
-
ut-

by
il-
-
ic
e
n-
e
al

is-

g

fer
er

p-
f-
a

er.
g

-of-
re
lly
fer
m-
-

ion
ant
ll,
Abstract

With the increasing effort towards exploiting the maxi-
mum level of instruction level parallelism, modern micro-
processors are designed to simultaneously issue and
execute several instructions in the same clock cycle. A
number of resource identifiers and tags are used in these
superscalar processors to appropriately manage various
resources in the processor, correctly identify and enforce
data dependencies and to keep track of the instructions that
are issued and completed. Structures whose delay is a
function of issue window size and/or issue width are likely
to become cycle time limiters and a hardware resource
allocator is a potential candidate for investigation. The
most straightforward technique to allocate and keep track
of hardware resources in a processor is to use straight
binary numbers as resource identifiers. In this paper, we
investigate some alternate sequences especially, a pseudo-
random sequence. The pseudorandom sequence is a ‘maxi-
mal length sequence’ that has some key properties which
enable fast sequence generation using a Linear Feedback
Shift Register (LFSR). We analyze the area and timing
issues of various resource allocators using models con-
structed in Verilog hardware description language. Based
on the timing optimizations in Synopsys targeting LSI
Logic’s 3.3v G10TM-p Cell-Based 0.29 ASIC library, we
conclude that the pseudorandom sequencer can enhance
the clock speed by 15 - 20% when compared to the tradi-
tional straight binary sequencers at the expense of 1.1 to
2.2 times more area. Considering the fact that the resource
identifier allocator is required for reorder buffer entry allo-
cation, reorder buffer tag allocation, and any other inter-
nal resource allocation, and that all these units act in
tandem, in reality better clock rate, and thus higher overall
system performance, can be achieved by adopting the tech-
niques presented in this paper.

1. Introduction
The performance of modern processors depend largely

on their ability to exploit the instruction level parallelism

(ILP). By and large, these processors work around the lim
ited parallelism that a program sequence offers by exec
ing instructions out-of-order. Parallelism in a program
sequence can be extracted using a powerful compiler, or
providing sophisticated hardware, or both. With the ava
ability of more silicon real estate, most of the modern pro
cessors provide additional hardware to perform dynam
scheduling and out-of-order execution. Typically, thes
processors look up a set of instructions in a window, ide
tify instructions that can be executed in parallel, remov
false dependencies, if possible, by renaming the logic
registers in the instruction to a larger set of physical reg
ters (register renaming), and retire instructions in program
order [1]. A popular approach to perform register renamin

and in-order retirement is thereorder buffer(ROB)+. For
instance, Intel P6 architecture has a 40-entry reorder buf
[2] and the HP PA-RISC 8000 has a 56-entry reorder buff
[3].

The reorder buffer was first proposed for use in exce
tion recovery [4], but has become the mainstay of out-o
order execution. Barring a few exceptions like Alph
21264 [5][6], and IBM GHz processor [7][8], most of
modern microprocessors incorporate a reorder buff
Alpha 21264 implements register renaming by mappin
instruction “virtual” registers to internal “physical” regis-
ters, and uses a scoreboard technique to handle out
order issue. Although the reorder buffer approach is mo
complex than scoreboarding, and hence, is norma
expected to operate at slower clock rate, the reorder buf
is an elegant mechanism used to perform register rena
ing, exception handling, out-of-order execution and in
order retirement, all in one.

On the Use of Pseudorandom Sequences for High Speed Resource Allocators
in Superscalar Processors

Srivatsan Srinivasan and Lizy Kurian John
Dept. of Electrical and Computer Engineering, The University of Texas at Austin, TX

{srivats, ljohn}@ece.utexas.edu

µ

+ A content-addressable memory which stores non-committed
instructions as described in [1]

This research was supported in part by the National Science Foundat
under grant CCR-9796098. The authors are also supported by NSF gr
EIA-9807112, State of Texas Advanced Technology program, De
Intel, IBM, AMD and Microsoft.

do
his
e
ent
n
r-
or-
cle
ll
ers

fer
e
e
to

ol-
rd
nce.
If a

d

rd-
et
in
,

a-
d
hat
ic
er,
der
d

is
e
eor-
e
the
Figure 1 shows the snapshot of operation of a reorder
buffer. During the instruction decode phase, the processor
allocates a resource to an instruction by providing an iden-
tifier for the resource. For example, for the instruction

, the processor allocates a reorder buffer
entry shown shaded in Figure 1. Also during instruction
decode, the source operands or corresponding tags for each
instruction have to be passed to the reservation station. To
obtain operands, the reorder buffer is associatively
searched using the source register identifiers of the
decoded instructions. The source register identifiers are
compared to result register identifiers of previous instruc-
tions stored in the reorder buffer. In Figure 1, the source
register identifier for registerR4 andR5 are compared to
the previous result register identifier. If the register number
is found and a value is available, the corresponding entry is
obtained. However, if the value is not available, a result tag
is obtained. In this case, the value for registerR5, i.e.,
7675, and the tag for registerR4, i.e., 0004, are obtained. In
case of multiple matches, the youngest matching entry is
obtained. If the processor has a four instruction decoder,
there should be four ports for result register identifiers,
result tags and reorder buffer identifiers, and eight source
register identifiers. If fewer ports than this number are
used, arbitration will be required for port access.

Figure 1: Snapshot of a Reorder Buffer allocating entries
for instruction (adapted from [1]).

To allocate new entries, to identify and match the exist-
ing entries, and to replace a tag with a value, the reorder
buffer requires a number of hardware identifiers. Thus, one
of the parameters that determines how fast the reorder
buffer operates, is how fast these identifiers are generated.
Figure 2 shows how these identifiers are generated. The
resource allocation hardware that generates these identifi-
ers, has multiple stages, with one stage per instruction
simultaneously decoded. The input to the first stage is an

identifier for the first available entry. If the first instruction
requires the entry (assume certain types of instructions
not need a reorder buffer entry), the first stage uses t
identifier and forms an identifier for the next availabl
resource and passes it to the second stage; if insuffici
resources are left for all four instructions, an overallocatio
signal is generated which results in decoder stall. Othe
wise, the identifiers for each resource are passed to the c
responding instructions. The resources freed in each cy
are added to the pool of resources for the next cycle. A
these stages operate in a single cycle. Resource identifi
are generally small. For example, a 32-entry reorder buf
requires only a 5-bit identifier. Assuming the top thre
entries in the reorder buffer are empty, the function of th
reorder buffer allocator is to allocate these three entries
three out of four instructions being decoded.

Figure 2: A typical four-port resource allocator (adapted
from [1]).

Each allocation stage generates an identifier, and c
lectively they form a sequence. The most straightforwa
sequence that one can use is a simple numeric seque
However, there is no need to use a numeric sequence.
non-numeric sequence such asexcess 3 codeor Gray code
would result in the allocation hardware to be small an
fast, one could certainly employ those.

Johnson presented the complexities of various ha
ware units at the architectural level [1], while Palacharla
al [9] presented a detailed analysis of some of the units
the pipeline of a processor for feature sizes 0.8 , 0.35

and 0.18 using Spice simulations. Palacharla et. al an
lyzed register renaming, instruction window wakeup an
selection logic, and operand bypassing and concluded t
the window wakeup and selection logic and bypass log
are likely to dictate the speed of the processor. Howev
the base model they analyzed does not have a reor
buffer. With reorder buffer based register renaming an
out-of-order execution being a popular approach, it
imperative to know how well the reorder buffer and th
associated hardware perform. Some design issues of a r
der buffer can be found in past literature [3][10], but th
authors of this paper are not aware of any treatment on

R6 R4 R5+←

distinct entries.

Reg. 5: Value computed before Reg. 6
Tag 0002

Next associative lookup on Reg. 6 must
resolve multiple Reg. 6 sources; possibly
choose entry corresponding to Tag 0004

NOTES:

Reg. 3: Value available; can be retired

Tags allocated in Numeric sequence

New entry

Retirement:
to Register File

R
O

B Location w
here a new

 entry is to be allocated

Reg. 6: Multiple writes resolved by two

So
ur

ce
 R

eg
. l

ab
el

s

 a

nd

 fo
r a

ss
oc

ia
tiv

e
lo

ok
up

Source Reg. Identifiers Reorder Buffer Identifiers

Result Reg. Identifiers Result Tags

5

4

3
6

6

Value

Value
Tag

Tag

Tag

FA9B
0002
7675
0004
0005

Instruction Decode

Result Register Identifier Allocation, Tag Allocation
Reorder-Buffer Allocation,

(R6 <- R4 + R5)

R
es

ul
t R

eg
. l

ab
el

6

4

 5

R6 R4 R5+←

O
ve

ra
llo

ca
tio

n

Next Sequence

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

From writeback/
Issue logic

Decoder Stall

To Decoder

�
�
�
�

�
�
�
�

�
�
�
�

O
ve

ra
llo

ca
tio

nIdentifier just freed

Allocation Allocation Allocation AllocationClock

Instruction Requirements

Identifier 3Identifier 2Identifier 1Identifier 0

O
ve

ra
llo

ca
tio

n

O
ve

ra
llo

ca
tio

n

µ µ
µ

als

er
er

this
we

in
er
15
ht
sar-

n-
mal
e
d a
nd
as

est
c

th
en
d-

r

the
-

th
hardware and timing issues of the resource allocation unit,
which manages the allocation and de-allocation of the reor-
der buffer, and hence dictates how fast the reorder buffer
can be managed. In this paper, we analyze the area and tim-
ing issues of some of the allocators, both numeric and non-
numeric, by modeling them in Verilog hardware descrip-
tion language and synthesizing them in Synopsys targeting
LSI Logic’s 3.3v G10TM-p Cell-Based 0.29 ASIC
library. Based on the synthesis results of hardware descrip-
tion language models, we conclude that a pseudorandom
sequence generator can enhance the overall performance
by 15 - 20%. Considering the fact that the resource identi-
fier allocator is required for reorder buffer entry allocation,
reorder buffer tag allocation, and any other internal
resource allocation, and that all these units act in tandem,
in reality better clock rate, and thus higher overall system
performance, can be achieved by adopting the techniques
presented in this paper.

The rest of the paper is organized as follows. Section 2
describes the general structure of the resource allocator. In
Section 3, we discuss the numeric and non-numeric
sequences, while in Section 4 we present their implementa-
tions. Results and analyses are presented in Section 5. Sec-
tion 6 provides concluding remarks.

2. General Structure of Resource Allocators

Figure 3: Symbolic view of a four-port resource allocator

Symbolically, a four-port resource allocator can be
viewed as in Figure 3. The resource allocator generates the
next set of identifiers considering the current set of identifi-
ers. At the sensitive edge (rising or falling edge) of the
clock, the overallocation circuit compares resource identifi-
ers with theallocation bound (i.e., the bound beyond
which no further resource allocation can be performed) to
generateallocation enable (or disable) anddecoder stall
signals. As the allocation has to be performed in one clock
cycle depending on the requirements of the instruction and
the availability of resources, these stages are not pipelined
[1]. With widening issue-width and ROB size, the serial
nature of resource identifier generation and allocation is
bound to become the bottleneck and can limit the clock

speed of the processor.To minimize the critical path, the
resource allocator should generate all the aforesaid sign
as fast as possible.

3. Sequence Types
The resource allocator can generate the identifi

sequence either in a numeric order or in some other ord
that enhances the speed of generating the identifiers. In
section, we discuss numeric sequences first and then
present non-numeric sequences.

3.1. Numeric Sequence

In this technique, the resource identifier generation is
numeric order. For example, for a 4-bit, 16-entry reord
buffer, the sequence could start from 0 and run through
and roll back to 0. While simple to understand, a straig
binary encoding of a numeric sequence does not neces
ily lead to the fastest counter implementation.

3.2. Non-numeric Sequences

Since the primary goal of the design is to generate ide
tifiers at a fast rate, a candidate sequence must use mini
levels of logic. Though there are a number of alternat
sequences available, not all of them can be used to buil
fast sequence generator. For example, Gray code a
weighted codes are not suitable for sequence generation
they make slower counters (or incrementers) and at b
can only match up with the straight binary (numeri
sequence) counter.

3.2.1. Pseudorandom sequence

A pseudorandom sequence is a maximal leng
sequence formed by a characteristic polynomial for a giv
n-bit number that can be easily realized by Linear Fee
back Shift Register (LFSR) and a few Exclusive-OR
(XOR) logic gates [11]. The characteristic polynomial fo

n-bits has the property of generating 2n-1 numbers (as an
all-zero value cannot be generated using the LFSR and
XOR circuit without additional hardware). Using zero

insertion circuit, it is possible to generate all the 2n num-
bers in a non-numeric sequence [12]. Maximal leng

µ

Sequence
Generator

Allocation Bound

Synchronous Reset

Resource Identifier 0

Resource Identifier 1

Resource Identifier 2

Resource Identifier 3

Allocation EnableClock

Decoder Stall

Overallocation Detection
for each output

Generation
Decoder Stall

Instruction Requirements

Table I: Complete 4-bit LFSR sequence. All-zero state
“0000” is inserted after “1000”

0001
0011
0111
1111
1110

...
0100
1000
0000

on
e,
of

nd

at-
red
his
n-
all
ery
rs
ge
ch

a-

y
he
n
if

all
rray
ay
rs
r
e
le.
the
-
ds
n

ber
-
e
st

e

sequences have found application in pseudo-exhaustive
and exhaustive testing and pseudo-random testing [12] and
in the generation of store addresses with on-line fault-
detection capability [13].

Table I lists the 4-bit complete LFSR sequence gener-

ated using the characteristic polynomialx4 + x + 1. As per
the polynomial, XORing the most and the least significant
bits produces the least significant bit of the successor;
while the three most significant bits of the successor are
obtained by left-shifting the three least significant bits of
the present stage. All-zero state is inserted so that the hard-
ware requirements are minimum [12].

4. Implementation

Any sequence can be implemented in a variety of ways
depending on the amount of logic and storage used.
Depending on the area and speed constraints of the design,
logic can be traded for storage, and vice versa. In this sec-
tion, we present two designs for both numeric and non-
numeric sequences.

4.1. Numeric sequence generation

4.1.1. Partially-stored numeric sequence generation

Figure 4: Four-bit, four-port resource allocator using par-
tially-stored parallel numeric sequencers.

As the name indicates, in this technique we start with a
partial set of numeric sequences and generate the next set
of identifiers based on certain requirements. Figure 4
shows the organization of a partially-stored 4-bit, four-
ported resource allocator which uses adders to generate the
next set of identifiers. To facilitate fast identifier genera-
tion, fast adders like Carry Look Ahead adder (CLA) could
be used. It may also be observed that one operand for each
adder is constant and special optimization techniques for
fast addition can be applied. The four adders operate in
parallel to generate the next four identifiers following the
highest value allocated in the current clock cycle (if 0 fol-
lows 15, 0 is considered to be higher of the two). The out-
put selector chooses the highest value that gets allocated.
The adders write the identifiers back to the four storage

arrays, which in turn output these identifiers depending
the requirements of the instruction. In each clock cycl
depending on the allocation bound, and the requirements
the instructions, new set of identifiers are generated a
stored in the storage arrays.

4.1.2. Fully-stored numeric sequence generation

Figure 5: Four-bit, four-port resource allocator using fully-
stored sequencer.

The adder delay can be eliminated if, instead of gener
ing the next identifier every time, the sequences are sto
completely and are output as per the requirements. T
gives rise to the fully-stored numeric sequencer impleme
tation illustrated in Figure 5. The storage array stores
the sequences in order and are indexed appropriately ev
cycle to generate the next identifier. As the next identifie
are not computed but are only indexed from the stora
array based on the highest identifier allocated in ea
cycle, the bottleneck liesonly in determining the highest
identifier allocated in a given cycle. Thus, this implement
tion is expected to produce faster sequence generation.

Consider the design of a four-bit, four-port fully-stored
numeric sequencer shown in Figure 5. The four full
shaded locations on the right side of the figure output t
four resource identifiers every clock cycle. Depending o
the requirements of the instruction and overallocation,
any, the identifiers for next cycle are determined. Since
elements in the sequence are stored in the storage a
itself, next identifiers can be generated by shifting the arr
by an amount equal to the number of resource identifie
allocated in the current clock cycle. The variable shifte
performs one, two, three or four shifts depending on th
number of resources that need to be allocated in the cyc
The speed of this sequence generation depends on
speed of the shifter implementation is. Unlike partially
stored array implementation of Figure 4, this design nee
a big multiplexer. The size of the multiplexer depends o
the number of entries in the storage array and the num
of bits in each array. A large multiplexer is usually com
posed of a number of smaller multiplexers, thus giving ris
to larger delay. For a 4-bit, 16-entry storage array, the be
timing optimization in Synopsys, targeting the 0.29
library indicates that the maximum clock speed of th

����

��
��
��
��

��
��
��
��

��

Allocation Bound
Storage Array

Output Selector

1

2

3

4

Comparator

Comparator

Comparator

Comparator

allocation identifiers

Adder

Adder

Adder

Adder

Instruction Requirements

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

� �� �

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

��������

Allocation Bound

�������� �� �� �� ��

Variable Shifter

allocation
identifiers

Storage Array

C
om

parator

C
om

parator

C
om

parator

C
om

parator

Instruction Requirements

µ

ing
of
ther
nt.
or
ig-
is

he

-

a-
ys
-
of

e
re
re
in
a

of
ec-

r
en
tter
-

design is 471 MHz. As the design scales up to accommo-
date more entries in the reorder buffer, the design may not
meet the timing constraints.

4.2. Non-numeric sequence generation

4.2.1. Partially-stored pseudorandom sequence genera-
tion.

Figure 6: Four-bit, four-port resource allocator using par-
tially-stored LFSR sequences.

As discussed in Section 3, the non-numeric pseudoran-
dom sequences can be generated from a characteristic
polynomial using XOR logic. Figure 6 illustrates a par-
tially-stored 4-bit, 16-entry, four-port pseudorandom
sequence generator that realizes the characteristic polyno-

mial x4+x+1 using XOR for next identifier generation and
reset logic for zero-insertion. Here again, the output selec-
tor selects the highest identifier that was allocated in the
current cycle and passes it to the next identifier generator,
namely the XOR and the zero-insertion logics as shown in
Figure 6. As in Table I, the zero-insertion logic inserts an
all-zero state after the identifier “1000”, and inserts a
“0001” state after the all-zero state. In this design, there are
two major delay components, namely, theoutput-selector
delayand theXOR-cum-reset logic delay. This implemen-
tation is not particularly attractive because of serialization
of the XOR-cum-reset logic circuitry. While the output-
selector delay is unavoidable, the XOR-cum-reset logic
delay provides scope for improvement.

4.2.2. Fully-stored pseudorandom sequence generation.

A fully-stored pseudorandom sequencer eliminates the
XOR-cum-reset logic delay by avoiding the next-identifier
generation, and storing the complete set of sequences in an
array. An efficient storage array can be realized using an

important property of pseudorandom sequences. Revisit
Table I, it can be seen that only the least significant bit
the next element needs to be computed, whereas the o
three bits can be obtained by shifting the current eleme
This key property enables an elegant implementation f
this pseudorandom sequence by storing only the least s
nificant bit as in Figure 7. Besides savings in storage, th
design significantly reduces the size and complexity of t
shifter, thereby improving the timing characteristics.Such
an optimization is not possible for numeric sequencers; this
explains the size and complexity of implementation in Fig
ure 5 in comparison to the implementation in Figure 7.

Figure 7: Four-bit, four-port resource allocator using fully-
stored pseudorandom sequencer.

5. Results and Analyses
Resource allocators for various reorder buffer specific

tions were modeled in Verilog and synthesized in Synops
[14][15] targeting the 0.29 ASIC library. The results pre
sented in this section correspond to the highest level
optimization that Synopsys could perform to minimiz
critical paths. Four-ported and eight-ported designs we
implemented. Reorder buffer sizes of 16, 64 and 128 we
considered. Preliminary results from the implementation
Figure 6 confirmed that the serial nature of the circuitry is
performance limiter. Hence, only the design trade-offs
Figure 4, 5 and 7 are presented in the forthcoming subs
tions.

5.1. Comparison of numeric and non-numeric
sequence performances

Table II lists the results of best timing optimizations fo
various reorder buffer specifications. It can be clearly se
that the fully-stored pseudorandom sequencer has be
timing compared to the other two. In particular, the fully

Reset
Logic

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

Reset
Logic

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

Reset
Logic

��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��

Reset
Logic

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

Output Selector

Allocation Bound

����

�
�
�
�

����

��
��
��
��

Storage Array

Comparator

Comparator

Comparator

Comparator

allocation identifiers

Instruction Requirements

Bit b1

Bit b15

��

��

��

��

��

��

��

��

��

��

��

��

����

����

����

����

����

����

����

����

����

����

����

����

allocation
identifiers

Comparator

��
��
��
�� Comparator

Bit b0

V
ar

ia
bl

e
 S

hi
ft

er

Comparator

��

��
��
��
��

�
�
�
�

St
or

ag
e

A
rr

ay

Bits b0, b1, b2, b3

Bits b14, b15, b0, b1

Bits b15, b0, b1, b2

Comparator

Instruction Requirements

Bits b13, b14, b15, b0

Allocation Bound

µ

e
d
is

r-

of
the

m
y-
an-
he
e
s-
tive

zed
of

to
s-
ic
II
ld
spe-
n-
ad
of

in
stored pseudorandom sequencer is, on an average, 17%
faster than the partially-stored numeric sequencer. In con-
trast, the fully-stored pseudorandom sequencer requires 1.1
to 2.2 times more area than the partially-stored numeric
sequencer. The fully-stored sequencer uses storage cells as
wide as the number of entries in the ROB and a few multi-
plexers. For example, the ROB identifier for a 128-entry
ROB requires only 128 pseudorandom storage bits and a
few multiplexers. Thus, the area overhead is very negligi-
ble in modern processors, and the performance advantage
of a fully-stored pseudorandom sequencer offsets any area
issues. Fully-stored numeric sequencer, on the other hand,
is significantly poor in area usage and yields mediocre tim-
ing characteristics. It may be noted that the clock rates in
Table II are not particularly impressive compared to fre-
quencies of modern processors, however, it should be
remembered that we use 0.29 process technology.

Figure 8: Effect of number of reorder buffer entries on clock
rate for the three sequencers.

Figure 8 shows the plot of clock frequency of the thre
sequencers for different number of entries of four-porte
reorder buffer. Fully-stored pseudorandom sequencer
superior in timing characteristics to fully-stored and pa
tially-stored implementations of the numeric sequencer.

Table II also charts the degradation in the clock rates
the sequencers as the number of ports are increased. As
number of ports increases from four to eight, the maximu
clock speed drops by about 18% for both the partiall
stored numeric sequencer and the fully-stored pseudor
dom sequencer. This is definitely a cause for concern if t
future processors exploit more ILP by providing mor
number of ports in the reorder buffer. The technique di
cussed in this paper does illustrate an elegant and effec
technique to boost the clock by 15-20%.

In the analyses presented so far, we have characteri
the timing of the three sequencers based on the results
synthesis. In practice, many circuit tricks can be adopted
optimize the critical paths. For example, the GHZ proce
sor from IBM [7][8] uses several such tricks and dynam
logic to achieve its high clock rate.The results in Table
do not involve any hand optimizations. Although one cou
argue that the results presented here depends on the
cific design tool and methodology we adopted, we are co
fident about the usefulness of the results and their bro
applicability based on the reasoning that the property
LFSRs reduces the number oflevelsof logic, thus operates
at a higher speed than any other topology.

5.2. Effects of adder topology on numeric sequence
generation

We analyzed different implementations of the design
Figure 4 by varying the adder circuitry. As noted earlier,

µ

0 20 40 60 80 100 120 140
360

380

400

420

440

460

480

500

520

540

C
lo

ck
 F

re
qu

en
cy

 (
in

 M
H

z)

Number of Reorder Buffer entries

Effect of number of reorder buffer entries on clock rate for the three sequencers

Partially−stored numeric sequencer
Fully−stored numeric sequencer
Fully−stored pseudorandom sequencer

Table II: Result of synthesis (targeting LSI Logic’s 3.3v G10TM-p 0.29 ASIC library) of various resource allocators

Reorder Buffer
Specification Design Characteristics

Partially-stored
numeric sequencer

(Figure 4)

Fully-stored numeric
sequencer
(Figure 5)

Fully-stored
pseudorandom sequencer

(Figure 7)

Four-ported
4-bits

16-entries

Critical Path Timing (ns)
(Max. Clock Speed (MHz))

2.26
(442)

2.12
(471)

1.85
(540)

Total Areaa 832.375 2074.85 930.175

Four-ported
6-bits

64-entries

Critical Path Timing (ns)
(Max. Clock Speed (MHz))

2.53
(395)

2.55
(392)

2.19
(456)

Total Areaa 1040.35 12977.075 2504.95

Four-ported
7-bits

128-entries

Critical Path Timing (ns)
(Max. Clock Speed (MHz))

2.64
(378)

2.69
(371)

2.29
(436)

Total Areaa 1482.65 30368.5 4840.5

Eight-ported
7-bits

128-entries

Critical Path Timing (ns)
(Max. Clock Speed (MHz))

3.25
(307) -b

2.92
(354)

Total Areaa 2630.5 7722.325

aEquivalent gates; 1 equivalent gate = 1 two-input nand gate
b Synthesis proved to be extremely time consuming, hence, result is unavailable.

µ

e of
rea

s
h-
ld

d
he
g

yn-
h

-

-

y-

d

-

k

one input to each adder in Figure 4 is a constant (1, 2, 3
or 4) and this allows Synopsys to highly optimize these
circuits.

Table III compares the results of timing optimizations
performed on two partially-stored numeric sequencers
(for four-ported, 16-entry reorder buffer), one realized
using the best automatically synthesized adders, and the
other realized using optimized Carry LookAhead adders
(CLA). The synthesized adders were observed to have
better timing characteristics compared to the CLA.

This being the case, further tuning of the highly-
optimized adder may not be possible. On the contrary,
the fully-stored sequencers offer a possibility of further
reduction in timing, and thus improvement in perfor-
mance more than what is indicated in Table II.

6. Conclusion

This paper addressed the hardware and timing
issues of hardware resource allocators for superscalar
processors. We described the traditional numeric
sequence method and compared it with non-numeric
sequence generation techniques, in particular, a pseudo-
random sequence. We analyzed the area and timing
issues of some of the numeric and non-numeric
sequence generation modeled in Verilog hardware
description language and synthesized in Synopsys tar-
geting LSI Logic’s 3.3v G10TM-p Cell-Based 0.29
ASIC library. Based on the results of timing optimiza-
tions, we found that a fully-stored pseudorandom
sequence generator can enhance the clock speed by 15 -
20%. This improvement was possible due to some
unique properties of the chosen pseudorandom
sequence. The fully-stored pseudorandom sequence gen-
erator consumes approximately 1.1 to 2.2 times the area
of the best numeric sequencer implementation. The
fully-stored sequencer uses storage cells as wide as the
number of entries in the ROB and a few multiplexers.
For example, the ROB identifier for a 128-entry ROB
requires only 128 pseudorandom storage bits and a few
multiplexers. Thus, the area overhead is very negligible

in modern processors, and the performance advantag
a fully-stored pseudorandom sequencer offsets any a
issues.

As architects propose machines with wider width
and aggressive dynamic instruction scheduling tec
niques, it is essential to consider techniques that yie
complexity effective designs. While optimizations an
tricks based on dynamic logic are an option to boost t
clock, any improvements that can be obtained usin
higher level design tactics enables designers to use s
thesis tools, and use static logic, and still achieve hig
clock rates.

References
[1] Johnson M.,Superscalar Microprocessor Design. Engle-

wood Cliffs, NJ: Prentice-Hall, 1991.
[2] Colwell, R.P., and Steck, R.L.,“A 0.6 BiCMOS proces-

sor with dynamic execution”,IEEE International Solid-
State Circuits Conference. Digest of Technical Papers,
Feb. 1995, pp.176-7.

[3] Gaddis, N.B., Butler, J.R., Kumar, A., and Queen, W.J.,
“A 56-entry instruction reorder buffer,”IEEE Interna-
tional Solid-State Circuits Conference. Digest of Techni-
cal Papers, 1996, pp.212-3.

[4] Smith, J.E., and Pleszkun, A.R., “Implementation of Pre
cise Interrupts in Pipelined Processors,”Proc. of the 12th
Annual International Symposium on Computer Architec
ture, June 1985, pp. 36-44.

[5] Leibholz, D., and Razdan, R., “The Alpha 21264: A 500
MHz Out-of-Order Execution Microprocessor,”Proc. of
IEEE Compcon 97, Feb. 1997, pp. 28-36.

[6] Kessler, R.E., McLellan, E.J., and Webb, D. A., “The
Alpha 21264 Microprocessor Architecture”,International
Conference on Computer Design: VLSI in Computers &
Processors, Oct. 1998, pp. 90-5.

[7] Nowka, K. J., and Galambos, T., “Circuit Design Tech-
niques for a Gigahertz Integer Microprocessor”,Interna-
tional Conference on Computer Design: VLSI in
Computers & Processors, Oct. 1998, pp. 11-6.

[8] Posluszny, S. et al, “Design Methodology for a 1.0 GHz
Microprocessor”,International Conference on Computer
Design: VLSI in Computers & Processors, Oct. 1998, pp.
17-23.

[9] Palacharla, S., Jouppi, N.P., and Smith, J.E., “Complexit
Effective Superscalar Processors”,Proc. of the Interna-
tional Symposium on Computer Architecture, May 1997,
pp. 206-18.

[10] Wallace, S., Dagli, N., and Bagherzadeh, N., “Design an
Implementation of a 100 MHz Reorder Buffer,”Proc. of
the 37th Midwest Symposium on Circuits and Systems,
vol.1, 1994, pp. 42-5.

[11] Wang, L.-T., and McCluskey, E.J., “Hybrid Designs Gen
erating Maximum-Length Sequences,”IEEE Transactions
on Computer-Aided Design, vol. 7, no. 1, Jan. 1988, pp.
91-9.

[12] Wang, L.-T., and McCluskey, E. J., “Complete Feedbac
Shift Register Design For Built-in Self-Test,”IEEE Inter-
national Conference on Computer-Aided Design, 1986,
pp. 56-9.

[13] Hsiao, M.Y., Patel, A.M., and Pradhan, D.K., “Store
Address Generator with On-Line Fault-Detection Capa-
bility,” IEEE Transactions on Computers, vol. c-26, no.
11, Nov. 1977, pp. 1144-7.

[14] Synopsys Online Documentation,Guidelines and Prac-
tices for Synthesis., v.1997-08.

[15] Synopsys Online Documentation,Design Compiler Ref-
erence Manual., v.1997-08.

Table III: Comparison of the results of synthesis of 4-bit,
16-entry partially-stored numeric sequencers of Figure 4

using best synthesized adders and Carry LookAhead
adders

With the
best

synthesized
adders

With Carry
LookAhead

adder

Critical Path Timing (ns)
(Max. Clock Speed

(MHz))

2.26
(442)

2.55
(392)

Total Areaa

aEquivalent gates; 1 equivalent gate = 1 two-input nand gate

832.375 1218.7

µ

µ

	Table I: Complete 4-bit LFSR sequence. All-zero state “0000” is inserted after “1000”
	Table II: Result of synthesis (targeting LSI Logic’s 3.3v G10TM-p 0.29 ASIC library) of various r...
	Table III: Comparison of the results of synthesis of 4-bit, 16-entry partially-stored numeric seq...
	[1] Johnson M., Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice-Hall, 1991.
	[2] Colwell, R.P., and Steck, R.L.,“A 0.6 BiCMOS processor with dynamic execution”, IEEE Internat...
	[3] Gaddis, N.B., Butler, J.R., Kumar, A., and Queen, W.J., “A 56-entry instruction reorder buffe...
	[4] Smith, J.E., and Pleszkun, A.R., “Implementation of Precise Interrupts in Pipelined Processor...
	[5] Leibholz, D., and Razdan, R., “The Alpha 21264: A 500 MHz Out-of-Order Execution Microprocess...
	[6] Kessler, R.E., McLellan, E.J., and Webb, D. A., “The Alpha 21264 Microprocessor Architecture”...
	[7] Nowka, K. J., and Galambos, T., “Circuit Design Techniques for a Gigahertz Integer Microproce...
	[8] Posluszny, S. et al, “Design Methodology for a 1.0 GHz Microprocessor”, International Confere...
	[9] Palacharla, S., Jouppi, N.P., and Smith, J.E., “Complexity- Effective Superscalar Processors”...
	[10] Wallace, S., Dagli, N., and Bagherzadeh, N., “Design and Implementation of a 100 MHz Reorder...
	[11] Wang, L.-T., and McCluskey, E.J., “Hybrid Designs Generating Maximum-Length Sequences,” IEEE...
	[12] Wang, L.-T., and McCluskey, E. J., “Complete Feedback Shift Register Design For Built-in Sel...
	[13] Hsiao, M.Y., Patel, A.M., and Pradhan, D.K., “Store Address Generator with On-Line Fault-Det...
	[14] Synopsys Online Documentation, Guidelines and Practices for Synthesis., v.1997-08.
	[15] Synopsys Online Documentation, Design Compiler Reference Manual., v.1997-08.

