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Abstract—The exponential growth of the training dataset and
the size of the large language model (LLM) significantly outpaces
the incremental memory capacity increase in the graphics pro-
cessing units (GPUs). Thousands of GPUs are needed to handle
state-of-the-art models, which require building an expensive AI
GPU cluster that is out of reach for most researchers. This not
only makes the cost to train the model more costly but also
signifies the environmental impact. To improve the efficiency
and scalability of existing infrastructure to handle increasingly
demanding training tasks, Microsoft released DeepSpeed, an
open-source optimization library for PyTorch that can easily be
integrated into existing training flow with minimal code changes.

This paper presents a comprehensive third-party evaluation
of DeepSpeed for training GPT-2-like LLM on mainstream GPU
clusters that are more accessible to everyone. The evaluation
includes memory usage analysis and bandwidth characterization
in addition to the achieved model size and the attained compute
throughput to help compare horizontal and vertical scaling.

First, we examine the DeepSpeed ZeRO in single- and dual-
node training against the popular distributed training libraries:
PyTorch Distributed Data-Parallel (DDP) with data parallelism
and Megatron-LM with data and model parallelism. While DDP
achieves higher throughput due to less communication, the model
size is limited to a single GPU memory capacity. In single-
node training, Megatron-LM can fit a 4x larger model than the
DDP, while ZeRO can handle a model with 0.8x-1.2x size of the
Megatron-LM. Both Megatron-LM and ZeRO are reasonably
competitive in terms of throughput. However, in dual-node
training, Megatron-LM sees a significant drop in throughput due
to the excessive inter-node communication, achieving only 25%-
30% of the throughput offered by ZeRO. Secondly, we evaluate
ZeRO-Offload to consolidate multi-node training into single-node.
With CPU offloading, ZeRO-Offload allows single node to fit the
largest model that can be handled on dual nodes with Megatron-
LM while maintaining 57.8% higher throughput. Thirdly, we
demonstrate that by using NVME offload on ZeRO-Infinity, we
can fit model six times larger than previously possible in single
node. Finally, we highlight the importance of NVME aggregate
bandwidth as it significantly affects achieved throughput.

Index Terms—Bandwidth Characterization, Distributed Train-
ing, Large Language Model, Microsoft DeepSpeed, Megatron-LM

I. INTRODUCTION

Following the neural network scaling laws [1–3], the Large

Language Models (LLMs), which have been gaining traction

in recent years [4–10], experience exponential growth in model

size, a factor of 1000x between 2018 and 2020, as shown in

Fig. 1, However, Graphics Processing Units (GPUs), popular

accelerators in deep learning [11–16], only see a 5x increase

in memory capacity during the same period [17, 18]. This

Fig. 1. The trend in the growth of Large Language Model size (in billion
parameters) compared against the increase in single GPU memory capacity.

imbalance is expected to continue as Generative AI [19–22],

demands even larger model [19, 23] to achieve target accuracy.

It is no longer possible to train state-of-the-art models using

single GPU; distributed training across hundreds or thousands

of GPUs are needed to get the aggregate compute, memory,

and bandwidth. These require building expensive purpose-built

AI GPU clusters, which are simply out of reach for many

researchers. Training models becomes more expensive [24, 25]

and gives significant impact to the environment [26–29].

Popular libraries for LLM distributed training includes

PyTorch Distributed Data-Parallel (DDP) [30] and Megatron-

LM [31–33]. DDP extracts data parallelism inherent in massive

datasets to train LLM by replicating the model on each

GPU, computing the gradients on subsets of datasets in each

GPU, and synchronizing them across all GPUs. However, the

model’s size is limited to single GPU memory capacity. This

is where Megatron-LM shines; not only does it extract data

parallelism, but it also splits the model across multiple GPUs,

achieving model parallelism for handling larger LLMs.

In this paper, we evaluate Microsoft DeepSpeed [34], a

PyTorch-compatible optimization library, to train GPT-2-like

LLM in comparison to DDP and Megatron-LM. DeepSpeed

brings numerous optimizations with a minimal code change
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to the existing training flow: ZeRO [35], ZeRO-Offload [36],

and ZeRO-Infinity [37]. While publications from the developer

of DeepSpeed already analyzed the model size and compute

throughput [34–37], our work provides a more comprehensive

third-party evaluation by adding bandwidth utilization charac-

terization and memory usage analysis, which is extremely use-

ful for comparing horizontal and vertical scaling. Unlike most

previous studies that perform their evaluation in purpose-built

AI GPU clusters, we aim for mainstream GPU clusters, which

are more accessible to everyone, to perform the experiments.

The objectives of our paper are the following:

• We build a small GPU cluster representing mainstream GPU

clusters (Section III-A) and perform bandwidth stress-tests

to identify communication bottlenecks (Section III-C).

• We evaluate DeepSpeed ZeRO on the achieved model

size, compute throughput, memory usage, and bandwidth

utilization in single- or dual-node training by comparing

against DDP and Megatron-LM (Section IV).

• We investigate the effectiveness of DeepSpeed ZeRO-

Offload in handling larger model sizes that were not previ-

ously possible by offloading parts of model states to CPU

memory (Section V-A). We compare the compute through-

put and bandwidth utilization to multi-node Megatron-LM.

• We explore the NVME offloading on DeepSpeed ZeRO-

Infinity and its practicality to handle even larger model

sizes (Section V-B and V-E). We identify the bottleneck

and outline the efforts to improve the throughput.

The major insights of this paper are summarized as follows:

• We observed a significant degradation of attained bandwidth

for data transfer between two I/O interfaces in AMD CPUs

and hypothesized that it is due to the contention between

two sets of I/O Serializer-Deserializer (SerDes).

• DDP achieves higher compute throughput in both single-

and dual-node training due to lower communication.

• In single-node training, Megatron-LM can fit a model 4x

larger than DDP while utilizing 300% more NVLink band-

width. On the other hand, DeepSpeed ZeRO can fit a model

with 0.8x-1.2x Megatron-LM size while utilizing a slightly

higher bandwidth than DDP. Both Megatron-LM and ZeRO

are fairly competitive in terms of compute throughput.

• In dual-node training, Megatron-LM can fit a model 8x

larger than DDP with only 0.19x compute throughput due to

the excessive inter-node communication. DeepSpeed ZeRO

can fit a model with 0.56x-1.18x Megatron-LM size while

having 3.26x-3.78x higher throughput.

• Offloading to CPU memory using DeepSpeed ZeRO-

Offload allows single node to fit the largest model size

Megatron-LM can handle in dual nodes while giving 1.58x

higher throughput.

• Finally, using ZeRO-Infinity with NVME offload, we can

fit a model six times larger than what the Megatron-LM

can handle in a single node. This significantly reduces

infrastructure costs and allows many researchers to have

access to state-of-the-art models. Further, we highlight the

importance of the aggregate bandwidth of NVME and the

data placement on the achieved throughput.

II. BACKGROUND

A. Hardware and ML Workload Imbalance Trend
Neural network scaling laws [1–3] relate the size of the

training dataset, the model’s size, the cost of training the

model, and the model’s performance (accuracy). Models that

are exposed to larger high-quality datasets during training

achieve higher accuracy [7, 38–42], driving dataset grows

exponentially [8, 43]. In addition, larger model size also

provides better accuracy [44, 45], fueling the trend in the

exponential growth of model size [8, 46, 47], including the

recently-popular large language model (LLM) [4–10, 48–51].

Nowadays, LLMs are used in many applications [52–72]

by fine-tuning them for specific tasks [73]. The size of the

LLMs grows exponentially: a factor of 1000 in two years

from 94 million parameters ELMo (2018) [74] to 175 billion

parameters GPT-3 (2020) [75]. The introduction of ChatGPT

[76–78] marked the beginning of the Generative AI [19–22],

which demands larger models [19, 23]. Recently released GPT-

4 is estimated to have 1.76 trillion parameters [79].
On the other hand, Graphics Processing Units (GPUs), the

popular accelerators for training neural networks [11–16, 80],

only see a 5x increase in their memory capacity during the

same period: 16 GB on NVIDIA Tesla V100 [17] released

on June 2017 to 80 GB on NVIDIA A100 [18] released

on November 2020. The successor, NVIDIA H100 [81], was

released in March 2023 and still retains the same 80 GB

memory size. State-of-the-art models no longer fit into a single

GPU [82]; hundreds, even thousands of GPUs providing higher

aggregate computational power, memory, and bandwidth [83]

are required to handle these enormous models [84, 85].
These large numbers of GPUs require infrastructure (e.g.,

power, cooling, communication) built around them to provide

the computation power needed to train the models. Purpose-

built AI clusters (e.g., NVIDIA Selene [86]) are expensive,

driving the cost to train the models higher [24, 25] and making

them out of reach for many researchers. In addition, the energy

required and the environmental impact become more concern-

ing [26–29]. Furthermore, since most of the frameworks focus

on utilizing the GPUs, other components (e.g., CPU, memory,

NVME storage) are often left underutilized. However, they

may be as expensive as GPUs, and thus, making the most out

of them is compelling research [87–89].

B. Model Parallelism on Megatron-LM
Distributed training [90–94] is a crucial strategy for han-

dling increasingly large datasets and model sizes by splitting

the workloads into multiple processors (e.g., CPUs, GPUs).

One of the popular methods is data parallelism (DP) [30, 95–

98], which splits the dataset across multiple processors. Each

processor holds the same copy of the model and performs the

forward and backward passes [99] on a portion of the dataset

independently. Then, each processor performs synchronization

of gradients [100] or updated parameters [97]. However,

exploiting DP alone limits the model size to the single GPU

memory capacity; any larger will hurt performance due to the

excessive data movement between CPU and GPU [101].
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TABLE I
DEEPSPEED ZERO STAGE AND OFFLOAD CAPABILITY

Model State Partition Offload Options
Optimizer ParameterStage

Optimizer Gradient Parameter
CPU NVME CPU NVME

0 DeepSpeed is disabled
1 � - - � - - -
2 � � - � - - -
3 � � � � � � �

Model parallelism (MP) splits the model across multiple

processors [102–105]. MP allows the aggregation of memory

to handle larger model sizes and can be used together with DP.

There are two implementations of MP: Pipeline Parallelism

(PP) and Tensor Parallelism (TP). PP distributes each layer

of the model to each processor [106–111], while TP slices

each layer and distributes the chunks into multiple processors

[112–115]. Although both PP and TP require major changes

to the model implementation, some libraries provide built-

in support for them with minimal code changes. Megatron-

LM [31–33], a library developed by NVIDIA to train LLM,

supports distributed training using TP and PP in addition to

DP [116] by performing a few modifications to the existing

PyTorch [117] transformer implementations.

C. Meet the Microsoft DeepSpeed

DeepSpeed is an open-source optimization library devel-

oped by Microsoft and is compatible with PyTorch [34]. It

features novel memory optimization techniques called Zero

Redundancy Optimizer (ZeRO) [35], which improves DP

efficiency (called ZeRO-DP). ZeRO partitions the model states

(optimizer states, gradients, model parameters) across data-

parallel processes [118] with three stages as shown in Table I.

ZeRO-1 and ZeRO-2 are promised to provide 4x and 8x

memory reduction, respectively, with the same communication

volume as the standard DP by partitioning optimizer states and

gradients. ZeRO-3 partitions all model states and promises to

have linear memory reduction depending on the degree of DP

at the expense of 50% increase in communication volume.

Another notable feature is ZeRO-Offload, which allows

offloading parts of the model states into CPU memory and

performs optimizer computation in the CPU [36]. As shown

in Table I, ZeRO-1 and ZeRO-2 support offloading optimizer

states and gradients to CPU memory, while ZeRO-3 further

adds support to offload model parameters to CPU memory. The

ZeRO-3 offloading capability is extended by ZeRO-Infinity,

allowing offloading model states to NVME storage in addition

to CPU memory [37]. Further, DeepSpeed supports hybrid

parallelism, including TP, PP, and DP [119].

DeepSpeed promises minimal code changes to the existing

training flow in PyTorch. A JSON file containing the Deep-

Speed configuration is supplied when running the training

using the DeepSpeed launcher. DeepSpeed also provides Flops

Profiler to give insight into the training performance [120].

III. METHODS

A. Hardware and Software Setup

1) Cluster setup: A small GPU cluster consisting of two

identically configured Dell PowerEdge XE8545 [121] compute

Fig. 2. The topology of small GPU cluster consisting of two XE8545 compute
nodes and SN3700 switch (a) and the internal topology of each XE8545 (b).

TABLE II
HARDWARE AND SOFTWARE SETUP

Hardware Configuration
Platform Dell PowerEdge XE8545
CPU 2 × AMD EPYC 7763 CPUs (64 cores, 128 threads each)
Memory 16 × 64 GB DDR4-3200 ECC RDIMMs
GPU 4 × NVIDIA A100 SXM4 40 GB 400W GPUs
NVME 3 × Intel D7-P5600 3.2 TB PCIe 4.0 (1 OS, 2 scratch)
NIC 2 x NVIDIA ConnectX-6 NICs (200 Gbps)

Software Configuration
Firmware XE8545 BIOS 2.7.3, ConnectX-6 FW 20.33.1048
OS/Kernel Ubuntu 20.04.4 LTS, GNU/Linux 5.4.0-190-generic x86 64
Drivers NVIDIA GPU Driver 510.39.01, Mellanox OFED 5.6-1.0.3.3
Framework PyTorch v1.12, CUDA 11.6, DeepSpeed 0.7.1

nodes is used to run the experiment. Both compute nodes

are connected through an NVIDIA Spectrum SN3700 Eth-

ernet switch supporting full-duplex 200 Gbps Ethernet with

12.8 Tbps switching capacity [122]. The cluster’s topology is

shown in Fig. 2-a. This small cluster represents generic or

mainstream GPU clusters (e.g., TACC LoneStar6 [123]).

Since the basic form of Ethernet does not support Remote

Direct Memory Access (RDMA), does not guarantee the

arrival of traffic packets (lossy), and does not guarantee the

latency of traffic packets [124, 125], we use RDMA over

Converged Ethernet (RoCE) [126] in our setup. RoCE utilizes

priority flow control to achieve lossless and guaranteed latency

on traffic packets over commodity Ethernet with support for

RDMA [127, 128]. RDMA and GPUDirect RDMA are vital

for GPU clusters as they allow the Network Interface Cards

(NICs) to directly transmit or receive the data from or to the

CPU and GPU memory without the need to explicitly stage

the data in the NIC’s buffer, reducing the load of CPU and

improving the latency [125, 129–132].

2) Compute node setup: Each XE8545 compute node has

hardware and software configurations shown in Table II. The

internal topology of XE8545 is shown in Fig. 2-b.

• CPU: Two AMD EPYC 7763 CPUs [133], each having 64

cores and 128 threads, are installed in each node. Each CPU
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TABLE III
BANDWIDTH AND MEASUREMENT TOOLS

Interconnect Interface Links per node Bandwidth1 Tools
CPU-DRAM DRAM 8 × (2 CPUs) 25.6 GBps2 AMD μProf
CPU-CPU xGMI 3 72 GBps3 AMD μProf
CPU-GPU PCIe-GPU 1 × (4 GPUs) 64 GBps4 NVIDIA SMI
GPU-GPU NVLink 12 × (4 GPUs) 50 GBps5 NVIDIA SMI
CPU-NIC PCIe-NIC 1 × (2 NICs) 64 GBps4 AMD μProf

CPU-NVME PCIe-NVME 1 × (8 NVMEs) 16 GBps6 AMD μProf
Internode RoCE 1 × (2 NICs) 50 GBps7 HW Counter

1 Theoretical bidirectional bandwidth per link (includes link overhead).
2 Eight channels per CPU, half-duplex interface.
3 Lane rate 18 GT/s, link width x16, bandwidth 36 GBps in each direction.
4 Lane rate 16 GT/s, link width x16, bandwidth 32 GBps in each direction.
5 Lane rate 50 GT/s, link width x4, bandwidth 25 GBps in each direction.
6 Lane rate 16 GT/s, link width x4, bandwidth 8 GBps in each direction.
7 200 Gbps in each direction, two NICs per node.

has four NUMA domains (NPS4) for eight NUMA domains

per compute node. Three cross-global memory interconnect

links (xGMI) [134], also known as Infinity Fabric Inter-

Socket (IFIS) [135], connect both CPUs.

• Memory: Each CPU has access to eight 64 GB DDR4-

3200 ECC RDIMM memory in an eight-channel configura-

tion to maximize the memory bandwidth. The total memory

capacity for each compute node is 1024 GB.

• GPU: Four NVIDIA A100 SXM4 40 GB GPUs [136] are

installed in each compute node. Each GPU is connected to

the other three using four links of NVLink 3.0. In addition,

a pair of GPUs are connected to each CPU through two

PCIe 4.0 x16 links (link #1 and link #3).

• NVME: Two Intel D7-P5600 3.2 TB NVME SSDs [137]

connected to CPU #1 are used as scratch disk and are

configured in RAID0 using Linux mdadm [138]. In addition,

a separate Intel D7-P5600 3.2 TB NVME SSD connected to

CPU #0 is used for storing operating systems, libraries, and

datasets. These SSDs are connected to their respective CPU

using PCIe 4.0 x16 link (link #0) bifurcated to x4/x4/x4/x4.

• NIC: Two NVIDIA ConnectX-6 NICs [139] provide high-

bandwidth communication links to other compute nodes.

Each NIC is connected to each CPU using a PCIe 4.0 x16

link (link #2) and is configured to run in Ethernet mode.

B. Measurements

1) Application-level characterization: We perform

application-level characterization to understand the system

behavior better, particularly the bandwidth utilization.

Using NVIDIA Nsight Systems (nsys) [140], we observe

application behavior during each training step, including the

kernels executed on GPUs, CUDA API calls, kernel/system

calls, and resource utilization. We run each training

configuration for 10 iterations and start collecting the data of

the fifth iteration to give the system a chance to warm up.

2) Achieved model size: The GPT-2-like model is con-

figured to have 16 attention heads, 2048 hidden sizes, 256

sequence lengths, and 1024 maximum position embeddings.

We vary the number of layers of the model to change its

size until it reaches the maximum size that particular hard-

ware/software configurations can handle to run the training

in mixed precision (FP16). The dataset used in the training

Fig. 3. The average latency of RoCE for different message sizes for channel
semantic SEND (a), and memory semantic RDMA READ (b) and RDMA
WRITE (c). Note that both axes are in log scale. Same-socket and cross-
socket scenarios are drawn in blue and red, respectively.

is Wikipedia dump extracted using WikiExtractor [141] as

recommended by Google Research [142]. The total parameters

reported by DeepSpeed are used to represent the model size.

The per-GPU batch size is 16 for all configurations.
3) Compute throughput: Compute throughput during the

training is measured using the DeepSpeed Flops Profiler [120].
4) Memory usage: The CPU memory usage is measured

using the Linux command free while the GPU memory

usage is measured using nvidia-smi [143]. The NVME

usage is measured using Linux command df.
5) Bandwidth: Table III summarizes all interconnects

whose bandwidth is measured during the experiment using

AMD μProf v3.6 [144], nvidia-smi [143], or low-level

hardware counter. Aggregate bidirectional bandwidth is re-

ported for each interconnect (e.g., 256 GBps for all four links

of PCIe-GPU or 2400 GBps for all 48 links of NVLink).

C. Inter-node Latency and Bandwidth Stress Test

The test is conducted using OFED Performance Test [145]

to see the inter-node bandwidth and latency for CPU and

GPUDirect RDMA over Converged Ethernet (CPU-RoCE and

GPU-RoCE). Two cases are explored: same-socket and cross-

socket. Same-socket means the NIC is connected directly to

the CPU running the test kernel (e.g., CPU #0 uses NIC #0

on Fig. 2). On the other hand, cross-socket means the NIC is

connected to the neighboring CPU (e.g., CPU #0 uses NIC

#1 on Fig. 2), and thus, the data must flow through the xGMI

links. The test kernel is run in bidirectional mode and is pinned

into the appropriate NUMA domain using numactl [146].
1) Latency test: Fig. 3 depicts the latency of RoCE for

channel semantic SEND and memory semantic RDMA READ
and RDMA WRITE with various message sizes. In summary,

same-socket RoCE has latency under 6 μs while cross-socket

RoCE has latency under 40 μs (i.e., seven times higher) for

message size less than 64 kB.
2) CPU-RoCE bandwidth test: Four instances of the test

kernel are run to stress the bandwidth, two in each CPU. Fig-

ure 4-a shows the bandwidth utilization during the test. In the

same-socket scenario, the RoCE reaches 93% of the theoretical

bandwidth (46 GBps out of 50 GBps). The PCIe #2, which

connects the CPU to the NIC (Fig. 2-b), shows an average

utilization of 48.88 GBps (76% of theoretical bandwidth).

Four DRAM channels are observed to have higher traffic

corresponding to which NUMA domain the kernel is run.

Moving to the cross-socket scenario, RoCE only reaches 47%

of the theoretical bandwidth (23.71 GBps out of 50 GBps)

with some utilization on all xGMI links.
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Fig. 4. The average, peak, and theoretical bandwidth of each interconnect
during bandwidth stress-test for CPU-RoCE (a) and GPU-RoCE (b).

3) GPU-RoCE bandwidth test: Four instances of the test

kernel are run to stress the bandwidth, one in each GPU.

Figure 4-b shows the average and peak bandwidth during

the test. Interestingly, both cases show unfavorable achieved

bandwidth for RoCE: 52% and 42% of the theoretical band-

width for same- and cross-socket cases, respectively. There

is no significant traffic activity on DRAM since, by using

GPUDirect RDMA, the NIC directly accesses GPU memory.

Some traffic is observed on PCIe #1 and #3 in addition to

PCIe #2 since they connect GPUs and NIC to their host CPU.
4) Hypothesis on bandwidth degradation: Unfavorable re-

sults for cross-socket CPU-RoCE, same-socket GPU-RoCE,

and cross-socket GPU-RoCE need to be explored further,

which necessitates looking into the I/O architecture of our

CPU. The AMD EPYC 7763 CPU uses chiplet packaging

technology consisting of eight Core Complex Dies (CCD)

and one large I/O Dies (IOD) [147–149]. The IOD hosts

eight channels of DDR4 memory controller and eight Global

Memory Interconnect (GMI), also known as Infinity Fabric

On Package (IFOP) [135, 147], to connect to eight CCDs

[150]. It also hosts eight sets of x16 I/O Serializer/Deserializer

(SerDes), 3 or 4 sets of which can be used as xGMI while

the others are used for PCIe 4.0 x16 interfaces. The crossbar

switch occupies the majority portion of the IOD middle area.

For the same-socket CPU-RoCE, traffic flows between the

memory controller and the PCIe, which gives excellent results.

For the other scenarios, traffic flows between two sets of

SerDes (e.g., PCIe-PCIe, PCIe-xGMI, xGMI-xGMI), which

shows unsatisfactory results. We hypothesize this degradation

is due to the contention with the traffic routing inside the

switch (Infinity Fabric Intra Die [148]) between two sets of I/O

SerDes. However, AMD does not disclose the internal details

of the switch nor give low-level access to measure traffic

inside. Previous study shows concerns about the contention

and scalability of centralized routing between chiplets [151].

IV. EVALUATING DEEPSPEED ZERO

This section evaluates the advantages offered by DeepSpeed

ZeRO at three stages (ZeRO-1, ZeRO-2, and ZeRO-3) by com-

paring them to the PyTorch Data Parallelism (DDP) [30] and

Megatron-LM data and model parallelism (DP+MP) [31, 32].

For single-node training, the Megatron-LM is configured to

have TP=4 and PP=4 while for dual-node training, it is

configured to have TP=8 and PP=8.

A. Application-level Characterization

1) Single Node: The first five timelines of Figure 5 show

the execution characteristics of single training iteration for

DDP, Megatron-LM, ZeRO-1, ZeRO-2, and ZeRO-3 when

handling 1.4 billion parameters model on single node (four

GPUs). The last four timelines will be discussed when ZeRO-

Offload and ZeRO-Infinity are being used in Section V. The

small timeline shows the zoom-in region of one forward phase

(green line) and the beginning of the backward phase (dark-

blue line). Megatron-LM, unlike the other configurations, has

four pairs of forward and backward phases, which correspond

to the number of model-parallel ranks being used (i.e., four

GPUs). Each timeline has a different time scale, with DDP,

Megatron-LM, ZeRO-1, ZeRO-2, and ZeRO-3 taking 471 ms,

736 ms, 412 ms, 404 ms, and 696 ms, respectively.

Common to all, general matrix-matrix multiplication

(GEMM) is the majority of operations (green). These GEMM

operations use Tensor Cores, available in NVIDIA GPUs, to

accelerate computation. At the end of the forward phase, we

observed element-wise operations (orange and pink). Weight

update is done at the end of the backward phase (turqoise).

Transform (red) and Memory (dark red) are memory-heavy.

We observe the use of NVIDIA Collective Communication

Library (NCCL) to analyze the communication overhead.

NCCL is used in all training configurations to perform reduce

(lavender), broadcast (navy blue), all-gather (violet), and all-

reduce (purple) operations. In theory, NCCL will try to detect

node topology and use the fastest and shortest path for commu-

nication between NVIDIA GPUs (e.g., PCIe, NVLink, Infini-

Band/Ethernet through NIC). DDP performs synchronization

using All-Reduce at the end of the backward phase. In contrast,

Megatron-LM performs significantly higher communication

using All-Reduce between GEMM operations. ZeRO-1 and

ZeRO-2 look similar to DDP, except ZeRO-2 uses Reduce

during the backward phase. ZeRO-3 has more communication

with All-Gather being used in between GEMM.

2) Dual Nodes: The application characteristic for dual-

node training is similar to single-node training, except the time

needed for NCCL communication is longer since it needs to

use inter-node communication interfaces (NICs), which is the

weakest link in our setup.

B. Achieved Model Size

1) Single Node: Fig. 6-a shows the achieved model size

for single-node training. DDP is severely limited by the

maximum memory of single GPU and can only fit a model

with 1.4 billion parameters. On the other hand, Megatron-LM

uses model parallelism to distribute the model across GPUs,

allowing it to fit model with 5.5 billion parameters (i.e., almost

four times larger than the DDP). ZeRO-1, which partitions the

optimizer, can fit model with 4.4 billion parameters (i.e., 20%

smaller than Megatron-LM). ZeRO-2, which further partitions

the gradient, achieves model size of 5.2 billion parameters,

slightly below the Megatron-LM. Finally, ZeRO-3, which

partitions all model states, can handle model with 6.6 billion

parameters (i.e., 20% larger than Megatron-LM).
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Fig. 5. Characterization of single iteration to train 1.4 billion parameters model on single node (four GPUs) for DDP (471 ms), Megatron-LM (736 ms), ZeRO-
1 (412 ms), ZeRO-2 (404 ms), ZeRO-3 (696 ms), ZeRO-1 with CPU optimizer offload (1.38 s), ZeRO-2 with CPU optimizer offload (1.22 s), ZeRO-3 with
2 × NVME optimizer offload (5.2 s), and ZeRO-3 with 2 × NVME optimizer and parameter offload (5.9 s). Most kernels are GEMM; Megatron-LM, ZeRO-3,
ZeRo-1 with offload, ZeRO-2 with offload, and ZeRO-3 with offload involve many NCCL communication kernels. Kernel execution may be overlapped using
multiple CUDA streams. ZeRO-Offload and ZeRO-Infinity (Section V) should only be used for larger models that cannot fit without offloading them.

Fig. 6. Achieved model size for each configuration in single- (a) and
dual-node (b) training. DeepSpeed ZeRO-3 can fit a larger model than the
Megatron-LM while the ZeRO-2 falls slightly behind.

2) Dual Nodes: Fig 6-b illustrates the achieved model size

for dual-node training. The DDP can only fit model with 1.4

billion parameters despite the additional GPUs. The Megatron-

LM can fit model with 11.4 billion parameters across two

nodes (eight times larger than DDP). ZeRO-1 and ZeRO-2

can fit model with 6.4 and 8.5 billion parameters, respectively,

across two nodes, which are still smaller than what Megatron-

LM can achieve. Finally, ZeRO-3 can handle model with 13.5

billion parameters across two nodes, which is almost 20%

larger than Megatron-LM.

C. Compute Throughput

1) Single Node: Fig. 7-a shows the achieved compute

throughput for single-node training. The DDP achieved

438 TFLOP/s while Megatron-LM saw compute throughput

drop to 331 TFLOP/s due to the higher communication

overhead, which will be explained in Section IV-E1. ZeRO-

Fig. 7. Compute throughput for each configuration in single- (a) and
dual-node (b) training. DeepSpeed has higher compute throughput than the
Megatron-LM, with significant advantages observed on dual-node training.

1 achieves 391 TFLOP/s, 18.13% higher than Megatron-LM

while still being able to handle 80% of the model size. Further

partitioning the gradient in ZeRO-2 brings the throughput up

significantly to 524 TFLOP/s, which is 58.3% larger than the

Megatron-LM while being able to fit comparable model sizes.

However, ZeRO-3 sees the compute throughput dropping to

381 TFLOP/s due to the higher communication from partition-

ing the model parameters. Nevertheless, it is still 15.1% higher

in throughput while handling a 20% larger model compared to

Megatron-LM. Fig. 8-a shows the trade-off between achieved

model size and compute throughput for single-node training.

Unless fitting larger model is needed, the ZeRO-2 is the sweet-

spot, providing higher compute throughput while fitting a

model size comparable to Megatron-LM.

2) Dual Nodes: Fig. 7-b shows the achieved com-

pute throughput for dual-node training. DDP achieved 640

TFLOP/s, which is only a 46% increase from the single-
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Fig. 8. The trade-off of compute throughput vs. achieved model sizes
on single- (a) and dual-node (b) training. ZeRO-1, ZeRO-2, and ZeRO-3
are the various stages of DeepSpeed that help handle larger model sizes
while maintaining high throughput. In single-node training, the Megatron-
LM is fairly competitive with DeepSpeed. However, DeepSpeed achieves
significantly higher throughput in dual-node training than Megatron-LM.

node training due to inter-node communication overhead. This

overhead badly hurts Megatron-LM, which only achieved

121 TFLOP/s (81% lower than DDP). Section IV-E2 dis-

cusses this communication overhead in detail. Meanwhile,

ZeRO-1, ZeRO-2, and ZeRO-3 achieved higher through-

put than Megatron-LM: 395 TFLOP/s, 424 TFLOP/s, and

458 TFLOP/s, respectively. Interestingly, unlike Megatron-

LM, DeepSpeed can maintain throughput when moving from

single- to dual-node training while handling larger model sizes.

ZeRO-1 in dual-node training achieves similar throughput as

in single-node training while handling 45% larger model size.

In addition, ZeRO-3 in dual-node training achieves 20% higher

throughput than in single-node training while having double

the model size. Fig. 8-b shows that ZeRO-3 is the best for

maximizing model size while maintaining throughput.

D. Memory Usage

Since all configurations are aimed to hold the largest model

possible on GPU memory, they have similar memory usage

and memory composition: 154 GB to 157 GB GPU memory

usage and 18 GB to 25 GB CPU memory usage, which may

not be interesting to discuss further. However, the discussion

on memory usage and memory composition becomes more

interesting when we explore the offloading capabilities of

DeepSpeed ZeRO-Offload and ZeRO-Infinity in Section V.

E. Bandwidth Utilization

1) Single Node: The first part of Table IV shows the

average, 90th percentile, and peak bandwidth utilization for

single-node training. With all model states fit into GPU

memory, we observe minimal utilization of DRAM, xGMI,

and PCIe bandwidth. All configurations have average DRAM

bandwidth utilization under 1% of theoretical aggregate band-

width (25.6 GBps x 16) across two CPUs. In addition, there

is negligible inter-socket communication activity, with less

than 1 GBps average utilization across all configurations.

Furthermore, all four PCIe links that connect four GPUs to

their respective CPUs have minimal usage.

Unlike other communication links, the NVLink does the

most heavy lifting for handling inter-GPU communication.

Fig. 9. NVLink bandwidth utilization pattern for single-node training.

Fig. 9 shows the utilization pattern of NVLink within 200

seconds. DDP has the lowest NVLink utilization compared

to other configurations, with average and peak utilization at

83 GBps and 94.8 GBps, respectively. Since DDP replicates

the model across all GPUs, lower communication is needed

between the GPUs, mainly to synchronize the gradients.

On the other hand, Megatron-LM has the highest average

NVLink utilization, almost 300% higher than DDP, with peak

utilization as high as 267 GBps. While it is still far from

the theoretical aggregate bandwidth of NVLink (600GBps x

4), it may become a concern in dual-node training. Moving

to DeepSpeed, ZeRO-1 has an average NVLink utilization of

111 GBps with a peak as high as 147 GBps. By further parti-

tioning the gradients, ZeRO-2 reduces the average NVLink

utilization to 97.3 GBps, peaking at 117 GBps. However,

further partitioning the model parameters requires a slight

increase in bandwidth, with an average of 99.7 GBps, peaking

at 121 GBps. All DeepSpeed configurations show less NVLink

utilization than Megatron-LM and are on par with DDP, in-line

with application-level characterization (Section IV-A1).

2) Dual Nodes: Inter-node communication, often the weak-

est interconnect in latency and bandwidth, plays an impor-

tant role [152] in multi-node training. We observe increased

utilization in PCIe and RoCE while slightly less utilization

in NVLink, as shown in the second part of Table IV. The

PCIe bridges the GPUs and NICs through the CPUs, while

the RoCE bridges the communication between the two nodes,

and thus, higher utilization on these interconnects is expected.

Furthermore, minimal DRAM bandwidth utilization is ob-

served since the GPUDirect RDMA is being used, However,

we observe significant activities in xGMI links, with the

highest average utilization at 10.4 GBps. This is 1100%

higher than the highest average utilization in single-node. This

indicates higher cross-socket traffic; a portion of inter-node

traffic from the GPUs goes through the NIC connected to the

neighboring CPU. This type of traffic is costly and has higher

latency; thus, minimizing cross-socket traffic is essential.

Fig, 10 shows the bandwidth utilization pattern for NVLink,

PCIe, and RoCE within 200 seconds. Like in the single-node

training, DDP has the lowest bandwidth utilization with an

average utilization of 9.28 GBps for RoCE and 60.2 GBps for

NVLink. This low utilization, especially for RoCE, helps DDP

achieve the highest compute throughput for dual-node training.

Megatron-LM, which has been observed to have the highest

NVLink utilization in single-node training, got a significant

impact from using the significantly weaker inter-node link; its

compute throughput dropped significantly. It has an average

NVLink and RoCE utilization of 88.3 GBps and 13.8 GBps,

respectively. The PCIe-GPU and PCIe-NIC have an average

utilization of 16.9 GBps and 9.06 GBps, respectively. Looking
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TABLE IV
BANDWIDTH UTILIZATION MEASUREMENT DATA (AVERAGE, 90TH PERCENTILE, PEAK)

Aggregate Bidirectional Per-Node Bandwidth Utilization (GBps)
PCIe

DRAM xGMI
GPU NVME NIC

NVLink RoCEConfiguration

Avg 90th Peak Avg 90th Peak Avg 90th Peak Avg 90th Peak Avg 90th Peak Avg 90th Peak Avg 90th Peak

Single Node (Section IV-E1)
PyTorch DDP 1.56 2.33 3.31 0.23 0.77 0.96 0.61 1.86 3.16 0.00 0.00 0.00 0.00 0.00 0.00 83.0 94.8 94.8 0.00 0.00 0.00
Megatron-LM 3.52 4.32 5.08 0.18 0.20 0.33 2.01 2.72 2.82 0.00 0.00 0.00 0.00 0.00 0.00 241 261 267 0.00 0.00 0.00

ZeRO-1 1.86 3.73 5.64 0.94 2.75 5.56 6.36 15.1 16.6 0.00 0.00 0.00 0.00 0.00 0.00 111 147 147 0.00 0.00 0.00
ZeRO-2 1.99 3.11 9.99 0.42 0.79 3.67 1.03 2.89 7.53 0.00 0.00 0.00 0.00 0.00 0.00 97.3 117 117 0.00 0.00 0.00
ZeRO-3 2.69 3.33 7.72 0.37 0.54 2.85 1.56 2.44 6.22 0.00 0.00 0.00 0.00 0.00 0.00 99.7 109 121 0.00 0.00 0.00

Dual Nodes (Section IV-E2)
PyTorch DDP 2.08 4.51 5.50 5.22 9.63 15.6 11.2 31.5 50.1 0.00 0.00 0.00 6.07 12 18.1 60.2 63.2 63.2 9.28 10.7 10.7
Megatron-LM 2.88 3.69 6.21 7.29 7.56 7.70 16.9 17.5 18.2 0.00 0.00 0.00 9.06 9.36 9.60 88.3 91.3 95.8 13.8 14.3 14.4

ZeRO-1 2.79 5.70 8.81 6.35 11.9 20.2 18.2 38.4 62.9 0.00 0.00 0.00 6.64 12.4 22.6 52.7 96.9 107 10.5 16.7 19.8
ZeRO-2 1.73 2.82 5.61 6.11 12.3 16.9 15.8 27.9 32.4 0.00 0.00 0.00 7.08 12.5 17.8 34.3 49.8 58.2 10.5 15.5 16.9
ZeRO-3 3.86 7.04 10.4 10.4 14.2 16.3 20.5 27.3 30.9 0.00 0.00 0.00 10.9 14.0 15.6 52.2 58.8 61.9 16.3 18.5 19.7

Consolidate Dual Nodes to Single Node with ZeRO-Offload (CPU Optimizer Offload) (Section V-A)
ZeRO-2 (CPU) 73.1 157 191 18.1 29.8 41.8 16.4 30.8 47.8 0.00 0.00 0.00 0.00 0.00 0.00 40.8 127 127 0.00 0.00 0.00
ZeRO-3 (CPU) 67.8 162 215 10.3 25.2 38.6 12.9 20.5 42.3 0.00 0.00 0.00 0.00 0.00 0.00 31.0 57.2 123 0.00 0.00 0.00

Consolidate Dual Nodes to Single Node with ZeRO-Infinity (1 × NVME Offload) (Section V-B)
Optimizer 15.1 25.2 130 2.28 7.18 40.8 1.53 1.1 30.3 0.29 0.02 13.9 0.00 0.00 0.00 6.72 2.3 109 0.00 0.00 0.00

Optimizer & Parameter 10.6 19.1 98.0 3.20 6.60 22.7 1.86 8.0 28.9 0.48 2.02 11.8 0.00 0.00 0.00 3.78 0.00 54.8 0.00 0.00 0.00

Consolidate Dual Nodes to Single Node with ZeRO-Infinity (2 × NVME Offload) (Section V-B)
Optimizer 23.6 83.7 142 3.87 16.6 34.7 3.21 16.5 50.9 3.13 6.14 6.32 0.00 0.00 0.00 10.1 64.1 128 0.00 0.00 0.00

Optimizer & Parameter 15.9 32.1 94.1 3.93 10.3 33.2 3.30 16.9 31.6 4.87 12.2 12.6 0.00 0.00 0.00 7.19 46.7 63.5 0.00 0.00 0.00

Largest Model Size for Single Node with ZeRO-Offload and ZeRO-Infinity (Section V-C)
ZeRO-1 (CPU) 60.7 155 189 5.07 14.4 24.9 16.8 41.4 63.4 0.00 0.00 0.00 0.00 0.00 0.00 31.4 70.2 99.7 0.00 0.00 0.00
ZeRO-2 (CPU) 66.3 132 158 17.5 30.2 49.5 19.3 39.6 58.6 0.00 0.00 0.00 0.00 0.00 0.00 38.9 102 159 0.00 0.00 0.00

ZeRO-3 (2 × NVME) 26.9 90.3 167 7.63 32.9 71.0 3.90 23.1 30.1 6.50 11.9 12.6 0.00 0.00 0.00 11.1 77.2 128 0.00 0.00 0.00

Fig. 10. From top to bottom: NVLink, PCIe-GPU, PCIe-NIC, and RoCE
bandwidth utilization pattern for dual-node training.

at the pattern, more constant utilization is observed (shown in

solid color for the entire time range) without significant peak

value on all interconnects. This indicates abundant data needed

to be transferred and, due to the hypothesized contention

between I/O SerDes (Section III-C4), the transfer takes a long

time to finish, which further explains the drop in throughput.

ZeRO-1 has average NVLink and RoCE utilization at

52.7 GBps and 10.5 GBps, with peaks as high as 107 GBps

and 19.8 GBps, respectively. Instead of having a constant data

transfer pattern, ZeRO-1 exhibits a peak-and-trough pattern.

Although the peak utilization for ZeRO-1 can be 3.4x, 2.3x,

and 1.4x higher than Megatron-LM for PCIe-GPU, PCIe-NIC,

and RoCE, respectively, this type of data transfer pattern is

somehow less prone to the hypothesized contention between

I/O SerDes. Note that the stress test in Section III-C4 subjected

these interconnects to a constant data transfer pattern. Further

partitioning the gradients on ZeRO-2 reduces the average

NVLink bandwidth utilization to 34.3 GBps while the average

RoCE bandwidth utilization remains the same. The bandwidth

utilization pattern is similar to ZeRO-1, albeit with a lower

peak. Finally, ZeRO-3, which partitions the model parameter,

shows an increase in RoCE utilization by 55% compared to

ZeRO-1 and ZeRO-2, in line with DeepSpeed claim [35].

V. CONSOLIDATING MULTI-NODE INTO SINGLE-NODE

While the previous section discusses the advantages of

DeepSpeed ZeRO, this section explores the distinctive features

of DeepSpeed: the ZeRO-Offload [36] and ZeRO-Infinity [37].

A. Dual Nodes into Single Node with CPU Offload

As discussed in Section IV-B2, Megatron-LM can fit a

model with 11.4 billion parameters in dual-node training.

Utilizing the CPU offload feature on ZeRO-Offload, we try to

fit the same model size into single node. For starters, ZeRO-

Offload with ZeRO-1 is still insufficient, and thus, we only

explore ZeRO-Offload on ZeRO-2 and ZeRO-3.

1) Compute Throughput: With ZeRO-Offload on ZeRO-2,

a model with 11.4 billion parameters can fit inside single

node. This configuration achieved a compute throughput of

191 TFLOP/s, 57.8% higher than Megatron-LM on dual nodes,

as shown in Fig. 11-a. Further partitioning and offloading
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Fig. 11. Compute throughput (a) and memory usage (b) when using ZeRO-
Offload or ZeRO-Infinity to consolidate dual-node into single-node training.
The dual-node uses Megatron-LM to fit a model with a maximum 11.4 billion
parameters. Single-node training with model states offloaded to CPU memory
gives better throughput than dual-node with the same model size.

Fig. 12. From top to bottom: NVLink, PCIe-GPU, PCIe-NVME, xGMI, and
DRAM bandwidth utilization pattern for single-node training with ZeRO-
Offload (offloading to CPU) or ZeRO-Infinity (offloading to NVME storage).

model parameters using ZeRO-Offload on ZeRO-3 drops the

compute throughput to 126 TFLOP/s since there is more data

movement between CPU and GPU memory, adding more

latency. However, it still gives comparable throughput to

Megatron-LM. Unless fitting a larger model is necessary, it

is recommended to use the ZeRO-Offload with ZeRO-2.

2) Memory Usage: Fig. 11-b shows the memory usage and

composition for ZeRO-Offload on ZeRO-2 and ZeRO-3. The

Megatron-LM uses 344 GB of memory across dual nodes,

308 GB (89.5%) of which is the GPU memory. On the other

hand, ZeRO-Offload on ZeRO-2 uses 480 GB of memory,

where 127 GB (26.5%) is on GPU and 353 GB (73.5%) is

on CPU. The total memory used is 39.5% larger than the

Megatron-LM on dual nodes because of the double buffers

for overlapping communication and computation, hiding the

data movement overhead. The ZeRO-Offload on ZeRO-3 has

similar memory usage with a total of 452 GB, consisting of

157 GB GPU memory and 295 GB CPU memory.

Fine-tuning the size of buffers is needed to help DeepSpeed

hide the data movement overhead based on the model size,

the percentage of model states that are being offloaded, and

the platform bandwidth availability (e.g., DRAM and PCIe

between CPU and GPU). If the buffer is too large, the amount

of usable space for storing the model states on GPU memory

is significantly reduced, leading to more data movement.

However, if the buffer is too small, it will reduce DeepSpeed’s

ability to overlap computation and communication.

3) Bandwidth Utilization: The third section of Table IV

shows the bandwidth utilization for ZeRO-Offload with ZeRO-

2 and ZeRO-3, while Fig. 12 shows their utilization pattern.

With parts of model states being offloaded to CPU memory,

it is expected to see higher utilization of DRAM bandwidth;

ZeRO-Offload on ZeRO-2 has an average of 73.1 GBps with

peak as high as 191 GBps while ZeRO-Offload on ZeRO-3

has an average of 67.8 GBps with peak as high as 215 GBps.

The inter-socket xGMI also shows some utilization, with an

average of 18.1 GBps and 10.3 GBps for ZeRO-2 and ZeRO-3,

respectively. This indicates that the offloading mechanism may

not take into account the topology of the platform, and thus,

the GPU may need to access the offloaded model states stored

in neighboring CPU memory. Finally, bandwidth utilization

shows peak-and-trough patterns on PCIe-GPU, xGMI, and

DRAM with minimal utilization on NVLink.

This observation aligns with the sixth and seventh timelines

in Figure 5, which show significantly more All-Reduce and

Reduce operations. The idle GPU time (white) is the commu-

nication overhead that cannot be overlapped since the model

used to obtain the timeline in Figure 5 is too small (1.4 billion

parameters) to justify CPU offload, resulting in the majority of

time spent in data movement between CPU and GPU. Finally,

it is worth noting that, during the idle time of the GPUs, the

CPU is busy computing the optimizers stored in CPU memory.

B. Offloading to NVME Storage

We also explore the ZeRO-Infinity, which allows offloading

model states to NVME storage. The ZeRO-Infinity is only

available with ZeRO-3 and gives options to offload either the

optimizer states or both optimizer states and model parameters.

We use the same model with 11.4 billion parameters.

1) Compute Throughput: Fig. 11-a shows the compute

throughput when NVME offload is enabled. Offloading op-

timizer states into single NVME drive achieves a throughput

of 20.4 TFLOP/s. This throughput decreases when optimizer

states and model parameters are offloaded to single NVME

drive, achieving only 15.8 TFLOP/s. Adding a second NVME

drive in RAID0 helps improve the throughput: 38.1 TFLOP/s

(86.7% increase) for optimizer states and 24.5 TFLOP/s (55%

increase) for optimizer states and model parameters.

2) Memory Usage: Fig. 11-b shows the memory usage

and composition when NVME offloading is used. The total

memory used for offloading optimizer states to single NVME
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drive is 554 GB, with 108 GB (19.5%) on GPU, 317 GB on

CPU (57.2%), and 129GB (23.2%) on NVME drive. The total

memory used is 15.4% larger than offloading to CPU memory

using ZeRO-Offload on ZeRO-2. This extra memory is used

to implement double buffering to hide the data movement

overhead: buffers in GPU memory, CPU memory, and NVME

storage. Furthermore, offloading all model states to NVME

storage increases the memory usage to 690 GB, with 52 GB

(7.5%) on GPU, 488 GB (70.7%) on CPU, and 150 GB

(21.7%) on NVME drive. GPU memory is less utilized since

parts of model parameters reside in CPU memory and NVME

storage. Generally, the more model parameters are held in

GPU memory, the less data movement overhead between

GPU, CPU, and NVME storage, yielding higher throughput.

However, the free space on GPU memory can also be used

for larger batch sizes, which may improve the throughput.

Adding a second NVME drive in RAID0 does not change

the memory usage and composition since the RAID0 volume

created using mdadm is transparent to DeepSpeed. However,

this transparency may cause difficulty with data placement,

especially when the NVME drives are connected to different

CPUs, putting more strain on xGMI links and giving higher

latency (Section V-E). Optimal data placement mainly depends

on the topology and configuration of the compute nodes.

3) Bandwidth Utilization: The 4th and 5th part of Ta-

ble IV shows the average and peak bandwidth utilization while

Fig. 12 shows the utilization pattern for NVME offloading.

For single NVME drive, the average bandwidth is 0.29 GBps

and 0.48 GBps for offloading optimizer states and for of-

floading optimizer states and model parameters, respectively.

However, we observe peak utilization as high as 13.9 GBps

and 11.8 GBps. The abrupt peak and low utilization in PCIe-

NVME links may relate to how the DRAM cache inside the

NVME drive works. Reading and writing to NAND cells are

significantly slower than DRAM, and thus, usually, NVME

drive features a DRAM cache that acts as a buffer for reading

and writing to NAND cells [153–155]. However, the DRAM

cache has limited capacity, and when it is full or when the

requested data is not cached, the speed drops dramatically.

Adding a second NVME drive helps fulfill the required

bandwidth, where the average utilization bandwidth of PCIe-

NVME climbs to 3.13 GBps and 4.87 GBps, which are

10.79x and 10.14x higher than the single NVME drive. This

translates to almost double the compute throughput. Finally,

the eighth and ninth timelines in Figure 5 show application-

level characterization for NVME offloading. While the GPUs

are idle (white), the CPU is busy computing the optimizers

and exchanging data between NVME and CPU memory.

C. Largest Possible Model Size for Single Node

We also explored the largest model that can fit inside single

node using ZeRO-Offload and ZeRO-Infinity as shown in

Fig. 13. The ZeRO-Offload on ZeRO-1 can fit an 8.9 billion

parameters model (i.e., 61.8% larger than Megatron-LM on

single node). This configuration achieves 155.3 TFLOP/s of

compute throughput and uses 229 GB of memory with 161 GB

Fig. 13. Achieved model size (a), compute throughput (b), and memory usage
(c) of DeepSpeed ZeRO-Offload and ZeRO-Infinity when handling the largest
possible model on single-node training.

on GPU and 297 GB on CPU, Next, ZeRO-Offload on ZeRO-2

can fit the 14.2 billion parameters model. This is almost three

times the size of the model that Megatron-LM can handle on a

single node. This configuration achieves a compute throughput

of 180.2 TFLOP/s while consuming 577 GB of memory with

158 GB on GPU and 419 GB on CPU. Finally, the ZeRO-

Infinity on ZeRO-3 can fit a 33.3 billion parameters model,

which is six times larger than Megatron-LM can fit on single

node. This configuration offloads part of the model states to

CPU memory and dual NVME drives, consuming a staggering

1144 GB of memory (158 GB on GPU, 611 GB on CPU,

375 GB on NVME drives). Due to the bottleneck in NVME

storage bandwidth, it only achieves 37.16 TFLOP/s of compute

throughput, which needs further investigation (Section V-E).

D. Sensitivity of Throughput to Model Size

Table V shows the sensitivity of throughput to the model

size. In general, the throughput increases for bigger model

sizes since there is more local work for each GPU and allows

for better overlap between communication and computation.

ZeRO-1 sees a drop in throughput at the maximum possible

model size due to less memory available for double-buffering,

while ZeRO-3 does not have a clear trend compared to

others. In addition, both ZeRO-Offload (ZeRO-1 and ZeRO-

2 with CPU Optimizer Offload) and ZeRO-Infinity (ZeRo-3

with 2 × NVME Optimizer Offload) have relatively stable

throughput throughout various model sizes.

E. Optimizing NVME Data Placement

Before ending this section, we further explore data place-

ment optimization for ZeRO-Infinity NVME offloading to

handle the 33.3 billion parameters model. We added two

additional NVME drives into CPU #0 in Figure 2 and created

seven configurations shown in Figure 14. Configuration A and

B have been explored in Section V-B and V-C. Configuration
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TABLE V
SENSITIVITY OF THROUGHPUT TO MODEL SIZE (# BILLION PARAMETERS)

Throughput (TFLOP/s)
Config.

Model Size
0.7 1.4 2.9 4.4 5.2 5.5 6.0 6.6 7.8 8.9 11.6 14.2 20.6 26.9 33.3

DDP 379 438
Megatron-LM 270 309 312 315 324 331

ZeRO-1 419 461 487 391
ZeRO-2 427 472 502 509 524
ZeRO-3 377 392 385 389 379 385 382 381

ZeRO-1 (CPU) 145 165 148 167 150 168 164 163 158 155
ZeRO-2 (CPU) 164 177 191 179 182 182 192 182 192 192 174 180

ZeRO-3 (2 × NVME) 39 37 39 38 38 38 38 38 37 38 36 36 36 34 37

TABLE VI
ZERO-INFINITY VS. NVME CONFIGURATIONS

Config- Through- Aggr. Bidir. Bandwidth (GBps)
ura- put xGMI PCIe-NVME
tion (TFLOP/s) Avg 90th Peak Avg 90th Peak
A 19.6 2.94 5.01 74.4 3.23 6.16 6.41
B 37.16 7.63 32.9 71.0 6.5 11.9 12.6
C 35.43 8.14 41.4 75.3 6.18 12.1 12.7
D 40.22 4.89 15.2 52.2 6.98 12.7 12.9
E 51.22 9.58 26.6 84.5 7.1 10.8 13.5
F 64.61 7.35 17.6 65.7 11.2 19.5 21.8
G 65.16 7.81 25.6 69.2 11.4 21.1 22.4

Fig. 14. Various configurations on how NVME drives are connected to the
CPUs. Note that A and B have been explored in Section V-B and V-C.

D and G do not use RAID0, while F uses two RAID0 volumes,

each with two disks. Since ZeRO-Infinity only supports one

disk volume for offloading, we use the UNIX soft link to

use multiple volumes by mapping each rank (0-3) to the

appropriate disk/RAID0 volume, as shown in Figure 14. Each

rank corresponds to the GPU index, and appropriate mapping

of each rank to disk/RAID0 volume should consider the node

topology. In addition, we performed parameter sweeps to

configure DeepSpeed’s asynchronous I/O optimally.

Table VI shows the achieved throughput and bandwidth

utilization of xGMI and PCIe-NVME. As discussed in Sec-

tion V-B, going from single NVME (Configuration A) to dual

NVME (Configuration B) gave more than 80% increase in

throughput. Configuration C still uses dual NVME in RAID0,

but each CPU has direct access to one NVME drive. However,

the achieved throughput is almost 5% lower, and average

xGMI utilization is 7% more than Configuration B. Config-

uration D without RAID achieved the highest throughput for

dual NVME configuration with the lowest xGMI utilization.

A similar phenomenon is observed with quad NVME con-

figurations. Configuration E with a single RAID0 volume only

achieved a 27.3% improvement in throughput compared to

configuration D with dual NVME due to excessive data move-

ment in xGMI. Configuration F with two RAID0 volumes and

G without RAID0 achieved more than 60% higher throughput

than the best dual NVME configuration thanks to lower xGMI

utilization. Therefore, in this case, it is not recommended to

have a RAID0 volume comprised of disks that span across

different CPUs due to higher xGMI utilization.

Finally, we recommend that all available NVME slots be

populated with fast NVME drives to get higher throughput

when using ZeRO-Infinity. Only four out of eight available

slots are populated with NVME drives for this experiment. If

all eight slots are populated, the throughput will potentially be

comparable to CPU offload. However, further data placement

optimization is necessary to obtain higher throughput and

lower data movement overhead depending on node topology.

VI. CONCLUSION

We explored the advantages of Microsoft DeepSpeed com-

pared to PyTorch data parallelism (DDP) and Megatron-LM

in distributed training of the GPT-2-like model. To do so, we

built a small cluster that resembles a mainstream GPU cluster

accessible to more researchers. We conducted bandwidth stress

tests and hypothesized the contention between two sets of I/O

Serializer-Deserializer (SerDes) inside the I/O die of AMD

CPU degraded the attained bandwidth by around 50%.
Further, we compared DeepSpeed ZeRO with DDP and

Megatron-LM. While DDP achieved higher compute through-

put, it can only handle model size limited to single GPU

memory capacity. Megatron-LM can fit 4x larger model than

DDP while utilizing 300% more bandwidth. ZeRO can fit

model with 0.8x-1.2x Megatron-LM size with less bandwidth.

Both Megatron-LM and ZeRO are fairly competitive in single-

node training. However, Megatron-LM saw significant drops in

throughput on dual-node training due to excessive communi-

cation. ZeRO can fit a model with 0.56x-1.18x Megatron-LM

size while giving 3.26x-3.78x higher throughput.
Finally, we use ZeRO-Offload to consolidate two nodes

into single node, achieving 57.8% higher compute throughput

than Megatron-LM on dual nodes. Utilizing NVME offloading

in ZeRO-Infinity, we can fit model six times larger than

what Megatron-LM can handle on single node. Adding more

NVME drives will help with aggregate bandwidth to maintain

throughput, and optimum data placement remains challenging,

mainly depending on the compute node’s topology.
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[21] M. Jovanović and M. Campbell, “Generative artificial intelligence:
Trends and prospects,” Computer, vol. 55, no. 10, pp. 107–112, 2022.

[22] A. Bandi, P. V. S. R. Adapa, and Y. E. V. P. K. Kuchi, “The power of
generative ai: A review of requirements, models, input-output formats,
evaluation metrics, and challenges,” Future Internet, vol. 15, no. 8,
2023. [Online]. Available: https://www.mdpi.com/1999-5903/15/8/260

[23] Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A
comprehensive survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt,” 2023.

[24] O. Sharir, B. Peleg, and Y. Shoham, “The cost of training nlp models:
A concise overview,” 2020.

[25] K. CRAWFORD, The Atlas of AI. Yale University Press, 2023/12/15/
2021. [Online]. Available: https://doi.org/10.2307/j.ctv1ghv45t

[26] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in nlp,” 2019.

[27] A. E. Brownlee, J. Adair, S. O. Haraldsson, and J. Jabbo, “Exploring the
accuracy – energy trade-off in machine learning,” in 2021 IEEE/ACM
International Workshop on Genetic Improvement (GI), 2021, pp. 11–18.

[28] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker: Tracking
and predicting the carbon footprint of training deep learning models,”
2020.

[29] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia,
D. Rothchild, D. So, M. Texier, and J. Dean, “Carbon emissions and
large neural network training,” 2021.

[30] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch
distributed: Experiences on accelerating data parallel training,” Proc.
VLDB Endow., vol. 13, no. 12, p. 3005–3018, aug 2020. [Online].
Available: https://doi.org/10.14778/3415478.3415530

[31] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” 2020.

[32] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,
A. Phanishayee, and M. Zaharia, “Efficient large-scale language
model training on gpu clusters using megatron-lm,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476209

[33] V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation
in large transformer models,” 2022.

[34] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 3505–3506. [Online]. Available:
https://doi.org/10.1145/3394486.3406703

[35] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’20. IEEE Press, 2020.

252



[36] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang,
M. Zhang, D. Li, and Y. He, “ZeRO-Offload: Democratizing
Billion-Scale model training,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul. 2021,
pp. 551–564. [Online]. Available: https://www.usenix.org/conference/
atc21/presentation/ren-jie

[37] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He,
“Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’21. New York, NY, USA: Association for Computing Machinery,
2021. [Online]. Available: https://doi.org/10.1145/3458817.3476205

[38] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen,
Z. Chen, M. Chrzanowski, A. Coates, G. Diamos, K. Ding, N. Du,
E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong,
A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley,
L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang, A. Ng,
S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V. Rao,
S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang,
L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang,
S. Wu, L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama, B. Yuan,
J. Zhan, and Z. Zhu, “Deep speech 2 : End-to-end speech recognition
in english and mandarin,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 173–182.
[Online]. Available: https://proceedings.mlr.press/v48/amodei16.html

[39] M. Banko and E. Brill, “Scaling to very very large corpora for natural
language disambiguation,” in Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, ser. ACL ’01. USA:
Association for Computational Linguistics, 2001, p. 26–33. [Online].
Available: https://doi.org/10.3115/1073012.1073017

[40] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unrea-
sonable effectiveness of data in deep learning era,” in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 843–
852.

[41] T. Linjordet and K. Balog, “Impact of training dataset size on neural
answer selection models,” in Advances in Information Retrieval, L. Az-
zopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, and D. Hiemstra, Eds.
Cham: Springer International Publishing, 2019, pp. 828–835.

[42] S. Uchida, S. Ide, B. K. Iwana, and A. Zhu, “A further step to perfect
accuracy by training cnn with larger data,” in 2016 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR), 2016,
pp. 405–410.

[43] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting
the computational cost of deep learning models,” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 3873–
3882.

[44] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN
training for high fidelity natural image synthesis,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=B1xsqj09Fm

[45] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 1, jan 2020.

[46] P. Villalobos, J. Sevilla, T. Besiroglu, L. Heim, A. Ho, and M. Hobb-
hahn, “Machine learning model sizes and the parameter gap,” 2022.

[47] N. Ardalani, C.-J. Wu, Z. Chen, B. Bhushanam, and A. Aziz, “Under-
standing scaling laws for recommendation models,” 2022.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, nov 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[49] N. Pappas and T. Meyer, “A survey on language modeling using
neural networks,” Infoscience: EPFL Scientific Publications, 2012.
[Online]. Available: http://infoscience.epfl.ch/record/192566

[50] M. U. Hadi, q. a. tashi, R. Qureshi, A. Shah, a. muneer, M. Irfan,
A. Zafar, M. B. Shaikh, N. Akhtar, J. Wu, and S. Mirjalili,
“Large language models: A comprehensive survey of its applications,
challenges, limitations, and future prospects,” TechRxiv e-Prints,
Nov. 2023. [Online]. Available: http://dx.doi.org/10.36227/techrxiv.
23589741.v4

[51] C. Ebert and P. Louridas, “Generative ai for software practitioners,”

IEEE Software, vol. 40, no. 4, pp. 30–38, 2023.
[52] L. Fan, L. Li, Z. Ma, S. Lee, H. Yu, and L. Hemphill, “A bibliometric

review of large language models research from 2017 to 2023,” 2023.
[53] J. Wu, W. Gan, Z. Chen, S. Wan, and P. S. Yu, “Multimodal large

language models: A survey,” 2023.
[54] S. Pahune and M. Chandrasekharan, “Several categories of large

language models (llms): A short survey,” International Journal
for Research in Applied Science and Engineering Technology,
vol. 11, no. 7, p. 615–633, Jul. 2023. [Online]. Available:
http://dx.doi.org/10.22214/ijraset.2023.54677

[55] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez,
T. F. Tan, and D. S. W. Ting, “Large language models in medicine,”
Nature Medicine, vol. 29, no. 8, pp. 1930–1940, Aug 2023. [Online].
Available: https://doi.org/10.1038/s41591-023-02448-8

[56] X. Yang, A. Chen, N. PourNejatian, H. C. Shin, K. E. Smith,
C. Parisien, C. Compas, C. Martin, A. B. Costa, M. G. Flores,
Y. Zhang, T. Magoc, C. A. Harle, G. Lipori, D. A. Mitchell,
W. R. Hogan, E. A. Shenkman, J. Bian, and Y. Wu, “A
large language model for electronic health records,” npj Digital
Medicine, vol. 5, no. 1, p. 194, Dec 2022. [Online]. Available:
https://doi.org/10.1038/s41746-022-00742-2

[57] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“BioBERT: a pre-trained biomedical language representation model for
biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240,
Feb. 2020.

[58] K. He, R. Mao, Q. Lin, Y. Ruan, X. Lan, M. Feng, and E. Cambria, “A
survey of large language models for healthcare: from data, technology,
and applications to accountability and ethics,” 2023.

[59] Y. Yang, M. C. S. UY, and A. Huang, “Finbert: A pretrained language
model for financial communications,” 2020.

[60] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann,
P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large
language model for finance,” 2023.

[61] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model
for scientific text,” 2019.

[62] R. Taylor, M. Kardas, G. Cucurull, T. Scialom, A. Hartshorn, E. Sar-
avia, A. Poulton, V. Kerkez, and R. Stojnic, “Galactica: A large
language model for science,” 2022.

[63] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” 2023.

[64] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs.
experience: Evaluating the usability of code generation tools powered
by large language models,” in Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems, ser. CHI EA
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491101.3519665

[65] S. Zhang, Z. Chen, Y. Shen, M. Ding, J. B. Tenenbaum, and C. Gan,
“Planning with large language models for code generation,” 2023.

[66] L. Belzner, T. Gabor, and M. Wirsing, “Large language model assisted
software engineering: Prospects, challenges, and a case study,” in
Bridging the Gap Between AI and Reality, B. Steffen, Ed. Cham:
Springer Nature Switzerland, 2024, pp. 355–374.

[67] F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language
models for robotics: A survey,” 2023.

[68] C. Zhang, J. Chen, J. Li, Y. Peng, and Z. Mao, “Large language models
for human–robot interaction: A review,” Biomimetic Intelligence and
Robotics, vol. 3, no. 4, p. 100131, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2667379723000451

[69] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay,
D. Fox, J. Thomason, and A. Garg, “Progprompt: Generating situated
robot task plans using large language models,” in 2023 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2023, pp.
11 523–11 530.

[70] J. Huang and K. C.-C. Chang, “Towards reasoning in large language
models: A survey,” 2023.

[71] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang,
S. Jin, E. Zhou, R. Zheng, X. Fan, X. Wang, L. Xiong, Y. Zhou,
W. Wang, C. Jiang, Y. Zou, X. Liu, Z. Yin, S. Dou, R. Weng, W. Cheng,
Q. Zhang, W. Qin, Y. Zheng, X. Qiu, X. Huang, and T. Gui, “The rise
and potential of large language model based agents: A survey,” 2023.

[72] Y. Zhu, H. Yuan, S. Wang, J. Liu, W. Liu, C. Deng, Z. Dou, and J.-
R. Wen, “Large language models for information retrieval: A survey,”
2023.

253



[73] H. Zhao, H. Chen, F. Yang, N. Liu, H. Deng, H. Cai, S. Wang, D. Yin,
and M. Du, “Explainability for large language models: A survey,” 2023.

[74] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 2227–2237.
[Online]. Available: https://aclanthology.org/N18-1202

[75] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” in Proceedings of the 34th International Conference on
Neural Information Processing Systems, ser. NIPS’20. Red Hook, NY,
USA: Curran Associates Inc., 2020.

[76] R. Gozalo-Brizuela and E. C. Garrido-Merchan, “Chatgpt is not all you
need. a state of the art review of large generative ai models,” 2023.

[77] T. Wu, S. He, J. Liu, S. Sun, K. Liu, Q.-L. Han, and Y. Tang, “A
brief overview of chatgpt: The history, status quo and potential future
development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5,
pp. 1122–1136, 2023.

[78] P. P. Ray, “Chatgpt: A comprehensive review on background,
applications, key challenges, bias, ethics, limitations and future
scope,” Internet of Things and Cyber-Physical Systems, vol. 3, pp.
121–154, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S266734522300024X

[79] D. Patel and G. Wong, “Gpt-4 architecture, infrastructure, training
dataset, costs, vision, moe,” https://www.semianalysis.com/p/
gpt-4-architecture-infrastructure?utm source=%2Fsearch%2FGPT-4&
utm medium=reader2, 2023.

[80] B. Hanindhito and L. K. John, “Accelerating ml workloads
using gpu tensor cores: The good, the bad, and the ugly,” in
Proceedings of the 15th ACM/SPEC International Conference on
Performance Engineering, ser. ICPE ’24. New York, NY, USA:
Association for Computing Machinery, 2024. [Online]. Available:
https://doi.org/10.1145/3629526.3653835

[81] NVIDIA Corporation, “NVIDIA H100 Tensor Core GPU Architecture:
Exceptional Performance, Scalability, and Security for The Data
Center,” NVIDIA Corporation, California, US, Whitepaper, Jan. 2022.
[Online]. Available: https://resources.nvidia.com/en-us-tensor-core/
gtc22-whitepaper-hopper

[82] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari,
J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang,
R. Child, R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He,
M. Houston, S. Tiwary, and B. Catanzaro, “Using deepspeed and
megatron to train megatron-turing nlg 530b, a large-scale generative
language model,” 2022.

[83] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and
P. Villalobos, “Compute trends across three eras of machine
learning,” in 2022 International Joint Conference on Neural
Networks (IJCNN). IEEE, Jul. 2022. [Online]. Available: http:
//dx.doi.org/10.1109/IJCNN55064.2022.9891914

[84] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R.
Wen, “A survey of large language models,” 2023.

[85] M. Isaev, N. McDonald, and R. Vuduc, “Scaling infrastructure to
support multi-trillion parameter LLM training,” in Architecture and
System Support for Transformer Models (ASSYST @ISCA 2023), 2023.
[Online]. Available: https://openreview.net/forum?id=rqn2v1Ltgn0

[86] M. Houston, “Nvidia selene: Leadership-class supercomputing
infrastructure,” https://www.nvidia.com/en-us/on-demand/session/
supercomputing2020-sc2019/, 2020.

[87] T. D. Le, T. Sekiyama, Y. Negishi, H. Imai, and K. Kawachiya,
“Involving cpus into multi-gpu deep learning,” in Proceedings of
the 2018 ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 56–67. [Online]. Available:
https://doi.org/10.1145/3184407.3184424

[88] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A
unified architecture for accelerating distributed DNN training in

heterogeneous GPU/CPU clusters,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 463–479. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/jiang

[89] O. Valery, P. Liu, and J.-J. Wu, “Cpu/gpu collaboration techniques for
transfer learning on mobile devices,” in 2017 IEEE 23rd International
Conference on Parallel and Distributed Systems (ICPADS), 2017, pp.
477–484.

[90] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen,
and J. S. Rellermeyer, “A survey on distributed machine learning,”
ACM Comput. Surv., vol. 53, no. 2, mar 2020. [Online]. Available:
https://doi.org/10.1145/3377454

[91] M. Langer, Z. He, W. Rahayu, and Y. Xue, “Distributed training of
deep learning models: A taxonomic perspective,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 12, pp. 2802–2818,
2020.

[92] Y. Ko, K. Choi, J. Seo, and S.-W. Kim, “An in-depth analysis of dis-
tributed training of deep neural networks,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2021, pp.
994–1003.

[93] S.-X. Zou, C.-Y. Chen, J.-L. Wu, C.-N. Chou, C.-C. Tsao, K.-C. Tung,
T.-W. Lin, C.-L. Sung, and E. Y. Chang, “Distributed training large-
scale deep architectures,” in Advanced Data Mining and Applications,
G. Cong, W.-C. Peng, W. E. Zhang, C. Li, and A. Sun, Eds. Cham:
Springer International Publishing, 2017, pp. 18–32.

[94] Y. Kim, H. Choi, J. Lee, J.-S. Kim, H. Jei, and H. Roh, “Efficient
large-scale deep learning framework for heterogeneous multi-gpu clus-
ter,” in 2019 IEEE 4th International Workshops on Foundations and
Applications of Self* Systems (FAS*W), 2019, pp. 176–181.

[95] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” IEEE Transactions on Big Data, vol. 1, no. 2,
pp. 49–67, 2015.

[96] H. Li, A. Kadav, E. Kruus, and C. Ungureanu, “Malt: Distributed
data-parallelism for existing ml applications,” in Proceedings of the
Tenth European Conference on Computer Systems, ser. EuroSys ’15.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2741948.2741965

[97] V. Gupta, D. Choudhary, P. Tang, X. Wei, X. Wang, Y. Huang,
A. Kejariwal, K. Ramchandran, and M. W. Mahoney, “Training
recommender systems at scale: Communication-efficient model and
data parallelism,” in Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, ser. KDD ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2928–2936.
[Online]. Available: https://doi.org/10.1145/3447548.3467080

[98] Y. Kim, J. Lee, J.-S. Kim, H. Jei, and H. Roh, “Efficient multi-gpu
memory management for deep learning acceleration,” in 2018 IEEE
3rd International Workshops on Foundations and Applications of Self*
Systems (FAS*W), 2018, pp. 37–43.

[99] Y. Lecun, “A theoretical framework for back-propagation,” in Pro-
ceedings of the 1988 Connectionist Models Summer School, CMU,
Pittsburg, PA, D. Touretzky, G. Hinton, and T. Sejnowski, Eds. Morgan
Kaufmann, 1988, pp. 21–28.

[100] M. Zinkevich, M. Weimer, L. Li, and A. Smola, “Parallelized
stochastic gradient descent,” in Advances in Neural Information
Processing Systems, J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, Eds., vol. 23. Curran Associates, Inc.,
2010. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

[101] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. a. Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng,
“Large scale distributed deep networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[102] J. Geng, D. Li, and S. Wang, “Elasticpipe: An efficient and dynamic
model-parallel solution to dnn training,” in Proceedings of the 10th
Workshop on Scientific Cloud Computing, ser. ScienceCloud ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
5–9. [Online]. Available: https://doi.org/10.1145/3322795.3331463

[103] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans,
and P. Gupta, “Optimizing multi-gpu parallelization strategies for deep
learning training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, 2019.

254
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