
Performance Cloning: A Technique for Disseminating Proprietary Applications as

Benchmarks

Ajay Joshi
1
, Lieven Eeckhout

2
, Robert H. Bell Jr.

3
, and Lizy John

1

1
 - Department of Electrical and Computer Engineering

The University of Texas at Austin, Texas
{ajoshi,ljohn}@ece.utexas.edu

2
- ELIS Department

Ghent University, Belgium
leeckhou@elis.ugent.be

3
- IBM Systems and Technology Group

Austin, Texas
robbell@us.ibm.com

Abstract

Many embedded real world applications are intellectual

property, and vendors hesitate to share these proprietary

applications with computer architects and designers. This

poses a serious problem for embedded microprocessor

designers – how do they customize the design of their

microprocessor to provide optimal performance for a class of

target customer applications? In this paper, we explore a

technique that can automatically extract key performance

attributes of a real world application and clone them into a

synthetic benchmark. The advantage of the synthetic

benchmark clone is that it hides functional meaning of the

code but exhibits similar performance characteristics as the

target application. Unlike previously proposed workload

synthesis techniques, we only model microarchitecture-

independent performance attributes into the synthetic clone.

By using a set of embedded benchmarks from the

MediaBench and MiBench suites, we demonstrate that the

performance and power consumption of the synthetic clone

correlates well with that of the original application across a

wide range of microarchitecture configurations.

1. Introduction
Embedded microprocessors, unlike the

microprocessors that are targeted for general purpose,

workstation, and server class of applications, are typically

designed to provide optimal performance for a very narrow

spectrum of applications. Also, the objective in the

embedded space is to design a microprocessor which provides

the necessary performance for a given class of applications at

the lowest cost; in contrast to the objective of maximizing

performance for a given cost, in the general purpose and

workstation class of microprocessors. In order to achieve this

objective, it is extremely important for architects and

designers to understand the workload characteristics of the

specific applications, used by targeted customers, for which

the embedded microprocessor is being designed. If it would

be possible to make a real world customer workload available

to architects and designers, design tradeoffs could be made

with higher confidence. Moreover, if a real world application

that a customer cares about was used to project the

performance of an embedded microprocessor, it would also

tremendously increase the customer’s confidence when

making purchasing decisions. However, many of the critical

real world embedded applications are proprietary and

customers hesitate to share them with third party computer

architects and designers.

The absence of such real world embedded

applications makes it extremely challenging to reliably

benchmark microprocessors used in embedded systems.

Unfortunately, there have not been good benchmarks for

embedded systems. Traditionally, most of the embedded

microprocessor designers have used workstation benchmarks

such as Standard Performance Evaluation Corporation

(SPEC) CPU benchmarks [36] and synthetic benchmarks such

as Dhrystone [26] to make design tradeoffs. Although these

benchmarks measure specific aspects of a microprocessor

performance, it is difficult to extrapolate the performance of

the microprocessor for a specific embedded customer

application. The arrival of the EDN Embedded

Microprocessor Benchmarking Consortium (EEMBC)

benchmarks [35], comprising of core algorithms used in a

wide range of embedded applications has, to some extent,

alleviated the problem of embedded microprocessor

performance evaluation and benchmarking. However,

embedded microprocessor designers believe that it is still

extremely important to evaluate the performance of an

embedded microprocessor design in the context of a target

customer application when making design tradeoffs in the

middle and end phase of the design process [37].

 The objective of this paper is to explore an approach

which will make it possible to share real world embedded

applications with architects and designers without

compromising on the proprietary nature of such applications.

In order to achieve this we propose a technique, performance

cloning, which extracts key performance characteristics of a

real world application and then models them into a synthetic

benchmark – effectively creating a synthetic program clone

with similar performance characteristics as the original

application, but with entirely different source code. The

synthetic benchmark clone comprises of C-code with

embedded assembly language statements using the asm

construct. The advantage of the synthetic benchmark clone is

that it provides code abstraction capability i.e., it hides the

functional meaning of the code used in the original

application but exhibits similar performance characteristics as

the real application. This ability to clone performance makes

it possible to disseminate a proprietary real world application

as a synthetic benchmark that can be used by architects and

designers, in lieu of the original application.

 Our technique of performance cloning is similar to

the concept of automatic workload synthesis proposed by Bell

et al. [24] to reduce simulation time of long running

benchmark programs. However, the primary objective of

performance cloning is to disseminate real world customer

applications as benchmarks, and not to reduce simulation

time. Also, the performance cloning approach that we

propose overcomes an important shortcoming of the existing

workload synthesis technique – the memory access patterns

and control flow behavior in existing workload synthesis

techniques are modeled using microarchitecture-dependent

attributes i.e., the synthetic workload is generated to match a

target metric such as cache miss rate and branch

misprediction rate. As a result, the workloads generated

using microarchitecture-dependent attributes yield large

errors when the cache and branch configurations are changed

[24]. Instead, in the performance cloning technique, we

model the memory access pattern and branch behavior of a

real world application into the synthetic benchmark clone

using microarchitecture-independent workload characteristics.

Consequently, as we show in our evaluation, the synthetic

benchmark clone shows good correlation with the original

application across a wide range of cache, branch predictor,

and other microarchitecture configurations.

Specifically, we make the following contributions in this

paper:

1) We propose to apply a workload synthesis technique

to address the problem of making real world

proprietary embedded applications available to

architects and designers.

2) We develop a model using only microarchitecture-

independent attributes to mimic the data access

pattern of a real application in a synthetic benchmark

clone.

3) We develop a model using only microarchitecture-

independent attributes to replicate the control flow

predictability of an application into a synthetic

benchmark clone.

4) We apply the performance cloning technique to

generate synthetic benchmark clones for twenty three

programs from the MiBench and MediaBench

embedded benchmark suite, and show that they

provide good correlation with the original benchmark

programs across a wide range of microarchitecture

configurations.

 The remainder of this paper is organized as follows: In

section 2 we summarize prior research work in workload

synthesis. In section 3 we provide an overview of the

performance cloning approach and the new microarchitecture-

independent approaches that we have developed to model

memory access patterns and branch predictability into the

synthetic benchmark clone. In section 4 we outline the

experimental setup and the benchmarks used in this study. In

section 5 we evaluate the performance cloning approach and

present results from our experiments. In section 6 we discuss

opportunities for improving the usefulness of the performance

cloning technique. Finally, in section 7 we summarize the key

results from this paper and the contributions of our work.

2. Prior Work
Statistical Simulation: Oskin et al. [21], Eeckhout et al.

[18], and Nussbaum et al. [28] introduced the idea of

statistical simulation which forms the foundation of synthetic

workload generation. The approach used in statistical

simulation is to generate a short synthetic trace from a

statistical profile of workload attributes such as basic block

size distribution, branch misprediction rate, data/instruction

cache miss rate, instruction mix, dependency distances, etc.,

and then simulate the synthetic trace using a statistical

simulator. Eeckhout et al. [18] improved statistical

simulation by profiling the workload attributes at a basic

block granularity using statistical flow graphs. Further

improvements include more accurate memory data flow

modeling for statistical simulation [9]. The important benefit

of statistical simulation is that the synthetic trace is extremely

short in comparison to real workload traces – 1 million

synthetically generated instructions are typically sufficient.

Moreover, various studies have demonstrated that statistical

simulation is capable of identifying a region of interest in the

early stages of the microprocessor design cycle while

considering both performance and power consumption. As

such, the important application for statistical simulation is to

cull a large design space in limited time in search for a region

of interest.

Constructing Synthetic Workloads: Several approaches [7]

[13] [17] have been proposed to construct a synthetic drive

workload that is representative of a real workload under a

multiprogramming system. In these techniques, the

characteristics of the real workload are obtained from the

system accounting data, and a synthetic set of jobs are

constructed that places similar demands on the system

resources. Hsieh et al. [3] developed a technique to construct

assembly programs that, when executed, exhibit the same

power consumption signature as the original application.

Sorenson et al. [11] evaluate various approaches to

generating synthetic traces using locality surfaces. Wong and

Morris [33] use the hit-ratio in fully associative caches as the

main criteria for the design of synthetic workloads. They also

use a process of replication and repetition for constructing

programs to simulate a desired level of locality of a target

application.

The work most closely related to our approach is the

one proposed by Bell and John [24]. They present a

framework for the automatic synthesis of miniature

benchmarks from actual application executables. The key

idea of this technique is to capture the essential structure of a

program using statistical simulation theory, and generate C-

code with assembly instructions that accurately model the

workload attributes. Our performance cloning technique

significantly improves the usefulness of this workload

synthesis technique by developing microarchitecture-

independent models to capture locality and control flow

predictability of a program into synthetic workloads.

Workload Synthesis in Other Computer Systems:

Approaches to generate synthetic workloads have been

investigated for performance evaluation of I/O subsystems,

file system, networks, and servers [12] [15] [25] [34]. The

central idea in these approaches is to model the workload

attributes using a probability distribution such as Zipf’s law,

binomial distribution etc., and use these distributions to

generate a synthetic workload.

3. Performance Cloning Framework
Figure 1 illustrates the performance cloning

framework that we explore in this paper for generating

synthetic benchmark clones from a real world application.

The process comprises of two steps: 1) Profiling the real

world proprietary workload to measure a collection of its

inherent microarchitecture-independent workload attributes,

and 2) Modeling the measured workload attributes into a

synthetic program.

In the first step we characterize the application by

measuring its key microarchitecture-independent workload

characteristics that can impact performance. Note that these

characteristics are related only to the functional operation of

the program’s instructions and are independent of the

microarchitecture on which the program executes. Automatic

workload synthesis techniques that have been previously

proposed [24] have typically used a combination of

microarchitecture-independent and microarchitecture-

dependent workload attributes to characterize an application.

Typically, these techniques model the memory access pattern

and branch behavior in the synthetic workload using

microarchitecture-dependent attributes such as cache miss

rates and branch misprediction rates, i.e., the synthetic

workload is generated to match a target cache miss rate or a

branch misprediction rate.

Consequently, the synthetic workloads generated

from these models yield large errors when the cache and

branch configurations are changed [24]. As a result, if one

were to construct a synthetic benchmark clone using

microarchitecture-dependent attributes, it would be necessary

to construct separate clones for all branch predictor and cache

configurations of interest. This severely limits the usefulness

of the synthetic benchmark clone. In addition, this also

implies that workload profiles need to be computed for every

cache hierarchy and branch predictor of interest. An

important contribution of this paper is that we develop

memory access and branching models that use

microarchitecture-independent workload attributes to capture

the inherent locality and control flow predictability of a real

world application into the synthetic benchmark clone.

Figure 1. Performance Cloning framework for constructing
synthetic benchmark clones.

After characterizing the real application, the second

step is to construct a synthetic program with similar

microarchitecture-independent attributes as the original

application. Theoretically, if all the key microarchitecture-

independent characteristics of the real application are

successfully replicated into the synthetic benchmark clone,

the synthetic benchmark should exhibit similar performance

as the original application across a wide range of

microarchitecture configurations. The characteristics that we

model in this study are a subset of all the microarchitecture-

independent characteristics that can be potentially modeled,

but we believe that we model all the important inherent

characteristics that impact a program’s performance; the

results from evaluation of the synthetic benchmark clones in

this paper in fact show that this is the case, at least for the

embedded application domain we target in this paper. The

generated synthetic benchmark clone comprises of C-code

with low-level assembly instructions instantiated as asm

statements. The synthetic benchmark clone can be compiled

and used in lieu of the original application for making design

tradeoffs.

The details of the memory access model, branching

model, and other microarchitecture-independent workload

attributes that we use for profiling a real world applications

and the procedure for modeling them into the synthetic

benchmark clone are described in the following section.

Workload
Synthesizer

Workload Profile

Real World Proprietary Workload

Synthetic Clone

Real Hardware /
Execution Driven

Simulator

Workload Profiler

3.1 Microarchitecture-Independent Workload

Profiling
In this step we characterize the real application by

measuring its inherent, or microarchitecture-independent,

workload characteristics. In this paper we measure these

characteristics using a functional simulator. However, instead

of simulation, when using a customer production workload

application, it is possible to efficiently measure these

characteristics using a binary instrumentation tool such as

ATOM [1] or PIN [4]. The microarchitecture-independent

characteristics that we measure are fairly broad and cover a

wide range of important program characteristics related to the

instruction mix, control flow behavior, instruction and data

locality, and instruction level parallelism (ILP).

3.1.1 Control Flow Behavior
It has been well observed that the instructions in a

program exhibit a property termed locality of reference. The

locality of reference is widely observed in the rule of thumb

often called the 90/10 rule, which states that a program

spends 90% of the execution time only in 10% of the static

program code. In order to model this program property in a

synthetic benchmark clone it is essential to capture the

program structure i.e., a map of how the basic blocks are

traversed and how branch instructions alter the direction of

control flow in the instruction stream. During the statistical

profiling phase, we propose to capture this information using

the statistical flow graphs described in [18]. A statistical flow

graph is a profile of the dynamic execution frequencies of

each unique basic block in the program, along with their

transition probabilities to their successor basic blocks. In

addition, during the profiling phase, we also annotate each

node (representing a unique basic block) in the basic block

map with its size. Figure 2 shows an example statistical flow

graph that is generated by profiling the execution of a

program. The probabilities marked on the edges of each

basic block indicate the transition probabilities, e.g., the

control flow transfer probability from Basic Block 1 to Basic

Block 2 is 70%, if Basic Block 1 was executed. Note that this

is analogous to a control flow graph of the program with the

edges annotated with transition probabilities.

We measure the workload characteristics described

below, instruction mix, data dependency distance distribution,

and data locality characteristics for a unique pair of

predecessor and successor basic blocks in the control flow

graph e.g., instead of measuring a single workload

characteristics profile for Basic Block 4, we maintain

separate workload characteristic profiles for the two instances

where Basic Block 2 and Basic Block 3 are predecessors of

Basic Block 4. Gathering the workload characteristics at this

granularity improves the modeling accuracy because the

performance of a basic block depends on the context in which

it was executed.

Figure 2. Example statistical flow graph used to capture the
control flow structure of the program.

3.1.2 Instruction Mix
The instruction mix of a program measures the

relative frequency of various operations performed in the

program; namely the percentage of integer arithmetic, integer

multiplication, integer division, floating-point arithmetic,

floating-point multiplication, floating-point division

operations, load, store, and branch instructions in the dynamic

instruction stream of the program.

3.1.3 Data Dependency Distance Distribution
Dependency distance is defined as the total number

of instructions in the dynamic instruction stream between the

production (write) and consumption (read) of a register and

memory location. The goal of measuring these data

dependency distance distributions is very useful in capturing

the inherent ILP of the program. We classify the dependency

distance into six categories: percentage of total dependencies

that have a distance of 1 instruction, and the percentage of

total dependencies that have a distance of up to 2, 4, 6, 8, 16,

32, and greater than 32 instructions.

3.1.4 Data Locality
The principle of data locality is well known and

recognized for its importance in determining an applications

performance. Instead of quantifying temporal and spatial

locality by a single number or a simple distribution, our

approach for mimicking the data locality of a program is to

identify the streams (regular sequences of arithmetic

progressions) in a program, their length, and how they

intermingle with each other. Once these stream attributes

have been correctly identified and instantiated into the

synthetic benchmark clone, the resulting program should

show similar inherent temporal and spatial locality

characteristics [29].

One may not be able to easily identify such stride

sequences when observing the global data access stream of

the program. This is because several streams co-exist in the

program and are generally interleaved with each other. In

order to identify the streams and their related attributes, we

Basic Block 1

Basic Block 2

Basic Block 3

Basic Block 4

Basic Block 5

0.9

0.7

0.1

0.8
0.2

0.3 0.9

0.1

profile every static load and store instruction to identify the

stride with which it accesses data. This is based on the

hypothesis (which we validate) that the memory access

pattern in typical embedded applications would appear more

regular when viewed at a finer granularity of static memory

access instructions (load/store), rather than at a coarser

granularity of the global access stream. We profiled a set of

embedded benchmark programs (described later) and

measured the most frequently used stride value for every

static load and store in the program. Then, based on the

frequency of each static load or store instruction in the

program, we computed the percentage of the dynamic

references that will be accounted for if one were to

approximate every static memory access instruction in the

program with a single stride value. Figure 3 shows the

percentage of dynamic memory references that exhibit a stride

pattern with a single stride value. From this chart we observe

that the embedded benchmark programs are fairly well

behaved and modeling each static memory access instruction

as one stream of access accounts for at least 90% of the

dynamic memory references for each program. For most of

the programs the value is greater than 95%. This suggests

that in all these programs almost all load/store instructions

originate from a stride pattern with a single stride value.

0

10

20

30

40

50

60

70

80

90

100

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t_
m

ib
e

n
c

h

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t_
m

e
d

ia

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

P
e

rc
e

n
ta

g
e

 o
f

D
y

n
a

m
ic

 M
e

m
o

ry
 R

e
fe

re
n

c
e

s

 Figure 3. Percentage of dynamic memory references that
exhibit a stride pattern with a single stride value.

Based on the results of these characterization

experiments we propose a first-order model to generate

access patterns in the synthetic benchmark clone. Our goal is

to keep microarchitecture-independent workload model

simple, so that it provides us with the flexibility to study

“what-if” scenarios (by altering the memory access pattern of

the program), which is almost impossible with a more

complex model. When constructing the statistical flow

graph, described in section 3.1.1, we record the most

frequently used stride value for every static memory access

instruction in every node in the statistical flow graph. Also,

we find the average value of the length of each stream –

calculated by averaging the length of each unique stream

across all the unique stream pools in the program. When

constructing a synthetic benchmark clone or a synthetic

memory address trace we approximate each static load/store

instruction in the program as accessing a fixed length stream

with a stride value obtained from this workload

characterization.

3.1.5 Control Flow Predictability
In order to incorporate synthetic branch

predictability it is essential to understand the property of

branches that makes them predictable. The predictability of

branches stems from two sources: most branches are highly

biased towards one direction, i.e., the branch is taken or not-

taken for 80-90% of the time, and the outcome of some

branches that are close together in the source code are

dependent or related. Examples of highly biased conditional

branches include loop exit branches, function calls and

returns, exceptional conditions used in user-input validation,

system call return values, and data structure initialization.

 In order to capture the inherent branch behavior in a

program, the most popular microarchitecture-independent

metric is to measure the percentage of taken branches in the

program or the taken rate for a static branch i.e., fraction of

the times that a static branch was taken during the complete

run of the program. Branches that have a very high or low

taken-rate are biased towards one direction and are

considered to be highly predictable. However, merely using

the taken-rate of branches is insufficient to actually capture

the inherent branch behavior. If a static branch had a taken-

rate of 50% one can create a synthetic branch behavior such

that a branch is taken half the time and not-taken for the other

half. But the predictability of the branch depends more on

the sequence of taken and not-taken directions than just the

taken-rate i.e., a long sequence of taken followed by an

equally long sequence of not-taken is easier to predict than a

sequence where the taken and not-taken branch directions are

randomly distributed and the taken-rate is 50%.

 Therefore, in our control flow predictability model

we also measure an attribute called transition rate, due to

Haungs et al. [20], for capturing the branch behavior in

programs. Transition rate of a static branch is defined as the

number of times it switches between taken and not-taken

directions as it is executed, divided by the total number of

times that it is executed. By definition, the branches with

low transition rates are always biased towards either taken or

not-taken. It has been well observed that such branches are

easy to predict. Also, the branches with a very high transition

rate always toggle between taken and not-taken directions and

are also highly predictable. However, branches that transition

between taken and not-taken sequences at a moderate rate are

relatively more difficult to predict. In order to incorporate

synthetic branch predictability we annotate every node in the

statistical flow graph with its transition rate. When generating

the synthetic benchmark clone we ensure that the distribution

of the transition rates for static branches in the synthetic

stream of instructions is similar to that of the original

program. We achieve this by configuring each basic block in

the synthetic stream of instructions to alternate between taken

and not-taken directions, such that the branch exhibits the

desired transition rate. Typically, when a branch instruction

does not have a very high or very low transition rate we use a

divide operation (that performs modulo operation) followed

by a conditional branch to control whether a synthetic branch

will be taken or not-taken. The algorithm for generating the

synthetic benchmark program in the next section describes the

details of this mechanism.

3.2 Synthetic Benchmark Clone Generation
The next step is to generate a synthetic benchmark

clone by modeling all the microarchitecture-independent

workload characteristics, generated in the workload profiling

phase, into a synthetic program. The basic structure of the

algorithm used to generate the synthetic benchmark program

is similar to the one proposed by Bell et al.[24]. However the

memory and branching model is replaced with the

microarchitecture-independent models described in section

3.1.

 The following algorithm describes the details of how

the synthetic benchmark clone is generated from the workload

characteristics:

(1) Generate a random number in the interval [0, 1] and use

this value to select a node in the statistical flow graph

(using the cumulative distribution function based on the

occurrence frequency of each node).

(2) Use the instruction mix statistics for each node in the

statistical flow graph to populate the basic block with

instructions; the last instruction should always be a

conditional branch instruction.

(3) For each instruction, a dependency distance is assigned

to satisfy the data dependency distance distribution for

the node.

(4) For each static load and store instruction in the basic

block assign a stream value – the most frequently used

stride value for that load or store operation from the

workload profile. Essentially, each static load and store

instruction is modeled as a congruence class with a fixed

stride value.

(5) A modulo operation using a logical left shift (divide)

instruction is inserted in basic blocks where the

transition rate is not very high or very low. The

outcome of the modulo operation causes the conditional

branch to be either taken or not taken depending on the

number of the iteration (the entire sequence of basic

blocks generated using this algorithm are executed in a

loop). This mechanism is used to satisfy the transition

rate of every basic block in the program, effectively

capturing the control flow predictability into the

synthetic benchmark clone.

(6) The occurrence of that node in the statistical flow graph

is then decremented.

(7) Increment the count of the total number of basic blocks

generated.

(8) A cumulative distribution function based on the

probabilities of the outgoing edges of the nodes is then

used to determine the next basic block to instantiate. If

a node does not have any outgoing edges, go to step 1.

(9) If the target number of basic blocks has been generated,

go to step 10, otherwise go to step 1.

(10) All the architected register usages in the synthetic

benchmark are assigned to each instruction in the

program, such that the data dependencies in step 3 are

satisfied. The specifics of how the registers are selected

and assigned are similar to the register assignment

procedure outlined in [24].

(11) The generated sequence of instructions is made part of

one big loop. Controlling the number of iterations of the

loop effectively controls the number of dynamic

instructions in the program. Each static load/store

instruction in the program is configured to access a fixed

length stream with a stride value obtained from this

workload characterization. Also, after a certain number

of iterations of the program (depending on the value of

the stride length), each static load or store instruction

resets to the first element sequence of strided access and

re-walks the entire stream. The size of the data footprint

can be controlled by varying the number of iterations

after which the stride walk is to be reset.

(12) A code generator takes the set of representative

instructions and generates a C-code with embedded

assembly instruction using the asm construct. The

instructions are targeted towards a specific ISA, alpha in

our case. However, the code generator can be modified

to emit instructions for a RISC ISA of interest. The

code is encompassed in a main header and malloc

library call is used to statically allocate memory for the

data streams. The use of volatile directive for each asm

statement prevents the compiler from optimizing out the

machine instructions in the program.

The synthetic benchmark clone does not have a separate

input data set. The characteristics of the input data set used

by the real application are manifested in the workload

characterization from which the synthetic benchmark clone

has been generated. Therefore, one can think of the input set

being assimilated into the synthetic benchmark clone. The

synthetic benchmark clone generated from this step can be

compiled and executed on an execution driven simulator or

real hardware.

4. Experimental Setup
We used embedded benchmark programs from the

MiBench and MediaBench benchmark suite to evaluate the

proposed performance cloning methodology. All benchmark

programs were compiled on an Alpha machine using the

native Compaq cc v6.3-025 compiler with –O3 compiler

optimization. Table 1 shows the benchmarks and the

embedded application domains that they represent. For the

benchmarks from the MiBench suite, we used the small input

sets.

We used a modified version of the SimpleScalar

functional simulator sim-safe to measure the workload

characteristics of the programs. However, as mentioned

earlier, using a binary instrumentation tool would be a more

efficient method to perform microarchitecture-independent

workload characterization of a real world application

program. In order to evaluate and compare the performance

characteristics of the real benchmark and its synthetic clone,

we used simulators from the SimpleScalar Toolset. In order

to measure the power characteristics of the benchmarks we

used the Wattch simulator [5].

 We used the technique described in the previous

section to construct a workload profile for each benchmark

and then use it to generate a synthetic benchmark clone. The

advantage of our performance cloning technique is that the

synthetic clone is generated from microarchitecture-

independent program characteristics, and can be used across a

wide range of microarchitecture configurations. In order to

evaluate our technique we compared the cache, branch

predictor, and overall performance in terms of Instructions-

Per-Cycle (IPC) of the real benchmark program with its

synthetic clone.

Table 1. Embedded benchmark programs used for the
evaluation.

Program Application Domain

basicmath, qsort, bitcount, susan Automotive

crc32, dijkstra, patricia Networking

fft, gsm Telecommunication

ghostscript, rsynth, stringsearch Office

jpeg, typeset Consumer

cjpeg, djpeg, g721-decode,
ghostscript, mpeg, rasta, rawaudio,
texgen, unepic

Media

5. Evaluation
We now evaluate whether the synthetic benchmark

clones generated using the proposed approach indeed

correlate well with the application from which they were

generated. We perform our evaluation by changing the cache

configurations and various aspects of the pipeline

microarchitecture, and by comparing how well the synthetic

benchmark clone correlates with the difference in

performance exhibited by the real benchmark.

5.1. Tracking Changes Across Cache

Configurations
In order to evaluate the model for incorporating

synthetic data locality we used 28 different L1 D-caches with

sizes ranging from 256 Bytes to 16 KB with direct-mapped,

2-way set-associative, 4-way set-associative, and fully

associative configurations. The Least Recently Used

replacement policy was used for all the cache configurations,

and the cache line size was set to 32 bytes. We simulated the

real benchmark program and the synthetic clone across these

28 different cache configurations and measured the number of

misses-per-instruction. As described earlier, the primary

objective of the synthetic benchmark clone is to be able to

make design decisions and tradeoffs; where relative accuracy

is of primary importance. We quantify the relative accuracy

for the synthetic benchmark clones using the Pearson’s linear

correlation coefficient between the misses-per-instruction

metric for the 27 different cache configurations relative to the

256 Byte direct-mapped cache configuration - for the original

benchmark and the synthetic benchmark clone. Specifically,

the Pearson’s correlation coefficient is given by: RP = SXY /

(SX. SY), where X and Y respectively refer to the misses-per-

instruction of the synthetic benchmark clone and the original

benchmark relative to the 256 Byte direct-mapped cache

configuration. The value of correlation, R, can range from -1

to 1. The Pearson’s correlation coefficient reflects how well

the synthetic benchmark clone tracks the changes in cache

configurations – a high positive correlation indicates that the

synthetic benchmark clone tracks the actual change in misses-

per-instruction, i.e. perfect relative accuracy.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

b
a
s
ic

m
a
th

b
it

c
o

u
n

t

c
rc

3
2

d
ij
k
s
tr

a ff
t

g
h

o
s
ts

c
ri

p
t

g
s
m

jp
e
g

p
a
tr

ic
ia

q
s
o

rt

rs
y
n

th

s
tr

in
g

s
e
a
rc

h

s
u

s
a
n

ty
p

e
s
e
t

c
jp

e
g

d
jp

e
g

g
7
2
1
-d

e
c
o

d
e

g
h

o
s
ts

c
ri

p
t

m
p

e
g

-d
e
c
o

d
e

ra
s
ta

ra
w

a
u

d
io

te
x
g

e
n

u
n

e
p

ic

A
v
e
ra

g
e

P
e
a
rs

o
n

'
C

o
rr

e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t

Figure 4. Pearson Correlation coefficient showing the efficacy
of the synthetic benchmark clones in tracking the design

changes across 28 different cache configurations.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ranking of Cache Configuration (Synthetic)

R
a
n

k
in

g
 o

f
C

a
c
h

e
 C

o
n

fi
g

u
ra

ti
o

n
 (

R
e
a
l)

Figure 5. Scatter plot showing ranking of the cache
configuration estimated by the synthetic benchmark clone
and the real benchmark.

Figure 4 shows the Pearson’s correlation coefficient

for each benchmark program. The average correlation

coefficient is 0.93, indicating very high correlation between

the synthetic benchmark clone and the original benchmark

application across all the applications. The benchmark

typeset shows the smallest correlation (0.80) of all the

benchmark suites. A plausible explanation for this

observation is that the typeset benchmark needed 66

different unique streams to model its stride behavior, in

compared to an average of 18 unique streams for the other

benchmark program. This suggests that programs that require

a larger number of unique stream values to capture the

inherent data locality characteristics of a programs, introduce

larger errors in the synthetic clone. This is perhaps due to the

fact that having a large number of streams creates a larger

number of possibilities of how the streams intermingle with

each other, which is probably not accurately captured by our

first-order synthetic benchmark generation method.

Figure 5 shows a scatter plot of the average rankings

(cache with smallest misses-per-instruction is ranked the

highest) of the 28 cache configurations predicted by the

synthetic benchmark clones and the ones obtained using the

real benchmark programs. Each point in the scatter plot

represents a cache configuration. If the synthetic benchmarks

accurately predicted all the rankings of the 28 cache

configurations, all the points in the scatter plot will be along a

line that passes through the origin and makes an angle of 45

degrees with the axes. From the chart it is evident that

rankings predicted by the synthetic benchmark clone and

those of the real benchmark are high correlated (all points are

close to the 45 degree line passing through origin).

As such, based on the results in Figures 4 and 5, we

can conclude that the synthetic benchmark clone is capable of

tracking changes in cache sizes and associativities, and can be

effectively used as a proxy for the real application in order to

perform cache design studies.

5.2. Performance and Power Correlation Across

Microarchitecture Changes
First, we compare the performance and power

characteristics of the real benchmark and the synthetic clone

on a base configuration. Table 2 shows the base

microarchitecture configuration that we used for this

experiment. We simulated the original benchmark and the

synthetic benchmark clone on this configuration and

measured the performance in terms of the Instructions-Per-

Cycle (IPC) and the total power consumed. Figures 6 and 7

respectively show the absolute IPC and power consumption

of the original benchmark program and the synthetic

benchmark. The average absolute error for the synthetic

benchmark clone across all the benchmark configurations is

8.73% for IPC and 6.44% for power consumption.

Table 2. Base Configuration used to evaluate the
performance and power characteristics exhibited by the
synthetic benchmark clone.

L1 I-cache 16 KB/2-way/32 B

L1 D-cache 16 KB/2-way/32 B

L2 Unified cache 64 KB/4-way/64 B

Fetch, Decode, and Issue

Width

1-wide out-of-order

Fetch Queue 8 entry

Branch Predictor 2-level GAp predictor

Functional Units 2 Integer ALU, 1 FP

Multiplication Unit, 1

FP ALU

Reorder Buffer 16 entries

Load Store Queue 8 entries

Memory (Bus Width, First

Block Latency)

8 B, 40 cycles

When comparing the benchmark clone and the

original benchmark program on the base configuration we

only considered the absolute performance/power prediction

accuracy so far, i.e., the error in one design point. However,

as mentioned before, for computer architects and designers

the relative accuracy or the ability to predict a performance

trend is often of primary importance. To evaluate the

synthetic benchmark clone in this perspective we study how

the synthetic benchmark clone tracks performance and power

trends by successively altering various architectural

parameters with respect to the base configuration.

Specifically, we performed the following 5 experiments: (1)

Doubled the number of entries in the reorder buffer and load

store queue i.e., from 16 and 8 entries to 32 and 16 entries

respectively, (2) Reduced the L1-D cache size to half i.e.,

from 16 KB to 8 KB, (3) Doubled the fetch, decode, and

issue width, (4) Changed the branch predictor from a 2-level

GAp predictor to an always not-taken branch predictor, and

(5) Changed the instruction issue policy from out-of-order to

in-order. For each of these configurations we simulated the

original and the synthetic benchmark clone and the original

benchmark.

For each experiment we measure the relative

accuracy of the synthetic benchmark clone as: REX = | MX,

S/MY, S – MY,R/MX, R| / (MY,R/MX, R), where REX is the relative

error when moving from design point Y (base configuration

in our case) to design point X (each of the 5 design points), M

is the target metric of interest (IPC or power consumption in

our case), and R refers to the real benchmark, and S refers to

the synthetic clone.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij
k

s
tr

a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

IP
C

 o
n

 B
a

s
e

 C
o

n
fi

g
u

ra
ti

o
n

Original Benchmark

Synthetic Clone

Figure 6. Comparison of the IPC of the original benchmark
and the synthetic benchmark clone on the base configuration.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij
k

s
tr

a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

icP
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 o

n
 B

a
s

e
 C

o
n

fi
g

u
ra

ti
o

n
Original Benchmark

Synthetic Clone

Figure 7. Comparison of the power consumed by the original
benchmark and the synthetic benchmark clone on the base
configuration.

Table 3 shows the relative error in IPC and power

consumption of the synthetic clone for the 5 design changes

described. The relative accuracy has been averaged across all

the benchmark programs. We observe that in general, the

relative errors across the 5 design changes are on an average

4.49 % (worst case 6.51%) for IPC and 2.28% for power

(worst case 4.59%). The design change of doubling the

fetch, decode, and issue width, resulted in the largest

averaged speedup (1.72) across all the real benchmarks.

Therefore, as an example, we illustrate the change in IPC and

power consumption exhibited by the benchmarks for this

design change. Figures 8 and 9 respectively show the

speedup in IPC and the relative increase in power

consumption for each real benchmark and its corresponding

synthetic clone. It is encouraging that the relative errors are

typically smaller than the absolute errors. The small errors in

relative error in IPC and power consumption suggest that the

synthetic benchmark clone can be effectively used to make

design decisions, in lieu of the original application program.

Table 3. Average Relative Error in IPC and Power for the
synthetic benchmark clone in response to 5 design changes.

Design Change Average

Relative

Error in

IPC

Average

Relative

Error in

Power

Double the number of

entries in the reorder

buffer and load store

queue

5.81% 3.41%

Reduce the L1 cache

size to half

1.48% 0.39%

Double the fetch,

decode, and issue

width

5.41% 4.59%

Change the predictor

from a 2-level to a not-

taken predictor

6.51% 1.80%

Change the instruction

issue policy to in-order

3.26% 1.22%

0.00

0.50

1.00

1.50

2.00

2.50

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij
k

s
tr

a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

A
v

e
ra

g
e

S
p

e
e

d
u

p
 o

v
e

r
b

a
s
e

 c
o

n
fi

g
u

ra
ti

o
n

Real Benchmark

Synthetic Clone

Figure 8. Relative speedup in IPC for real and synthetic
benchmarks in response to the design change of doubling the
fetch, decode, and issue width.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij
k

s
tr

a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

A
v

e
ra

g
e

F
ra

c
ti

o
n

 b
y
 w

h
ic

h
 p

o
w

e
r

c
o

n
s

u
m

p
ti

o
n

 i
n

c
re

a
s
e

s

Real Benchmark

Synthetic Clone

Figure 9. Relative increase in power consumption for real
and synthetic benchmarks in response to the design change
of doubling the fetch, decode, and issue width.

6. Discussion
As mentioned before, the advantage of the performance

cloning approach proposed in this paper as compared to

previously proposed workload synthesis techniques is that all

the workload characteristics modeled into the synthetic

benchmark clone are microarchitecture-independent. This

makes the benchmarks portable across a wide range of

microarchitecture configurations. However, a limitation of the

proposed technique is that the synthetic benchmark clone is

dependent on the compiler technology that was used to

compile the real workload binary. Therefore, the generated

synthetic benchmark clone may have limited application to

the compiler community for studying the effects of various

compiler optimizations on a benchmark.

 A second note that we would like to make is that the

synthetic benchmark clones that we generate contain

instruction set architecture (ISA) specific assembly

instructions embedded in C-code. Therefore, a separate

benchmark clone would have to be synthesized for all target

embedded architectures (e.g., ARM, PowerPC, etc.) of

interest. Typically, every embedded microprocessor designer

would be interested only in his particular architecture and

therefore this may not be a severe problem in practice.

However, if the synthetic benchmark clone is to be made truly

portable across ISAs, it would be important to address this

concern. One possibility could be to generate the synthetic

benchmark clone using a virtual instruction set architecture

that can then be consumed by compilers for different ISAs.

Another possibility would be to binary translate the synthetic

benchmark clone binary to the ISA of interest. Investigating

this issue is a part of our ongoing research work.

A final note is that the abstract workload model

presented in this paper is fairly simple by construction, i.e.,

the characteristics that serve as input to the synthetic

benchmark generation, such as the branching model and the

data locality model, are far from being complicated. This was

our intention: we wanted to build a model that is simple, yet

accurate enough for predicting performance trends for

embedded workloads on embedded processors. However, we

anticipate that applying this approach to general-purpose

workloads with more complex control flow behavior and data

locality behavior could result in less accurate performance

predictions. Just to name one example, the data behavior

associated with code that applies pointer chasing through a

linked list cannot be modeled using a stride model as we do in

this paper. As such, as part of our future work, we plan to

further extend this framework in order to be able to accurately

model more complex workloads.

7. Conclusions
In this paper we explored a workload synthesis technique

that can be used to clone a real-world proprietary application

into a synthetic benchmark clone that can be made available

to architects and designers. The synthetic benchmark clone

has similar performance/power characteristics as the original

application but generates a very different stream of

dynamically executed instructions. By consequence, the

synthetic clone does not compromise on the proprietary

nature of the application. In order to develop a synthetic

clone using pure microarchitecture-independent workload

characteristics, we develop memory access and branching

models to capture the inherent data locality and control flow

predictability of the program into the synthetic benchmark

clone. We developed synthetic benchmark clones for a set of

benchmarks from the MiBench and MediaBench benchmark

suites, and showed that the synthetic benchmark clones

exhibit good accuracy in tracking design changes across 28

different cache configurations and 5 microarchitecture design

changes.

The technique proposed in this paper will benefit

embedded architects and designers to gain access to real

world applications, in the form of synthetic benchmark

clones, when making design decisions. Moreover, the

synthetic benchmark clones will help the vendors to make

informed purchase decisions, because they would have the

ability to benchmark an embedded microprocessor using an

application of their interest.

8. Acknowledgements
This research is supported in part by NSF grant 0429806,

the IBM Systems and Technology Division, IBM CAS

Program, and AMD. Lieven Eeckhout is a Postdoctoral

Fellow of the Fund for Scientific Research – Flanders

(Belgium) (F.W.O Vlaanderen) and is also supported by Ghent

University, IWT, the HiPEAC Network of Excellence, and the

European SARC project No. 27648.

9. References

[1] A. Srivastava and A. Eustace, “ATOM: A system for building

customized program analysis tools”, Technical Report 94/2,

Western Research Lab, Compaq, March 1994.

[2] AJ KleinOsowski and David J. Lilja, “MinneSPEC: A New

SPEC Benchmark Workload Simulation-Based Computer

Architecture Research,” Computer Architecture Letters, vol.1,

June 2002.

[3] C. Hsieh and M. Pedram, "Microprocessor power estimation

using profile-driven program synthesis," IEEE Transactions

on Computer Aided Design of Integrated Circuits and

Systems, vol. 17(11), pp. 1080-1089, November 1998.

[4] C. Luk et al., “PIN: Building Customized Program Analysis

Tools with Dynamic Instrumentation,”, Proceedings of

International Conference on Parallel Architectures and

Compilation Techniques, 2005.

[5] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A

framework for architectural-level power analysis and

optimizations,” Proceedings of International Symposium on

Computer Architecture, 2000, pp. 83-94

[6] D. Burger and T. Austin, “The SimpleScalar Toolset, version

2.0,” University of Wisconsin-Madison Computer Sciences

Department Technical Report #1342, 1997.

[7] D. Ferrari, “On the foundations of artificial workload design,”

in Proceedings of AMC SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, 1984, pp.

8-14.

[8] D. Thiebaut, “On the Fractal Dimension of Computer

Programs and its Application to the Prediction of the Cache

Miss Ratio,” IEEE Transaction on Computers, vol. 38(7), pp.

1012-1026 July 1989.

[9] D. Genbrugge, L. Eeckhout and K. De Bosschere, “Accurate

Memory Data Flow Modeling in Statistical Simulation”, in

Proceedings of the 2006 International Conference on

Supercomputing, pp. 87-96, June 2006.

[10] D. Lilja, Measuring Computer Performance. Cambridge

University Press, 2000.

[11] E. S. Sorenson and J. K. Flanagan, “Evaluating Synthetic

Trace Models Using Locality Surfaces,” in Proceedings of the

IEEE International Workshop on Workload Characterization,

Nov. 2002, pp. 23-33.

[12] G. Ganger, “Generating Representative Synthetic Workloads:

An Unsolved Problem,” in Proceedings of Computer

Management Group Conference”, 1995, pp. 1263-1269.

[13] H.Curnow and B.Wichman, “A Synthetic Benchmark,”

Computer Journal, vol. 19(1), pp. 43-49, 1976.

[14] J. Henning, “SPEC CPU2000: Measuring CPU Performance

in the New Millennium”, IEEE Computer, vol. 33(7), pp. 28-

35, July 2000.

[15] K. Keaton and D. Patterson, “Towards a Simplified Database

Workload for Computer Architecture Evaluations,” in

Proceedings of IEEE Workshop on Workload

Characterization, 1999, pp.115-124.

[16] K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and

V. Pai, “Challenges in Computer Architecture Evaluation”,

IEEE Computer, vol. 36(8), pp. 30-36, August 2003.

[17] K. Sreenivasan and A. Kleinman, “On the Construction of a

Representative Synthetic Workload,” Communications of the

ACM, March 1974, pp. 127-133.

[18] L. Eeckhout, R. Bell Jr., B. Stougie, K. De Bosschere, and L.

John, “Control Flow Modeling in Statistical Simulation for

Accurate and Efficient Processor Design Studies,” in

Proceedings of International Symposium on Computer

Architecture, pp. 350-361, June 2004.

[19] L. Eeckhout, S. Nussbaum, J.E. Smith, and K.De Bosschere,

“Statistical Simulation: Adding Efficiency to the Computer

Designer’s Toolbox,” IEEE Micro, vol. 23(5), pp. 26-38,

Sept/Oct 2003.

[20] M. Haungs et al. “Branch Transition Rate: A New Metric for

Improved Branch Classification Analysis,” in Proceedings of

International Symposium on High Performance Computer

Architecture, 2000, pp. 241-250.

[21] M. Oskin, F. Chong, and M. Farrens, “HLS: Combining

Statistical and Symbolic Simulation to Guide Microprocessor

Design”, in Proceedings of International Symposium on

Computer Architecture, June 2000, pp. 71-82.

[22] P. Barford and M. Crovella, “Generating Representative Web

Workloads for Network and Server Performance Evaluation,”

in Proceedings of the ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, 1998, pp.

151-160.

[23] R. Bell Jr. and L. John, “Efficient Power Analysis using

Synthetic Testcases,” in Proceedings of International

Symposium on Workload Characterization, 2005, pp. 110-

118.

[24] R. Bell Jr. and L. John, “Improved Automatic Test Case

Synthesis for Performance Model Validation,” in Proceedings

of International Conference on Supercomputing, 2005, pp.

111-120.

[25] R. Bodnarchuk and R. Bunt, “A synthetic workload model for

a distributed system file server”, in Proceedings of the ACM

SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, 1991, pp. 50-59.

[26] R. Weiker, “Dhrystone: A Synthetic Systems Programming

Benchmark,” Communications of the ACM, pp. 1013-1030,

Oct 1984.

[27] R. Wunderlich, T. Wenish, B. Falsafi, and J. Hoe, “SMARTS:

Accelerating microarchitecture simulation via rigorous

statistical sampling,” in Proceedings of International

Symposium on Computer Architecture, June 2003, pp. 84-95.

[28] S. Nussbaum and J.E. Smith, “Modeling Superscalar

Processors via Statistical Simulation,” in Proceedings of

International Conference on Parallel Architectures and

Compilation Techniques, Sept 2001, pp 15-24.

[29] S. Sair, T. Sherwood, and B. Calder, “Quantifying Load

Stream Behavior,”, Proceedings of International Symposium

on High Performance Computer Architecture, 2002.

[30] T. Chilimbi. Efficient representations and abstractions for

quantifying and exploiting data reference locality. In

SIGPLAN Conference on Programming Languages Design

and Implementation, pp. 191-202, 2001.

[31] T. Conte and W-M.Hwu. Benchmark Characterization for

Experimental System Evaluation. Proceedings of the 1990

Hawaii International Conference on System Sciences

(HICSS), vol. I, Architecture Track, pp. 6-16, 1990.

[32] V. Iyengar, L. Trevillyan, and P. Bose, “Representative traces

for processor models with infinite cache”, in Proceedings of

International Symposium on High Performance Computer

Architecture, 1996, pp. 62-73.

[33] W. Wong and R. Morris, "Benchmark Synthesis Using the

LRU Cache Hit Function," IEEE Transactions on Computers,

vol. 37(6), pp. 637-645, June 1998.

[34] Z. Kurmas et al., “Synthesizing Representative I/O Workloads

Using Iterative Distillation,” in Proceedings of International

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems, 2003, pp. 6-15.

[35] The Embedded Microprocessor Benchmark Consortium

http://www.eembc.org/

[36] Standard Performance Evaluation Corporation

www.spec.org/benchmarks.html

[37] “Challenges in Capturing Real World Workloads into

Benchmarks”, Panel Discussion at Workshop on Workload

Characterization 2004.

http://www.iiswc.org/wwc7_slides/david.pdf

