
Motivating Proxy Research
via Industrial Use Cases

IISWC 2020

Emily Shriver

Principal Engineer / Research Scientist

Intel Labs

Acknowledgments: Karthik Sankaranarayanan, Intel Labs

1

Outline

▪ Why?

▪ What is a good proxy?

▪ Future

Outline

▪ Why?
‒ Microarchitecture and Design

‒ Performance and Power Validation

‒ Post-silicon Tuning and Validation

‒ Proprietary Workloads

▪ What is a good proxy?

▪ Future

Microarchitecture & Design

▪ Pain Points:
‒ Unable to capture the complexities of real workload applications

‒ Why? Short traces to run on (slow) near cycle-accurate simulators,
capture user-space only

4

▪ Desire
‒ Representative proxies with runtime in hours (instead of days)

‒ Incorporating OS effects

▪ Opportunities
‒ Representative proxies that are orders of magnitude shorter

‒ Capture OS effects run overnight on virtual prototyping and
emulation pre-si systems

Comparing Runtime on
Different Platforms

Silicon 1 Minute

Emulation 11.8 days

Virtual Prototyping w/
Power/Perf

2.4 days

Assumptions:

• Silicon (3.4 GHz),

• Emulation (200 KHz),

• Virtual Prototyping (1 MHz)

Note: There is a wide variation in
emulation speed; assume a lower
bound here based on a large, complex
system in emulation.

Desire hours

Performance and Power Validation

▪ Pain Points:
‒ Pre-Si performance and power predictions do not match post-Si measurements

‒ Hard to root-cause: very little content runs on both pre-Si and post-Si systems

‒ Limited visibility on post-Si

▪ Desire:
‒ Ability to run same workload on n-1 Silicon, pre-Si, and post-Si systems

▪ Opportunity:
‒ Increase content: portable proxies that run on both pre-Si and post- Si

‒ Increased visibility: on pre-Si platforms to facilitate post-Si validation

5

Post-Silicon: Tuning & Validation

▪ What:
‒ Many HW & SW knobs to tune to optimize system (e.g. HW

prefetchers)

▪ Pain Points:
‒ Long running benchmarks makes each set of runs expensive

(days)

▪ Desire:
‒ Short runs with turnaround time in minutes instead of hours

‒ Reduce tuning to hours instead of days

▪ Opportunity:
‒ Representative proxies that are orders of magnitude shorter

than original benchmark
6

Knob1 …. KnobN

configi

System
HW + SW

Examine Metrics
of Interest

Can we improve
by altering

config?

Proprietary Workloads

▪ What
‒ Customers often do not share their workloads (their secret sauce)

▪ Pain Point
‒ Design optimal HW & SW without workloads

▪ Desire
‒ Ability to generate a workload with similar characteristics to customer workload

▪ Opportunity
‒ Proxies enable customers to either 1) run the proxy generation code or 2) run the

profiling code used as input to proxy generation code

7

Outline

▪ Why?

▪ What is a good proxy?
‒ Micro-Architectural Independence

‒ Capture over time phase behavior

‒ Proxy ≈ Real ?

▪ Future

Micro-Architecture Independence

Portable across micro-architectures and uArch configurations

9

uArch1

uArchk

Original
Workload A

Original_Metric1

Original_Metrick

⁞ ⁞

Proxy
Workload A

Proxy_Metric1

Proxy_Metrick

Use Cases:
‒ Generational comparisons

‒ Exploration of micro-architectural features, accelerators, software stack, etc…

Metrics Include:
• Performance
• Power
• Cache behavior
• Branch predictor

behavior, etc…

Results: Micro-Architectural Independence

SPEC CPU 2017 Integer benchmarks (10 total)
‒ Proxies created using techniques in [1]
‒ Proxies created and manually tuned on Broadwell
‒ Proxies: 1000x – 7500x reduction in retired instructions

10

Observation of benchmarks with high error
‒ memory bound

‒ branch

Significant manual tuning to achieve
the good Broadwell IPC results

Compare performance (IPC) of proxy vs original
benchmark on 2 different micro-architectures

[1] Reena Panda, et.al. “ Accurate Address Streams for
LLC and Byeond (SLAB):…” ISPASS 2017

More research needed to
1) achieve micro-architectural

independence
2) improve automation

‒ On Broadwell system 10/10 proxies <13% IPC error
‒ On Kabylake system 5/10 proxies <13% IPC error

but 5/10 proxies 37-75% IPC error
50% have high IPC error

Overtime Phase Behavior

▪ Stress shared resources in the same
manner as the original

‒ memory accesses

‒ shared data

11

Two programs
same average behavior

different phase behavior

▪ Modeling of stressing shared resources
in presence of concurrency:

‒ multi-process, multi-threaded, multi-
accelerators, etc

▪ Energy Management

Is Proxy ≈ Real?

▪ Represent workload with a single metric comparison
‒ average: APE, MAPE (mean absolute percent error)

‒ peak: max

‒ sum: area under the curve

‒ Use Cases: compare different uArch, power delivery di/dt, energy

12

Similarity techniques for system analysis is an open area of research

Well established
techniques

▪ Behavior over time comparison
‒ Represent workload with multiple numbers & calculate similarity[1]

‒ Many use cases lend themselves to accurate phase behavior over time:
Concurrency, power management

Less established
techniques in uArch

community

[1] DTW – Dynamic Time Warping - Kalaba, “On adaptive control processes,"Automatic Control, IRE Transactions on, vol 4, 1-9, 1959

Outline

▪ Why?

▪ What is a good proxy?

▪ Future

Future – Scale to Systems

Current State of Proxies
‒ Proxies primarily single threaded, CPU-centric

Emerging HW/SW
‒ High integration of accelerators and high

concurrency

‒ Complex and rapidly changing software stacks

Ability to handle large benchmarks
‒ Emerging applications require longer runs for

meaningful analysis (secs/mins instead of msecs)

‒ Example: cloud applications (e.g. search) with large
code footprint take seconds to minutes to encounter
meaningful performance bottlenecks [1][2]

14

[1] Svilen Kanev, et.al. "Profiling a warehouse-scale computer." ISCA 2015

[2] Grant Ayers, et.al., "AsmDB: understanding and mitigating front-end stalls in warehouse-scale computers." ISCA 2019

Emerging applications: micro-services,
autonomous driving, cloud computing, IoT, …

Questions
/

Comments

15

