
Accelerating MLWorkloads using GPU Tensor Cores:
The Good, the Bad, and the Ugly

Bagus Hanindhito
hanindhito@bagus.my.id

The University of Texas at Austin
Austin, Texas, USA

Lizy K. John
ljohn@ece.utexas.edu

The University of Texas at Austin
Austin, Texas, USA

ABSTRACT
Machine Learning (ML)workloads generally contain a significant

amount of matrix computations; hence, hardware accelerators for
ML have been incorporating support for matrix accelerators. With
the popularity of GPUs as hardware accelerators for ML, specialized
matrix accelerators are embedded into GPUs (e.g., Tensor Cores
on NVIDIA GPUs) to significantly improve the performance and
energy efficiency of ML workloads. NVIDIA Tensor Cores and
other matrix accelerators have been designed to support General
Matrix-Matrix Multiplication (GEMM) for many data types. While
previous research has demonstrated impressive performance gains
with Tensor Cores, they primarily focused on Convolutional Neural
Networks (CNNs).

This paper explores Tensor Cores’ performance on various work-
loads, includingGraphConvolutional Networks (GCNs), onNVIDIA
H100 and A100 GPUs. In our experiments with NVIDIA GPUs,
CNNs can achieve 1.91× (TF32) and 2.42× (FP16) end-to-end perfor-
mance improvements with the use of Tensor Cores, whereas GCNs
struggle to surpass a 1.03× (FP16) boost. Some implementations
even experience slowdowns despite software transformation. Addi-
tionally, we explore the potential of Tensor Cores in non-GEMM-
like kernels, providing insights into how software techniques can
map diverse computation patterns onto Tensor Cores. Our investi-
gation encompasses several kernels and end-to-end applications,
aiming to comprehend the nuanced performance impact of Tensor
Cores. Furthermore, we are among the first to present third-party
evaluations of H100 GPU performance over the prior A100 GPU.

CCS CONCEPTS
• General and reference→ Performance;Measurement; Eval-
uation; Experimentation; • Computing methodologies→ Ma-
chine learning.

KEYWORDS
Machine Learning; Matrix Accelerators; Performance Evaluation;
Workload Characterization; Measurement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3653835

ACM Reference Format:
Bagus Hanindhito and Lizy K. John. 2024. Accelerating MLWorkloads using
GPU Tensor Cores: The Good, the Bad, and the Ugly. In Proceedings of the
15th ACM/SPEC International Conference on Performance Engineering (ICPE
’24), May 7–11, 2024, London, United Kingdom. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3629526.3653835

1 INTRODUCTION
At the heart of Artificial Intelligence (AI) and Machine Learning

(ML), General Matrix-Matrix Multiplications (GEMMs) are the most
important building blocks for many applications [4, 26, 81]. In 2017,
with the launch of Volta architecture [45], NVIDIA introduced
Tensor Cores in their GPUs to accelerate GEMM. Tensor Core
provides significant performance boost and energy efficiency when
performing GEMM operations, and is accessible either through low-
level assembly or various CUDA libraries [38]. Other manufacturers
followed by integrating matrix accelerators into their GPUs years
later [1, 24]. Recently developed hardware that targets AI and ML,
including FPGA and ASIC, also has matrix accelerators, such as in
Xilinx Versal FPGA [16] and Google TPU ASIC [25].

In this paper, the performance benefits of Tensor Cores are in-
vestigated across multiple workloads. Prior works on Tensor Cores
evaluate Convolutional Neural Networks (CNN) [57, 76] and GEMM
[14, 17]. However, the benefits of Tensor Cores in Graph Convolu-
tional Networks (GCN) [29], which is an important emerging ML
workload, have not been explored. We analyze the performance of
four configurations of the GCN model and several kernels includ-
ing element-wise operations. Another contribution of this paper
is the measurement-based evaluation of ML acceleration using the
NVIDIA H100 GPU. Apart from NVIDIA publications, there have
been very few third-party works evaluating H100 GPUs. This is
also one of the earliest third-party papers to measure and analyze
the performance of H100 compared to its predecessor, A100. While
performance evaluation of H100 appears in prior work [7], they do
not present Tensor Core performance.
The objectives of this study are the following:
• Investigate the performance of the CNN and GCN, both with and
without Tensor Cores, across two generations of NVIDIA GPUs,
A100 [48] and H100 [49], based on hardware measurement.

• Provide third-party performance evaluation of NVIDIA H100
GPU compared to the previous generation GPU, NVIDIA A100.

• Conduct roofline analysis of the workloads to understand their
characteristics and correlation with Tensor Cores performance.

• Develop GEMM-like and non-GEMM-like microbenchmark ker-
nels to understand the performance patterns of Tensor Cores.

• Analyze the floating-point instruction mix of workloads and
shed light on the types of lower precision instructions utilized,
the functional units where they are being executed (e.g., CUDA

178

https://orcid.org/0000-0002-8485-581X
https://orcid.org/0000-0002-8747-5214
https://doi.org/10.1145/3629526.3653835
https://doi.org/10.1145/3629526.3653835
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629526.3653835&domain=pdf&date_stamp=2024-05-07

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John

Cores, Tensor Cores), etc. across different networks and training
configurations (e.g., full-precision, mixed-precision).

• Investigate the impact of new data types, such as TF32 [8].
• Investigatewhether code optimizations like reshaping and padding
can make non-GEMM kernels utilize Tensor Cores (eg: Implicit
GEMV vs. Reshaped GEMV for FIR)

The major insights from this study are the following:
• Tensor Cores provides 1.3× to 2.9× improvements in CNNwhereas
only 1.03× in GCN. Among kernels, GEMM, GEMV, and Conv2D
get the benefits while Element-wise and FIR fail to get any im-
provements in spite of transformations.

• Four different CNNs yield an average of 1.93× improvement on
H100 versus the previous A100 GPU. Among the four GCN config-
urations experimented, two yield an impressive 8× improvement
on H100 compared to A100, whereas two of the GCN configura-
tions provide nearly no improvements.

• GCNs have 10× lower arithmetic intensity compared to CNNs,
and benefits from Tensor Cores are difficult to obtain.

• There are performance anomalies while using different CUDA
versions. For instance, the newest CUDA libraries gave improved
performance for manyworkloads, however, for some of the GCNs,
they yielded poorer performance than the older CUDA version.

• Non-GEMM-like kernels struggle to get any performance im-
provements from Tensor Cores, even with data transformations.
Reshaped FIR can use batching in order to reduce performance
overheads, whereas naive FIR is not even supported and cannot
run on Tensor Cores.

2 BACKGROUND AND PRIORWORK
2.1 Tensor Cores

Starting from Volta architecture (2017), NVIDIA GPUs contain
CUDA Cores and Tensor Cores as illustrated in Figure 1. CUDA
Cores are the default (traditional) compute units in GPUs, while
Tensor Cores were later added specifically for accelerating matrix
multiplications, which are abundant inmanymachine learning (ML)
workloads [4, 26, 81]. With libraries provided by NVIDIA, Tensor
Cores quickly became the workhorse for acceleratingMLworkloads
as popular machine learning frameworks, such as PyTorch and
TensorFlow, support Tensor Cores.

2.1.1 Architectural Overview. Figure 2 gives a high-level illustra-
tion of the matrix-multiply-accumulate (MMA) operations per-
formed by Tensor Cores on two 4×4 matrices to produce a 4 × 4
matrix. Essentially, Tensor Cores perform the arithmetic expression
𝐷 = 𝐴 × 𝐵 + 𝐶 where 𝐴, 𝐵,𝐶, 𝐷 are matrices. Larger dimension
matrices are possible using larger Tensor Cores instruction size and
hierarchical matrix multiplication [28].

The NVIDIA Tesla V100 with Volta architecture [45] contains
640 first-generation Tensor Cores across 80 SMs1. The Tensor Cores
in each SM can deliver 1024 FLOPs per cycle, resulting in up to
120 TFLOPs/s FP16 performance [9]. Only half-precision matrix
multiplication is supported in this generation. Thus, the A and B
matrices in Figure 2 are in FP16, while the resulting product matrix

1SM stands for Streaming Multiprocessor, which contains a collection of SIMD Units
referred to as CUDA Cores (e.g., FP64, FP32, INT32), instruction schedulers, registers,
shared memory, L1 cache, and texture cache (Figure 1). GPUs usually have multiple
numbers of SM to achieve even higher parallelism.

L1 Instruction Cache

Texture Cache

L1 Data Cache / Shared Memory

Sub
Partition
(SMSP)

Streaming Multiprocessor (SM)

Memory I/O

Sub
Partition
(SMSP)

Sub
Partition
(SMSP)

Sub
Partition
(SMSP)

L2 Cache

Scheduler

Tensor
Cores

Register File

Memory I/O Datapath
(L1 Data Cache, Shared Memory, Texture Cache)

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

Memory I/O
Load/Store

Queue

Memory I/O
Scheduler

L0 Instruction Cache

L1 Instruction CacheStreaming Multiprocessor
Sub-Partition (SMSP)

Math Dispatch Unit

FP64

FP64

FP64

FP64

FP64

FP64

FP32

FP32

FP32

FP32

FP32

FP32

INT32

INT32

INT32

INT32

INT32

INT32

SFU

SFU

SFU

SFU

CUDA
Cores

Figure 1: CUDA Cores are the default compute units while Tensor
Cores are additions to accelerate matrix multiplications in GPUs

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

+D =

A B C

+

Figure 2: Tensor Cores compute 𝐷 = 𝐴 × 𝐵 +𝐶
Table 1: Tensor Cores Evolution and Supported Precision

Precision Support
Specification Tensor Cores CUDA Cores

G
en

er
at
io
n

Archi-
tecture

Product
Name

#S
M

#C
C

(F
P3

2)

#T
C

FP
64

T
F3

2
FP

16
B
F1

6
FP

8
IN

T
8

IN
T
4

IN
T
1

FP
64

FP
32

FP
16

B
F1

6
IN

T
32

IN
T
8

1 Volta [45] V100S 80 5120 640 - - ✔ - - - - - ✔ ✔ ✔ - ✔ ✔
2 Turing [46] RTX 6000 72 4608 576 - - ✔ - - ✔ ✔ ✔ ● ✔ ✔ - ✔ ✔
3 Ampere [48] A100 108 6912 432 ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 Hopper [49] H100 132 16896 528 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 Ada [54] L40S 142 18176 568 - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ● ✔ ✔ ✔ ✔ ✔

✔: full-support; ●: support with reduced performance; -: not supported.

can be in either FP16 or FP32. The subsequent version of Tensor
Cores supports more data types as given in Table 1.

The second generation of Tensor Cores was introduced in 2019
with Turing architecture [46] focusing on accelerating the quan-
tized ML inference workload. It supports new data types INT8,

179

Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom

INT4, and INT1, which are specifically useful for ML inference
workloads that can tolerate lower precision with minimum impact
on model accuracy [34] as well as binary neural networks [32].
Third-generation Tensor Cores, launched with Ampere architec-
ture [48], support new data types such as BFloat16 (BF16) [74] and
TensorFloat32 (TF32) [8] with additional support for accelerating
sparse matrix operations [68]. Moreover, new FP64 support opens
new possibilities for Tensor Cores to be used in HPC and scientific
applications [17]. The fourth-generation Tensor Cores, introduced
in the Hopper architecture [49] in 2022, double the throughput per
SM per cycle compared to its predecessor for all data formats [7]. A
new quarter precision data type (FP8), which supports both e4m3
(4 exponent bits, 3 mantissa bits) for more accuracy and e5m2 (5 ex-
ponent bits, 2 mantissa bits) for more dynamic range [42], is useful
for large language models. More FP64 shapes and new warp-group
level Tensor Cores instructions are introduced, supporting larger
instruction sizes. Fifth-generation Tensor Cores, introduced in the
Blackwell architecture in 2024, support FP6 and FP4 data types.

2.2 Mixed Precision Training
Mixed precision training [41] can help reduce the amount of

memory required to train the model, ease the bandwidth require-
ment (e.g., off-chip memory and inter-node network bandwidth),
and lower the computational power needed. It uses multiple pre-
cision formats; lower precision (e.g., FP16) is used in most of the
network during the training while single precision (e.g., FP32) is
used in the critical parts of the network (e.g., accumulation of gradi-
ents after each optimizer step) to maintain numerical stability and
accuracy. Some of the hardware has FP32 units that can execute
FP16 twice the rate of FP32, such as NVIDIA Pascal architecture
[44], which improves training performance. With many advantages
offered by mixed precision training, vendors try to find even more
efficient data formats to train AI and ML models without sacrificing
the performance of the models. Google introduced BF16, which re-
tains the dynamic range of FP32 in 16-bit format [74], while NVIDIA
introduced TF32, which retains the dynamic range of FP32 while
keeping the accuracy of FP16 in 19-bit format [8].

2.3 Prior Evaluation of Tensor Cores
Since its introduction in 2017, Tensor Cores have been investi-

gated in academic and industry research. Tensor Cores improve
the performance of ML workloads by using mixed precision while
maintaining model accuracy [39]. Memory-bound operations often
see around two times speed-up thanks to the reduced data size (e.g.,
FP16). In contrast, compute-bound operations benefit from Tensor
Cores depending on their arithmetic intensity [40]. Prior studies
show the use of Tensor Cores onNVIDIAV100GPU givesmore than
2× speed-up in training for ResNet50 [57], GNMT [51], Inception
v3, and Vgg16 models [76]. In addition, quantized inference gets up
to 5× higher throughput and lower latency by using Tensor Cores
inside NVIDIA Turing GPU [46] across many models, including
ResNet50 v2, MobileNet v2, and SSD MobileNet v2 [18, 73]. Other
models, including UNet Industrial Defect Segmentation, show a
slight performance drop [58]. Prior works also include arithmetic
accuracy studies for GEMM [2, 34, 59], scientific computation us-
ing double precision on third and fourth-generation Tensor Cores
[14, 17], and mapping GEMM-like application into Tensor Cores

[10], which include Fast Fourier Transform [13], reduction [43],
scientific simulations [11], and linear system solver [19]. However,
prior works mostly focused on convolution and GEMM-like work-
loads. Workloads such as GCNs and non-GEMM-like applications
have not been studied. Finally, a study is done to characterize Ten-
sor Cores latency, throughput, and numerical behavior to get the
low-level detail of Tensor Cores [67]. However, it does not show
how applications behave in different generations of Tensor Cores.

2.4 Programming Tensor Cores
With CUDA, programmers can develop applications that target

NVIDIA GPUs using high-level languages, such as C, C++, Fortran,
and Python. The high-level code is then compiled by a compiler (e.g.,
nvcc) to an intermediate assembly language called PTX (Parallel
Thread eXecution) [27], whose ISA is openly documented [56]. The
PTX instructions are then compiled to device-specific Streaming
Assembly (SASS) either through ahead-of-time compilation using
PTX assembler (e.g., ptxas) or just-in-time compilation by the
display driver [66].

While developing applications that only utilize CUDA Cores
can be done more easily using the high-level language of choice,
developing applications that specifically target Tensor Cores to
achieve higher performance is a different story. The instructions
that run on Tensor Cores perform matrix multiplication and
accumulation (MMA) [38] on a predefined dimension called in-
struction size. The programming model of Tensor Cores constructs
this operation at the warp2 level, which is different than the reg-
ular CUDA model which constructs the operation at the thread
level [39]. Multiple sizes and operands are supported using MMA,
including half-precision (hmma), integer (imma), binary (bmma), and
double-precision (dmma). These instructions is accessed via PTX
through inline assembly.

Since there is a limited number of instruction sizes for Tensor
Cores, tiling must be done for operations that involve arbitrary
dimensions of matrices. This consists of dividing the large matrices
hierarchically at the grid3 level into multiple thread block tiles, and
further decomposing them

into warp tiles with multiple thread tiles utilizing all memory
types in the hierarchy (e.g., global memory, shared memory, register
files) [28]. Moreover, fulfilling the data layout and memory align-
ment requirements of Tensor Cores may not always be straightfor-
ward, especially for applications that have irregular data structures
and computation patterns [15, 61, 75]. It is also challenging to han-
dle sub-byte operations, such as INT4 and INT1 [6]. Therefore,
programming Tensor Cores is an uphill task.

To overcome this issue, NVIDIA provides libraries that imple-
ment various functions that target Tensor Cores [3], and thus in-
stead of having to write in-line assembly for PTX, developers can
call the provided functions from their applications. Among the li-
braries include cuBLAS, cuSPARSE, cuTENSOR, cuDNN, and CUT-
LASS. CUTLASS is the only open-source library from the previous
list that provides C++ template for developing high-performance

2Warp is a group of 32 threads concurrently executing the same instructions in a
lock-step fashion. A collection of warp constitutes a thread block, which runs on an
SM. The scheduler inside the SMwill choose which warp runs based on the readiness of
operands and perform context-switching across warps to hide memory access latency.
3Grid is a collection of thread blocks executing a GPU kernel.

180

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John

Table 2: Hardware Configuration
Platform DGX-A100 XE9680

GPU
Model NVIDIA A100 NVIDIA H100

Form Factor SXM4 SXM5
Memory Size & Type 40 GB HBM2 80 GB HBM3
Memory Bandwidth 1,555 GBps 3,350 GBps
CUDA/Tensor Cores 6912/432 16896/528
FP32 on CUDA Cores 19.5 TFLOP/s 67 TFLOP/s
FP16 on CUDA Cores 39 TFLOP/s 133.8 TFLOP/s
TF32 on Tensor Cores1 156/312 TFLOP/s 494.7/989.4 TFLOP/s
FP16 on Tensor Cores1 312/624 TFLOP/s 989.4/1978.9 TFLOP/s

CPU
Model (# Sockets) EPYC 7742 (2) Xeon 8470 (2)
Base/Turbo Clock 2.25/3.4 GHz 2.00/ 3.80 GHz

Total Cores / Threads 128 / 256 104 / 208
1 Dense/Sparse GEMM performance

matrix multiplications with support for Tensor Cores [70]. Other
libraries such as cuBLAS and cuDNN are closed-source and contain
multiple algorithms and implementations, including kernels from
CUTLASS, to perform linear algebra and neural network operations,
respectively. They use heuristics to choose the most optimized algo-
rithms for a given problem and target devices [33, 72]. Even though
libraries make developing applications that target Tensor Cores
easier, the developer must still take care of data layout and memory
alignment in order to correctly use Tensor Cores.

3 EXPERIMENTAL METHODOLOGY
3.1 Hardware and Software Setup

The experiments in this paper are conducted on two different
platforms, each with different generations of NVIDIA GPU, as
shown in Table 2. The NVIDIA A100 (Ampere) GPU is housed
in the NVIDIA DGX-A100 chassis and features third-generation
Tensor Cores while the NVIDIA H100 (Hopper) GPU is housed
in Dell PowerEdge XE9680 chassis and features fourth-generation
Tensor Cores with double the throughput of its predecessor. Both
GPUs have sparsity support in their Tensor Cores which is expected
to be useful for GCN that has some sparse matrix multiplications
(spMM) [23, 85]. For simplification, NVIDIA A100 and NVIDIA
H100 GPUs will be referred to as A100 and H100, respectively.

On the software side, the DGX-A100 is equipped with CUDA
Toolkit 11.8, alongwith Python 3.11.4 and PyTorch 2.0.1. Meanwhile,
the Dell PowerEdge XE9680 uses CUDA Toolkit 12.0, along with
Python 3.11.4 and PyTorch 2.0.1 built from the source.

3.2 Performance Measurement
The Nsight Compute (ncu) is used to characterize kernels of

each workload to gain access to their low-level detail. Kernel run-
time is measured by collecting gpu__time_duration metric with
cache and clock control disabled. For measuring kernel runtime in
microbenchmark, the kernel is run 100 times and the average is
taken. In addition, instruction count and DRAM transactions are
collected. The FLOPs number is derived from the instruction count
after multiplying with the weight (e.g., fma, fadd, and fmul have
weight of 2, 1, and 1, respectively). The weight of Tensor Cores
instruction is obtained based on instruction size.

The training performance for ML workloads is measured using
a wall clock. For CNN, the model is trained using their respective
dataset in 10 epochs with a default batch size of 128 for Image
Classification and 4 for Object Detection. On the other hand, the
GCN is trained in 1000 epochs because the model and dataset are

small. Wall clock time measurements for determining speed-up
use a large number of epochs while ncu profiling for roofline and
instruction-mix analysis use 2 and 5 epochs for CNNs and GCN,
respectively, to ensure acceptable running times with the profiler.

3.3 Profiling Tensor Cores
The legacy NVIDIA profiling tool nvprof [47] only provides

single metric that indicates whether tensor cores are being used
by a particular GPU kernel, which is accessible through tensor_
precision_fu_utilization metric. This legacy profiling tool is
no longer supported since Ampere. Meanwhile, its successor, the
NVIDIA NSight Compute (ncu) [53] provides access to more valu-
able metrics on Tensor Cores with support starting from Volta.

Prior to CUDA 12.2, ncu provides access to sm__inst_executed
_pipe_tensor_op_xmma to count the number of instructions being
executed by Tensor Cores. It also provides access to measure Tensor
Cores utilization through sm__pipe_tensor_cycles_active and
sm__pipe_tensor_op_xmma_cycles_active. Note that xmma can
be dmma, hmma, and imma. While the metrics are useful to indicate
the interaction of the applications with the Tensor Cores, more
efforts are needed to obtain more characterization metrics, such as
the total number of FLOPS being executed, which is important for
roofline analysis [78]. The instructions being executed on the Tensor
Cores may have different shapes, which contain a different number
of FLOPs per instruction. Sometimes, the kernel name suggests
the instruction size being used [64] (e.g., ampere_h16816gemm_...
means it uses hmma.16x8x16, which contains 4096 FLOPs per in-
struction), but it is difficult and is not a universal solution. Some
instructions are difficult to infer the number of FLOPs without
documentation, such as hfma2.mma that contain 4 FLOPs [31].

Finally, ncu shipped with CUDA 12.2 in June 2023 provides more
detailed information on how many FLOPs (or IOPs) are executed on
Tensor Cores. It provides access to the new metric sm__ops_path_
tensor_src_(in)_dst_(out) where (in) and (out) are input
data type and output data type. respectively. It can also be used
to identify sparse FLOPs and dense FLOPs. These metrics make
profiling applications that target Tensor Cores easier, especially
those that use wgmma.mma_async in Hopper.

3.4 Workload Configuration
To evaluate Tensor Cores’ performance, two groups of workloads

are prepared, consisting of end-to-end ML training and microbench-
mark as shown in Table 3 and 4, respectively.

3.4.1 Machine Learning Workloads. The CNN workloads consist
of four models with two different tasks, as shown in Table 3. The
ResNet50 [21] and EfficientNet [69] are CNN models for image
classification, which are trained using the ImageNet dataset [12].
In addition, Faster-RCNN [62] and RetinaNet [35] are CNN models
for Object Detection, which are trained using COCO dataset [36].

In addition to CNNs, which have been widely evaluated on GPUs,
we also use GCNs as an emerging ML workload for this study. The
GCN consists of only one model [29] with two different tasks: semi-
supervised node classification tasks, either transductive or inductive
[77]. For the transductive approach, PubMed [65] and Chameleon
[63] datasets are used, while for the inductive approach, Yelp [82]
and Reddit [20] datasets are used. Interested readers can obtain

181

Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom

Table 3: Machine Learning Workload Configuration
Type Model Task Dataset
CNN ResNet50 Image Classification ImageNetCNN EfficientNet
CNN FasterRCNN Object Detection COCOCNN RetinaNet
GNN GCN Node Classification

Transductive
PubMed

GNN GCN Chameleon
GNN GCN Node Classification

Inductive
Reddit

GNN GCN Yelp

Table 4: Microbenchmark Kernels Configuration
Type ID Dimension Config

GEMM
{m,n,k}

512 {512,512,512} fp32
fp16.1688
fp16.16816

2K {2048,2048,2048}
8K {8192,8192,8192}
32K {32768,32768,32768}

GEMV
{m,1,k}

512 {512,1,512} fp32
fp16.1688
fp16.16816

2K {2048,1,2048}
8K {8192,1,8192}
32K {32768,1,32768}

Conv2D
{N,H,W,C};
{K,R,S};
{U,V}

A {64,1024,1024,32}; {16,32,32}; {1,1}

fp32
fp16

B {64,1024,1024,32}; {16,32,32}; {1,1}
C {256,512,512,32}; {16,32,32}; {1,1}
D {64,1024,1024,32}; {16,4,4}; {8,8}
E {32,512,512,256}; {16,32,32}; {1,1}
F {32,512,512,32}; {256,32,32}; {1,1}

FIR
{s,f}

8M4 {8388608, 4}

fp32.af
fp16.ig
fp16.rg

8M8 {8388608, 8}
32M8 {33554432, 8}
32M16 {33554432, 16}
128M16 {134217728, 16}
128M32 {134217728, 32}

ElWiseAdd
{v}

256K {262144}
fp32
fp16

4M {4194304}
64M {67108864}
1B {1073741824}

more details from the original paper [29], a review by Zhang et al.
[83, 84], and a summary by Heidar et al. [22],

PyTorch [60] is used as the framework to perform ML training in
this experiment. All of the CNNmodels are taken from TorchVision
[37] while the GCN model is taken from CogDL [5], a research
toolkit for deep learning graphs. This toolkit integrates the original
code from Kipf et al. [29] with built-in methods to load various
datasets, making it easier to do experiments. For the FP32 (full-
precision) training flow, PyTorch Automatic Mixed Precision (AMP)
is disabled to avoid Tensor Cores usage, while for the FP16 (mixed-
precision), AMP is enabled, allowing Tensor Cores usage.

3.4.2 Microbenchmark Kernels. The microbenchmark consists of
five kernels with configurations given in Table 4. The kernels are
developed using C++ and CUDA which target CUDA Cores or
Tensor Cores. The kernels have customizable precision, input di-
mensions, target execution units, and libraries. Except otherwise
noted, CUTLASS [70] is the library used for two reasons: 1) CUT-
LASS is open-source, which allows modification of template header
or low-level assembly; and 2) CUTLASS is deterministic in terms
of overall execution, which allows using application replay in ncu
for profiling while cuBLAS use heuristics to choose the best kernel
depending on problem size and device. The FP32 and F16 imple-
mentations target CUDA Cores and Tensor Cores, respectively.
• GEMM: General matrix-matrix multiply with dimensions {m,n,k}
denoting 𝐴𝑚×𝑛 × 𝐵𝑛×𝑘 = 𝐶𝑚×𝑘 where 𝐴, 𝐵,𝐶 are matrices.
GEMM is well-supported by CUTLASS, which has one of the
most efficient hierarchical GEMMs supporting CUDA Cores or
Tensor Cores. However, data layout inmemorymust be taken care

of carefully [28]. FP16 implementation uses two Tensor Cores in-
structions: hmma.16816 (fp16.16816) and hmma.1688 (fp16.1688).

• GEMV: General matrix-vector multiply with dimensions {m,1,k}
can be viewed as a special case of GEMM. It follows the same
implementation as GEMM.

• Conv2D: Two-dimension convolution is decomposed into im-
plicit GEMM [86] by CUTLASS on CUDA Cores or Tensor Cores.
The Conv2D kernel has multiple configurations with {N,H,W,C}
denotes batch size, height, width, and number of input channels,
respectively. In contrast, {K,R,S} denotes the number of chan-
nels, height, and width of the filter, respectively. The {U,V} are
horizontal and vertical stride, respectively.

• FIR: 1D Finite Impulse Response filtering which operates on
1D signal 𝑠 and 1D filter 𝑓 . The FP32 uses the ArrayFire library
(fp32.af) [79] while the FP16 implementation is not supported by
Tensor Cores by default. Although earlier studies have tried to
map FIR into Tensor Cores, they use 2D signals and filters [30].
Therefore, for the purpose of this experiment, two approaches to
map 1D FIR into Tensor Cores are proposed as follows:
– Implicit GEMV (fp16.ig): This approach is done by modifying
CUTLASS implicit GEMM into implicit GEMV. Due to memory
alignment requirements, many zero-padding needs to be added,
resulting in 64× more operations than is necessary.

– Reshaped GEMV (fp16.rg): Another approach is to construct
a matrix from a 1D signal, which will be multiplied by the
vector containing the filter. Suppose a filter 𝑓 = {𝑓0 𝑓1 𝑓2} is
applied into input signal 𝑠 = {𝑠0 𝑠1 𝑠2 𝑠3}. Then, a 4×3 matrix is
constructed with first row {0 0 𝑠0}, second row {0 𝑠0 𝑠1}, third
row {𝑠0 𝑠1 𝑠2}, and fourth row {𝑠1 𝑠2 𝑠3}. Then, a GEMV can be
performed between the signal matrix and the filter vector. This
approach has one drawback regarding data reuse and memory
usage where the same data appears multiple times (e.g., 𝑠0 in
the first row is the same data as 𝑠0 in the second row but stored
twice in the memory).

• ElWiseAdd: Element-wise vector addition operates on two vec-
tors of the same configurable lengths {𝑣}. The FP32 implementa-
tion (fp32) uses only C++, while the FP16 implementation (fp16)
is not supported in Tensor Cores. While cuBLAS supports vector
addition operation, which can be represented by 𝑎𝑥 + 𝑦 with
scaling factor 𝑎 = 1, at the time of writing, cuBLAS only supports
this operation in CUDA Cores for single precision and double
precision with no Tensor Cores support [50]. Therefore, to be
able to run vector addition in Tensor Cores, both vectors must be
transformed into matrices to follow the Tensor Cores operation
shown in Figure 2 with matrix 𝐵 being an identity matrix and
matrix 𝐴 and 𝐶 are the two input vectors. The multiplication
cannot be skipped as it is the basic operation of Tensor Cores (i.e.,
mma), resulting in expensive computation and memory access.

4 EVALUATION & DISCUSSION
4.1 What do Tensor Cores bring to the table

over CUDA Cores?
Tensor Cores provide a significant jump in compute throughput

for GEMM and GEMM-like kernels if specific precisions are used.
Figure 3 presents the speed-up achieved for CNN and GCN work-
loads (Table 3), and microbenchmark kernels (Table 4) on H100.

182

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John

0

5

10

15

512 2K 8K 32K 512 2K 8K 32K

GEMM GEMV

0

5

10

15

A B C D E F

Conv2D

0

1

2

8M4 8M8 32M8 32M16 128M16 128M32

FIR

0

1

256 4M 64M 1B

ElWiseAdd

0

1

PubMed Chameleon Yelp Reddit

GCN

0

2

1

fp32 (baseline)CUDA Cores :
tf32 fp16Tensor Cores:

3

4

ResNet50 EfficientNet FasterRCNN RetinaNet

CNN

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

G

a

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

b

fp32 (baseline)CUDA Cores :
fp16Tensor Cores: B

fp32 (baseline)CUDA Cores :
fp16.1688 fp16.16816Tensor Cores: G

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

c

fp32 (baseline)CUDA Cores :
fp16Tensor Cores: G

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

d

fp32.ar (baseline)CUDA Cores :
fp16.ig fp16.rgTensor Cores: U

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

e

fp16.ig (1/64)

fp32 (baseline)CUDA Cores :
fp16Tensor Cores: U

f

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
ce

Figure 3: The speed-up obtained by using Tensor Cores over CUDA Cores on H100 across CNN/GCN workloads, and microbenchmark kernels.
CNNs, Conv2D, and GEMM/GEMV are high performers with G, B, and U indicate Good, Bad, and Ugly, respectively.

4.1.1 CNN Workloads. Figure 3-a illustrates that going from FP32
onCUDACores to TF32 on Tensor Cores gives an average 1.91× speed-
up while going from FP32 on CUDA Cores to FP16 on Tensor Cores
gives an average 2.42× speed-up. To run FP32 full precision training
on CUDA Cores as the baseline, PyTorch Automatic Mixed Preci-
sion (AMP) is explicitly disabled. However, the underlying CUDA
libraries (e.g., cuBLAS, cuDNN) automatically demote FP32 to TF32
[8] to take advantage of Tensor Cores. Hence, an environment vari-
able NVIDIA_TF32_OVERRIDE=0 is set to tell CUDA libraries not
to use TF32 explicitly. As a result, there are three configurations
shown in Figure 3-a: full precision FP32 (blue), full precision TF32
(green), and mixed precision FP16 (purple).
4.1.2 GCN Workloads. Unlike CNN, GCN uses FP32 by default for
full precision training, most likely due to the CogDL [5] that does
not take advantage of TF32 on the underlying CUDA libraries. Fur-
thermore, as shown in Figure 3-b, it only sees an average speed-up
of 1.03× when going from FP32 on CUDA Cores to FP16 on Tensor
Cores. Further explanation using rooflines and matrix instruction
usage is provided in Section 4.2.4 and Section 4.3.2.

4.1.3 Microbenchmark Kernels. In summary, GEMM, GEMV, and
Conv2D kernels get the performance benefit while FIR and El-
WiseAdd experience performance degradation, as discussed below.
• GEMM: GEMM gets an average speed-up of 7.69× and 9.14× for
fp16.1688 and fp16.16816, respectively, as shown in Figure 3-c.
The highest speed-up is observed with GEMM_8K at 9.32× for
fp16.1688 and 11.89× for fp16.16816, before dropping to 7.25× and
7.20× , respectively, for GEMM_32K. The GEMM_32K has vastly
more elements (200M for GEMM_8K vs. 3.2B for GEMM_32K)
and more intermediate results, exacerbating the data movement
between on-chip and off-chip memory, which will become clear
when we perform roofline analysis in Section 4.2.5.

• GEMV: GEMV gets performance benefits from Tensor Cores,
although its average speed-up is lower than GEMM due to its
lower arithmetic intensity. The achieved average speed-up is
7.82× for fp16.1688 and 8.96× for fp16.16816 (Figure 3-c).

• Conv2D: Since Conv2D is decomposed into implicit GEMM, it
can take advantage of Tensor Cores; it achieves an average speed-
up of 6.99× (Figure 3-d). The highest speed-up of 12.42× comes
from Conv2D_E, whose reason will become clear in Section 4.2.5.

• FIR: Both FP16 implementations that target Tensor Cores show
significant performance degradation as shown in Figure 3-e; the
fp16.rg and fp16.ig only achieve an average of 0.30× and 0.01× per-
formance achieved by fp32.ar that runs on CUDA Cores, respec-
tively. The fp16.rg has redundant operations (Section 3.4.2), caus-
ing the performance drop for larger signal and filter dimensions.
The fp16.ig is even more slower than the fp16.rg because of the
64 times more operations it needs to perform due to the zero-
padding (Section 3.4.2). Even if there is a way to make these
additional operations useful (e.g., having batched inputs with the
same FIR filter or multiple independent FIR filters), it still cannot
compete with the fp32.ar for large signal size (dashed green bars).

• ElWiseAdd: Like the FIR, ElWiseAdd also sees performance
degradation, especially for larger dimensions, where it achieves
an average of 0.25× performance offered by CUDA Cores as
shown in Figure 3-f. While the matrix addition is fast, the mul-
tiplication with the identity matrix that cannot be skipped is
expensive, especially in larger dimensions (Section 3.4.2).

4.2 Is Compute the Bottleneck or Memory?
4.2.1 Overview of Roofline Model. We use roofline charts [78]
to visualize the achieved performance of applications or kernels
compared to the hardware’s compute capabilities and draw insights
on the arithmetic intensity of applications. Both axes of the model
are plotted in logarithmic scale: the y-axis represents the compute
throughput (e.g., floating-point operations per second) while the
x-axis represents the arithmetic intensity, which is the amount of
computing that can be done per byte of data (e.g., floating-point
operations per byte). The hardware roofline model, which can be
obtained theoretically (e.g., from manufacturer datasheet, such as
the data provided in Table 2) or empirically (e.g., using Empirical
Roofline Toolkit [80]), consists of peak compute throughput, drawn
as the roof, and the peak memory bandwidth (e.g., off-chip memory,
cache bandwidth), drawn as the slope. Using data obtained from
profiling tools (e.g., execution duration, the number of operations,
and the number of memory read and write), the position of each
application or kernel in the roofline chart can be determined, which
gives insight whether the application or kernel is compute- (i.e.,
closer to the roof) or memory-bound (i.e., closer to the slope) and
what optimization techniques should be performed.

183

Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom

CNN

G
F

L
O

P
/s

0.1 10 1K 100K

100

1K

10K

100K

1M

1M
10

H100-SXM5

LL
C

 7
4

4
5.

8
G

B
p

s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

Shape
(Precision)

Full Prec.
TF32

Mixed Prec.
FP16

Color
(Workload)

ResNet50

FasterRCNN

EfficientNet

RetinaNet

Image
Classification

Object
Detection

FLOP/Bytea

0.1 10 1K 100K

100

1K

10K

100K

1M

Color
(Workload)

FIR_8M8

FIR_32M8

FIR_8M4

FIR_32M16

1M
10

H100-SXM5

FIR_128M16

FIR_128M32

Shape
(Precision)

fp32.af

fp16.rg

fp16.ig
LL

C
 7

4
4

5.
8

G
B

p
s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

G
F

L
O

P
/s

FLOP/Byte

FIR

e

0.1 10 1K 100K

100

1K

10K

100K

1M

1M
10

H100-SXM5

LL
C

 7
4

4
5.

8
G

B
p

s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

Shape
(Precision)

Full Prec.
FP32

Mixed Prec.
FP16

Color
(Workload)

Chameleon

Reddit

PubMed

Yelp

GCN
Transductive

GCN
Inductive

GCN

b

G
F

L
O

P
/s

FLOP/Byte
0.1 10 1K 100K

100

1K

10K

100K

1M Shape
(Precision)

fp32

fp16.16816

fp16.1688

Color
(Workload)

GEMM_2K

GEMM_8K

GEMM_512

GEMM_32K

1M
10

H100-SXM5

GEMV_512

GEMV_2K

GEMV_8K

GEMV_32K

LL
C

 7
4

4
5.

8
G

B
p

s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

Theoretical
FP16-TC

(984000)

GEMM and GEMV

c

G
F

L
O

P
/s

FLOP/Byte

0.1 10 1K 100K

100

1K

10K

100K

1M Shape
(Precision)

fp32

fp16

Color
(Workload)

Conv2D_B

Conv2D_C

Conv2D_A

Conv2D_D

1M
10

H100-SXM5

Conv2D_E

Conv2D_F

LL
C

 7
4

4
5.

8
G

B
p

s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

Conv2D

d FLOP/Byte

G
F

L
O

P
/s

0.1 10 1K 100K

100

1K

10K

100K

1M Shape
(Precision)

fp32

fp16

Color
(Workload)

1M
10

H100-SXM5

LL
C

 7
4

4
5.

8
G

B
p

s

D
R

A
M

 2
8

32
.2

G
B

p
s

FP64-CC (32828.1)

FP32-CC (64196.5)
FP16-CC (64646.6)

ElWiseAdd_
4M
ElWiseAdd_
64M

ElWiseAdd_
256

ElWiseAdd_
1B

FLOP/Byte

ElWiseAdd

f

G
F

L
O

P
/s

Figure 4: The roofline model for H100 (obtained using ERT), and the characterization of CNN/GCN workloads, and microbenchmark kernels.
GCN has less than 1K flops/byte while Conv2D goes above 100K flops/byte. Diamond shape indicates baseline without Tensor Cores and
triangles/circles indicate Tensor Cores versions.

4.2.2 H100 Roofline Model. Figure 4 shows the hardware roofline
model for H100, obtained using ERT [80]. There are two points to
highlight: 1) The roofs represent the peak compute throughput of
the CUDA Cores: 64.64 TFLOP/s for FP16 (FP16-CC), 64.12 TFLOP/s
for FP32 (FP32-CC), and 32.82 TFLOP/s for FP64 (FP64-CC) since,
at the time of writing, ERT does not support hmma nor hgmma to
measure the peak compute throughput of Tensor Cores (FP16-TC);
and 2) the ERT is only able to achieve 50% of the theoretical compute
throughput of FP16 on CUDA Cores (Table 2). The latter may be
caused by two reasons: 1) ERT may need to be updated to account
for new architecture, or 2) The CUDA Cores of Hopper may have
the same FP16 compute throughput as the FP32. This happens with
Ada Lovelace [54] (e.g., NVIDIA L40S [55]), which shares some of
the architecture with Hopper, although Hopper datasheet mentions
FP16 to be twice the rate of FP32 on CUDA Cores [49]. For the
bandwidth, ERT is able to achieve 2,832 GBps on the HBM3 DRAM
(84.5% of 3,350 GBps theoretical bandwidth for H100).

4.2.3 CNN Workloads. The use of TF32 during full precision train-
ing (Section 4.1.1) allows all models to achieve significantly higher
GFLOP/s, with some exceeding the FP32-CC roof, by leveraging
Tensor Cores (Figure 4-a). The performance improvements in using
TF32 compared to FP32 for full-precision training are two folds:
1) Convolution operations, which are abundant in CNN, can be
done on Tensor Cores, which have significantly higher compute
throughput than CUDA Cores; and 2) TF32 has lower 19-bit data
size compared to FP32 32-bit data size, which reduces the pressure
on the memory bandwidth. Furthermore, the use of FP16 on mixed
precision training by enabling PyTorch Automatic Mixed Precision
improves performance even further, which comes from the ability
of Tensor Cores to compute FP16 at twice the rate of TF32 and

slightly lower data size (16-bit FP16 vs. 19-bit TF32). Special men-
tion goes to FasterRCNN, shown in orange color, which gets the
most benefits (i.e., biggest change in FLOPs/byte) from reduced
memory bandwidth by switching from TF32 to FP16.
4.2.4 GCN Workloads. In general, all of the GCN workloads are
memory-bound, even after switching from full-precision training
(FP32) to mixed-precision training (FP16) as shown in Figure 4-b.
The use of Tensor Cores for mixed-precision training has very few
improvements in performance as discussed in Section 4.1.2; only
PubMed, shown in green, enjoys some improvements compared
to other GCN configurations in terms of arithmetic intensity and
achieved compute throughput. However, it does not translate to pos-
itive speed-up (Figure 3) due to extra operations needed when using
Tensor Cores (e.g., COO to CSR sparse matrix format conversion).
4.2.5 Microbenchmark Kernels. The roofline analysis for each ker-
nel of the microbenchmark is given as follows.
• GEMM: The GEMM kernels are shown in dark blue, light blue,
dark green, and light green colors in Figure 4-c. The dimension
of GEMM_512 (dark blue) is too small to take advantage of the
compute throughput offered by either CUDA Cores (diamond) or
Tensor Cores (triangle and circle). Meanwhile, the other GEMM
configurations (GEMM_2K, GEMM_8K, GEMM_32K) in FP32 (di-
amond) can almost saturate the FP32 compute throughput offered
by CUDA Cores (i.e., almost hitting the roof of FP32-CC). The
FP16 version of GEMM_8K and GEMM_32K (dark green trian-
gle, green triangle, dark green circle, and green circle) can push
through the roof of FP16-CC thanks to the use of Tensor Cores
until the memory bandwidth of HBM3DRAM becomes their limit.
The theoretical FP16 performance of the Tensor Cores in H100 is
989 TFLOP/s (Table 2), which most likely won’t be achieved by

184

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John

GEMM due to memory bandwidth limitation. The use of larger
hmma.16816 (fp16.16816), denoted by circle, gives higher compute
throughput compared to the hmma.1688 (fp16.1688), denoted by
triangle, while giving the same arithmetic intensity. Finally, it is
worth mentioning that the GEMM_2K has a significantly higher
FLOP/byte compared to other configurations. The dimension of
the matrices is small enough to fit into on-chip memory. The 12
Million (2048×2048×3) FP16 elements have a total size of around
24 MB while H100 has 33 MB of registers, 33 MB of combined L1
Cache and Shared Memory, and 50 MB of L2 cache.

• GEMV: The GEMV kernels are shown in orange, yellow, pur-
ple, and violet colors in Figure 4-c. GEMV has lower data reuse
compared to GEMM, and hence lower arithmetic intensity (i.e.,
located to the left of GEMM counterparts) and lower number
of operations, especially for lower dimensions GEMV_512 and
GEMV_2K (orange and yellow) whose FP32 versions (diamond)
cannot fully utilize the available CUDA Cores on H100. On the
other hand, the largest dimension (GEMV_32K) can almost hit
the FP32-CC roof. Moving to FP16 versions (triangle and circle),
only GEMV_8K and GEMV_32K can push through the roof of
FP16-CC until they hit the memory bandwidth slope. Like the
GEMM, the use of hmma.16816 (fp16.16816) gives higher compute
throughput compared to the hmma.1688 (fp16.16816) on GEMV.

• Conv2D: As mentioned earlier in Section 3.4.2, the 2D Convolu-
tion is decomposed into implicit GEMM. The 2D convolution has
more data reuse compared to GEMM, where the data reuse mostly
comes from the use of 2D filters, which are applied to many 2D
input signals. As shown in Figure 4-d, in general, both FP32 (di-
amond) and FP16 (circle) of Conv2D almost reach the roof of
FP32-CC and the theoretical roof of FP16-TC (drawn as a dashed
red line), respectively. The Conv2D_A (dark blue) and Conv2D_B
(light blue), which have sixteen 32×32 filters (Table 4), have the
most data reuse, leading to the highest arithmetic intensity (i.e.,
located to the right side of the roofline chart). The amount ofmem-
ory needed to store all of these filters in both FP32 and FP16 are
64 KB and 32 KB, respectively, which can be stored sufficiently in-
side the shared memory of H100 (256 KB of combined L1+Shared
memory per SM). On the other hand, Conv2D_C (dark green)
and Conv2D_D (light green) have the least data reuse due to the
smaller size of filters being used (Conv2D_C) and the larger con-
volution stride (Conv2D_D). Moving to FP16 with Tensor Cores
(circle), all Conv2D configurations push through the FP16-CC
roof. Special mention goes to Conv2D_E (orange) with its 256
input channels and smaller 512×512 input signals that allow for
more data reuse. It almost achieves the theoretical FP16 peak
performance of Tensor Cores, followed by Conv2D_F (yellow).

• FIR: Figure 4-e shows three clusters of workloads, which corre-
spond to three implementations of FIR as discussed in (Section
3.4.2): fp32.ar (diamond), fp16.rg (circle), and fp16.ig (triangle).
The FP32 version (fp32.ar) is already bandwidth-limited, with all
of them positioned near each other at the slope of HBM3 DRAM.
This also indicates that Tensor Cores cannot accelerate FIR as it
is already bandwidth limited, unlike GEMM, GEMV, and Conv2D.
The fp16.rg implementation has higher arithmetic intensity due
to the redundant operations as a result of how the signal’s data
is laid out to form a matrix as discussed in Section 3.4.2. On the
other hand, the fp16.ig tries to mimic the implicit GEMM that

Conv2D has, except it uses implicit GEMV. Nevertheless, both
approaches to map FIR to Tensor Cores (fp16.ig and fp16.rg) show
unfavorable results compared to the fp32.ar on CUDA Cores.

• ElWiseAdd: Figure 4-f shows the FP32 version (diamond) of
element-wise addition is already memory-bound with very low
arithmetic intensity, hitting the slope of HBM3 DRAM bandwidth.
On the other hand, the FP16 version (circle) has higher compute
throughput and arithmetic intensity, which solely comes from
the fact that the element-wise addition must be transformed to
matrix-multiply-accumulate operations to be able to use Ten-
sor Cores. Sadly, this does not improve performance since the
multiplication is expensive, especially for large matrix sizes.

4.3 What Percentage of Floating-Point
Instructions Offloaded to Tensor Cores?

Figure 5 shows the floating-point instruction/operation mix for
CNN, GCN, and microbenchmark kernels. Since Tensor Cores in-
struction performs multiple floating-point operations, the weighted
numbers are used (Section 3.2). The instruction/operation mix gives
insight into what instructions could be offloaded to Tensor Cores.

4.3.1 CNNWorkloads. As previously discussed in Section 4.2.3, the
underlying CUDA libraries demote the FP32 to TF32 for full preci-
sion training in order to use Tensor Cores. This is further confirmed
by the instruction mix shown in Figure 5 (top four sets) where
most floating-point instructions are TF32 running on Tensor Cores
with hmma.1688 instructions shown as yellow bar (e.g., GEMM
kernel sm80_xmma..._tf32f32...) and newer hgmma shown as
olive-green bar (e.g., GEMM kernel sm90_xmma..._tf32f32...).
Small percentage of operations are still executed by CUDA Cores
as shown by the green (FP16) and blue (FP32) bar, which come from
kernels that cannot be mapped into Tensor Cores (e.g., element-
wise). Moving to mixed precision training with FP16, the composi-
tion is largely the same with FP16 running on Tensor Cores with
hmma.1688 (light orange bar), hmma.16816 (dark orange bar), and
newer hgmma (dark brown bar) instructions. It is worth mentioning
that ncu shipped with CUDA 12.2 is used to calculate the number of
floating-point operations that hgmma instructions do as it is difficult
to infer this information from kernel name alone (Section 3.3).

4.3.2 GCN Workloads. Unlike CNN, the full precision training
on GCN uses FP32 on CUDA Cores as shown in Figure 5 (mid-
dle four sets of bars) where majority of the instructions are ffma.
Moving to mixed precision training with FP16, none of them use
the newer hgmma instructions on Tensor Cores; the majority use
hmma.1688 and hmma.16816 with Chameleon is observed to use
older wmma.161616 instructions. In addition, a small number of
FP32 and FP16 instructions are executed on CUDA Cores, particu-
larly for element-wise kernels, which are many in GCN workloads,
outweighing the speed-up provided by Tensor Cores.

4.3.3 Microbenchmark Kernels. Unlike CNN and GCN workloads,
the data type and instruction size used in the microbenchmark
kernels can be specified explicitly. The lowest four sets of bars
illustrate the microbenchmarks in Figure 5.
• GEMM, GEMV, and Conv2D: Both GEMM and GEMV have the
instructionmix corresponding to the data type and the instruction
size used: FP32 mostly uses ffma on CUDA Cores (blue bar)
while FP16 mostly uses either hmma.1688 (light orange bar) or

185

Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom
C

U
D

A
 C

o
re

s

HMMA 1688

HMMA 16816

WMMA 161616

FP16

HFMA2.MMA

HGMMA

TF32

FP16

0% 20% 40% 60% 80% 100%

C
N

N
 I

m
a

g
e

 C
la

ss
ifi

ca
ti

o
n

HADD

HFMA

HMUL

FP16 TF32

HMMA 1688

HGMMA

FADD

FFMA

FMUL

FP32

T
e

n
so

r
C

o
re

s

R
e

sN
e

t5
0

TF32

FP16

E
ffi

ci
e

n
tN

e
t

TF32

FP16

F
a

st
e

rR
C

N
N

TF32

FP16

R
e

ti
n

a
N

e
t

C
N

N
 O

b
je

ct
 D

e
te

ct
io

n

FP32

FP16

C
h

a
m

e
le

o
n

FP32

FP16P
u

b
M

e
d

G
C

N
 T

ra
n

sd
u

ct
iv

e

FP32

FP16R
e

d
d

it

FP32

FP16

Y
e

lpG
C

N
 I

n
d

u
ct

iv
e

FP32

FP16
1688

G
E

M
M

 a
n

d
 G

E
M

V

FP32

FP16C
o

n
v

2
D

M
ic

ro
b

e
n

ch
m

a
rk

 (
A

v
e

ra
g

e
 P

e
rc

e
n

ta
g

e
)

FP32

FP16

E
lW

is
e

A
d

d

FP16
16816

FP32

FP16
RGF

IR

FP16
IG

Figure 5: The floating-point instruction mix of CNNs, GCNs, and
microbenchmark kernels on H100 utilizing CUDA libraries (e.g.,
cuDNN, cuBLAS, CUTLASS). Note that full precision training in CNN
will, by default, use TF32 instead of FP32. Yellow/brown/orange/red
run in Tensor Cores and blue/green run in CUDA Cores.

hmma.16816 (dark orange bar) on Tensor Cores. Since Conv2D is
decomposed to implicit GEMM, it follows the behavior of GEMM.

• FIR: The fp32.ar implementation uses ffma and hfma that runs on
CUDA Cores. On the other hand, the fp16.rg implementation still
has themajority of the FP16 instructions executed in CUDACores
as hfma (green bar) while some of the instructions are executed in
Tensor Cores with hmma.16816 instructions. Finally, the fp16.ig
implementation spends the majority of the instructions on Tensor
Cores as hmma.16816. Only a small percentage of Tensor-Core-
bound instructions are useful since most of them are due to
padding and memory alignment.

• ElWiseAdd: The FP32 implementation uses fadd on CUDA
Cores while the FP16 implementation uses hmma.16816 on Ten-
sor Cores. Unfortunately, for FP16, most of the instructions are
spent on the expensive matrix-multiply operations, which are
not useful since the only useful operation is addition.

4.4 How much more performance does H100
provide over A100?

Table 2 shows the theoretical peak performance of H100 is 3.4× in
FP32 and FP16 on CUDA Cores and 3.2× in TF32 and FP16 on Ten-
sor Cores compared to A100. The H100 achieves these theoreti-
cal performance improvements by having 2.5× higher number of
CUDA Cores (16896 vs. 6912), doubling the Tensor Cores through-
put per SM per cycle, doubling the memory bandwidth (3.3 TB/s vs.
1.5 TB/s), pushing the TDP higher (700 W vs. 400 W), running at
higher sustained clock frequency (1980 MHz vs. 1410 MHz), and
having other new features that help with execution efficiency. This
section compares the achieved performance improvements of H100
over its predecessor, the A100, for the experimented CNNs, GCNs,
and microbenchmark kernels as shown in Figure 6.

4.4.1 CNN Workloads. The H100 achieves an average of 1.96×,
1.96×, and 1.88× speed-up for FP32 on CUDA Cores, TF32 on Tensor
Cores, and FP16 on Tensor Cores, respectively, across four CNN
workloads over A100 as shown in Figure 6-a.

4.4.2 GCN Workloads. Figure 6-b shows the speed-up achieved by
H100 over A100 on GCN. We observed a significantly high speedup
on GCN with Yelp and Reddit datasets. For GCN with PubMed
and Chameleon datasets, performance improvements on H100 over
A100 are insignificant, with an average speed-up of 1.12×. When
running GCN training on H100 with CUDA 12.0, the Chameleon
mixed precision training flow is broken while its full precision
shows double the time needed compared to A100. Reverting back to
CUDA 11.8 solves the issue. Interestingly, it is the other way around
for both Yelp and Reddit which enjoy significant improvements
when using CUDA 12.0 on H100 for two reasons: 1) sparse-matrix
multiplication (spmm [23]) kernel is being used, which is not found
when running on A100; 2) the use of newer hgmma instruction.

4.4.3 Microbenchmark Kernels. The microbenchmark kernels that
target Tensor Cores use either hmma.1688 and hmma.16816 instruc-
tions; none of them use the newer hgmma instructions supported by
H100, which may affect the attainable performance.
• GEMM, GEMV, and Conv2D: H100 achieves average speed-up
of 3.01×, and 2.36×, and 1.98× for GEMM with FP32 on CUDA
Cores, FP16 using hmma.16816 on Tensor Cores, and FP16 using
hmma.1688 on Tensor Cores, respectively over A100 (Figure 6-c).
The speed-up is lower for GEMV with an average of 2.74×, 2.00×,

186

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John
S

p
e

e
d

-u
p

 o
v

e
r

A
10

0

CNN

fp32 (CC) tf32 (TC) fp16 (TC)

1

2

3

0

ResNet50

FasterRCNN

EfficientNet

RetinaNet

a

S
p

e
e

d
-u

p
 o

v
e

r
A

10
0

fp32 (CC) fp16 (TC)

2

4

6

0

b

8

10
ChameleonPubMed RedditYelp

GCN

S
p

e
e

d
-u

p
 o

v
e

r
A

10
0

GEMM

fp32 (CC) fp16 (TC) fp16 (TC)

1

2

3

0

512 8K2K 32K

c

4
S

p
e

e
d

-u
p

 o
v

e
r

A
10

0

GEMV

fp32 (CC) fp16 (TC) fp16 (TC)

1

2

3

0

512 8K2K 32K

d

4
S

p
e

e
d

-u
p

 o
v

e
r

A
10

0

fp32 (CC) fp16 (TC)f

ElWiseAdd

4M256 1B64M

1

2

3

0

4

S
p

e
e

d
-u

p
 o

v
e

r
A

10
0

fp32 (CC) fp16 (TC)e

Conv2D

1

2

3

0

DC FEBA

S
p

e
e

d
-u

p
 o

v
e

r
A

10
0

FIR

fp32.ar (CC) fp16.rg (TC) fp16.ig (TC)

1

2

3

0
g

32M1632M8 128M32128M168M88M4

hmma.16816 hmma.1688hmma.16816 hmma.1688

Figure 6: Significant speed-up is achieved by H100 over A100 for
most benchmarks. Red line indicates A100 performance (baseline).

and 1.65×, respectively, due to lower arithmetic intensity (Fig-
ure 6-d). Finally, H100 reaches an average speed-up of 2.45× and
2.20× on Conv2D for FP32 (CUDA Cores) and FP16 (Tensor Cores)
over A100, respectively (Figure 6-e).

• FIR and ElWiseAdd: While FIR (Figure 6-f) and ElWiseAdd
(Figure 6-e) do not benefit from Tensor Cores, H100 achieved an
average speed-up of 1.62×, 1.23×, 2.21×, 1.78×, and 2.37× for FIR
fp32.ar, FIR fp16.rg, FIR fp32.ig, ElWiseAdd FP32, and ElWiseAdd
FP16, respectively.

4.5 Discussion
4.5.1 Empirical Roofline Toolkit. The ERT [80] is a useful tool for
creating a roofline model of the hardware. However, it does not
have support to find the roof for Tensor Cores using either mma or
wgmma.mma_async. From the roofline analysis (Figure 4), Conv2D
is one of the likely kernels that can be used to measure the roof of
Tensor Cores performance, since it can almost reach the theoretical
peak throughput of Tensor Cores.
4.5.2 Profiling non-deterministic application. While it is recom-
mended to use application replay when profiling using ncu [52]
to avoid the overhead of kernel replay, profiling non-deterministic
workloads such as ML training flows [87] may need to use kernel
replay instead. Although we have followed steps to maintain re-
producibility and control randomness in PyTorch [71], ncu with
application replay is unable to consolidate profiling results due

to the mismatch in kernel names and kernel launch parameters,
which is an indication that the applications do not take the same
execution path every time it runs during the replay.
4.5.3 Reshaping Optimizations. Both FIR and ElWiseAdd will not
run on Tensor Cores without reshaping optimization to map them
into GEMM-like operations (Section 3.4.2). Unfortunately, reshap-
ing comes with costs due to memory alignment and padding, mak-
ing the performance benefit of Tensor Cores difficult to come by.
Finer control of Tensor Cores (e.g., the ability to skip the multi-
plication on MMA operations) may be beneficial for element-wise
operations that often follow GEMM/GEMV operations by fusing
both GEMM kernels and element-wise kernels to significantly re-
duce data movement and kernel switching overhead.
4.5.4 TensorFloat32. The TensorFloat32 (TF32) was introduced by
NVIDIA along with third-generation Tensor Cores (Section 2.1)
[8]. TF32 is a 19-bit data type with 8-bit exponent to retain the
dynamic range of FP32 and 10-bit mantissa to achieve the same
accuracy as FP16, which has been proven to be sufficient for ML
workloads. Since TF32 can run on Tensor Cores and gives signifi-
cant speed-up over FP32 on CUDA Cores, many frameworks that
rely on NVIDIA libraries allow the demotion of FP32 to TF32 (e.g.,
through option CUBLAS_TF32_TENSOR_OP_MATH on cuBLAS) if the
GPU supports TF32. While this may work fine for many ML work-
loads, it may cause numerical instability for applications where
accuracy is important, such as in HPC applications. Therefore, mak-
ing sure of precision to use is important (e.g., explicitly configure
CUDA libraries to keep using FP32 when needed).

5 CONCLUSION
Tensor Cores provide significant speed-up for applications that

have abundant GEMM operations. CNNs yield "Good" improve-
ments with Tensor Cores, exemplified by the average speedups of
1.91× and 2.42× with TF32 and FP16 training, respectively, com-
pared to FP32 training running on the CUDA Cores. Kernels like
GEMM, GEMV, and Conv2D also show "Good" advantage of Tensor
Cores with an impressive 8.4×, 8.39×, and 6.99× average speed-up,
respectively. The Conv2D kernel almost saturates the FP16 theo-
retical performance of Tensor Cores on H100. On the other hand,
FIR and ElWiseAdd kernels show performance degradation when
running on Tensor Cores despite code transformations, making
them "Ugly" kernels for Tensor Cores. Furthermore, GCN improve-
ment with Tensor Cores can be classified as "Bad" since they only
achieved 1.03× average speed-up and are sensitive to the changes
in library versions. Finally, H100 gives an impressive 2.33× average
speed-up across CNNs, GCNs, and microbenchmark kernels over
A100. These speed-ups are mostly due to the H100 having 2.5×more
CUDA Cores, double the throughput of Tensor Cores, and double
the memory bandwidth compared to the A100.

ACKNOWLEDGMENTS
This research was supported in part by Semiconductor Research

Corporation (SRC) Tasks 3015.001 and 3148.001, National Science
Foundation (NSF) Grant #2326894, and NVIDIA Applied Research
Accelerator Program Grant. Any opinions, findings, conclusions, or
recommendations are those of the authors and not of the funding
agencies. The authors would also like to thank the reviewers for
their constructive feedback and suggestions.

187

Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom

REFERENCES
[1] Advanced Micro Devices. 2020. AMD CDNA Architecture. Whitepaper. Advanced

Micro Devices, US.
[2] Pedro Martins Basso, Fernando Fernandes dos Santos, and Paolo Rech. 2020.

Impact of Tensor Cores and Mixed Precision on the Reliability of Matrix Multi-
plication in GPUs. IEEE Transactions on Nuclear Science 67, 7 (2020), 1560–1565.
https://doi.org/10.1109/TNS.2020.2977583

[3] Harun Bayraktar. 2020. How CUDA Math Libraries Can Help You Unleash The
Power of The New NVIDIA A100 GPU. NVIDIA GPU Technology Conference
(GTC) s21681 (May 2020).

[4] Davis Blalock and John Guttag. 2021. Multiplying Matrices Without Multiplying.
In Proceedings of the 38th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.).
PMLR, Virtual, 992–1004. https://proceedings.mlr.press/v139/blalock21a.html

[5] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu,
Hengrui Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang
Yang, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and
Jie Tang. 2023. CogDL: A Comprehensive Library for Graph Deep Learning. In
Proceedings of the ACMWeb Conference 2023 (Austin, TX, USA) (WWW ’23). ACM,
New York, NY, USA, 747–758. https://doi.org/10.1145/3543507.3583472

[6] Junkyeong Choi, Hyucksung Kwon, Woongkyu Lee, Jieun Lim, and Jungwook
Choi. 2022. Understanding and Optimizing INT4 Convolution for Accelerated
DNN Inference on Tensor Cores. In 2022 IEEE Workshop on Signal Processing
Systems (SiPS). IEEE, Rennes, France, 1–6. https://doi.org/mdrz

[7] Jack Choquette. 2023. NVIDIA Hopper H100 GPU: Scaling Performance. IEEE
Micro 43, 3 (2023), 9–17. https://doi.org/10.1109/MM.2023.3256796

[8] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 41, 2 (2021), 29–35. https://doi.org/10.1109/MM.2021.3061394

[9] Jack Choquette, Olivier Giroux, and Denis Foley. 2018. Volta: Performance and
Programmability. IEEE Micro 38, 2 (2018), 42–52. https://doi.org/mdrs

[10] Rezaul Chowdhury, Francesco Silvestri, and Flavio Vella. 2020. A Computational
Model for Tensor Core Units. In Proceedings of the 32nd ACM Symposium on
Parallelism in Algorithms and Architectures (Virtual Event, USA) (SPAA ’20). ACM,
New York, NY, USA, 519–521. https://doi.org/10.1145/3350755.3400252

[11] Yi-Hua Chung, Cheng-Jhih Shih, and Shih-Hao Hung. 2022. Accelerating Simu-
lated Quantum Annealing with GPU and Tensor Cores. In High Performance Com-
puting, Ana-Lucia Varbanescu, Abhinav Bhatele, Piotr Luszczek, and Baboulin
Marc (Eds.). Springer International Publishing, Cham, 174–191.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, Miami, Florida, USA, 248–255.
https://doi.org/10.1109/CVPR.2009.5206848

[13] Sultan Durrani, Muhammad Saad Chughtai, Abdul Dakkak, Wen-mei Hwu, and
Lawrence Rauchwerger. 2021. FFT Blitz: The Tensor Cores Strike Back. In Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (Virtual Event, Republic of Korea) (PPoPP ’21). ACM, New York,
NY, USA, 488–489. https://doi.org/10.1145/3437801.3441623

[14] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng Zhang, Yuan Xie, and Yufei
Ding. 2021. EGEMM-TC: Accelerating Scientific Computing on Tensor Cores
with Extended Precision. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea)
(PPoPP ’21). ACM, New York, NY, USA, 278–291. https://doi.org/mdr8

[15] Jesun Sahariar Firoz, Ang Li, Jiajia Li, and Kevin Barker. 2020. On the Feasibility
of Using Reduced-Precision Tensor Core Operations for Graph Analytics. In 2020
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, Waltham,
MA, USA, 1–7. https://doi.org/10.1109/HPEC43674.2020.9286152

[16] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx
Adaptive Compute Acceleration Platform: VersalTM Architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (Seaside, CA, USA) (FPGA ’19). ACM, New York, NY, USA, 84–93. https:
//doi.org/10.1145/3289602.3293906

[17] B. Gallet and M. Gowanlock. 2022. Leveraging GPU Tensor Cores for Double
Precision Euclidean Distance Calculations. In 2022 IEEE 29th International Confer-
ence on High Performance Computing, Data, and Analytics (HiPC). IEEE Computer
Society, Los Alamitos, CA, USA, 135–144. https://doi.org/mdrr

[18] Chris Gottbrath. 2018. Using TensorRT to Unlock Tensor Core Performance for
Inference. NVIDIA GPU Technology Conference (GTC) dc8169 (Oct 2018).

[19] Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas J.
Higham. 2020. Mixed-precision iterative refinement using tensor cores on GPUs
to accelerate solution of linear systems. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 476, 2243 (2020), 20200110. https:
//doi.org/10.1098/rspa.2020.0110

[20] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025–1035.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[22] Negar Heidari, Lukas Hedegaard, and Alexandros Iosifidis. 2022. Chapter 4
- Graph convolutional networks. In Deep Learning for Robot Perception and
Cognition, Alexandros Iosifidis and Anastasios Tefas (Eds.). Academic Press,
Cambridge, Massachusetts, United States, 71–99. https://doi.org/mdrq

[23] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. GE-SpMM:
General-Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural
Networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, Atlanta, GA, USA, 1–12. https://doi.org/
10.1109/SC41405.2020.00076

[24] H. Jiang. 2022. Intel’s Ponte Vecchio GPU : Architecture, Systems & Software. In
2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Computer Society, Los Alamitos,
CA, USA, 1–29. https://doi.org/10.1109/HCS55958.2022.9895631

[25] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David
Patterson. 2021. Ten Lessons From Three Generations Shaped Google’s TPUv4i :
Industrial Product. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, Valencia, Spain, 1–14. https://doi.org/gnqdc9

[26] Pau San Juan, Pedro Alonso-Jordá, and Enrique S. Quintana-Ortí. 2021. High
Performance and Energy Efficient Integer Matrix Multiplication for Deep Learn-
ing. In 2021 29th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP). IEEE, Valladolid, Spain, 122–125. https:
//doi.org/10.1109/PDP52278.2021.00027

[27] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2009. A charac-
terization and analysis of PTX kernels. In 2009 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, Austin, TX, USA, 3–12. https:
//doi.org/10.1109/IISWC.2009.5306801

[28] Andrew Kerr, Duane Merrill, Julien Demouth, John Tran, Naila Farooqui, Markus
Tavenrath, Vince Schuster, Eddie Gornish, Jerry Zheng, and Bageshri Sathe. 2018.
CUTLASS: CUDA Template Library for Dense Linear Algebra at All Levels and
Scales. NVIDIA GPU Technology Conference (GTC) s8854 (Mar 2018).

[29] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv:1609.02907 [cs.LG]

[30] Takumi Kondo, Yoshihiro Maeda, and Norishige Fukushima. 2021. Accelerating
Finite Impulse Response Filtering Using Tensor Cores. In 2021 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference (APSIPA
ASC). IEEE, Tokyo, Japan, 74–79.

[31] Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak,
Morteza Mardani, David Hall, Andrea Miele, Karthik Kashinath, and An-
imashree Anandkumar. 2022. FourCastNet: Accelerating Global High-
Resolution Weather Forecasting using Adaptive Fourier Neural Operators.
arXiv:2208.05419 [physics.ao-ph]

[32] Ang Li and Simon Su. 2021. Accelerating Binarized Neural Networks via Bit-
Tensor-Cores in Turing GPUs. IEEE Transactions on Parallel and Distributed
Systems 32, 7 (2021), 1878–1891. https://doi.org/10.1109/TPDS.2020.3045828

[33] Cheng Li, Abdul Dakkak, Jinjun Xiong, and Wen-mei Hwu. 2020. Benanza: Auto-
matic 𝜇Benchmark Generation to Compute "Lower-bound" Latency and Inform
Optimizations of Deep Learning Models on GPUs. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, New Orleans, LA,
USA, 440–450. https://doi.org/10.1109/IPDPS47924.2020.00053

[34] Guangli Li, Jingling Xue, Lei Liu, Xueying Wang, Xiu Ma, Xiao Dong, Jiansong Li,
and Xiaobing Feng. 2021. Unleashing the Low-Precision Computation Potential
of Tensor Cores on GPUs. In 2021 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). IEEE, Seoul, South Korea, 90–102. https:
//doi.org/10.1109/CGO51591.2021.9370335

[35] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2018.
Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs.CV]

[36] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
2015. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs.CV]

[37] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-Vision
Package of Torch. In Proceedings of the 18th ACM International Conference on
Multimedia (Firenze, Italy) (MM ’10). ACM, New York, NY, USA, 1485–1488.
https://doi.org/10.1145/1873951.1874254

[38] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jef-
frey S. Vetter. 2018. NVIDIA Tensor Core Programmability, Performance &
Precision. In 2018 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW). IEEE, Vancouver, BC, Canada, 522–531. https:
//doi.org/10.1109/IPDPSW.2018.00091

[39] Matt Martineau, Patrick Atkinson, and Simon McIntosh-Smith. 2019. Benchmark-
ing the NVIDIA V100 GPU and Tensor Cores. In Euro-Par 2018: Parallel Process-
ing Workshops, Gabriele Mencagli, Dora B. Heras, Valeria Cardellini, Emiliano
Casalicchio, Emmanuel Jeannot, Felix Wolf, Antonio Salis, Claudio Schifanella,
Ravi Reddy Manumachu, Laura Ricci, Marco Beccuti, Laura Antonelli, José Daniel
Garcia Sanchez, and Stephen L. Scott (Eds.). Springer International Publishing,
Cham, 444–455.

188

https://doi.org/10.1109/TNS.2020.2977583
https://proceedings.mlr.press/v139/blalock21a.html
https://doi.org/10.1145/3543507.3583472
https://doi.org/mdrz
https://doi.org/10.1109/MM.2023.3256796
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/mdrs
https://doi.org/10.1145/3350755.3400252
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3437801.3441623
https://doi.org/mdr8
https://doi.org/10.1109/HPEC43674.2020.9286152
https://doi.org/10.1145/3289602.3293906
https://doi.org/10.1145/3289602.3293906
https://doi.org/mdrr
https://doi.org/10.1098/rspa.2020.0110
https://doi.org/10.1098/rspa.2020.0110
https://arxiv.org/abs/1512.03385
https://doi.org/mdrq
https://doi.org/10.1109/SC41405.2020.00076
https://doi.org/10.1109/SC41405.2020.00076
https://doi.org/10.1109/HCS55958.2022.9895631
https://doi.org/gnqdc9
https://doi.org/10.1109/PDP52278.2021.00027
https://doi.org/10.1109/PDP52278.2021.00027
https://doi.org/10.1109/IISWC.2009.5306801
https://doi.org/10.1109/IISWC.2009.5306801
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2208.05419
https://doi.org/10.1109/TPDS.2020.3045828
https://doi.org/10.1109/IPDPS47924.2020.00053
https://doi.org/10.1109/CGO51591.2021.9370335
https://doi.org/10.1109/CGO51591.2021.9370335
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1405.0312
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1109/IPDPSW.2018.00091
https://doi.org/10.1109/IPDPSW.2018.00091

ICPE ’24, May 7–11, 2024, London, United Kingdom Bagus Hanindhito & Lizy K. John

[40] Paulius Micikevicius. 2018. Training Neural Networks with Mixed Precision:
Theory and Practice. NVIDIA GPU Technology Conference s8923 (Mar 2018).

[41] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In International Confer-
ence on Learning Representations. Open Review, Vancouver, BC, Canada, 12 pages.
https://openreview.net/forum?id=r1gs9JgRZ

[42] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey,
Richard Grisenthwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John
Kamalu, Naveen Mellempudi, Stuart Oberman, Mohammad Shoeybi, Michael Siu,
and Hao Wu. 2022. FP8 Formats for Deep Learning. arXiv:2209.05433 [cs.LG]

[43] Cristóbal A. Navarro, Roberto Carrasco, Ricardo J. Barrientos, Javier A. Riquelme,
and Raimundo Vega. 2021. GPU Tensor Cores for Fast Arithmetic Reductions.
IEEE Transactions on Parallel and Distributed Systems 32, 1 (2021), 72–84. https:
//doi.org/10.1109/TPDS.2020.3011893

[44] NVIDIA Corporation. 2016. NVIDIA Tesla P100: The Most Advanced Datacenter
Accelerator Ever Built Featuring Pascal GP100, theWorld’s Fastest GPU. Whitepaper.
NVIDIA Corporation, US.

[45] NVIDIA Corporation. 2017. NVIDIA Tesla V100 GPU Architecture: The World’s
Most Advanced Data Center GPU. Whitepaper. NVIDIA Corporation, US.

[46] NVIDIA Corporation. 2018. NVIDIA Turing GPUArchitecture: Graphics Reinvented.
Whitepaper. NVIDIA Corporation, US.

[47] NVIDIA Corporation. 2019. NVIDIA CUDA Toolkit Profiler User’s Guide. https:
//docs.nvidia.com/cuda/profiler-users-guide/#nvprof.

[48] NVIDIA Corporation. 2020. NVIDIA A100 Tensor Core GPU Architecture: Unprece-
dented Acceleration at Every Scale. Whitepaper. NVIDIA Corporation, US.

[49] NVIDIA Corporation. 2022. NVIDIA H100 Tensor Core GPU Architecture: Excep-
tional Performance, Scalability, and Security for The Data Center. Whitepaper.
NVIDIA Corporation, US.

[50] NVIDIA Corporation. 2023. cublasAxpyEx(). https://docs.nvidia.com/cuda/
cublas/#cublasaxpyex.

[51] NVIDIA Corporation. 2023. GNMT v2 For PyTorch. https://github.com/NVIDIA/
DeepLearningExamples/tree/master/PyTorch/Translation/GNMT

[52] NVIDIA Corporation. 2023. Kernel Profiling Guide. https://docs.nvidia.com/
nsight-compute/ProfilingGuide/index.html#kernel-replay.

[53] NVIDIA Corporation. 2023. Nsight Compute CLI. https://docs.nvidia.com/nsight-
compute/NsightComputeCli/index.html.

[54] NVIDIA Corporation. 2023. NVIDIA Ada GPU Architecture: Designed to deliver out-
standing gaming and creating, professional graphics, AI, and compute performance.
Whitepaper. NVIDIA Corporation, US.

[55] NVIDIA Corporation. 2023. NVIDIA L40S Unparalleled AI and graphics perfor-
mance for the data center. Datasheet. NVIDIA Corporation, US.

[56] NVIDIA Corporation. 2023. Parallel Thread Execution ISA Version 8.2. https:
//docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[57] NVIDIA Corporation. 2023. ResNet-50 v1.5 for MXNet. https://github.com/
NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5

[58] NVIDIA Corporation. 2023. UNet Industrial Defect Segmentation for Ten-
sorFlow. https://github.com/NVIDIA/DeepLearningExamples/tree/master/
TensorFlow/Segmentation/UNet_Industrial

[59] Hiroyuki Ootomo and Rio Yokota. 2022. Recovering single precision accuracy
from Tensor Cores while surpassing the FP32 theoretical peak performance. The
International Journal of High Performance Computing Applications 36, 4 (2022),
475–491. https://doi.org/10.1177/10943420221090256

[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[61] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, San Diego, CA, USA, 58–70. https://doi.org/ggtwps

[62] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2016. Faster R-
CNN: Towards Real-Time Object Detection with Region Proposal Networks.
arXiv:1506.01497 [cs.CV]

[63] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-Scale Attributed
Node Embedding. Journal of Complex Networks 9, 2 (2021), 22 pages.

[64] Valerie Sarge. 2020. Tensor Core Performance: The Ultimate Guide. NVIDIA GPU
Technology Conference (GTC) s21929 (May 2020).

[65] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Magazine
29, 3 (Sep. 2008), 93. https://doi.org/10.1609/aimag.v29i3.2157

[66] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi, Daniel R.
Johnson, David Nellans, Mike O’Connor, and Stephen W. Keckler. 2015. Flexible
Software Profiling of GPU Architectures. SIGARCH Comput. Archit. News 43, 3S
(jun 2015), 185–197. https://doi.org/10.1145/2872887.2750375

[67] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal. 2023. Dissecting
Tensor Cores viaMicrobenchmarks: Latency, Throughput and Numeric Behaviors.
IEEE Transactions on Parallel and Distributed Systems 34, 1 (2023), 246–261. https:
//doi.org/10.1109/TPDS.2022.3217824

[68] Yufei Sun, Long Zheng, Qinggang Wang, Xiangyu Ye, Yu Huang, Pengcheng
Yao, Xiaofei Liao, and Hai Jin. 2022. Accelerating Sparse Deep Neural Network
Inference Using GPU Tensor Cores. In 2022 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, Waltham, MA, USA, 1–7. https://doi.org/
10.1109/HPEC55821.2022.9926300

[69] Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. arXiv:1905.11946 [cs.LG]

[70] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao Lu, Ethan
Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely,
Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Majcher, Paul Springer, Markus
Hohnerbach, Jin Wang, and Manish Gupta. 2023. CUTLASS.

[71] The Linux Foundation. 2023. Reproducibility. https://pytorch.org/docs/stable/
notes/randomness.html.

[72] Philippe Tillet and David Cox. 2017. Input-Aware Auto-Tuning of Compute-
Bound HPC Kernels. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC
’17). ACM, New York, NY, USA, Article 43, 12 pages. https://doi.org/mdr3

[73] Gaurav Verma, Yashi Gupta, Abid M. Malik, and Barbara Chapman. 2021. Perfor-
mance Evaluation of Deep Learning Compilers for Edge Inference. In 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, Portland, OR, USA, 858–865. https://doi.org/mdr2

[74] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: The secret to high performance
on Cloud TPUs. Google Cloud Blog 4 (2019), 1 pages.

[75] Yuke Wang, Boyuan Feng, and Yufei Ding. 2022. QGTC: Accelerating Quantized
Graph Neural Networks via GPU Tensor Core. In Proceedings of the 27th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Seoul,
Republic of Korea) (PPoPP ’22). ACM, New York, NY, USA, 107–119. https:
//doi.org/10.1145/3503221.3508408

[76] Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Kaiyong Zhao,
and Xiaowen Chu. 2020. Benchmarking the Performance and Energy Efficiency of
AI Accelerators for AI Training. In 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). IEEE, Melbourne, Australia,
744–751. https://doi.org/10.1109/CCGrid49817.2020.00-15

[77] ZhihaoWen, Yuan Fang, and Zemin Liu. 2021. Meta-Inductive Node Classification
across Graphs. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (Virtual Event, Canada) (SIGIR
’21). ACM, New York, NY, USA, 1219–1228. https://doi.org/mdr4

[78] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[79] Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati,
Peter Entschev, Brian Kloppenborg, James Malcolm, and John Melonakos. 2015.
ArrayFire - A high performance software library for parallel computing with an
easy-to-use API. https://github.com/arrayfire/arrayfire

[80] Charlene Yang. 2015. Berkeley CS Roofline Toolkit. https://bitbucket.org/
berkeleylab/cs-roofline-toolkit.

[81] Zhiwei Yang, Lu Lu, and Ruimin Wang. 2022. A batched GEMM optimization
framework for deep learning. The Journal of Supercomputing 78, 11 (March 2022),
13393–13408. https://doi.org/10.1007/s11227-022-04336-3

[82] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning Method.
arXiv:1907.04931 [cs.LG]

[83] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2018. Graph Con-
volutional Networks: Algorithms, Applications and Open Challenges. In Compu-
tational Data and Social Networks, Xuemin Chen, Arunabha Sen, Wei Wayne Li,
and My T. Thai (Eds.). Springer International Publishing, Cham, 79–91.

[84] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. 2019. Graph convo-
lutional networks: a comprehensive review. Computational Social Networks 6, 1
(Nov. 2019), 23 pages. https://doi.org/10.1186/s40649-019-0069-y

[85] Zhihui Zhang, Jingwen Leng, Lingxiao Ma, Youshan Miao, Chao Li, and Minyi
Guo. 2020. Architectural Implications of Graph Neural Networks. IEEE Computer
Architecture Letters 19, 1 (2020), 59–62. https://doi.org/10.1109/LCA.2020.2988991

[86] Yangjie Zhou, Mengtian Yang, Cong Guo, Jingwen Leng, Yun Liang, Quan Chen,
Minyi Guo, and Yuhao Zhu. 2021. Characterizing and Demystifying the Implicit
Convolution Algorithm on Commercial Matrix-Multiplication Accelerators. In
2021 IEEE International Symposium on Workload Characterization (IISWC). IEEE,
Storrs, CT, USA, 214–225. https://doi.org/10.1109/IISWC53511.2021.00029

[87] Jinming Zhuang, Jason Lau, Hanchen Ye, Zhuoping Yang, Yubo Du, Jack Lo,
Kristof Denolf, Stephen Neuendorffer, Alex Jones, Jingtong Hu, Deming Chen,
Jason Cong, and Peipei Zhou. 2023. CHARM: Composing Heterogeneous Ac-
celeRators for Matrix Multiply on Versal ACAP Architecture. In Proceedings
of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (Monterey, CA, USA) (FPGA ’23). ACM, New York, NY, USA, 153–164.
https://doi.org/10.1145/3543622.3573210

189

https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/2209.05433
https://doi.org/10.1109/TPDS.2020.3011893
https://doi.org/10.1109/TPDS.2020.3011893
https://docs.nvidia.com/cuda/profiler-users-guide/#nvprof
https://docs.nvidia.com/cuda/profiler-users-guide/#nvprof
https://docs.nvidia.com/cuda/cublas/#cublasaxpyex
https://docs.nvidia.com/cuda/cublas/#cublasaxpyex
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Translation/GNMT
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#kernel-replay
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#kernel-replay
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://doi.org/10.1177/10943420221090256
https://arxiv.org/abs/1912.01703
https://doi.org/ggtwps
https://arxiv.org/abs/1506.01497
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1145/2872887.2750375
https://doi.org/10.1109/TPDS.2022.3217824
https://doi.org/10.1109/TPDS.2022.3217824
https://doi.org/10.1109/HPEC55821.2022.9926300
https://doi.org/10.1109/HPEC55821.2022.9926300
https://arxiv.org/abs/1905.11946
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://doi.org/mdr3
https://doi.org/mdr2
https://doi.org/10.1145/3503221.3508408
https://doi.org/10.1145/3503221.3508408
https://doi.org/10.1109/CCGrid49817.2020.00-15
https://doi.org/mdr4
https://doi.org/10.1145/1498765.1498785
https://github.com/arrayfire/arrayfire
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://doi.org/10.1007/s11227-022-04336-3
https://arxiv.org/abs/1907.04931
https://doi.org/10.1186/s40649-019-0069-y
https://doi.org/10.1109/LCA.2020.2988991
https://doi.org/10.1109/IISWC53511.2021.00029
https://doi.org/10.1145/3543622.3573210

	Abstract
	1 Introduction
	2 Background and Prior Work
	2.1 Tensor Cores
	2.2 Mixed Precision Training
	2.3 Prior Evaluation of Tensor Cores
	2.4 Programming Tensor Cores

	3 Experimental Methodology
	3.1 Hardware and Software Setup
	3.2 Performance Measurement
	3.3 Profiling Tensor Cores
	3.4 Workload Configuration

	4 Evaluation & Discussion
	4.1 What do Tensor Cores bring to the table over CUDA Cores?
	4.2 Is Compute the Bottleneck or Memory?
	4.3 What Percentage of Floating-Point Instructions Offloaded to Tensor Cores?
	4.4 How much more performance does H100 provide over A100?
	4.5 Discussion

	5 Conclusion
	Acknowledgments
	References

