taylor, and S. Areibi, “Deep Learning on FPGAs:
Past, Present, and Future,” CoRR, vol. abs/1602.04283, 2016. [Online].
Available: http://arxiv.org/abs/1602.04283

C. Ho, C. Yu, P. Leong, W. Luk, and S. Wilton, “Domain-Specific Hybrid
FPGA: Architecture and Floating Point Applications,” 09 2007, pp. 196
- 201.

C. W. Yu, J. Lamoureux, S. J. E. Wilton, P. H. W. Leong, and
W. Luk, “The Coarse-Grained / Fine-Grained Logic Interface in FPGAs
with Embedded Floating-Point Arithmetic Units,” in 2008 4th Southern
Conference on Programmable Logic, March 2008, pp. 63-68.

C. Yu, W. Luk, S. J.E. Wilton, and P. Leong, “Routing optimization for
hybrid FPGAs,” 01 2010, pp. 419 — 422.

P. A. Jamieson and J. Rose, “Enhancing the Area Efficiency of FPGAs
With Hard Circuits Using Shadow Clusters,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 12, pp. 1696-1709,
Dec 2010.

H. T. Kung, “Why Systolic Architectures?” Computer, vol. 15, no. 1,
pp. 37-46, Jan. 1982. [Online]. Available: https://doi.org/10.1109/MC.
1982.1653825

R. M. Keller. (2011) Systolic Arrays and Algorithms. [Online].
Available: https://www.cs.hmc.edu/courses/2011/spring/cs156/Systolic.
pdf

J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 6:1-6:30, June 2014.

Synopsys. (2018) Synopsys VCS. [Online]. Available: https://www.
synopsys.com/verification/simulation/vcs.html

(2018) Synopsys Design Compiler. [Online].
Available: |https://www.synopsys.com/implementation-and-signoff/rtl-
synthesis-test/dc-ultra.html

Intel. (2015) Stratix 10 fpga features. [On-
line]. Available: https://www.intel.com/content/www/us/en/products/
programmable/fpga/stratix-10.html

A. Stillmaker and B. Baas, “Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm,” Integration, the
VLSI Journal, vol. 58, pp. 74-81, 2017, http://vcl.ece.ucdavis.edu/pubs/
2017.02.VLSIintegration. TechScale/.

NCSU. (2018) FreePDK45. [Online]. Available: https://www.eda.ncsu.
edu/wiki/FreePDK45:Contents

https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
http://www.mlperf.org
http://dx.doi.org/10.1561/1000000005
http://arxiv.org/abs/1704.04760
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://dx.doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/ISCA.2018.00012
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
http://arxiv.org/abs/1807.06434
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-EFLX-4-page-Overview-TGF.pdf
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-EFLX-4-page-Overview-TGF.pdf
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-nnMAX-4-page-Overview.pdf
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-nnMAX-4-page-Overview.pdf
https://www.achronix.com/product/speedster7t/
https://www.achronix.com/product/speedster7t/
http://doi.acm.org/10.1145/3020078.3021740
http://arxiv.org/abs/1602.04283
https://doi.org/10.1109/MC.1982.1653825
https://doi.org/10.1109/MC.1982.1653825
https://www.cs.hmc.edu/courses/2011/spring/cs156/Systolic.pdf
https://www.cs.hmc.edu/courses/2011/spring/cs156/Systolic.pdf
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-10.html
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

