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Abstract 
 

Many embedded real world applications are intellectual 

property, and vendors hesitate to share these proprietary 

applications with computer architects and designers.  This 

poses a serious problem for embedded microprocessor 

designers – how do they customize the design of their 

microprocessor to provide optimal performance for a class of 

target customer applications?    In this paper, we explore a 

technique that can automatically extract key performance 

attributes of a real world application and clone them into a 

synthetic benchmark.  The advantage of the synthetic 

benchmark clone is that it hides functional meaning of the 

code but exhibits similar performance characteristics as the 

target application.   Unlike previously proposed workload 

synthesis techniques, we only model microarchitecture-

independent performance attributes into the synthetic clone.  

By using a set of embedded benchmarks from the 

MediaBench and MiBench suites, we demonstrate that the 

performance and power consumption of the synthetic clone 

correlates well with that of the original application across a 

wide range of microarchitecture configurations. 

 

1. Introduction 
Embedded microprocessors, unlike the 

microprocessors that are targeted for general purpose, 

workstation, and server class of applications, are typically 

designed to provide optimal performance for a very narrow 

spectrum of applications.  Also, the objective in the 

embedded space is to design a microprocessor which provides 

the necessary performance for a given class of applications at 

the lowest cost; in contrast to the objective of maximizing 

performance for a given cost, in the general purpose and 

workstation class of microprocessors.  In order to achieve this 

objective, it is extremely important for architects and 

designers to understand the workload characteristics of the 

specific applications, used by targeted customers, for which 

the embedded microprocessor is being designed.  If it would 

be possible to make a real world customer workload available 

to architects and designers, design tradeoffs could be made 

with higher confidence.  Moreover, if a real world application 

that a customer cares about was used to project the 

performance of an embedded microprocessor, it would also 

tremendously increase the customer’s confidence when 

making purchasing decisions.  However, many of the critical 

real world embedded applications are proprietary and 

customers hesitate to share them with third party computer 

architects and designers.   

The absence of such real world embedded 

applications makes it extremely challenging to reliably 

benchmark microprocessors used in embedded systems.  

Unfortunately, there have not been good benchmarks for 

embedded systems.  Traditionally, most of the embedded 

microprocessor designers have used workstation benchmarks 

such as Standard Performance Evaluation Corporation 

(SPEC) CPU benchmarks [36] and synthetic benchmarks such 

as Dhrystone [26] to make design tradeoffs.  Although these 

benchmarks measure specific aspects of a microprocessor 

performance, it is difficult to extrapolate the performance of 

the microprocessor for a specific embedded customer 

application.  The arrival of the EDN Embedded 

Microprocessor Benchmarking Consortium (EEMBC) 

benchmarks [35], comprising of core algorithms used in a 

wide range of embedded applications has, to some extent, 

alleviated the problem of embedded microprocessor 

performance evaluation and benchmarking.  However, 

embedded microprocessor designers believe that it is still 

extremely important to evaluate the performance of an 

embedded microprocessor design in the context of a target 

customer application when making design tradeoffs in the 

middle and end phase of the design process [37].             

 The objective of this paper is to explore an approach 

which will make it possible to share real world embedded 

applications with architects and designers without 

compromising on the proprietary nature of such applications.  

In order to achieve this we propose a technique, performance 

cloning, which extracts key performance characteristics of a 

real world application and then models them into a synthetic 

benchmark – effectively creating a synthetic program clone 

with similar performance characteristics as the original 

application, but with entirely different source code.  The 

synthetic benchmark clone comprises of C-code with 



embedded assembly language statements using the asm 

construct.   The advantage of the synthetic benchmark clone is 

that it provides code abstraction capability i.e., it hides the 

functional meaning of the code used in the original 

application but exhibits similar performance characteristics as 

the real application.  This ability to clone performance makes 

it possible to disseminate a proprietary real world application 

as a synthetic benchmark that can be used by architects and 

designers, in lieu of the original application.  

 Our technique of performance cloning is similar to 

the concept of automatic workload synthesis proposed by Bell 

et al. [24] to reduce simulation time of long running 

benchmark programs.  However, the primary objective of 

performance cloning is to disseminate real world customer 

applications as benchmarks, and not to reduce simulation 

time.  Also, the performance cloning approach that we 

propose overcomes an important shortcoming of the existing 

workload synthesis technique – the memory access patterns 

and control flow behavior in existing workload synthesis 

techniques are modeled using microarchitecture-dependent 

attributes i.e., the synthetic workload is generated to match a 

target metric such as cache miss rate and branch 

misprediction rate.  As a result, the workloads generated 

using microarchitecture-dependent attributes yield large 

errors when the cache and branch configurations are changed 

[24].  Instead, in the performance cloning technique, we 

model the memory access pattern and branch behavior of a 

real world application into the synthetic benchmark clone 

using microarchitecture-independent workload characteristics.  

Consequently, as we show in our evaluation, the synthetic 

benchmark clone shows good correlation with the original 

application across a wide range of cache, branch predictor, 

and other microarchitecture configurations.   

Specifically, we make the following contributions in this 

paper: 

1) We propose to apply a workload synthesis technique 

to address the problem of making real world 

proprietary embedded applications available to 

architects and designers.  

2) We develop a model using only microarchitecture-

independent attributes to mimic the data access 

pattern of a real application in a synthetic benchmark 

clone. 

3) We develop a model using only microarchitecture-

independent attributes to replicate the control flow 

predictability of an application into a synthetic 

benchmark clone.  

4) We apply the performance cloning technique to 

generate synthetic benchmark clones for twenty three 

programs from the MiBench and MediaBench 

embedded benchmark suite, and show that they 

provide good correlation with the original benchmark 

programs across a wide range of microarchitecture 

configurations.  

  The remainder of this paper is organized as follows:  In 

section 2 we summarize prior research work in workload 

synthesis.  In section 3 we provide an overview of the 

performance cloning approach and the new microarchitecture-

independent approaches that we have developed to model 

memory access patterns and branch predictability into the 

synthetic benchmark clone. In section 4 we outline the 

experimental setup and the benchmarks used in this study.   In 

section 5 we evaluate the performance cloning approach and 

present results from our experiments. In section 6 we discuss 

opportunities for improving the usefulness of the performance 

cloning technique. Finally, in section 7 we summarize the key 

results from this paper and the contributions of our work.  

 

2. Prior Work 
Statistical Simulation: Oskin et al. [21], Eeckhout et al. 

[18], and Nussbaum et al. [28] introduced the idea of 

statistical simulation which forms the foundation of synthetic 

workload generation. The approach used in statistical 

simulation is to generate a short synthetic trace from a 

statistical profile of workload attributes such as basic block 

size distribution, branch misprediction rate, data/instruction 

cache miss rate, instruction mix, dependency distances, etc., 

and then simulate the synthetic trace using a statistical 

simulator.   Eeckhout et al. [18] improved statistical 

simulation by profiling the workload attributes at a basic 

block granularity using statistical flow graphs.  Further 

improvements include more accurate memory data flow 

modeling for statistical simulation [9].  The important benefit 

of statistical simulation is that the synthetic trace is extremely 

short in comparison to real workload traces – 1 million 

synthetically generated instructions are typically sufficient.  

Moreover, various studies have demonstrated that statistical 

simulation is capable of identifying a region of interest in the 

early stages of the microprocessor design cycle while 

considering both performance and power consumption.  As 

such, the important application for statistical simulation is to 

cull a large design space in limited time in search for a region 

of interest. 

Constructing Synthetic Workloads: Several approaches [7] 

[13] [17] have been proposed to construct a synthetic drive 

workload that is representative of a real workload under a 

multiprogramming system.  In these techniques, the 

characteristics of the real workload are obtained from the 

system accounting data, and a synthetic set of jobs are 

constructed that places similar demands on the system 

resources.  Hsieh et al. [3] developed a technique to construct 

assembly programs that, when executed, exhibit the same 

power consumption signature as the original application.  

Sorenson et al. [11] evaluate various approaches to 

generating synthetic traces using locality surfaces.  Wong and 

Morris [33] use the hit-ratio in fully associative caches as the 

main criteria for the design of synthetic workloads.  They also 

use a process of replication and repetition for constructing 

programs to simulate a desired level of locality of a target 

application.  

The work most closely related to our approach is the 

one proposed by Bell and John [24].  They present a 



framework for the automatic synthesis of miniature 

benchmarks from actual application executables.  The key 

idea of this technique is to capture the essential structure of a 

program using statistical simulation theory, and generate C-

code with assembly instructions that accurately model the 

workload attributes.  Our performance cloning technique 

significantly improves the usefulness of this workload 

synthesis technique by developing microarchitecture-

independent models to capture locality and control flow 

predictability of a program into synthetic workloads.     

Workload Synthesis in Other Computer Systems: 

Approaches to generate synthetic workloads have been 

investigated for performance evaluation of I/O subsystems, 

file system, networks, and servers [12] [15] [25] [34].  The 

central idea in these approaches is to model the workload 

attributes using a probability distribution such as Zipf’s law, 

binomial distribution etc., and use these distributions to 

generate a synthetic workload. 

  

3. Performance Cloning Framework 
Figure 1 illustrates the performance cloning 

framework that we explore in this paper for generating 

synthetic benchmark clones from a real world application.  

The process comprises of two steps: 1) Profiling the real 

world proprietary workload to measure a collection of its 

inherent microarchitecture-independent workload attributes, 

and 2) Modeling the measured workload attributes into a 

synthetic program.     

In the first step we characterize the application by 

measuring its key microarchitecture-independent workload 

characteristics that can impact performance.  Note that these 

characteristics are related only to the functional operation of 

the program’s instructions and are independent of the 

microarchitecture on which the program executes.  Automatic 

workload synthesis techniques that have been previously 

proposed [24] have typically used a combination of 

microarchitecture-independent and microarchitecture-

dependent workload attributes to characterize an application.  

Typically, these techniques model the memory access pattern 

and branch behavior in the synthetic workload using 

microarchitecture-dependent attributes such as cache miss 

rates and branch misprediction rates, i.e., the synthetic 

workload is generated to match a target cache miss rate or a 

branch misprediction rate.    

Consequently, the synthetic workloads generated 

from these models yield large errors when the cache and 

branch configurations are changed [24].  As a result, if one 

were to construct a synthetic benchmark clone using 

microarchitecture-dependent attributes, it would be necessary 

to construct separate clones for all branch predictor and cache 

configurations of interest.  This severely limits the usefulness 

of the synthetic benchmark clone.  In addition, this also 

implies that workload profiles need to be computed for every 

cache hierarchy and branch predictor of interest. An 

important contribution of this paper is that we develop 

memory access and branching models that use 

microarchitecture-independent workload attributes to capture 

the inherent locality and control flow predictability of a real 

world application into the synthetic benchmark clone. 

 

                       
       
Figure 1.  Performance Cloning framework for constructing 
synthetic benchmark clones. 

 

After characterizing the real application, the second 

step is to construct a synthetic program with similar 

microarchitecture-independent attributes as the original 

application.  Theoretically, if all the key microarchitecture-

independent characteristics of the real application are 

successfully replicated into the synthetic benchmark clone, 

the synthetic benchmark should exhibit similar performance 

as the original application across a wide range of 

microarchitecture configurations.  The characteristics that we 

model in this study are a subset of all the microarchitecture-

independent characteristics that can be potentially modeled, 

but we believe that we model all the important inherent 

characteristics that impact a program’s performance; the 

results from evaluation of the synthetic benchmark clones in 

this paper in fact show that this is the case, at least for the 

embedded application domain we target in this paper.  The 

generated synthetic benchmark clone comprises of C-code 

with low-level assembly instructions instantiated as asm 

statements.  The synthetic benchmark clone can be compiled 

and used in lieu of the original application for making design 

tradeoffs. 

The details of the memory access model, branching 

model, and other microarchitecture-independent workload 

attributes that we use for profiling a real world applications 

and the procedure for modeling them into the synthetic 

benchmark clone are described in the following section.   
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3.1 Microarchitecture-Independent Workload   

Profiling 
In this step we characterize the real application by 

measuring its inherent, or microarchitecture-independent, 

workload characteristics.  In this paper we measure these 

characteristics using a functional simulator.  However, instead 

of simulation, when using a customer production workload 

application, it is possible to efficiently measure these 

characteristics using a binary instrumentation tool such as 

ATOM [1] or PIN [4].   The microarchitecture-independent 

characteristics that we measure are fairly broad and cover a 

wide range of important program characteristics related to the 

instruction mix, control flow behavior, instruction and data 

locality, and instruction level parallelism (ILP). 

 

3.1.1 Control Flow Behavior   
It has been well observed that the instructions in a 

program exhibit a property termed locality of reference.  The  

locality of reference is widely observed in the rule of thumb 

often called the 90/10 rule, which states that a program 

spends 90% of the execution time only in 10% of the static 

program code.  In order to model this program property in a 

synthetic benchmark clone it is essential to capture the 

program structure i.e., a map of how the basic blocks are 

traversed and how branch instructions alter the direction of 

control flow in the instruction stream.  During the statistical 

profiling phase, we propose to capture this information using 

the statistical flow graphs described in [18].  A statistical flow 

graph is a profile of the dynamic execution frequencies of 

each unique basic block in the program, along with their 

transition probabilities to their successor basic blocks.  In 

addition, during the profiling phase, we also annotate each 

node (representing a unique basic block) in the basic block 

map with its size.  Figure 2 shows an example statistical flow 

graph that is generated by profiling the execution of a 

program.  The probabilities marked on the edges of each 

basic block indicate the transition probabilities, e.g., the 

control flow transfer probability from Basic Block 1 to Basic 

Block 2 is 70%, if Basic Block 1 was executed.  Note that this 

is analogous to a control flow graph of the program with the 

edges annotated with transition probabilities.  

We measure the workload characteristics described 

below, instruction mix, data dependency distance distribution, 

and data locality characteristics for a unique pair of 

predecessor and successor basic blocks in the control flow 

graph e.g., instead of measuring a single workload 

characteristics profile for Basic Block 4, we maintain 

separate workload characteristic profiles for the two instances 

where Basic Block 2 and Basic Block 3 are predecessors of 

Basic Block 4. Gathering the workload characteristics at this 

granularity improves the modeling accuracy because the 

performance of a basic block depends on the context in which 

it was executed.    

                      

  

Figure 2.  Example statistical flow graph used to capture the 
control flow structure of the   program. 

 

3.1.2 Instruction Mix   
The instruction mix of a program measures the 

relative frequency of various operations performed in the 

program; namely the percentage of integer arithmetic, integer 

multiplication, integer division, floating-point arithmetic, 

floating-point multiplication, floating-point division 

operations, load, store, and branch instructions in the dynamic 

instruction stream of the program.   

 

3.1.3 Data Dependency Distance Distribution 
Dependency distance is defined as the total number 

of instructions in the dynamic instruction stream between the 

production (write) and consumption (read) of a register and 

memory location.  The goal of measuring these data 

dependency distance distributions is very useful in capturing 

the inherent ILP of the program.  We classify the dependency 

distance into six categories: percentage of total dependencies 

that have a distance of 1 instruction, and the percentage of 

total dependencies that have a distance of up to 2, 4, 6, 8, 16, 

32, and greater than 32 instructions.   

 

3.1.4 Data Locality 
The principle of data locality is well known and 

recognized for its importance in determining an applications 

performance.  Instead of quantifying temporal and spatial 

locality by a single number or a simple distribution, our 

approach for mimicking the data locality of a program is to 

identify the streams (regular sequences of arithmetic 

progressions) in a program, their length, and how they 

intermingle with each other.  Once these stream attributes 

have been correctly identified and instantiated into the 

synthetic benchmark clone, the resulting program should 

show similar inherent temporal and spatial locality 

characteristics [29].   

One may not be able to easily identify such stride 

sequences when observing the global data access stream of 

the program.  This is because several streams co-exist in the 

program and are generally interleaved with each other.  In 

order to identify the streams and their related attributes, we 
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profile every static load and store instruction to identify the 

stride with which it accesses data.  This is based on the 

hypothesis (which we validate) that the memory access 

pattern in typical embedded applications would appear more 

regular when viewed at a finer granularity of static memory 

access instructions (load/store), rather than at a coarser 

granularity of the global access stream.   We profiled a set of 

embedded benchmark programs (described later) and 

measured the most frequently used stride value for every 

static load and store in the program.  Then, based on the 

frequency of each static load or store instruction in the 

program, we computed the percentage of the dynamic 

references that will be accounted for if one were to 

approximate every static memory access instruction in the 

program with a single stride value.   Figure 3 shows the 

percentage of dynamic memory references that exhibit a stride 

pattern with a single stride value.  From this chart we observe 

that the embedded benchmark programs are fairly well 

behaved and modeling each static memory access instruction 

as one stream of access accounts for at least 90% of the 

dynamic memory references for each program.  For most of 

the programs the value is greater than 95%.   This suggests 

that in all these programs almost all load/store instructions 

originate from a stride pattern with a single stride value.   
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 Figure 3.  Percentage of dynamic memory references that 
exhibit a stride pattern with a single stride value. 

Based on the results of these characterization 

experiments we propose a first-order model to generate 

access patterns in the synthetic benchmark clone.  Our goal is 

to keep microarchitecture-independent workload model 

simple, so that it provides us with the flexibility to study 

“what-if” scenarios (by altering the memory access pattern of  

the program), which is almost impossible with a more 

complex model.   When constructing the statistical flow 

graph, described in section 3.1.1, we record the most 

frequently used stride value for every static memory access 

instruction in every node in the statistical flow graph.   Also, 

we find the average value of the length of each stream – 

calculated by averaging the length of each unique stream 

across all the unique stream pools in the program.  When 

constructing a synthetic benchmark clone or a synthetic 

memory address trace we approximate each static load/store 

instruction in the program as accessing a fixed length stream 

with a stride value obtained from this workload 

characterization.   

 

3.1.5 Control Flow Predictability 
In order to incorporate synthetic branch 

predictability it is essential to understand the property of 

branches that makes them predictable.  The predictability of 

branches stems from two sources: most branches are highly 

biased towards one direction, i.e., the branch is taken or not-

taken for 80-90% of the time, and the outcome of some 

branches that are close together in the source code are 

dependent or related.  Examples of highly biased conditional 

branches include loop exit branches, function calls and 

returns, exceptional conditions used in user-input validation, 

system call return values, and data structure initialization.   

 In order to capture the inherent branch behavior in a 

program, the most popular microarchitecture-independent 

metric is to measure the percentage of taken branches in the 

program or the taken rate for a static branch i.e., fraction of 

the times that a static branch was taken during the complete 

run of the program.  Branches that have a very high or low 

taken-rate are biased towards one direction and are 

considered to be highly predictable.  However, merely using 

the taken-rate of branches is insufficient to actually capture 

the inherent branch behavior.  If a static branch had a taken-

rate of 50% one can create a synthetic branch behavior such 

that a branch is taken half the time and not-taken for the other 

half.   But the predictability of the branch depends more on 

the sequence of taken and not-taken directions than just the 

taken-rate i.e., a long sequence of taken followed by an 

equally long sequence of not-taken is easier to predict than a 

sequence where the taken and not-taken branch directions are 

randomly distributed and the taken-rate is 50%.  

 Therefore, in our control flow predictability model 

we also measure an attribute called transition rate, due to 

Haungs et al. [20], for capturing the branch behavior in 

programs.  Transition rate of a static branch is defined as the 

number of times it switches between taken and not-taken 

directions as it is executed, divided by the total number of 

times that it is executed.   By definition, the branches with 

low transition rates are always biased towards either taken or 

not-taken.  It has been well observed that such branches are 

easy to predict.  Also, the branches with a very high transition 

rate always toggle between taken and not-taken directions and 

are also highly predictable.  However, branches that transition 

between taken and not-taken sequences at a moderate rate are 

relatively more difficult to predict.  In order to incorporate 

synthetic branch predictability we annotate every node in the 

statistical flow graph with its transition rate.  When generating 

the synthetic benchmark clone we ensure that the distribution 

of the transition rates for static branches in the synthetic 

stream of instructions is similar to that of the original 

program.  We achieve this by configuring each basic block in 

the synthetic stream of instructions to alternate between taken 

and not-taken directions, such that the branch exhibits the 

desired transition rate.  Typically, when a branch instruction 



does not have a very high or very low transition rate we use a 

divide operation (that performs modulo operation) followed 

by a conditional branch to control whether a synthetic branch 

will be taken or not-taken.  The algorithm for generating the 

synthetic benchmark program in the next section describes the 

details of this mechanism.   

  

3.2 Synthetic Benchmark Clone Generation 
The next step is to generate a synthetic benchmark 

clone by modeling all the microarchitecture-independent 

workload characteristics, generated in the workload profiling 

phase, into a synthetic program.  The basic structure of the 

algorithm used to generate the synthetic benchmark program 

is similar to the one proposed by Bell et al.[24].  However the 

memory and branching model is replaced with the 

microarchitecture-independent models described in section 

3.1.   

 The following algorithm describes the details of how 

the synthetic benchmark clone is generated from the workload 

characteristics:  

 

(1) Generate a random number in the interval [0, 1] and use 

this value to select a node in the statistical flow graph 

(using the cumulative distribution function based on the 

occurrence frequency of each node).  

(2) Use the instruction mix statistics for each node in the 

statistical flow graph to populate the basic block with 

instructions; the last instruction should always be a 

conditional branch instruction.   

(3) For each instruction, a dependency distance is assigned 

to satisfy the data dependency distance distribution for 

the node.  

(4) For each static load and store instruction in the basic 

block assign a stream value – the most frequently used 

stride value for that load or store operation from the 

workload profile.  Essentially, each static load and store 

instruction is modeled as a congruence class with a fixed 

stride value.  

(5) A modulo operation using a logical left shift (divide) 

instruction is inserted in basic blocks where the 

transition rate is not very high or very low.   The 

outcome of the modulo operation causes the conditional 

branch to be either taken or not taken depending on the 

number of the iteration (the entire sequence of basic 

blocks generated using this algorithm are executed in a 

loop).  This mechanism is used to satisfy the transition 

rate of every basic block in the program, effectively 

capturing the control flow predictability into the 

synthetic benchmark clone. 

(6) The occurrence of that node in the statistical flow graph 

is then decremented. 

(7) Increment the count of the total number of basic blocks 

generated. 

(8) A cumulative distribution function based on the 

probabilities of the outgoing edges of the nodes is then 

used to determine the next basic block to instantiate.  If 

a node does not have any outgoing edges, go to step 1. 

(9) If the target number of basic blocks has been generated, 

go to step 10, otherwise go to step 1. 

(10) All the architected register usages in the synthetic 

benchmark are assigned to each instruction in the 

program, such that the data dependencies in step 3 are 

satisfied.  The specifics of how the registers are selected 

and assigned are similar to the register assignment 

procedure outlined in [24].   

(11) The generated sequence of instructions is made part of 

one big loop.  Controlling the number of iterations of the 

loop effectively controls the number of dynamic 

instructions in the program.  Each static load/store 

instruction in the program is configured to access a fixed 

length stream with a stride value obtained from this 

workload characterization.  Also, after a certain number 

of iterations of the program (depending on the value of 

the stride length), each static load or store instruction 

resets to the first element sequence of strided access and 

re-walks the entire stream.  The size of the data footprint 

can be controlled by varying the number of iterations 

after which the stride walk is to be reset.  

(12) A code generator takes the set of representative 

instructions and generates a C-code with embedded 

assembly instruction using the asm construct.  The 

instructions are targeted towards a specific ISA, alpha in 

our case.  However, the code generator can be modified 

to emit instructions for a RISC ISA of interest.  The 

code is encompassed in a main header and malloc 

library call is used to statically allocate memory for the 

data streams.   The use of volatile directive for each asm 

statement prevents the compiler from optimizing out the 

machine instructions in the program.    

 

The synthetic benchmark clone does not have a separate 

input data set.  The characteristics of the input data set used 

by the real application are manifested in the workload 

characterization from which the synthetic benchmark clone 

has been generated.  Therefore, one can think of the input set 

being assimilated into the synthetic benchmark clone.  The 

synthetic benchmark clone generated from this step can be 

compiled and executed on an execution driven simulator or 

real hardware.   

 

4. Experimental Setup 
We used embedded benchmark programs from the 

MiBench and MediaBench benchmark suite to evaluate the 

proposed performance cloning methodology.   All benchmark 

programs were compiled on an Alpha machine using the 

native Compaq cc v6.3-025 compiler with –O3 compiler 

optimization.  Table 1 shows the benchmarks and the 

embedded application domains that they represent.   For the 

benchmarks from the MiBench suite, we used the small input 

sets.  

We used a modified version of the SimpleScalar 

functional simulator sim-safe to measure the workload 



characteristics of the programs.  However, as mentioned 

earlier, using a binary instrumentation tool would be a more 

efficient method to perform microarchitecture-independent 

workload characterization of a real world application 

program.    In order to evaluate and compare the performance 

characteristics of the real benchmark and its synthetic clone, 

we used simulators from the SimpleScalar Toolset.   In order 

to measure the power characteristics of the benchmarks we 

used the Wattch simulator [5].   

 We used the technique described in the previous 

section to construct a workload profile for each benchmark 

and then use it to generate a synthetic benchmark clone.  The 

advantage of our performance cloning technique is that the 

synthetic clone is generated from microarchitecture-

independent program characteristics, and can be used across a 

wide range of microarchitecture configurations.  In order to 

evaluate our technique we compared the cache, branch 

predictor, and overall performance in terms of Instructions-

Per-Cycle (IPC) of the real benchmark program with its 

synthetic clone. 

 
Table 1.  Embedded benchmark programs used for the 
evaluation. 

Program Application Domain 

basicmath, qsort, bitcount, susan Automotive 

crc32, dijkstra, patricia Networking 

fft, gsm Telecommunication 

ghostscript, rsynth, stringsearch Office 

jpeg, typeset Consumer 

cjpeg, djpeg, g721-decode, 
ghostscript, mpeg, rasta, rawaudio, 
texgen, unepic 

Media 

 

5. Evaluation 
We now evaluate whether the synthetic benchmark 

clones generated using the proposed approach indeed 

correlate well with the application from which they were 

generated.  We perform our evaluation by changing the cache 

configurations and various aspects of the pipeline 

microarchitecture, and by comparing how well the synthetic 

benchmark clone correlates with the difference in 

performance exhibited by the real benchmark.   

 

5.1. Tracking Changes Across Cache 

Configurations 
In order to evaluate the model for incorporating 

synthetic data locality we used 28 different L1 D-caches with 

sizes ranging from 256 Bytes to 16 KB with direct-mapped, 

2-way set-associative, 4-way set-associative, and fully 

associative configurations.  The Least Recently Used 

replacement policy was used for all the cache configurations,  

and the cache line size was set to 32 bytes.  We simulated the 

real benchmark program and the synthetic clone across these 

28 different cache configurations and measured the number of 

misses-per-instruction.  As described earlier, the primary 

objective of the synthetic benchmark clone is to be able to 

make design decisions and tradeoffs; where relative accuracy 

is of primary importance.  We quantify the relative accuracy 

for the synthetic benchmark clones using the Pearson’s linear 

correlation coefficient between the misses-per-instruction 

metric for the 27 different cache configurations relative to the 

256 Byte direct-mapped cache configuration - for the original 

benchmark and the synthetic benchmark clone.   Specifically, 

the Pearson’s correlation coefficient is given by: RP = SXY / 

(SX. SY), where X and Y respectively refer to the misses-per-

instruction of the synthetic benchmark clone and the original 

benchmark relative to the 256 Byte direct-mapped cache 

configuration.   The value of correlation, R, can range from -1 

to 1.  The Pearson’s correlation coefficient reflects how well 

the synthetic benchmark clone tracks the changes in cache 

configurations – a high positive correlation indicates that the 

synthetic benchmark clone tracks the actual change in misses-

per-instruction, i.e. perfect relative accuracy.     
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Figure 4. Pearson Correlation coefficient showing the efficacy 
of the synthetic benchmark clones in tracking the design 

changes across 28 different cache configurations. 
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Figure 5. Scatter plot showing ranking of the cache 
configuration estimated by the synthetic benchmark clone 
and the real benchmark. 

 

Figure 4 shows the Pearson’s correlation coefficient 

for each benchmark program.  The average correlation 

coefficient is 0.93, indicating very high correlation between 

the synthetic benchmark clone and the original benchmark 

application across all the applications.  The benchmark 

typeset shows the smallest correlation (0.80) of all the 

benchmark suites.  A plausible explanation for this 

observation is that the typeset benchmark needed 66 



different unique streams to model its stride behavior, in 

compared to an average of 18 unique streams for the other 

benchmark program.  This suggests that programs that require 

a larger number of unique stream values to capture the 

inherent data locality characteristics of a programs, introduce 

larger errors in the synthetic clone.  This is perhaps due to the 

fact that having a large number of streams creates a larger 

number of possibilities of how the streams intermingle with 

each other, which is probably not accurately captured by our 

first-order synthetic benchmark generation method.   

Figure 5 shows a scatter plot of the average rankings 

(cache with smallest misses-per-instruction is ranked the 

highest) of the 28 cache configurations predicted by the 

synthetic benchmark clones and the ones obtained using the 

real benchmark programs.  Each point in the scatter plot 

represents a cache configuration.  If the synthetic benchmarks 

accurately predicted all the rankings of the 28 cache 

configurations, all the points in the scatter plot will be along a 

line that passes through the origin and makes an angle of 45 

degrees with the axes.  From the chart it is evident that 

rankings predicted by the synthetic benchmark clone and 

those of the real benchmark are high correlated (all points are 

close to the 45 degree line passing through origin).  

As such, based on the results in Figures 4 and 5, we 

can conclude that the synthetic benchmark clone is capable of 

tracking changes in cache sizes and associativities, and can be 

effectively used as a proxy for the real application in order to 

perform cache design studies. 

 

5.2. Performance and Power Correlation Across 

Microarchitecture Changes 
First, we compare the performance and power 

characteristics of the real benchmark and the synthetic clone 

on a base configuration.  Table 2 shows the base 

microarchitecture configuration that we used for this 

experiment.  We simulated the original benchmark and the 

synthetic benchmark clone on this configuration and 

measured the performance in terms of the Instructions-Per-

Cycle (IPC) and the total power consumed.  Figures 6 and 7 

respectively show the absolute IPC and power consumption 

of the original benchmark program and the synthetic 

benchmark.  The average absolute error for the synthetic 

benchmark clone across all the benchmark configurations is 

8.73% for IPC and 6.44% for power consumption.  
 
Table 2.   Base Configuration used to evaluate the 
performance and power characteristics exhibited by the 
synthetic benchmark clone. 

 

L1 I-cache 16 KB/2-way/32 B 

L1 D-cache 16 KB/2-way/32 B 

L2 Unified cache 64 KB/4-way/64 B 

Fetch, Decode, and Issue 

Width 

1-wide out-of-order 

Fetch Queue 8 entry 

Branch Predictor 2-level GAp predictor 

Functional Units 2 Integer ALU, 1 FP 

Multiplication Unit, 1 

FP ALU 

Reorder Buffer 16 entries 

Load Store Queue 8 entries 

Memory (Bus Width, First 

Block Latency) 

8 B, 40 cycles 

 

When comparing the benchmark clone and the 

original benchmark program on the base configuration we 

only considered the absolute performance/power prediction 

accuracy so far, i.e., the error in one design point.  However, 

as mentioned before, for computer architects and designers 

the relative accuracy or the ability to predict a performance 

trend is often of primary importance.  To evaluate the 

synthetic benchmark clone in this perspective we study how 

the synthetic benchmark clone tracks performance and power 

trends by successively altering various architectural 

parameters with respect to the base configuration.  

Specifically, we performed the following 5 experiments: (1) 

Doubled the number of entries in the reorder buffer and load 

store queue i.e., from 16 and 8 entries to 32 and 16 entries 

respectively, (2) Reduced the L1-D cache size to half i.e., 

from 16 KB to 8 KB, (3) Doubled the fetch, decode, and 

issue width, (4) Changed the branch predictor from a 2-level 

GAp predictor to an always not-taken branch predictor, and 

(5) Changed the instruction issue policy from out-of-order to 

in-order.   For each of these configurations we simulated the 

original and the synthetic benchmark clone and the original 

benchmark.    

For each experiment we measure the relative 

accuracy of the synthetic benchmark clone as:  REX = | MX, 

S/MY, S – MY,R/MX, R| / (MY,R/MX, R), where REX is the relative 

error when moving from design point Y (base configuration 

in our case) to design point X (each of the 5 design points), M 

is the target metric of interest (IPC or power consumption in 

our case), and R refers to the real benchmark, and S refers to 

the synthetic clone.   
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Figure 6. Comparison of the IPC of the original benchmark 
and the synthetic benchmark clone on the base configuration.   
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Figure 7. Comparison of the power consumed by the original 
benchmark and the synthetic benchmark clone on the base 
configuration.   
 

Table 3 shows the relative error in IPC and power 

consumption of the synthetic clone for the 5 design changes 

described.  The relative accuracy has been averaged across all 

the benchmark programs.  We observe that in general, the 

relative errors across the 5 design changes are on an average 

4.49 % (worst case 6.51%) for IPC and 2.28% for power 

(worst case 4.59%).   The design change of doubling the 

fetch, decode, and issue width, resulted in the largest 

averaged speedup (1.72) across all the real benchmarks.  

Therefore, as an example, we illustrate the change in IPC and 

power consumption exhibited by the benchmarks for this 

design change.  Figures 8 and 9 respectively show the 

speedup in IPC and the relative increase in power 

consumption for each real benchmark and its corresponding 

synthetic clone.  It is encouraging that the relative errors are 

typically smaller than the absolute errors.  The small errors in 

relative error in IPC and power consumption suggest that the 

synthetic benchmark clone can be effectively used to make 

design decisions, in lieu of the original application program.  
 
Table 3.   Average Relative Error in IPC and Power for the 
synthetic benchmark clone in response to 5 design changes. 

 

Design Change Average 

Relative 

Error in 

IPC 

Average 

Relative 

Error in 

Power 

Double the number of 

entries in the reorder 

buffer and load store 

queue 

5.81% 3.41% 

Reduce the L1 cache 

size to half 

1.48% 0.39% 

Double the fetch, 

decode, and issue 

width 

5.41% 4.59% 

Change the predictor 

from a 2-level to a not-

taken predictor 

6.51% 1.80% 

Change the instruction 

issue policy to in-order 

3.26% 1.22% 
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Figure 8. Relative speedup in IPC for real and synthetic 
benchmarks in response to the design change of doubling the 
fetch, decode, and issue width.  
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Figure 9. Relative increase in power consumption for real 
and synthetic benchmarks in response to the design change 
of doubling the fetch, decode, and issue width. 
 
 

6. Discussion 
As mentioned before, the advantage of the performance 

cloning approach proposed in this paper as compared to 

previously proposed workload synthesis techniques is that all 

the workload characteristics modeled into the synthetic 

benchmark clone are microarchitecture-independent.  This 

makes the benchmarks portable across a wide range of 

microarchitecture configurations. However, a limitation of the 

proposed technique is that the synthetic benchmark clone is 

dependent on the compiler technology that was used to 

compile the real workload binary.  Therefore, the generated 

synthetic benchmark clone may have limited application to 

the compiler community for studying the effects of various 

compiler optimizations on a benchmark. 

 A second note that we would like to make is that the 

synthetic benchmark clones that we generate contain 

instruction set architecture (ISA) specific assembly 

instructions embedded in C-code.  Therefore, a separate 

benchmark clone would have to be synthesized for all target 

embedded architectures (e.g., ARM, PowerPC, etc.) of 

interest.  Typically, every embedded microprocessor designer 

would be interested only in his particular architecture and 

therefore this may not be a severe problem in practice.  

However, if the synthetic benchmark clone is to be made truly 

portable across ISAs, it would be important to address this 

concern.  One possibility could be to generate the synthetic 

benchmark clone using a virtual instruction set architecture 



that can then be consumed by compilers for different ISAs.  

Another possibility would be to binary translate the synthetic 

benchmark clone binary to the ISA of interest.  Investigating 

this issue is a part of our ongoing research work. 

A final note is that the abstract workload model 

presented in this paper is fairly simple by construction, i.e., 

the characteristics that serve as input to the synthetic 

benchmark generation, such as the branching model and the 

data locality model, are far from being complicated.  This was 

our intention: we wanted to build a model that is simple, yet 

accurate enough for predicting performance trends for 

embedded workloads on embedded processors.  However, we 

anticipate that applying this approach to general-purpose 

workloads with more complex control flow behavior and data 

locality behavior could result in less accurate performance 

predictions.  Just to name one example, the data behavior 

associated with code that applies pointer chasing through a 

linked list cannot be modeled using a stride model as we do in 

this paper.  As such, as part of our future work, we plan to 

further extend this framework in order to be able to accurately 

model more complex workloads. 

 

7. Conclusions 
In this paper we explored a workload synthesis technique 

that can be used to clone a real-world proprietary application 

into a synthetic benchmark clone that can be made available 

to architects and designers.  The synthetic benchmark clone 

has similar performance/power characteristics as the original 

application but generates a very different stream of 

dynamically executed instructions.  By consequence, the 

synthetic clone does not compromise on the proprietary 

nature of the application.  In order to develop a synthetic 

clone using pure microarchitecture-independent workload 

characteristics, we develop memory access and branching 

models to capture the inherent data locality and control flow 

predictability of the program into the synthetic benchmark 

clone.  We developed synthetic benchmark clones for a set of 

benchmarks from the MiBench and MediaBench benchmark 

suites, and showed that the synthetic benchmark clones 

exhibit good accuracy in tracking design changes across 28 

different cache configurations and 5 microarchitecture design 

changes.  

The technique proposed in this paper will benefit 

embedded architects and designers to gain access to real 

world applications, in the form of synthetic benchmark 

clones, when making design decisions.  Moreover, the 

synthetic benchmark clones will help the vendors to make 

informed purchase decisions, because they would have the 

ability to benchmark an embedded microprocessor using an 

application of their interest. 
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