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Network Processors are multicore processors capable of processing network

packets at wire speeds of multi-Gbps. Due to their high performance and

programmability, these processors have become the main computing elements

in many demanding network processing equipments like enterprise, edge and

core routers. With the ever increasing use of the internet, the processing

demands of these routers have also increased. As a result, the number and

complexity of the cores in network processors have also increased. Hence,

efficiently managing these cores has become very challenging. This dissertation
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discusses two main issues related to efficient usage of large number of parallel

cores in network processors: (1) How to allocate work to the processing cores to

optimize performance? (2) How to meet the desired performance requirement

power efficiently?

This dissertation presents the design of a hash based scheduler to dis-

tribute packets to cores. The scheduler exploits multiple dimensions of locality

to improve performance while minimizing out of order delivery of packets. This

scheduler is designed to work seamlessly when the number of cores allocated to

a service is changed. The design of a resource allocator is also presented which

allocates different number of cores to services with changing traffic behavior.

To improve the power efficiency, a traffic aware power management scheme is

presented which exploits variations in traffic rates to save power. The results

of simulation studies are presented to evaluate the proposals using real and

synthetic network traces. These experiments show that the proposed packet

scheduler can improve performance by as much as 40% by improving locality.

It is also observed that traffic variations can be exploited to save significant

power by turning off the unused cores or by running them at lower frequencies.

Improving performance of the individual cores by careful scheduling also helps

to reduce the power consumption because the same amount of work can now

be done with fewer cores with improved performance. The proposals made in

this dissertation show promising improvements over the previous work. Hash-

ing based schedulers have very low overhead and are very suitable for data

rates of 100 Gbps and even beyond.
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Chapter 1

Introduction

Multicore processors have emerged as the mainstream designs in many appli-

cation domains including general purpose, embedded, networking and graphics

processing. From a hardware standpoint, multicore processors are favored by

vendors because they facilitate building high performance and high transistor

count chips with manageable design complexity by replicating cores. From

a software standpoint, applications with sufficient parallelism can have sig-

nificant performance improvement by running code on multiple cores at the

same time. One application domain with abundant parallelism is networking.

Networking applications have ample parallelism because multiple packets can

be processed by different cores in parallel. This packet level parallelism makes

multicore architectures well suited for networking applications.

A Network Processor is a special-purpose, programmable device that is

optimized for network operations. A network processor is generally a multi-

core processor that can process network packets at wire-speeds of multi-Gbps.
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The main purpose of a network processor is to provide the performance of cus-

tom silicon (i.e., ASIC chips) combined with the programmability of general-

purpose cores. The ability of a network processor to perform complex and

flexible processing and its programmability make it an excellent solution in

many demanding network processing environments like enterprise, edge and

core routers. Enterprise routers are used within an enterprise and their size

depends on the size of the enterprise. More demanding routers are the edge

and core routers. Figure 1 shows the use of routers at the edge and core of in-

ternet. While the main requirement in core routers is high capacity to handle

huge amounts of traffic, edge routers require programmability and flexibility

in order to support multiple complex applications like intrusion detection, fire-

walls, protocol gateways, etc. To meet these requirements, the routers need

huge processing power. Network processors have become the main building

blocks in these network systems because they provide the required processing

power and flexibility.

Figure 1.1: Internet model showing use of edge and core routers
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A number of network processors have entered the market recently. These

processors can be classified into two categories. The first category includes

general purpose multicore processors that are adapted to perform networking

functions. Examples of such processors are the Sun Niagara [66] and Tilera

[29] processors. The second category includes processors which are specif-

ically designed for networking applications. These processors are equipped

with hardware accelerators and co-processors in addition to a large number

of general-purpose cores. Examples include the Freescale T4240 [6], Broad-

com XLP832 [16], EZChip [67], Intel IXP [17] and IBM PowerNP [21]. Both

of these categories have a common attribute: they utilize a large number of

cores to achieve desirable performance. Network processors with 64 cores or

more have been announced by vendors to handle 100 Gbps network speed

[13, 2]. With increasing traffic rates and processing demands, the number and

complexity of cores in these processors are also on the rise and efficiently man-

aging these cores has become very challenging. The challenges associated with

large amount of parallelism are two-fold: (1) how to allocate work to a large

number of available cores to maximize performance, and (2) how to achieve

the performance goals with minimum power consumption. This dissertation

presents schemes to efficiently manage the large number of cores in network

processors in order to achieve the desired performance while keeping the power

consumption to a minimum.

The challenges associated with network processors are further explained

in the next section (Section 1.1). In Section 1.2, objectives of this dissertation
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are presented and a formal thesis statement is provided in Section 1.3. Section

1.4 presents the specific contributions made by this dissertation and Section

1.5 describes how the rest of the dissertation is organized.

1.1 Network Processor Design Challenges

1.1.1 Performance Optimization

With ever increasing network traffic rates, multicore architectures for network

processors have successfully provided performance improvements through high

parallelism. However, naively allocating the network traffic to multiple cores

without considering diversified applications and flow locality results in issues

such as packet reordering, load imbalance and inefficient cache usage.

Packet Ordering Although the internet is designed to tolerate out-of-order

packets, performance of upper layer protocols, such as Transmission Control

Protocol (TCP), greatly depends on packet ordering [93]. It is important

in applications like Voice Over IP (VOIP) and multimedia transcoding that

packets arrive in order because the receiver might not be able to easily reorder

the packets. Hence, it is important to preserve the order among the packets

of a flow. In this work, a flow is defined as a set of packets that have the

same source address, destination address, source port, destination port and

protocol. If packets from the same flow are processed by different cores, they

can experience different queuing and processing delays, and consequently, the
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probability of out of order delivery of packets increases. Careful scheduling of

packets is needed in the network processors to minimize out of order departure

of packets.

Load Balancing Load balancing is an important technique to efficiently

utilize multiple cores in a network processor. Packets arriving at the input

should be distributed uniformly to the available processing cores to maximize

performance. An unbalanced allocation of load can swamp some cores. As

a result, incoming packets assigned to overloaded cores will experience large

delays and may even result in packet loss due to limited storage in the network

processor.

Data Cache Locality If different cores process packets of the same flow,

the data cache will be used inefficiently as the same data is copied to multiple

caches. Packet processing needs to access per flow data (state, statistics), as

well as more global data (routing table). If packets of a flow always go to the

same core, locality can be preserved for both local and global data. Locality

in global data comes from the fact that different flows may be hot with respect

to different parts of the routing table, i.e., at the lower levels of the tree. The

higher levels are hot to all cores. Furthermore, there are many statistics that

are kept per flow, per port etc. Each packet may need to update several of

these statistics. If multiple cores work on packets of the same flow in parallel,

the per flow information needs to be kept consistent across these cores by using

synchronization primitives like locks or semaphores. This results in blocking
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access and degrades performance. The scheduler needs to account for flow

locality to get good performance.

Support for Multiple Services Modern network processors are required

to support a rich set of services. For example, a multi-service edge router

may need to support encryption, decryption, firewalling, intrusion detection

and many other services [65, 107, 55]. The packet processing cores used in

these processors are usually small with a small instruction cache (i-cache) of

size 8-16KB. These caches can only hold a single program at a time. The

performance of a core will deteriorate due to i-cache misses if it has to process

packets of different application types. In order to preserve i-cache locality,

an efficient resource allocator is needed to divide the pool of processing cores

among multiple services. If cores are allocated to services statically at de-

sign time based on their worst case requirements, it will result in unnecessary

over-provisioning with high system cost. The resource allocator needs to be

able to dynamically multiplex cores among services based on runtime traffic

requirements in order to keep the processor provisioning level reasonable.

Researchers have proposed using hashing to distribute packets in par-

allel network processors [33, 64, 101, 102]. The scheduler hashes one or more

header fields of the incoming packet and uses the result to decide the target

core for that packet. Packets of the same flow are always mapped to the same

core because header fields are constant for all packets of a flow. Hence the

flow locality and packet order are maintained. Hash based designs are popu-

lar because of simplicity, but they do not perform well under highly variable
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traffic conditions due to skewed flow sizes or biased hash bundles. Skewed

flow sizes refer to the common situation where network traffic constitutes sev-

eral very high data rate flows and a very large number of low data rate flows

[47, 102]. Biased hash bundles mean that internet addresses are unevenly dis-

tributed such that the hash function results in uneven allocation of addresses

to cores [64]. Furthermore, the hash based schemes need to be adapted for

multi-service routers where different packets require different processing and

cores are dynamically allocated to services based on traffic variations. Hashing

schemes also need to be modified for power saving techniques. These power

management techniques power down the underutilized cores when observed

network traffic is low [82, 58].

1.1.2 Power Efficiency

Design of power efficient network processors is also very important in order to

improve reliability and decrease operational expenditures. The internet infras-

tructure contributes to approximately 2% of the world’s energy consumption

[18, 96, 53]. This contribution is likely to increase in the future with expo-

nential growth in number of users and high bandwidth services. According

to different studies, routers are major contributors to power consumption in

internet infrastructure [22, 53]. The energy consumption in routers is reach-

ing the limits of air cooling [22, 19]. For example, a fully configured Cisco

CRS-1 router can consume up to one megawatt of power [19]. A typical router

has a set of line cards and each line card has one or more network processors
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[11, 3, 81]. The power consumption of a single line card can reach up to 500

Watts [3, 9]. Modern routers can have hundreds of line cards. For example, a

Cisco CRS-1 router can house up to 1152 line cards in different chassis. These

line cards are densely packed in routers. High power consumption can result

in high temperature of parts and failure due to thermal stress. Such failures

affect the reliability and availability of networks. This results in lower quality

of service and increased expenditures in replacement parts. High power con-

sumption of equipment leads to higher cooling costs and results in increased

operational expenditure for the network. According to Ericsson’s vice presi-

dent, “The cost of electricity over the lifetime of network equipment is more

than the cost of network equipment itself” [37].

With increasing traffic rate demands and computational complexity, the

number and complexity of cores in network processors are on the rise resulting

in more and more power consumption. One example of this trend can be

seen in Intel’s IXP line of network processors. The power consumption has

increased from 6 Watts (IXP 1200) to more than 30 Watts (IXP 2800) [17].

Tight power budgets and dense integration requirements call for the design of

power efficient network processors.

Multicore packet processing systems are usually designed and provi-

sioned with enough resources to satisfy peak traffic load. But network traffic

varies with time and reaches the peak value for only a small portion of time.

Figure 1.2 shows traffic observed over two days by the CAIDA monitor [30] at

internet backbone in Chicago. There is a huge variation in packet rates and
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Figure 1.2: Traffic variation over 2 days at the internet backbone in Chicago
[30]

thus different processing requirements at different times of the day. Most of

the time the traffic rate is below the maximum traffic and processors do not

need to run at full capabilities. The low activity periods can be exploited to

save power in network processors by running them in low power modes and/or

by turning off some processing cores.

1.2 Objectives

The objective of the research presented in this dissertation is to efficiently

manage resources of a network processor. The goal is to meet the demands of

incoming traffic while minimizing power consumption. The specific objectives

are as follows:

1. To design an efficient packet scheduling scheme that provides load bal-

ancing, packet ordering, data locality and instruction locality to improve

the throughput of a network processor

9



2. To design a dynamic resource allocation scheme for network processors

that allocates resources to services of a multi-service router based on

runtime requirements and works seamlessly with the packet scheduler

3. To design an effective power management scheme for network processors

that exploits the variability in network traffic over time to save power

1.3 Thesis Statement

A packet scheduler that considers flow and instruction locality improves pro-

cessing capability (throughput) of a network processor while minimizing power

consumption. A dynamic optimization scheme that maximizes per core per-

formance reduces the number of cores needed to handle input traffic and min-

imizes power consumption.

1.4 Contributions

To address the challenges associated with network processor design, the fol-

lowing innovations are presented.

1. Design of a packet scheduler is presented that achieves load balance

with minimum packet reordering. The scheduler uses a hash based de-

sign which inherently maintains flow locality and packet order. Load-

balancing in case of unbalanced allocation of load to cores is achieved

by migrating flows from an overused core to an underutilized core. Flow
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migrations are minimized by migrating only aggressive flows. To iden-

tify aggressive flows, a novel two-level caching scheme is presented. The

scheme is able to identify top aggressive flows with very low overhead

and is based on the annex-cache idea [62].

2. A core partitioning scheme is presented for multi-service routers to pre-

serve i-cache locality. Each service has exclusive ownership of a subset

of cores so that the i-cache locality is maintained. The number of cores

allocated to a service changes dynamically with traffic variations. Modifi-

cations to the hash based packet scheduler are presented for multi-service

routers. These modifications include separate per application map ta-

bles and use of incremental hashing to manage scheduling when cores

are dynamically allocated to services.

3. A predictive power management scheme for network processors is pre-

sented. The scheme uses a low cost traffic and load predictor. The aim

is to reduce both active and idle power of cores in the network proces-

sors. A new parameter called traffic factor is presented that combines

traffic prediction and application processing requirements into a single

parameter for efficiently predicting processing requirements.

4. The effectiveness of incremental hashing is demonstrated when the packet

scheduling scheme is integrated with the power management scheme that

dynamically turns cores on and off to save power. It is further shown

that improving per core throughput also helps in conserving energy since
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more work can be done by fewer cores if performance of individual cores

is optimized by exploiting data and instruction locality.

1.5 Organization

The dissertation is organized as follows:

Chapter 2 presents background and related work. This chapter presents

the architecture of a network processor and introduces the basics of power

management. Prior work related to performance enhancements and power

management of network processors is also presented. Chapter 3 presents the

evaluation framework used in this dissertation and explains the set of net-

work traces and benchmarks that were studied. Chapter 4 presents the need

to maintain load balancing in network processors in order to improve the

throughput and presents techniques to achieve load balancing with minimum

overhead. Chapter 5 describes dynamic allocation of resources in a multi-

service router. This chapter also explains how dynamic resource allocation is

combined with the hash based packet scheduler to efficiently utilize the re-

sources of a network processor. Chapter 6 presents design and evaluation of a

power management scheme for network processors. This chapter also presents

power improvements when power management scheme is integrated with the

packet scheduler of Chapter 5. Finally, Chapter 7 presents the conclusions and

points to areas of future work.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter starts with a description of network processor architecture. Next,

it presents the prior work done on improving performance of network proces-

sors through careful packet scheduling. Then power management is introduced

and existing work on power management in microprocessors is discussed. Fi-

nally, a summary of power management schemes traditionally applied to net-

work processors is presented.

2.2 Network Processor Architecture

Many architectural variations of network processors exist in the market. Al-

though vendors differ in specific implementations, they share the broad con-

cept of network processors with many cores and accelerators for networking
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functions. Architecture for a typical network processor is shown in Figure

2.1. Incoming packets are received by a Frame Manager (FM). FM places the

packet payload in a buffer allocated by the Buffer Manager and places the

header, a pointer to the buffer and some meta data as command descriptors in

the input queues to the processing cores. These general purpose cores process

the packets and can offload some of the work to accelerators e.g., some of the

work can be placed in the queue for security accelerator (SEC). SEC performs

the required processing and puts it back to the return queue. Eventually,

the general purpose core sends the packet back to FM via an enqueue after

finishing the processing.

Interconnect
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0

IL1

DL1
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Core
n-1

IL1

DL1
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Queue

Manager
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Manager

SEC
Table

Lookup

Frame
Manager
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L3 DDR

Packets

Layer 2 - 3

Processing

Layer 4 - 7

Processing

Figure 2.1: Architecture of a network processor

Network processing can be classified as either Control Plane or Data

Plane. Control Plane is responsible for control and management processing

e.g., maintaining and updating the routing tables. For example, control plane

processing may involve executing routing protocols like RIP, OSPF, and BGP,
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or control and signalling protocols such as RSVP or LDP. Data Plane deals

with actual processing involved in packet forwarding. The data plane execution

involves compression, encryption, address searches, address prefix matching for

forwarding, classification, traffic shaping, network address translation and so

on. Traditionally, the general purpose cores in the network processor were

responsible for processing both control and data plane packets. However, in

modern network processors, control and data plane packets take two different

paths. When a packet arrives, a packet classifier in the FM decides whether it

is a control plane or a data plane packet. Control plane packets take the slow

path through the general purpose cores. The data plane packets (Layer 2 or

possibly Layer 3) take the fast path and are not offloaded to general purpose

cores. Fast path processing is handled by the FM itself. The FM is equipped

with a large number (32 - 120) of small cores also called I/O Processors (IOP)

which are responsible for fast path processing. These IOPs are in-order dual

issue cores with non coherent memory, and do not have an operating system.

This configuration describes a notional system that represents a class of chips

as they look today and moving into the next 3-5 years. In this work, the terms

core and IOP are used interchangeably.

Designing a scheduler for the data plane is very challenging. First, the

scheduler is in the data path, and therefore, should be as efficient as possi-

ble in terms of latency to handle ever increasing traffic rates (100 Gbps and

even higher in the future). Second, it should satisfy the requirements of load

balancing, flow locality, packet ordering and i-cache locality. Prior work done
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on improving the performance of network processors with careful scheduling is

presented in Section 2.3. The second challenging aspect of network processor

design is to achieve this high packet throughput while maintaining power effi-

ciency. Power management techniques used in microprocessors are introduced

in Section 2.4 and some work on applying these power management schemes

to network processors is also discussed.

2.3 Performance Optimization in Network Pro-

cessors

In order to achieve desirable packet processing performance, careful scheduling

of packets is required to maintain packet order and exploit data and instruction

cache locality. This section presents some prior work done to achieve these

goals and explains how this dissertation proposes to overcome their deficiencies.

2.3.1 Existing Work on Packet Ordering

Previous researchers have adopted two different approaches to minimize packet

reordering in network processors: order restoration and order preservation.

Order Restoration

This technique allows packets belonging to a flow to be processed out of order

by different cores and restores the order at the output [21, 91, 100]. At the in-

put, each packet is tagged with a sequence number and the packets are allowed
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to exit the system in strict sequence order. Per flow tagging is needed in order

to preserve order among packets of the same flow. This requires keeping per

flow information, which is a huge overhead as there can be millions of flows

active at a time [78, 79]. Overhead of per flow tagging can be reduced by using

global tagging. Global tagging is easy to implement but it is overly restrictive

as it forces order even among packets of different flows and results in through-

put degradation. Order restoration also requires an expensive synchronization

mechanism because multiple cores may be required to update the ordered list

of packets of the same flow at the same time. This scheme also results in poor

data cache locality because flow locality is not preserved.

Order Preservation

This technique, as the name implies, avoids the overheads of order restoration

by preserving packet order.

One example of order preservation is the batch scheduling scheme pre-

sented by Guo et al. [46]. In this scheme, a batch of packets is dispatched to

cores in a strict round robin manner and is read from cores in the same or-

der. This scheme does not require per flow information but requires expensive

synchronization among multiple cores and is not suitable to be implemented

for data plane packets. Furthermore, this scheme assumes that each packet

requires the same application and does not consider i-cache or flow locality in

the algorithm.

Another method to preserve packet order is to use a hash function to
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distribute packets to processing cores [33, 64, 101, 102]. The scheduler hashes

one or more header fields of the incoming packet and uses the result to decide

the target core for that packet. Packets of the same flow are always mapped to

the same core because header fields are constant for all packets of a flow. Hence

the flow locality and packet order is maintained. Challenges associated with

hash function based schemes include quality of the hash function and uneven

flow size distribution. Both of these can result in overloading some cores and

result in packet loss. In order to avoid the packet loss, a load balancer needs to

be integrated with the packet scheduler. This dissertation adopts a hash based

scheme for packet scheduling due to its simplicity and ability to preserve order

and flow locality and proposes a low cost dynamic load balancing scheme in

order to deal with the problem of skewed flow sizes. Some past work related

to load balancing in network processors is presented next.

2.3.2 Existing Work on Load Balancing

Dittman presented a hash based packet scheduler and load balancer [33]. When

a load imbalance is detected, this scheme migrates arbitrary flows to an under-

loaded core. This scheme is referred to Dittman’s Load Balancer (DLB) in this

dissertation. Such a scheme blindly migrates flows and can result in a large

number of flow migrations. A large number of flow migrations results in poor

data cache locality and causes many out of order packets.

Shi et al. [102] proposed to only migrate the flows that have high data

rates. Since internet traffic has a majority of flows with low activity and a very
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small number of flows with high activity, this scheme is able to achieve load

balance by migration of a small number of high activity flows with minimized

packet ordering. The load balancing scheme presented in this dissertation is

based on [102] but the proposed scheme minimizes the overhead of per flow

statistics by using a low cost aggressive flow detector. Furthermore, the load-

balancer presented in [102] does not consider i-cache locality whereas this

dissertation presents a more complete solution that maximizes throughput by

considering instruction and data cache localities and minimizes packet reorder-

ing. Shi et al. also proposed an adaptive hashing scheme [64] that assures that

the weights of the hashing scheme are modified such that the assignment of

flow bundles to cores is more evenly balanced for biased hash bundles found

in internet traffic. In [101], Shi and Kencl propose to combine the previous

two schemes, i.e., adaptive hashing is used in conjunction with the migration

of aggressive bundles. This scheme is complementary to the solution proposed

in this dissertation and can easily be integrated with the proposed scheduler

to further improve the performance of hashing.

The load balancer proposed in this dissertation [57] limits the flow mi-

gration only to the aggressive flows. In order to achieve that, efficient iden-

tification of aggressive flows is required. Detecting and monitoring aggressive

flows is an important part of traffic management and policing. Consequently,

there has a plethora of work on how to calculate flow statistics. Initial naive

proposals to keep counters for each flow [98, 38] are not scalable when there

are millions of flows, which is common in today’s network environment. There
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have been extensive researches on reducing the overheads of keeping per flow

counters [78, 49, 36, 110, 109] to find the accurate estimate of the rates of ag-

gressive flows. In contrast, the proposed packet scheduler in this dissertation

merely needs to identify the top aggressive flows without accurately estimating

the rates of all flows. The closest related work is done by Yi et al. [79] where a

single cache is used to identify ”elephant” flows. Experiments done in this dis-

sertation reveal that a single level caching scheme can result in large number of

false positives due to many ”mice” flows active at any time. This dissertation

proposes a novel two-level caching scheme to identify aggressive flows based on

annex cache [62]. The proposed aggressive flow detector effectively eliminates

the false positives and integrates directly with the scheduler.

2.3.3 Existing Work on Resource Allocation in Multi-

service Routers

Another challenge associated with hash based schemes is present in multi-

service routers. These routers have to support services like IP forwarding,

intrusion detection, IPSEC encryption, IPSEC decryption, etc. Initial pro-

posals of static placement of services on cores [99, 44] do not work well when

there is dynamic variation of demands for different services. Many researches

have observed the need for dynamic resource allocation in network processors

[65, 104, 97]. They observed that if cores are allocated to services statically

at design time based on their worst case arrival rates, it will result in unnec-

essary hardware over-provisioning with high system cost. All services do not
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experience their worst case traffic at the same time, so most of the processing

resources will be under-utilized. A system that can multiplex cores among

different services lowers the total number of cores needed and reduces system

cost.

There have been proposals for runtime resource allocations in the past

[107, 68], but these schemes consider a packet processing application as a graph

where different tasks within the application form the nodes of the graph. These

schemes consider adjacency between nodes for task scheduling as packets move

between different cores in a pipelined manner during processing. In contrast,

this dissertation considers each service as a single entity, i.e., a packet is tied to

a single core for the whole processing and graph or pipeline scheduling is not

considered (more on this in Section 3.2.4). Wolf et al. [106] observed that the

mix of packets destined for each service varies with time. If packets of different

services are sent to the same core, i-cache locality cannot be maintained. This

results in huge performance overhead. They attempted to address the issue of

i-cache locality through careful packet scheduling. When a core becomes idle,

their scheme searches for a packet of the same application as the previous one.

This searching has a lot of overhead and is not feasible for data plane packets.

Although this scheme considers application locality, does not consider data

locality and packet order. This dissertation presents a more complete solution

to the problem of packet scheduling and resource allocation in multi-service

routers in contrast to the prior proposals which have focussed on the individual

aspects of the problem.
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In addition to achieving good performance, the second aim of this dis-

sertation is to do so with minimum power consumption. Next section presents

a brief introduction to power management and presents some work related to

power management in network processors.

2.4 Background on Power Management

Modern processors are equipped with capabilities to save power during ac-

tive periods (P-states) and during idle periods (C-states). P and C-states are

part of an open industrial standard called Advanced Configuration and Power

Interface (ACPI) [56]. ACPI was proposed by Intel, Microsoft and Toshiba

to facilitate the development of Operating System based power management.

Policies to manage P and C-states are usually implemented as Operating Sys-

tem modules. Almost all modern operating systems have such modules or

governors. This section provides a short background of P and C-states. It

also gives an overview of existing policies for C and P-states and explains why

these policies may result in un-optimal power management in case of network

processors.

2.4.1 Power Management During Active States (P-states)

P-states refer to the different performance states of the processor and provide

choices for different power/performance points to adapt to dynamic process-

ing requirements. P-states are an implementation of Dynamic Voltage and
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Frequency Scaling (DVFS) and are aimed at reducing dynamic power. Recall

that dynamic power is given as

Pdynamic = k × v2 × f (2.1)

where k is a workload and processor dependent parameter determined by

switching capacitance and activity of the processor. Dynamic power can be

saved if frequency and voltage are reduced. P-states define frequency and

voltage levels of the processor so that during times of low processing require-

ments, frequency and voltage are lowered to save power and energy. P-states

are named numerically form P0 to PN . P0 is the highest performance state.

Performance and power consumption reduces with increasing P-state numbers.

Table 2.1 shows example P-states for a typical processor [25]. These P-states

are similar to the P-states of AMD Opteron Processor [1].

P-state Frequency Voltage

P0 F0 V 0
P1 F0× 0.85 V 0× 0.96
P2 F0× 0.75 V 0× 0.90
P3 F0× 0.65 V 0× 0.85
P4 F0× 0.50 V 0× 0.80

Table 2.1: Example P-states of a typical processor

2.4.2 Power Management During Idle States (C-states)

Processor’s C-states represent the capability of processor to save power during

idle periods. States are named numerically starting from C0 to CN , where C0

23



represents the active state. As the C-state number increases, the power con-

sumption of the processor decreases and wakeup latency increases. Designers

employ different techniques to implement C-states. Low latency techniques

include clock and fetch gating whereas high latency techniques include voltage

scaling and power gating. Table 2.2 shows an example of C-states. The table

shows only three C-states. Modern processors have a large number of C-states.

For example, Intel Core 2 Duo has five C-states [105] and some processors even

have up to eight C-states [5]. Wakeup latency of processors increases as the

C-state Response Latency Relative Power

C0 0 100%
C1 10 µs 40%
C2 100 µs 5%

Table 2.2: Example C-states of a typical processor

processor moves to deeper sleep states. It only makes sense to enter a C-state

if inactive time is equal or greater than break even time TBE [23]. TBE for any

C-state is defined as the minimum inactivity time required to compensate for

the cost of entering that state. The break even time is composed of two terms:

the total transition time (i.e., Ttr = Tenter + Texit ) and minimum time that

has to be spent in that state to compensate for the additional power during

transition. If power consumption during transition is less than or equal to

on-state power (this is what this study assumes) then

TBE = Ttr (2.2)
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This break even time is usually used as a threshold for transitioning into

deeper states [23]. For Table 2.2, the break even time will be 20 µs for C1 and

200 µs for C2. Also note that modern operating systems support a tick-less

kernel, i.e., idle CPUs do not have to respond to periodic ticks. These CPUs

are allowed to remain idle and are woken up by interrupts when a new job

arrives for them. Such a tick-less kernel is assumed in this study. Figure 2.2

graphically shows the use of P and C states to save power.

Figure 2.2: Use of P and C states to save power

2.4.3 Existing Policies for P-state Management

Using Processor Utilization

P-state management policies are generally aimed at saving power during performance-

insensitive phases of programs. For example, power can be saved during the
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memory-bound phase of a program by reducing the clock frequency. Many im-

plementations of these policies use processor utilization to drive the P-states.

These policies try to maintain processor utilization within a certain range

[25, 20, 50, 12]. Processor utilization or activity level represents the ratio of

code execution time (active time) to wall clock time (active + idle time), i.e.,

utilization =
T imeactive

(T imeactive + T imeidle)
(2.3)

Listing 2.1: Linux Ondemand frequency Governor

1 #define up_threshold 0.90

2 for (each sampling interval ){

3 if (utilization > up_threshold)

4 freq = max_freq;

5 else

6 freq = next_lower_freq ;

7 }

Listing 2.1 shows an implementation of Linux “Ondemand” governor

[15]. The algorithm monitors processor utilization for an interval and then

makes a decision whether to increase or decrease the frequency. The On-

demand governor is the most aggressive governor in Linux implementations

because it tries to settle to lowest frequency in case of zero load and will settle

to the highest frequency at peak load. Another relevant governor is a con-
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servative governor [15] that is similar to power management module found in

Vista [20]. This governor tries to maintain the processor utilization within a

range say 0.3 to 0.6.

This type of scheme works well for general purpose applications, which

have phases of computations and I/O. Processor utilization is high during

compute bound phase and this governor will set the frequency to the high-

est possible value to finish the work as quickly as possible. During the I/O

phases, CPU utilization is not that high and the CPU steps down to the lower

frequencies, but in networking applications, it is required that the core is run

at just the right frequency to handle the input traffic. The CPU utilization

calculated by considering idle time is not very effective since the CPU utiliza-

tion is itself a function of frequency. Direct information about traffic arrival

rates and processing demands are more suitable for networking applications.

Minimizing Energy Per Instruction

Herbert et al. proposed a greedy search method to minimize Energy Per

Instruction (EPI) [50, 51] for CMPs. This method is an extension of the

technique proposed by Magklis et al. [83]. The P-state controller attempts

to operate at a frequency level that minimizes EPI assuming EPI is a bath-

tub shaped function of voltage and frequency levels. This algorithm assumes

the availability of current sensors which help to approximate EPI. After each

interval, the controller compares the current EPI with the EPI of previous

interval. If EPI is improved, the controller makes a move in the same direction
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as the last one. If EPI has increased, it is assumed that controller has overshot

the optimal frequency level. It makes a transition in opposite direction as

the last one and stays there for N = 5 intervals. After the holding period,

the controller continues exploration in a direction opposite to the one that

preceded the hold. This type of scheme is un-aware of traffic demands and

may result in running at a lower frequency than needed and may result in

extra packet loss.

2.4.4 Existing Policies for C-state Management

Using Idle Time

Most implementations of C-state management use Fixed Timeout policy. For

example, the Ladder governor in Linux is used to implement C-state man-

agement [15, 12]. This governor uses elapsed idle time to predict the total

duration of the current idle period. When a processor becomes idle, a counter

starts. This idle time counter is then compared with pre-defined thresholds.

When the counter reaches C1th value, the system is forced into a sleep state

C1. The counter continues counting until the processor is woken up by an

external event. If the counter reaches C2th, the system transitions to C2 and

so on. The processor keeps transitioning to deeper C-states until it reaches

the lowest power state or it is woken up by an external event. The CPU starts

from C1 again when it becomes idle the next time.

As described in Section 2.4.2, the threshold values are decided based on

break even times, which are of the order of hundreds of microseconds. This
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scheme works well to exploit idle time in general purpose applications e.g., time

waiting for user input or response from I/O subsystem where the waiting times

are very high, But in case of network processors, the inter-packet arrival times

viewed by multiple cores are usually smaller than these thresholds even if the

number of active cores is more than the required number to sustain a certain

amount of traffic. In other words, this scheme might be too conservative and

wastes a lot of power saving opportunities that could be exploited if direct

information about traffic and processing demands are available.

Some researchers have proposed more sophisticated approaches that

predict idle times based on past idle and active times [32, 24]. These schemes

can work better than the pure reactive schemes by applying power saving

operations pro-actively, but they still consider C-state management in isolation

from P-state management. When both P-states and C-states are available,

the idle time becomes dependent on operating frequency of the cores. In such

situations, predicting idle periods based on past history of idle periods yields

inaccurate results as shown in Section 6.4.

The power management scheme proposed by Simunic et al. [103] is

very close to the work presented in this dissertation. The scheme presented by

Simunic et al. is for single core portable systems. This scheme uses C-states

only during idle traffic times, i.e., when there is zero traffic. The scheme

presented in this dissertation is targeted for multicore network processors and

is able to change the number of active cores when traffic volume is low.
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2.5 Power Efficiency in Network Processors

The need for power efficient internet infrastructure has fueled studies on de-

sign of power efficient network processors. A modeling framework for network

processors was presented by Crowley et al. [31]. Franklin et al. also developed

an analytical model to explore design space for power efficient network proces-

sors [41], but they do not study any specific low power techniques for network

processors. This section presents low power techniques that have been applied

to network processors and also explains power management techniques that

are traditionally applied in network processors.

2.5.1 Power Efficient Architectures

Several researchers have worked on designing power efficient architectures for

network processors. Memik et al. [87] observed that reduction in bus activity

can help save significant power. They proposed a data filtering technique to

reduce bus accesses. They demonstrate that in networking applications most

of the L1 data cache misses are caused by only a few instructions. Their

proposed technique uses a locality prediction table to detect load accesses

with low temporal locality and a data filtering engine that processes the code

segments surrounding the low temporal accesses. Zane et al. [111] and Kaxiras

et al. [63] propose power efficient TCAM structures to be used in packet

processors. Mallik et al. [85] study the relationship between lowering the

voltage for the cache memories and transient errors. In [70] Lee argues that

if static instruction scheduling is used, the network processor can get higher
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performance with tremendous advantages in power, since it does not have

instruction window wakeup/select logic, reorder buffer, and other scheduling

related hardware modules. In similar spirit, Bengu et al. propose to use

a computation reuse cache to reduce energy in network processors [72]. All

these schemes can be applied in a complementary manner to the proposals

made in this dissertation.

2.5.2 Existing Power Management Schemes

Kuang et al. [69] proposed to use DVFS for pipelined networking applica-

tions in network processors. They assumed that each stage of the pipeline is

allocated to a different core and argued that the cores processing non-critical

stages of the pipeline do not need to operate at full speed. They allocate

lower frequencies to non critical stages statically and do not consider traffic

variations for frequency scaling. In contrast, the power management scheme

presented in this dissertation is aimed at exploiting traffic variations to save

power. Furthermore, this dissertation considers packet processing as a single

application and is not aimed at the pipelined model.

Luo et al. [80] used CPU utilization to decide frequencies of cores.

All cores are active all the time in this scheme. In another study, Luo et al.

[81, 82] proposed to use clock gating to change number of active cores. This

scheme was targeted for a specific architecture and thread model of a network

processor where each thread goes to a thread queue after finishing processing.

On arrival of a new packet, a thread from the thread queue is woken up to
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process the packet. They used number of idle threads in the thread queue to

decide whether to clock gate a core or not. Using the number of idle threads

works fine if each processor is assumed to run at maximum frequency, but if

each core is allowed to change its frequency, the number of idle threads does

not effectively represent the load. For example, consider a situation where two

processors are active and running at half of the maximum frequency. These

processors will be utilized 100% of the time to handle a traffic that a single

processor could handle at full speed, but the threads running on slow cores will

never enter the thread queue and no cores will be turned off. Hence the number

of idle threads does not represent processing requirements in this situation.

Furthermore, this scheme is also a reactive scheme and uses only clock gating.

The transition overheads for clock gating are small so the reactive scheme

works well. Since this scheme is targeted for 280 nm, leakage power is not a

big issue and clock gating works fine, but in modern technologies, the power

consumption is usually dominated by leakage power and hence it is important

to utilize deep sleep states, which have additional power savings even beyond

DVFS and clock gating. These deep sleep states have high overheads in terms

of transition delays and the power management scheme should be aware of

these delays. In contrast, the proposed power management scheme [58, 60]

considers multiple sleep states (C-states) and also makes use of P-states to

save power of the active cores.

Another set of studies that can be used to complement the proposed

scheme targets various parts of internet infrastructure for power efficiency.
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Chiaraviglio et al. [28] present a scheme to turn off links and nodes during

periods of low activity while still guaranteeing full connectivity. Nedevschi et

al. [90] show that in addition to putting elements to sleep, link rate adaptation

with varying traffic can help further to save power.

2.6 Summary

This chapter has presented some background information on issues of packet

scheduling and power management in network processors. Some previous work

related to these issues is also surveyed. The next chapter will discuss the

methodology used to evaluate the proposals of this dissertation and subsequent

chapters present specific proposals and their evaluation.
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Chapter 3

Methodology

3.1 Introduction

This dissertation uses simulations to evaluate the proposed optimization tech-

niques for network processors. Although each proposed scheme requires mod-

ifications to the original simulation infrastructure, the basic methodology re-

mains the same. This chapter provides a detailed description of the various

tools and benchmarks used in this dissertation.

3.2 Simulation Model

For evaluating different techniques, a simulation model in SpecC [43] is de-

veloped. SpecC is similar to systemC [45] in its design and philosophy. The

simulation model is inspired from the host compile simulation approach used

in the SCE simulator from UC Irvine [34]. This approach pairs a high level
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functional model with back annotation of statically determined timing and

power estimates in order to achieve fast and accurate simulations. Following

a similar approach, the SpecC model used in this dissertation models the net-

work processor at a very high level while the timing and power estimates for

packet processing applications are back annotated to this model.

Trace 

File
Packet

Generator

Rate 

Generator

Scheduler

Core Input 

Queues

Data Plane

Cores

core n-1

core 1

core 0

Output

Buffer

Figure 3.1: Simulation infrastructure

Different components of the simulator are shown in Figure 3.1. The

packet generator module creates the input traffic for the network processor. It

uses both real traces and a synthetic traffic rate governor. Details of the traffic

traces are provided in Section 3.4. The packet scheduler module implements

the different scheduling schemes discussed in the dissertation and chooses an

input queue for an incoming packet. The queueing system assumes there is

a single input queue associated with each core. The size of the queues is an

important parameter in network processor configurations. A very large input

queue can help in reducing packet drops but it increases the response time.

Previous research has studied the effect of bounded queueing on drop rate and

response time and observed that a moderate queue size of around 100 entries

results in good response time while keeping the drop rate low [42, 77]. The
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simulations carried out in this dissertation use a queue size of 100 packets

unless otherwise specified.

Each core extracts packets from the input queue, performs the packet

processing functions and enqueues the packet into an output buffer. The

processing latencies for packet processing are taken from cycle accurate GEMS

simulations and McPAT power model. Details of cycle accurate simulations

and benchmarks used in this study are provided in the coming sections.

3.2.1 Cycle Accurate Simulations

In order to study detailed characteristics of network processing benchmarks,

this dissertation uses the multi-facet execution-driven multiprocessor simula-

tor (GEMS) tool set from the University of Wisconsin [86]. GEMS is combined

with Simics [84] to provide a detailed, cycle-accurate simulator by decoupling

the simulation functionality from the timing. Simics provides a robust en-

vironment to boot the unmodified OS along with the functional simulator.

GEMS timing modules interact with Simics to determine when Simics should

execute an instruction. However, the result of execution of instruction is still

dependent on Simics. Therefore, the two tools work in lock-step mode. Even

though, GEMS decouples the functional simulation and the timing simulation,

the functional simulation is still affected by the timing simulator, allowing the

system to capture timing-dependent effects. This tool set is used to model

the multicore processors. The parameters of the individual cores are listed in

Table 3.1.
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Frequency Pipeline Branch Predictor I-Cache D-Cache

1GHz 7 stage gshare/BTB 16KB 32KB
2-issue 128 entry each 2 way 4 way

Table 3.1: Configuration of the processing cores

3.2.2 Power Modeling

For power modeling, the Multicore Power, Area and Timing (McPAT) tool

from HP Labs is used [73]. McPAT has quickly become a power modeling

standard in both academia and industry. It is an integrated power, area and

timing modeling framework for multi-threaded and multicore architectures. It

models power, area and timing simultaneously and supports comprehensive

early stage design space exploration for multicore and many core processor

configurations ranging from 90nm to 22nm and beyond. McPAT includes

models for a complete chip multiprocessor, including in-order and out-of-order

cores, network on chip, shared caches, and integrated memory controllers.

McPAT models timing, area and dynamic, short-circuit and leakage power for

each of the device types forecast in the ITRS road map including bulk CMOS,

SOI, and double-gate transistors. McPAT has a flexible XML interface that

makes it ideal to be used with any performance simulator.

3.2.3 Workload Model for Multi-service Routers

A multi-service router needs to handle packets with diverse processing require-

ments. Different processing requirements of packets are depicted in Figure

3.2. The workload graph of Figure 3.2 is based on methodology presented by
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Huang et al. [55] and represents typical applications needed on an edge router.

The incoming packets can be serviced by one of the four services represented

by different paths of Figure 3.2. Path 1 describes the processing needed by

outgoing packets that are tunneled via VPN. Path 2 represents the default

handling of packets. Path 3 is the path of incoming packets on edge router

that are scanned for malware and Path 4 is for incoming VPN packets that

are decrypted and scanned for malware.

Figure 3.2: Example task graph for an edge router

3.2.4 Parallel vs Pipelined Model

There are two possible choices for implementing such a workload on network

processors: a) a pipelined model; b) a run-to-completion (or parallel) model.

In a pipelined model, the processing needed by a packet is partitioned into

multiple sequential stages. Each stage is than mapped onto one or more cores.

In a run-to-completion model, the application is not subdivided and the packet

is tied to a single core for life time of its processing. Researchers have shown

that the run-to-completion model results in superior performance as compared
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to the pipelined model because of its simplicity and low overhead [21, 100].

Hence, the parallel model is adopted in this dissertation. A few advantages of

the parallel model are listed below.

Low Communication Cost

In the parallel model, a packet is tied to a single core for its whole processing

whereas high communication cost is involved in the pipelined model where the

packet has to move between different cores for processing of individual pipeline

stages.

Programmability

Parallel models are easier to program because the users can replicate the same

code on each core. For the pipelined model, the programmer needs to divide

the application carefully into balanced stages. This cannot be easily done

because some tasks such as pattern matching cannot be further subdivided

[100]. In case of a change in protocol or application implementation, it is

easy to update the code for the parallel model whereas such a change requires

repartitioning of tasks in the pipelined model. The change in processing of a

single stage not only affects itself, but also requires the code to be repartitioned

and remapped on all stages to get the maximum performance.
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Scalability

The parallel model is very scalable because the same code is replicated across

cores to improve performance whereas to improve performance of the pipelined

model, one has to increase the pipeline stages and repartition the task. Repar-

titioning of tasks is not always feasible.

Power Management

The parallel model easily integrates with the power management schemes be-

cause individual cores can be turned off without affecting other cores. Such

power management schemes are difficult to implement in a pipelined model

where all stages are necessary for processing of a packet.

Robustness

The parallel model can easily and gracefully handle failure of individual cores,

whereas greater effort is needed in the pipelined model to handle such failures.

3.2.5 Processing Latencies

Each packet of a service i, experiences a Processing Delay (PDi) in the core

based on the following equation

PDi = Tproc,i + FMpenalty + CCpenalty (3.1)
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Where Tproc,i is the processing time, FMpenalty is the penalty due to flow migra-

tion and CCpenalty is the cold cache penalty which occurs when a subsequent

packet needs different processing than the previous packet. Tproc,i is derived

from real delays seen by the packets when the packet processing is imple-

mented in software on a full system GEMS [86] simulator. The configuration

of in-order cores is shown in Table 3.1. The packet processing applications are

executed on the GEMS simulator and a packet processing delay model for each

service is derived. TProc is measured to be 0.5µs for path 2, i.e., IP forwarding.

For path 3, it is measured to be 3.53µs. For Path 1, it also depends on the

packet size and is given as

Tproc,path1 = 3.7µs+
PacketSize

64byte
× 0.23µs (3.2)

Similarly the processing time for path 4 is given as

Tproc,path4 = 5.8µs+
PacketSize

64byte
× 0.21µs (3.3)

FMpenalty is set to four cache misses (0.8µs) conservatively. Note that this is

just a conservative estimate. In reality, a flow migration can cause a lot more

misses since studies have shown that only per flow data amounts to several

hundred bytes [75] and there can be additional misses due to route table look

up as well [48]. Because of small the i-cache, these cores can hold instructions

of only the last executed program (e.g., the AES encryption used in IPSEC

requires 16KB). So whenever a packet of a different service arrives at a core,
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it will experience a cold cache penalty. The cold cache penalty is set to 10µs

which is the cold cache penalty for the smallest service, i.e., IP Forwarding.

In practice this penalty will be higher because many services are larger and

a context switch can result in some d-cache misses too. For simplicity, these

data misses due to context switch are ignored in this work.

3.3 Benchmarks

Several packet processing applications are chosen from NpBench [71], Packet-

Bench [95] and NetBench [88]. These applications include both control plane

and data plane benchmarks.

3.3.1 NpBench

FRAG

FRAG is a packet fragmentation application. IP packets are split into multi-

ple fragments if packet size is greater than the Maximum Transmission Unit

(MTU). Header fields have to be adjusted and a header checksum needs to be

computed for each fragment.

MPLS

MPLS is a forwarding technology, which avoids the overhead of the lookup

of bulky headers and uses short labels for forwarding at the edge of MPLS

domain. The NpBench version of this application concentrates on two control
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plane aspects of MPLS: label generation and label distribution.

SSLD

The SSL Dispatcher is one example of a content-based switching mechanism.

SSL typically runs over TCP, which is used for secure processing of e-commerce

applications. Once a TCP connection is established, the client and the server

authenticate each other and exchange a session key. This phase is known as

the SSL handshake and is a computationally heavy workloads as it typically

involves public key cryptography. Based on the session ID, it decides which

server node has the session state corresponding to this session. The SSL Dis-

patcher maintains the session ID information, sharing the SSL information

among the nodes in the cluster. When reconnecting to the same server, a

client can reuse the session state established during a previous handshake.

WFQ

WFQ is a queue scheduling algorithm to serve packets in order of their finish

times considering the weight on connections. Various lengths of packets from

incoming traffic are classified into different queues, which can be used for

differential service. WFQ bases its scheduling decisions based on a packet’s

estimated finish time.
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3.3.2 PacketBench

IPV4R

This is the IPV4-radix application from PacketBench. It performs RFC1812-

compliant packet forwarding and uses a radix tree structure to store entries of

the routing table. The routing table is accessed to find the interface to which

packet is sent, depending on its destination IP address. The radix tree data

structure is based on an implementation in the BSD operating system.

IPV4T

This is the IPV4-trie benchmark and is similar to IPV4-radix benchmark.

It also performs RFC1812-based packet forwarding. This implementation is

derived from an implementation for the Intel IXP processor. This application

uses a multi-bit trie data structure to store the routing table, which is more

efficient in terms of storage space and lookup efficiency.

IPSEC

IPSEC is an implementation of IP Security Protocol, where the packet pay-

load is encrypted using the Rijndael Advanced Encryption Standard (AES)

algorithm.
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3.3.3 NetBench

IPCHAINS

This is a firewall application that checks the IP source of each coming packet

and decides either to pass the packet through the firewall (accept), to deny the

packet (deny), to modify it (masq), or to reject the packet and send information

to the sender (reject).

3.4 Traffic Traces

The proposals made in this dissertation are evaluated using both real and

synthetic network traces. The details of these traces are listed below.

3.4.1 Real Network Traces

For this work, real network traces were taken from two sources:

CAIDA Traces

This data set contains traffic traces from CAIDA’s equinix-chicago and equinix-

sanjose monitors on high speed internet backbone traffic links [30]. Both these

monitors are connected to OC192 links. The traces in this data set are of 1

minute long duration and were captured in the year 2011. CAIDA also makes

real time traffic reports available on its website. The details of traces used in

this study are listed in Table 3.2. This dataset contains anonymized traffic

traces from CAIDA’s equinix-sanjose monitor [30]. This monitor is connected
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to OC-192 link. These set of traces were captured in the year 2011 and are of

duration of 1 minute each.

Trace Name

Caida 1 20110120-125905.UTC.anon.pcap.gz
Caida 2 20110120-130000.UTC.anon.pcap.gz
Caida 3 20110120-130100.UTC.anon.pcap.gz
Caida 4 20110120-130200.UTC.anon.pcap.gz

Table 3.2: List of CAIDA traces used in the study

University of Auckland Traces

This set of traces, also known as AUCK-II, was captured at University of

Auckland and captures the traffic between the university and its ISP [14]. All

connections from the university to external world pass through this measure-

ment point. Most traces are of 24 hour duration with some being shorter. All

non-IP traffic has been discarded and only TCP, UDP and ICMP traffic is

available in these traces.

Trace Name

Auckland 1 20000614-181539-0.gz
Auckland 2 20000614-181539-1.gz
Auckland 3 20000619-183717-1.gz
Auckland 4 20000621-105006-0.gz
Auckland 5 20000621-105006-1.gz
Auckland 6 20000630-175712-0.gz
Auckland 7 20000630-175712-1.gz
Auckland 8 20000703-152100-0.gz

Table 3.3: List of Auckland-II traces used in the study
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3.4.2 Synthetic Traffic Generation

In order to study the behavior of different traffic scenarios, synthetic traces

were also generated. In order to keep these traces as realistic as possible,

the synthetic trace generation mechanism only governs the traffic rates, the

packet header and payloads are still taken from the real network traces of

Section 3.4.1.

The synthetic trace generation methodology is based on Holt-Winters

forecasting as applied to networking in [26] and [55]. This method decomposes

a time series into three components: a base line component at, a linear trend

component bt and a seasonal trend ct. The prediction for the time interval is

given as

ŷt+1 = at + bt + ct+1−m (3.4)

where t is in index denoting the time period and m is the period of the sea-

sonal cycle. The individual components of this equation are calculated using

exponential smoothing. The baseline is calculated as

at = α(yt − ct−m) + (1− α)(at−1 + bt−1) (3.5)

The linear trend or slope is calculated by the equation

bt = β(at − at−1) + (1− β)bt−1 (3.6)
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The equation for the seasonal component is

ct = γ(yt − at) + (1− γ)ct−m (3.7)

where α, β and γ are parameters for baseline, trend and seasonal components

respectively and are estimated in such a way that the MSE of the prediction is

minimized. In this work, yt means the number of packets arriving in interval

started at time t.

By applying this concept, the incoming traffic rate can be governed by

the equation,

yt = a+ bt + c× S(t%m) +Nσ (3.8)

where a, b, c and m are the programmable parameters for baseline, linear

trend and seasonality. The shape function S was introduced in [55] to allow

any shape function to be used for periodic component and is normalized to

produce values between -1 and 1. The parameter c determines the amplitude of

the seasonal component. The noise function N adds random noise to the traffic

rate with mean zero and parameterized by standard deviation σ, i.e., this σ

determines how much noise is superimposed onto the traffic. It is expected

that traffic with a small baseline will have a variation that is small, hence σ

is set proportional to baseline a traffic.

In order to generate traffic for n different services in a multi-service

router, n traffic generation functions y1t, y2t, ..., ynt are used, each with its

own set of parameters. Total incoming traffic in this scenario is the sum of
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incoming traffic for each service, i.e.,

Yt =
∑

yit (3.9)

3.5 Summary

This chapter has presented the evaluation methodology used in this disser-

tation. It explains the simulation framework, benchmarks and traffic traces

used. In the coming chapters, the proposed techniques and their evaluations

are presented.
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Chapter 4

Load Balancing and Packet

Ordering

4.1 Introduction

This chapter presents a design of a load balancer for network processors. The

design goal is to achieve load balance while minimizing packet reordering.

The effectiveness of the design is demonstrated through simulations using real

network traces.

4.2 Network Processor Load Balancing

Load balancing is an important technique to efficiently utilize multiple cores

in a network processor. An unbalanced allocation of load can swamp some

cores. As a result, incoming packets assigned to overused cores will experience
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larger delays and may result in packet loss due to limited storage in a net-

work processor. In addition, since the majority of the internet traffic is based

on TCP [30], care must be taken to avoid out of order departure of pack-

ets within a flow. Although the internet is designed to tolerate out of order

packets, performance of upper layer protocols such as TCP greatly depends

on packet ordering because out of order packets can falsely trigger congestion

control mechanisms and degrade the throughput unnecessarily [93]. Further-

more, packets from the same flow need to be sent to the same core in order to

exploit data cache locality for flow state and routing table information.

In a network processor, load distribution among the multiple cores is

performed by a packet scheduler. Figure 4.1 shows a generic diagram of a

packet scheduler. A packet scheduler receives an incoming packet form high

speed link with traffic rate λ and forwards it to one of the cores for processing.

Each cores processing power is µi and the total processing power of the network

processor is µ =
∑

µi. This chapter focuses on the scheduler for data plane

Figure 4.1: Packet scheduling in network processors

packets and does not consider control plane packets. The design of a scheduler
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for data plane is particularly challenging. First, the scheduler is in the data

path, and therefore, should be as efficient as possible in terms of latency to

handle ever increasing traffic rates (100 Gbps and even higher in the future).

Second, it should satisfy the requirements of load balancing, packet ordering,

data cache and instruction cache locality1.

Previous researchers have presented many load-balancing schemes [46,

100, 91]. These schemes can be classified into two categories:

1. Packet Level Load Balancing: These schemes schedule each packet

independently to achieve uniformity in load assignment. For example

packets may be distributed in a round robin fashion [46], or an incoming

packet is allocated to the least loaded core [100]. These schemes have

two drawbacks. First, these schemes reorder packets very frequently.

Second, these schemes cannot utilize the data cache efficiently because

they send packets belonging to the same flow to different cores.

2. Flow Level Load Balancing: Flow level schemes generally use hashing

to distribute flows to individual cores [33, 64, 101, 102]. The scheduler

hashes one or more header fields of the incoming packet and uses the

result to decide the target core for that packet. Packets of the same

flow are always mapped to the same core since header fields are constant

for all packets of a flow. Hence the flow locality and packet order is

maintained.

1This chapter does not consider i-cache locality. The scheduler presented in this chapter
is extended in Chapter 5 to make it i-cache aware for multi-service routers.
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The scheduler presented in this chapter uses a hash-based approach

because of its simplicity and obvious advantage of packet ordering and flow

locality. This chapter discusses the challenges associated with a hash based

packet scheduler and presents the design of a scheduler that overcomes these

challenges.

4.3 Causes of Load Imbalance

Hash based designs are popular choices due to their low overhead. These

designs only need to compute a hash function to get the target core for a

packet, but there are several dynamic properties of network traffic that make

load balancing task challenging for hash-based designs.

4.3.1 Skewed Flow-bundle Sizes

The quality of hash function plays an important role in distributing the flows

evenly to all processing cores. All the flows that map to the same core or bin

in the map table are referred to as a flow-bundle. Uniformity of flow bundle

sizes means that the hash function has distributed flows very effectively to the

processing cores. Under ideal conditions, each flow bundle should have a size

of F
M
. Where F is the number total number of flows seen in time T and M is

the number of bins or cores.

Many researchers have worked on designing effective hash functions for

internet addresses [27, 52, 101]. It has been shown that CRC16 performs very
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Figure 4.2: Coefficient of variation of number of flows allocated to bins by
different hash functions

well for internet traffic [27]. Similar results are observed in this study. Figure

4.2 shows performance of different hash functions for internet backbone trace

Caida 1 from Table 3.2. The y-axis shows the coefficient of variation (i.e.,

ratio of standard deviation to mean) of the number of flows mapped to each

bin when the number of bins are varied from 2 to 32. It can be seen that both

XOR and CRC16 hash functions perform very well for this trace. Comparable

results were observed for all other traces as well.

4.3.2 Skewed Flow Sizes

Even with perfect distribution of flows to cores, load imbalance can still occur

since all of the flows are not the same size. In fact, it is well known that

network traffic constitutes only few heavy-hitter (high data rate) flows and

many low data rate flows [47, 102]. Figure 4.3 demonstrates this behavior in
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real network traffic. The plot shows the popularity of flows (y-axis) with most

popular flow plotted first (x-axis).

Figure 4.3: Distribution of flow sizes in real network traces. Rank 1 is the flow
with the highest flow size.

Shi et al. have shown that hashing alone cannot balance the load under

this highly skewed distribution of flow sizes [102] and can result in overloading

some cores. In this scenario, the load on each core should be monitored and

adjusted dynamically to migrate some load to underutilized cores. Care must

be taken because it is desirable to minimize the number of flow migrations.

Flow migrations result in out-of-order packets and also badly affect data cache

performance.

In order to minimize the number of flow migrations, previous research

has made the observation that migrations should be limited to only top ag-

gressive flows [102]. In this way load balance can be achieved by minimum

flow migrations. However, previous research kept per flow statistics to identify
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aggressive flows. Maintaining per flow statistics has a lot of overhead and is

not possible in realistic designs. Although many per flow statistics are main-

tained by software, accessing those software statistics is very time consuming

for a scheduler that is trying to schedule data plane packets. The data plane

packet scheduler needs to function with minimum software intervention for

good performance.

This research presents the design of a hardware scheduler for data plane

packets. A novel low-overhead hardware technique to identify aggressive flows

is presented. The aggressive flow detection scheme is based on the two-level

caching idea of annex-cache [62] used in general purpose applications. The

caching based aggressive flow detector integrates readily with a hash based

packet scheduler. The complete design and evaluation of the scheduler is

presented in this chapter.

4.3.3 Burstiness of Internet Traffic

It is well known that packets of a flow travel in groups or trains [61]. If a large

number of packets of the same flow arrive in a small interval of time, they can

overload the core. This can result in a temporary load imbalance. A common

technique to deal with bursty traffic is buffering. The dynamic load balancing

scheme presented in this chapter also deals with this problem, by relocating

the flows in case the burst size exceeds the buffer size.
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4.4 Packet Scheduler Design

The design goals for packet scheduler are: a) To achieve high throughput by

maintaining flow locality. b) To minimize out of order departure of packets.

c) To have a low overhead to sustain high traffic rate.

The proposed packet scheduler uses a hash based design which is a

natural way of maintaining flow locality and packet order. The scheduler

is called Locality Aware Packet Scheduler (LAPS). When a packet arrives,

its flow identifier is extracted from the header. The flow identifier is a five

tuple consisting of source and destination IP addresses, source and destination

ports and protocol ID. This five tuple is hashed using CRC16 to get an index

into a map table. CRC16 is shown to provide good performance for hashing

IP headers [27]. The map table2 stores target core ID where the packet is

eventually forwarded. In the presence of skewed flow size distribution as shown

in Figure 4.3, the scheduler identifies and migrates the aggressive flows from

the overloaded core to achieve load balance. An efficient scheme for identifying

and migrating aggressive flows is presented.

4.4.1 Load Balancing By Aggressive Flow Migration

When a core becomes overloaded, i.e., its queue size reaches a threshold, the

scheduler needs to migrate some of the incoming traffic from that core to a

less loaded core. This migration of flows has two drawbacks: One, it makes

2Map table is used instead of direct hashing because it allows dynamic adaptations
presented in the next chapter.
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some cached data in the source core useless and triggers some cold misses in

the cache of newly allocated core. Two, flow migration makes it harder to

maintain the order among packets of the flow. The new incoming packets will

potentially experience less queuing delay as compared to older packets that

are waiting in the overloaded core’s queue.

To avoid the above two situations, it is desirable to minimize the number

of flow migrations. If only the most aggressive flows can be identified and

migrated, load balance can be achieved with minimum disruption, i.e., only a

few flows need to be migrated to achieve load balance. In order to achieve this,

a low cost mechanism is need to identify top aggressive flows. This research

proposes a novel cache based hardware called Aggressive Flow Detector (AFD)

to identify the top flows. The hardware consists of a small fully associative

cache called Aggressive Flow Cache (AFC). the AFC is augmented with a

cache assist called annex cache. Detailed architectures of the annex cache and

the AFC are presented in Section 4.5.1.

Figure 4.4 presents the scheduler design. The incoming packets are

hashed to get an index into a map table that stores the target core IDs. On

load imbalance, the incoming packet flow to the overloaded core is migrated

to the least loaded core if the flow is identified as an aggressive flow by the

AFD. The decision is recorded in the Migration table. So the future packets of

the same flow are always migrated to the newly allocated core. The scheduler

gives priority to the output of migration table over the default hash table. If

the input queue indicated by the scheduler is filled up, the incoming packet is
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dropped.

Figure 4.4: Load balancer design

4.4.2 Aggressive Flow Detection

The design of Aggressive Flow Detector is based on annex cache. Annex Cache

was proposed by John [62] to exploit locality in the memory references in

general purpose processor workloads. This study shows that such a structure

can be very useful in to identify aggressive flows.

The AFD has two main components as shown in Figure 4.5. One com-

ponent is a small fully associative cache called the Aggressive Flow Cache

(AFC). The AFC holds the IDs of the top aggressive flows. All entries into

the AFC come via the annex cache. Items referenced only rarely will be fil-

tered out by the annex cache and will never enter the AFC. The basic premise

is that a flow deserves to enter the AFC only if it proves its right to be in the

AFC by showing locality in the annex cache. The annex cache also serves as

a victim cache and provides some inertia before a flow is excluded from the
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AFD. Both the AFC and the annex cache use Least Frequently Used (LFU)

replacement policy.

Tag Counter

Threshold>

Way 0 Way N-1

Tag Counter

Way 0 Way N-1

Tag Counter Tag Counter

Fully Associative AFC

N-way Associative Annex Cache

victimhot flow

incoming
packet

Figure 4.5: Structure of Aggressive Flow Detector (AFD)

The design of the AFD is slightly different from the one presented in

[62] because in the AFD the annex cache is bigger than the AFC. A larger

AFC is undesirable because the proposed scheme wants to limit the number of

monitored aggressive flows. The annex cache is a bigger structure that serves

as a qualifying station for large number of flows to demonstrate their eligibility

to be cached into the AFC. When a packet arrives, its flow ID is checked in

both the AFC and the annex cache. If it is a hit in the AFC, the hit counter

is incremented. On a hit in the annex cache, the flow counter is incremented

and the value is compared with a pre-defined threshold. The threshold for

promotion to the AFC is the LFU count in the AFC. If the hit count in the

annex cache exceeds the threshold, the flow is promoted to the AFC. The

victim flow from the AFC is then placed in the annex cache. Finally on a miss
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in the annex cache, a flow replaces the LFU flow of the annex cache.

When a counter saturates in the AFC, all the counters are shifted right

by 1 place. This saturation control mechanism also serves as aging mechanism

for flows so that the counts of unused flows are quickly reduced to make space

for new flows. Although this aging mechanism performed well in experiments,

a more robust agin mechanism like periodic right shifts could also be employed.

4.4.3 Overhead of the Aggressive Flow Detector

The overhead of the AFD mechanism is calculated using Cacti [89]. Table

4.1 shows the area, timing and power overhead of the AFD mechanism when

a 512 entry annex cache is used. These results are calculated using 32 nm

ITRS-HP device technology. This overhead is very small which makes the

AFD mechanism very suitable to be used with the packet scheduler.

Access Time Area Power

0.375 ns 0.04 mm2 0.0445 W

Table 4.1: Timing, area and power overhead of aggressive flow detector

4.4.4 Load Imbalance Detection

The length of the longest queue is used to detect the load imbalance in the

system, i.e., when the length of the longest queue in the system reaches a

predefined threshold, the load imbalance signal is asserted. As long as the

load imbalance signal is asserted, all the aggressive flows from the overloaded
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core are migrated to the least loaded core. The migrated flows are forwarded

to the new core even after the load imbalance signal is de-asserted as a result

of flow migration.

Most modern network processors have dedicated hardware units for

management of packet queues [6, 67, 21] and a lot of research has been done

on design of these hardware queue managers [92, 113, 76]. These queue man-

agers implement different active queue management algorithms (e.g., Random

Early Detection RED) and monitor the queue length as part of their normal

operation. This queue length information can easily be used by the load bal-

ancer to detect the need for flow migration, i.e., it can easily be reported to the

packet scheduler when the queue reaches a threshold. Hence, additional hard-

ware resources are not needed to monitor queue length, because the queues are

already monitored for congestion control purposes. In this work, it is assumed

that the hardware queue manager monitors the queue state and generates the

load imbalance signal.

4.5 Evaluation

4.5.1 Performance of Aggressive Flow Detector (AFD)

Accuracy of the AFD

Recall from Section 4.4.2 that the AFD has two components: An aggressive

flow cache (AFC), and an annex cache. An annex cache can be viewed as a

preliminary filter where non-aggressive flows are filtered out from entering the
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small AFC. Therefore, any entry in the AFC is considered as an aggressive

flow. The effectiveness of the AFD is evaluated by varying annex cache size

while setting the size of the AFC constant at 16 entries. Since the AFC size is

fixed, only the top 16 aggressive flows can be detected. A perfectly accurate

AFC will hold the IDs of the top 16 aggressive flows. A flow found in the AFC

that is not among the top 16 flows identified by off-line analysis is considered

a false positive.

Figure 4.6: False Positive Ratio in a 16 entry AFC with varying annex cache
size

Figure 4.6 shows the false positive ratio (false positives/total entries)

in the AFC when the annex cache size is varied. The results are shown with

a 4-way associative annex cache. Experiments were repeated with different

configurations and a 4-way associative annex cache provides good performance.

As the size increases, the annex cache can hold more flows to choose a possible

candidate for promotion to the AFC. In other words, the pool of aggressive
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flow candidates increases and the chances of aggressive flows residing in the

cache for the AFC promotion becomes higher. For the Auckland traces, the

AFC can identify all top 16 flows with 100% accuracy with a 512 entry annex

cache. The Caida traces have more active flows and thus require a larger annex

cache. In Caida 1 and 2 respectively, only 14 and 13 most aggressive flows are

correctly identified with a 512 entry annex cache. When the size is doubled to

1024 entries, accuracy (false positive ratio) improved by an average of 6.25%.

Although there are 2 or 3 false positives in Caida 1 and 2 cases, they are

not random flows that are promoted to the AFC. In fact, when the 20 most

aggressive flows are considered as an area of interest, these false positives fall

into the aggressive flow category. Yet, for consistency of work, those flows are

treated as false positives.

Effect of Window Size

Figure 4.7: Effect of window size on accuracy of the AFD
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Figure 4.6 looked at the accuracy of the AFD mechanism at the end

of the simulations. Since LAPS needs to peek into the AFC whenever load

balancing is required, another experiment is performed where the accuracy is

checked at every fixed interval. In Figure 4.7, the same accuracy evaluation is

performed with varying interval steps. In this experiment, the size of annex

cache is fixed to 512 entries. The AFD shows accuracy above 90% from a

small step size such as every 1000 packets to large step sizes. This implies

that the AFC will contain the most aggressive active flows regardless of when

it is accessed. In dynamic scheduling schemes like the proposed scheme, it is

vital to maintain a high level of accuracy across the entire execution.

Effect of Sampling

Figure 4.8: Effect of sampling on accuracy of Aggressive Flow Detector (AFD)

Figure 4.8 shows the false positive ratio when packets are sampled with
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a probability p and not all of them access the AFD. It is interesting to note

that false positive ratio improves initially with sampling. This is because

sampling acts as a filter, i.e., the probability of large flows being sampled is

higher than the smaller flows. However, the performance deteriorates for the

Caida traces at larger sampling intervals. Sampling up to 1/1k probability

gives better or equal performance than sampling all packets for all traces. The

Caida traces generally have a large number of high data rate flows and hence

their performance deteriorates if sampling is increased too much. Sampling

not only improves the accuracy, but also reduces power consumption because

now each packet does not have to access the AFD.

4.5.2 Benefit of Limiting Migration to Only Top Flows

In this section, the benefits of migrating only the most aggressive flows to

achieve load balance are presented. The results are presented relative to

Dittman’s Load Balancer (DLB) which migrates arbitrary flows irrespective

of their size in order to achieve load balance. To demonstrate the effectiveness

of LAPS, simulations are conducted where only one service (IP forwarding) is

active in the processor. Real network traces are used as input traffic to simu-

late the real flow scenarios. The input packet rate is set to slightly more than

100% of what this configuration can achieve under ideal conditions. Results

are presented with for a traffic of period 60 seconds.

Figure 4.9 shows the number of packets dropped relative to DLB. A lot

more packets are lost if no flow is migrated, but for almost all traces similar or
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Figure 4.9: Packet drop relative to Dittman’s Load Balancer (DLB) with
varying the AFC size

better throughput than DLB can be achieved if only top 10 flows are identified

and migrated. The real benefit of LAPS, however, is to maintain the order of

the packets. Figure 4.10 shows that the percentage of out of order packets is

reduced by 85% if only top 16 flows are identified and migrated. This benefit

comes from minimizing the number of flow migrations as compared to DLB.

In DLB, many non-aggressive flows are migrated that incur a flow migration

penalty without providing any benefit in load balancing. In contrast, if only

the most aggressive flows are migrated, load-balancing can be achieved by

migrating only a small number of flows and thus out of order delivery of

packets can be reduced. Figure 4.11 shows that the number of flow migrations

are reduced by 80% if only the most aggressive flows are migrated. This

reduction in flow migrations also means better D-Cache locality for both flow

specific and routing data.
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Figure 4.10: Number of out of order packets relative to DLB

Figure 4.11: Number of flow shifts relative to DLB

4.5.3 Analysis of Flows on Migration

In order to understand the behavior of the system, the flows allocated to

the overloaded core at the instance of flow migration are analyzed. Figure
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4.12 shows the number of unique flows present in the queue of the overloaded

core when a big flow is migrated from that core. Generally, a large number

(15-20) of flows are present. This indicates that the overload is caused by a

combination of large and small flows and migrating the large flow is expected

to mitigate the load imbalance. A small number of flows would indicate that

the overload is caused by small number of large flows and there is a potential

that migrating the large flow would result in imbalance even in the newly

allocated core. Figure 4.13 shows the number of big flows allocated to the

overloaded core at the time of flow migration. From the plot it can be seen

that the imbalance is usually caused by multiple big flows and migrating one

flow is not expected to cause imbalance in the new core.

Presence of multiple big flows in the queue of overloaded core opens up

the opportunity to further improve the scheme. For example, when migration

decision is made preference could be given to the big flow which will cause less

distortion in the order of packets, e.g., the flow with less number of packets

in the queue could be preferred over the flow with larger number of packets.

Such a scheme is likely to increase the complexity of the system becasue now

core association of the flows and their number of packets in the system need

to be monitored. Design of such a system is part of future work.

4.6 Summary

This chapter presents a design of a load balancer for the data plane packets

of a network processor. The load balancer uses a hash table based design for
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Figure 4.12: Number of flows allocated to overloaded core at the time of
migration

Figure 4.13: Number of big flows allocated to overloaded core at the time of
migration

packet scheduling. It minimizes the number of flow migrations by limiting mi-

gration only to the top aggressive flows. The top aggressive flows are identified
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using a novel two level caching scheme based on the annex cache. Results of

experiments with real network traces are presented to show the effectiveness

of the aggressive flow detector and the load balancer. In the next chapter,

this hash based packet scheduler is extended to support multiple services in

a router. The hashing scheme is also modified to support variable number of

active cores.
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Chapter 5

I-Cache Aware Packet

Scheduling in Multi-service

Routers

5.1 Introduction

The previous chapter presented design of a packet scheduler and load bal-

ancer for network processors. This chapter extends the design for multi-service

routers. It begins with an introduction to the issues related to packet schedul-

ing in multi-service routers in reference to instruction cache (i-cache) locality

and dynamic allocation of cores to services. Design and evaluation of a packet

scheduler is presented next. The next chapter presents power management

techniques for network processors and presents the effectiveness of hash based
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scheduler in the presence of power management techniques.

5.2 Scheduling Requirements in Multi-service

Routers

Network processors are commonly employed in network edge packet processing

systems. These edge routers are increasingly being required to support a

rich set of services. These services include basic packet forwarding as well as

more sophisticated services like intrusion detection, IPSEC encryption, IPSEC

decryption, etc. An example workload for such a multi-service router is shown

in Figure 3.2. The trend towards more functionality and complexity in data

path processing is expected to continue [35]. Similar need for complex and

varying functionality can be found in virtualized router platforms [39]. Virtual

routers need to support several parallel networks with different data path

functionality. This need for flexible processing with multiple services has led

to deployment of network processors with highly parallel architectures and

programmable cores.

A key challenge in these multi-service routers is packet scheduling. A

packet scheduler needs to be aware of instruction cache locality in addition to

flow locality. The data plane packet processing cores used in these processors

are usually small with a small i-cache (8-16KB). These caches can only hold

a single program at a time. The performance of a core will deteriorate due

to i-cache misses if it has to process packets of different application types
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[106]. The design of the packet scheduler presented in Chapter 4 is extended

in this chapter to support multiple services with a goal to maintain the i-cache

locality.

Figure 5.1: Variation in processing requirements in a multi-service router [65]

Another challenge for the hash based packet scheduler is dynamic adap-

tation of resources in multi-service routers. If cores are allocated to services

statically at design time based on their worst case arrival rates, it will result in

unnecessary hardware over-provisioning with high system cost. All services do

not experience their worst case traffic at the same time, so most of the process-

ing resources will be under-utilized [65, 107]. Figure 5.1 shows the variations

in processing requirements of different services over time for a multi-service

router [65]. A system that can multiplex cores among different services lowers
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the total number of cores needed and reduces the system cost. In this chapter,

the hash based scheme load balancer presented in Chapter 4 is extended to

support dynamic adaptation of cores using incremental hashing.

Many researchers have presented dynamic adaptation techniques for

multi-service routers [65, 107, 94, 97]. These schemes either require OS inter-

vention or require expensive profiling information [107, 97, 108]. Data plane

cores are generally devoid of OS and lightweight monitoring is required to han-

dle the line rates. The resource manager presented in this chapter uses a queue

based state monitoring framework similar to the one presented by Raghunath

et al. [94]. The resource allocation scheme presented by Raghunath et al.

uses a pipelined model for packet processing applications. In contrast, the

resource allocator presented in this chapter considers packet processing as a

single stage operation as described in Chapter 3. In addition, the dynamic

resource allocator is integrated with the packet scheduler and a novel hashing

scheme is presented to allow dynamic allocation and deallocation of cores to

services over time.

5.3 Packet Scheduler for Multiservice Routers

This section presents the design of a packet scheduler that considers i-cache

locality in addition to flow locality. This scheduler is called Locality Aware

Packet Scheduler (LAPS). The design goals of LAPS are: a) to achieve high

throughput by maintaining i-cache and flow locality, b) to minimize out of

order departure of packets and c) to have a low overhead in order to sustain
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high packet rates.

LAPS is an extension of the hash based load balancer and packet sched-

uler presented in Chapter 4. A simple hash based design as proposed in

[33, 102] can result in inefficient i-cache usage. To avoid i-cache misses, LAPS

partitions the map table among different services, i.e., each partition will have

its own map table. All the cores in a single map table will always get packets

that require the same processing so i-cache locality will be preserved.

In addition, LAPS also includes strategies to dynamically allocate dif-

ferent number of cores to services based on the traffic. The packet scheduler

needs to utilize the newly allocated core while minimizing flow migrations.

If all flows are blindly redistributed, it will result in a large number of flow

migrations. Flow migrations are detrimental to performance and packet order

as shown by experimental results in Chapter 4. LAPS introduces incremental

hashing to manage the hash tables to deal with this situation which allows to

dynamically allocate different number of cores to services while minimizing flow

migrations. When the network traffic changes, the processing requirements of

each service will vary. A dynamic adaptation system has two responsibilities:

First, it should detect the changes in the processing requirements to trigger

the adaptation. Second, it should make appropriate adaptations to handle

those changes. The next few sections give details of how these two functions

are performed by the proposed dynamic adaptation system.
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5.3.1 Monitoring of Processing Requirements

In order to trigger dynamic adaptation, the system needs to collect informa-

tion about processing requirements of individual service. This monitoring of

processing requirements needs to have low overhead and should not affect the

performance of packet processing applications. It also needs to react quickly

to traffic variations in order to avoid packet loss.

For data plane processing, expensive performance counter based mon-

itoring as used by some previous research [107, 108, 97] is not feasible. In

contrast, packet arrival and departure rates from the queues are monitored.

As explained in Chapter 4, such monitoring can be embedded in the hardware

queue and buffer managers, which are present in almost all modern network

processors. In order to measure the arrival rate (Ra) for a service, an arrival

counter (counta) is incremented whenever a packet is added to the queue. Af-

ter a fixed interval of t seconds, the rate can be calculated as Ra = counta/t.

Similarly, rate of departure can be calculated as Rd = countd/t.

Per service queues may not be implemented separately, but input queues

to individual cores can be used to measure the arrival and departure rates of

each service. The resource manager has complete system knowledge and it can

aggregate the stats of multiple cores allocated to a service to get per service

arrival and departure rates. Such a resource manager can be implemented as

a software on one of the data plane cores and it can poll the queue mangers

periodically to get the per queue statistics. The arrival and departure rates

of queues gives a direct indication whether more resources are needed for a
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service or not.

5.3.2 Core Allocation Policy

At initialization, cores are equally divided among services. As traffic varies

over time, the requirements of each service change and the core allocation needs

to be modified. This situation arises when packet arrival rate for a service is

greater than the departure rate, i.e., Ra > Rd. Furthermore, the processing

ability of a single core (Rd1) in packets per second can be obtained through

profiling information. The required number of cores, C, for this service are

calculated as

C = Ra/Rd1 (5.1)

The value of C is scaled to the nearest integer value. If C is greater than

the current allocation of cores, K, this service is marked as a needy service

with demand of C − K additional cores. Notice that if Ra is slightly higher

than Rd, C will be floored to the value of K and no request is made for

additional cores. The queues will start to fill up because Ra is greater than

Rd. The resource manager waits until the input buffer occupancy reaches

some highth to allocate the additional core. This helps to avoid unnecessary

allocations due to bursty traffic. The resource manager of LAPS needs to find

an additional core to fulfill the demands of a requesting service and update the

map table accordingly. There could be two possible situations when requests

for additional cores are made:
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Underload Condition

The underload condition occurs when current demand for processing resources

is less than the total available processing resource. Under this situation, some

services will have more resources than their demands. The resource manager

keeps a list of services that have indicated more resources than their demands

(Section 5.3.3). The service that indicated surplus resources for the longest

period of time is chosen as the victim service. This policy makes sure that the

deallocated core has the least utility for the victim service.

Overload Condition

The overload situation happens when current demand for processing resources

is more than the available resources. When the system is overloaded, cores

are allocated to services in proportion to their demands. Specifically, a service

is considered eligible for more cores only if current allocation is less than its

proportional share. If current requirement for core for a service i is Ci and

current number of cores allocated is Ni, service is eligible for additional cores

only if Ki/N < Ci/
∑

Ci. Otherwise, any additional demands are ignored.

5.3.3 Core Release Policy

Underload Condition

When the value of C in Equation 5.1 goes below the current allocated cores

K, a timer starts. When the timer reaches Idleth, one core is marked surplus
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by adding it to a list of extra cores. Idleth helps to avoid de-allocation due

to a transient dip in the traffic. The core still remains allocated to the same

service. If the same service needs more resources in near future, this core can

be unmarked and removed from the list of surplus cores without incurring the

overhead of a context switch. The value of idleth is set to 10µs based on the

previous research [23].

Overload Condition

In this condition, a service can be victimized even if its current allocation is

not more than the requirements but it holds more cores than its proportional

share, i.e., Ki/N > Ci/
∑

Ci. This policy is adapted from the policy presented

in [94]. The policy is adapted to work in the run-to-completion model and

novel scheme for load redistribution on allocation and deallocation of cores is

presented.

5.3.4 Load Redistribution on Core Allocation

When an additional core is allocated to a service, the resource manager ap-

pends the core ID to the end of the hash table for that service, i.e., the hash

table size grows by 1. To minimize the number of flows migrated on core

allocation, LAPS makes use of Linear Hashing (also known as Incremental

Hashing). This scheme allows a hash table to grow one bucket at a time and

does not require rehashing of all flows currently allocated. This makes it use-

ful for load balancing because it is desirable to minimize the flow disruption
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when an additional core is allocated to a service. The Linear Hashing scheme

was introduced by [74] and has been described in [54]. Following is a brief

introduction of how this scheme works.

Initial Assignment of Flows

The linear hashing scheme has m initial buckets labelled 0 through m−1, and

an initial hashing function h0(k) = f(k) mod m that is used to map any key k

to one of the m buckets, and a pointer p that points to the bucket to be split

whenever new bucket is added. Initial value of p is 0. An example is shown

in Figure 5.2. The example follows the same pattern as the example given in

linear hashing tutorial by Zhang et al. [112]. In this example, h0(k) = k mod m

is used as a hash function for simplicity, where k mod m indicates the least

non negative integer remainder of k/m.

Figure 5.2: Initial assignment of flows. m = 4, p = 0, h0(k) = k mod 4.
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Bucket Split

When the first additional core is added to the hash table, bucket 0, that is

pointed by p, is split into two buckets: the original bucket 0 and a new bucket

m. The flows originally mapped to bucket 0 by hash function h0 are now

distributed between bucket 0 and m using a new hash function h1. Figure 5.3,

shows layout of linear hashing after the new core bucket has been added to the

map table. The shaded flows are the flows that are moved to the new bucket.

Bucket 0 has been split and and the flows originally in bucket 0 are distributed

between bucket 0 and bucket 4, using a new hash function h1(k) = k mod 8.

When another additional core is allocated, i.e., another bucket m+1 is

added to the hash table, the flows mapped to bucket 1 will now be redistributed

using h1 between buckets 1 and m+1. A crucial property of h1 is that the

keys that were mapped to some bucket j by h0, are remapped to either j or

bucket j + m. This is a necessary property for linear hashing to work. An

example of such hashing function is: h1(k) = k mod 2m.

Round and Hash Function Advancement

After enough core allocations, all original m buckets will be split. This marks

the end of splitting round 0. During round 0, p went from 0 to m− 1. At the

end of round 0, there are 2m buckets in the hash table. Hash function h0 is

no longer needed because all 2m buckets can be addressed by h1. Variable p

is reset to 0, and a new round, namely round 1, starts. A new hash function

h2 needs to be used. Figure 5.4 shows the state of hash table at the end of
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Figure 5.3: Flow redistribution after allocation of an additional core. p = 1,
h0(k) = k mod 4, h1(k) = k mod 8.

splitting round 0.

In general, the linear hashing scheme uses a family of hash functions

h0, h1, h2, and so on. Let the initial function be h0(k) = f(k) mod m, then

any later hash function is hi(k) = f(k) mod 2im. This way it is guaranteed

that if hi hashes a key to the bucket j ∈ [0..2im− 1], hi+1 will hash the same

key to either j or bucket j+2im. At any time, two hash functions hi and hi+1

are used. In general, in splitting round i, hash functions hi and hi+1 are used.

At the beginning of round i, p = 0 and there are 2im buckets. When all those

buckets are split, splitting round i+ 1 starts, p goes back to zero, the number

of buckets become 2i+1m, and hash functions hi+1 and hi+2 will start to be

used.
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Figure 5.4: Flow redistribution at the end of round 0 (beginning of round1).
p = 0, h1(k) = k mod 8, h2(k) = k mod 16

Summary and Mapping Scheme

Initially, each service is allocated m cores, i.e., there are m buckets in the hash

table. At any time the hash table manager has the following components:

1. A variable i that indicates the current splitting round.

2. A variable p that points to the bucket to be split next.

3. A total number of 2im+ p buckets in the hash table.

4. Two hash functions hi and hi+1. The base hash function used is CRC16,

i.e., f(k) = CRC16(k).
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Whenever a packet arrives, the hash scheduler has to map it to one of the

buckets in the map table. The mapping scheme works as follows:

h(k) =















hi+1(k) : hi(k) < p

hi(k) : hi(k) ≥ p

i.e., if hi(k) ≥ p, choose bucket hi(k) because this bucket has not been split

yet in the current round. If hi(k) < p, choose bucket hi+1(k). The value

of p is incremented whenever a new core is allocated to the service. Use of

this incremental hashing in conjunction with load balancing scheme of Section

4.4.1 allows us to add additional cores to a service with minimal disruption to

the existing flows.

5.3.5 Load Redistribution on Core Release

When a core is reallocated to another service, it is removed from the bucket

list of the victim service. Essentially, a process that is a reverse of the load

redistribution on allocation takes place. The value of round i is updated, i.e

i = (b/m)−1, where b is the current number of buckets in the map table. The

value of p is set to b− 2im. and the hash function is also changed accordingly.

5.3.6 Overall Scheme

Figure 5.5 shows the overall architecture for LAPS. The bucket list in the

mapping table for each service Si is dynamic and the dynamic size bi changes

with traffic variations. The hash function for each service is decided based on
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the size of its bucket list. Following steps are taken when a packet arrives:

1. If the flow ID hits in the migration table, the packet is forwarded to the

core ID indicated by the migration table.

2. If the flow ID does not hit the migration table, the map table is searched

using the hash function and the packet is forwarded to the core indicated

by the mapping table.

3. Under a load imbalance, the aggressive flows (flows that hit in AFC) are

migrated to the least loaded core allocated to that service similar to the

load balancing scheme of Chapter 4.

4. When the number of cores allocated to a service is insufficient, the bucket

lists are updated. An idle core is removed from the bucket list of the

donor service and is added to the bucket list of overloaded service.

5.3.7 Timing Analysis of LAPS

To sustain a traffic of 100 Gbps, the scheduler has to be able to schedule 100

million packets per second (considering mixed sized packets). Note that the

critical path of LAPS is Hash Delay → Map Table Access → Mux Delay. The

AFD and the map table update are not part of the critical path since they

work in the background. The critical path is dominated by the hash delay.

Researchers have shown that CRC16 can be calculated very efficiently and

can easily operate at the speed of 200 MHz [33, 4]. The delay of map table
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Figure 5.5: Locality Aware Packet Scheduler

access is a fraction of a nano second according to Cacti [89] simulations. This

means LAPS is capable of sustaining at least 200 million packets per second

and hence is capable of handling future traffic of even beyond 100 Gbps. For

even higher traffic rates in the future, multiple copies of hash function could

be used. A straight forward implementation is to use a separate hash function

for each application. The ability of hash based schedulers to sustain such high

data rates makes them very suitable for growing internet traffic rates.

87



5.4 Evaluation

5.4.1 Throughput Improvement with LAPS

LAPS aims to improve throughput by exploiting locality in instruction and

data caches. Figure 5.6 shows effectiveness of LAPS in improving throughput

of a sixteen core system. In this experiment, all four services of Figure 3.2

are active. The simulation infrastructure of Figure 3.1 is used. The traffic

rate generator is configured to increase the traffic gradually to measure the

maximum throughput supported by the system. Traffic is equally divided

among the four services, i.e., Path 1 through 4 of Figure 3.2. Caida 1, Caida

2, Caida 3 and Caida 4 traces are used for generating packets for Path 1, Path

2, Path 3 and Path 4. Figure 5.6 compares throughput of LAPS with a First

Come First Served Sc(FCFS) and an Arbitrary Flow Shift (AFS) scheduler

(See section 2.3.1 for description of AFS scheduler). The X-axis shows the

combined input traffic rate which is equally divided among all the services

and y-axis shows the traffic rate observed at the output.

The FCFS scheduler services packets in their arrival order and does not

consider flow or instruction locality. As a result, it causes many data and

instruction cache misses and results in the worst throughput among the three

schedulers. As compared to FCFS, AFS reduces some flow migrations and is

able to improve throughput a little, but AFS is still unaware of instruction

locality and results in suboptimal performance. In comparison to these two

schemes, LAPS improves both flow and instruction locality and results in sub-
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Figure 5.6: Throughput comparison of different schedulers

stantially better throughput (56% more than AFS and about 100% more than

FCFS). Ideal throughput represents a system with no cache miss penalties.

The plot is obtained by setting the cache miss penalties to zero. Although

such a system is infeasible, it represents a theoretical maximum which can be

achieved if the system has full knowledge of everything and is able to move

data and instructions into caches before they are needed.

Note that the throughput supported by the simulated sixteen core sys-

tem is much less than that of the industrial system. There are two reasons

for this: First, the software implementations of services are taken from open

source benchmark suites whereas companies use highly optimized implemen-

tations. Second, the experiments are based on software only implementations

and do not use hardware accelerations.
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5.4.2 Overall Performance Improvements with LAPS

Figure 5.6, presents results with increasing traffic. In this section, the experi-

ment is repeated where the traffic rate is governed by equation 3.8. The results

with two sets of parameters for equation 3.8 are presented. These parameters

are listed in Table 5.1. Set 1 represents the underload condition, i.e., the ag-

gregate traffic rate is less than the ideal capacity of 16 cores. Set 2 represents

an overload condition, i.e., the data rate is more than the capacity of the 16

core system.

Service a b C m σ

Set 1

S1 0.6 0.03 0.3 40 0.1
S2 0.7 -.025 0.1 25 0.05
S3 0.3 0.01 0.07 60 0.25
S4 0.1 0.005 0.09 600 0.3

Set 2

S1 1.2 0.002 0.3 100 0.3
S2 1.0 -.02 0.15 25 0.05
S3 07 0.004 0.25 30 0.25
S4 0.4 0.01 0.18 200 0.3

Table 5.1: Parameters governing traffic rate. Rate is in Mpps and period is in
seconds

For each service, real network traces listed in Table 5.2 are used to

generate the input packets. The combination of sets of parameters in Table

5.1 and traces in Table 5.2 creates different traffic scenarios listed in Table

5.3. Figure 5.7 shows packets dropped with three schemes under the traffic

scenarios shown in Table 5.3 for a traffic of 60 seconds. LAPS outperforms

FCFS and AFS in both the under-load and overload conditions due to its

superior instruction and data cache locality. Figure 5.8 compares the i-cache
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Group S1 S2 S3 S4

G1 Caida1 Caida2 Caida3 Caida4
G2 Caida5 Caida6 Caida2 Caida3
G3 auck1 auck2 auck3 auck4
G4 auck5 auck6 auck7 auck8

Table 5.2: Traces used in experiment for packets of individual services

Scenario Parameter Set Trace Group

T1 Set 1 G1
T2 Set 1 G2
T3 Set 1 G3
T4 Set 1 G4

T5 Set 2 G1
T6 Set 2 G2
T7 Set 2 G3
T8 Set 2 G4

Table 5.3: Different traffic scenarios used in experiments

performance of these schemes.

FCFS and AFS distribute packets of different services arbitrarily to

cores and suffer from poor i-cache locality. Figure 5.8 shows percentage of

packets that experience cold caches, i.e., the percentage of packets that re-

quire different processing than the previous packet processed by the same

core. FCFS and AFS schemes drop packets even in under-load conditions be-

cause almost 60% of packets suffer from cold cache penalties. On the other

hand, LAPS partitions the cores among services effectively and enjoys good

i-cache performance. Under overload scenarios (T5 through T8), LAPS also

suffers from some cold caches because cores are dynamically switched between
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Figure 5.7: Comparison of packet dropped under different traffic scenarios

Figure 5.8: Comparison of i-cache performance under different traffic scenarios

services based on traffic variations.

Apart from the throughput improvement, another major advantage of

92



Figure 5.9: Comparison of packet order under different traffic scenarios

LAPS over the other two schemes is its capability to maintain packet order.

Figure 5.9 shows the percentage of packets that are delivered out of order.

LAPS effectively maintains packet order by minimizing the flow migrations

and maintaining the flow locality.

5.5 Dynamic Behavior of the System

In order to observe the effectiveness of of dynamic resource allocation scheme,

temporal behavior of number of cores allocated to each service is plotted.

Figure 5.10 shows the dynamic behavior when two services are active in the

system. Service 1 is the same as Path 1 of Figure 3.2, i.e., the outgoing VPN

traffic is encrypted using IPSEC encryption. Service 2 is the Path 3 of Figure

3.2 which corresponds to processing incoming packets through a firewall. The
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traffic requirements of each service are varied over time and the response of

the resource allocation system is observed. Figure 5.10 shows that the system

is very effective in following the changing traffic requirements and changes the

core allocations to match the demands of each service very effectively.

5.6 Summary

This chapter extends the design of packet scheduler presented in Chapter 4

for multi-service routers. A dynamic resource allocation scheme is presented

that allocates cores to services based on dynamic traffic requirements. The

packet scheduler is extended to support this dynamic allocation of cores while

minimizing flow migrations. The next chapter deals with techniques to exploit

dynamic variations in traffic to save power.
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(a) Traffic variation over time

(b) Number of cores allocated over time

Figure 5.10: Temporal behavior of the resource allocator
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Chapter 6

Efficient Traffic Aware Power

Management

6.1 Introduction

The previous two chapters have focussed on the performance improvement of

network processors. This chapter explores how to exploit variability in traffic

the volume to save power in the network processors. Some basics of power

management were presented in Chapter 2. In this chapter, a Traffic Aware

Power management scheme (TAP) is presented. Use of traffic prediction for

the purpose of predictive power management is also explored. Furthermore,

this chapter also presents the benefits of careful packet scheduling and resource

allocation in terms of power savings.
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6.2 Motivation

6.2.1 The Power Management Problem

The rise in traffic demands and complexity of applications have resulted in an

increase in the complexity and number of cores in network processors. As a

result, power consumption is becoming a major problem and the energy con-

sumption in routers is reaching the limits of air cooling [22, 19]. For example,

a fully configured Cisco CRS-1 core router can consume up to one megawatt of

power [19]. A typical router has a set of line cards and each line card has one

or more network processors [11, 3, 81]. Power consumption of a single line card

can reach up to 500 Watts [3, 9]. Modern routers can have hundreds of line

cards. For example, the CISCO CRS-1 router can house up to 1152 line cards

in different chassis. These line cards are densely packed in routers. High power

consumption can result in high temperature of parts and failure due to thermal

stress. Such failures affect the reliability and availability of networks. This

results in lower quality of service and increased expenditures in replacement

parts. High power consumption of equipment leads to higher cooling costs and

results in increased operational expenditure of the network. With increasing

traffic rate demands and computational complexity, the number and complex-

ity of cores in network processors is on the rise, resulting in more and more

power consumption. Tight power budgets and dense integration requirements

call for the design of power efficient network processors.
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6.2.2 Power Saving Opportunities

The multicore packet processing systems are usually designed and provisioned

with enough resources to satisfy peak traffic load, but network traffic varies

with time and reaches the peak value for only a small portion of time. Studies

have shown that network utilization is under 30% even for backbone networks

[7]. Figure 6.1 shows traffic observed over two days by the CAIDA monitor

[30] at the internet backbone in Chicago. There is a huge variation in packet

rates and thus different processing requirements at different times of the day.

Most of the time, the traffic rate is below the maximum traffic and it is not

necessary to run the processors at their full capabilities. The low activity

periods can be exploited to save power in network processors by running them

in low power modes and/or by turning off some processing cores.
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Figure 6.1: Variation in traffic arrival rates(Kilo Packets Per Sec) over 2 days
at equinix-chicago internet backbone
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6.2.3 Ineffectiveness of Existing Schemes

Power management in network processors is in its infancy. Different efforts are

being made to apply power management schemes used in general purpose pro-

cessors to network processor power management. These schemes, however are

not designed for network processor workloads and result in un-optimal power

managements. These existing power management schemes use some proxies

to estimate the performance requirements, e.g., CPU utilization or idle time.

These schemes are either too conservative, resulting in loss of power saving op-

portunities or are simply unaware of traffic demands and result in extra packet

loss. The proposed power management scheme, TAP, uses direct information

of traffic for power management. TAP also employs traffic prediction to man-

age power predictively. TAP uses a traffic and a load predictor to pro-actively

change the number of active cores. A predictive power management scheme

can provide more power efficiency than a reactive scheme because power adap-

tations can be applied before the load changes. Traffic prediction, however, is

non trivial since network traffic can vary at different time scales, e.g., short

term variations and time of the day variations. Secondly, mispredictions can

result either in loss of power saving opportunities (over-prediction) or packet

loss (under-prediction). TAP needs a mechanism to deal with such mispredic-

tions and variation of traffic within the prediction interval. Also, TAP needs

to make power management decisions within a fraction of power adaptation

interval. This means that traffic predictor and power management algorithms

cannot be too complex. In order to overcome these challenges, TAP uses a
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low cost traffic and load predictor. TAP also uses Dynamic Voltage and Fre-

quency Scaling (DVFS) to adjust the frequency of the active cores to adapt to

the variation of traffic during the prediction interval.

6.3 Traffic Aware Power Management (TAP)

An efficient power management scheme for network processor has to make the

following decisions:

1. Predicting the load for the next interval

2. Deciding the required number of active cores Nopt for the predicted load

3. Deciding the frequency fi for each active core i.

This section provides details of the proposed TAP scheme and explains how

TAP makes the three above mentioned decisions.

6.3.1 Prediction of Computing Requirements

The computational requirements for network processors depend on both traffic

arrival rate and the computation complexity of the applications. TAP uses a

new parameter called Traffic factor that combines both traffic rate and com-

putational complexity to give a true estimation of load to be handled by the

network processor.

100



Traffic Prediction

TAP uses Double Exponential Smoothing Predictor (DES) for traffic predic-

tion. A more complex predictor may result in greater accuracy in some sit-

uations but a low overhead predictor is desirable for energy efficiency. The

Double Exponential Smoothing (DES) predictor is a low overhead predictor

with accuracy comparable to complex predictors like Artificial Neural Net-

work (ANN) or Wavelet transform based predictors. This makes DES very

suitable for this application. This study uses the DES predictor, but designers

can use the proposed scheme with any other predictor based on their require-

ments. This section gives a brief introduction to the DES predictor and a

short comparison of different predictors is presented in Section 6.4.3.

Double Exponential Smoothing (DES) Predictor

Exponential Smoothing assigns exponentially lower weights to older observa-

tions. Single exponential smoothing does not work well when there is a trend

in the data [8]. A trend means that the average value of the time series in-

creases or decreases with time. However, Double Exponential Smoothing adds

a trend component for estimation and is considered more appropriate for data

with trends. The equation for DES based prediction for a time series X(t) is

given as

Xt+1 = St + bt (6.1)

where

St = αXt + (1− α)(St−1 + bt−1) (6.2)
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and

bt = γ(St − St−1) + (1− γ)bt−1 (6.3)

St and bt are the smoothed value of the stationary process and the trend

value respectively. St and bt are added together to get the prediction for next

interval. α defines the speed at which older values of St are damped. When α

is close to 1, dampening is quick and when α is close to 0, dampening is slow.

γ is similar smoothing constant for bt. The values of α and γ are obtained

using non-linear optimization techniques and are learned during the training

phase of the predictor. Note that this is a very low cost predictor. It requires

only four registers for storing α, γ, St−1 and bt−1. To make a prediction, it

requires six multiplications and four addition operations. This low overhead

and reasonable accuracy make it an appropriate predictor for the purpose of

power management.

Traffic Factor (β)

TAP uses a new parameter called Traffic Factor that combines the traffic rate

and the application’s processing capability to give a true estimation of the pro-

cessing requirement. The traffic rate is the rate at which packets arrive at the

input and is represented as Packets Per Second (PPS). It is naturally tempting

to use traffic or packet rate directly to exploit traffic variability, but different

applications have different processing requirements and hence can support dif-

ferent packet rates, i.e., a complex application will require more resources to

sustain a particular traffic rate than a simple application. This means packet
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rate cannot be used directly for power management purposes. If processing

requirements are known in addition to the packet rate, this information can

be used to drive the power management scheme. If Cycles Per Instruction

(CPI) and Instructions Per Packet (IPP) are known, Cycles Per Packet (CPP)

required can be directly calculated, i.e.,

CPPreq = IPP × CPI (6.4)

Traffic Factor (β) is defined as

β =
PPSpredicted × CPPreq

(max cpu freq × total cores)
(6.5)

where PPSpredicted is the traffic predicted using the DES predictor explained

above. The Traffic Factor, β, incorporates both the application performance

requirements and the traffic rate into a single parameter and is an excellent

parameter for use in the power management schemes.

Note that the CPP is independent of the frequency level, i.e., the cycles

per packet will remain constant with changing frequency and hence this pa-

rameter does not suffer from the same limitations as the processor utilization

used by previous schemes. Processor utilization is a direct function of fre-

quency whereas CPP does not depend upon frequency under the assumption

that there are limited off-chip memory accesses. This assumption is valid in

network processors since the packet processing applications are small and fit

into caches and the packet queues are also implemented via on-chip memories
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[17]. Furthermore, no additional resources are needed to measure this param-

eter. Many network processors like P4080 provide performance counters to

measure PPS, IPP and CPI directly [10].

6.3.2 Deciding Number of Active Cores

The required number of active cores C can be directly calculated from the

Traffic Factor (β) as

C = β × total cores (6.6)

The number of active cores are adjusted as shown in Listing 6.1. The sampling

interval used is 500 µS.

Listing 6.1: Algorithm to decide number of active cores

1 for (every sampling interval ){

2 C = β * total_cores;

3 if (C > active_cores )

4 wakeupCores(C - active_cores );

5 else if (C < active_cores)

6 killCores(active_cores - C);

7 }

If C is less than the current number of active cores, all extra cores

can be shut down. When a core goes into a sleep state, it first goes into

C1, where it stays for 2 sampling intervals and then it goes to state C2. TAP
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uses C2 as the deepest sleep state. Note that the difference between the ladder

governor and TAP is that they use different input parameters. Instead of using

idle time, TAP uses the Traffic Factor to drive the C-state management. In

order to wakeup cores, TAP looks at the input queue length in addition to

the Traffic Factor (See Listing 6.2). If the size of the queue length reaches a

certain threshold, TAP wakes up one of the sleeping cores.

6.3.3 Deciding Frequencies of Active Cores

If the load predictor over-predicts, or if there is a variation in the traffic during

the prediction interval, DVFS can be used to further save power at smaller

timescales. At regular intervals (50 µs), TAP checks the size of the input queue

and based on the size of the queue, decides whether to increase or decrease

the power levels. When a packet arrives at the input interface, the interface

control logic stores the packet in the input queue until it is picked and serviced

by an available processor.

If the input queue is nearly empty most of the time, enough resources

are available to handle the traffic load. If it is near full, it means that more

processing capability is needed. The length of the input queue gives a direct

indication of whether more resources are needed or not. The algorithm for

finding the appropriate P-state is shown in Listing 6.2.

If the queue is nearly empty, it is assumed that the system has excess

processing capability and the frequency is reduced to the next lower level.

When the queue starts to grow, it means that the current processing capability
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is lower than what is needed and frequency level is increased.

Listing 6.2: Algorithm to find P-state values

1 int pstate[numcores ];

2 for (every sampling interval ){

3 if (avg < lowth){

4 core = findMin(pstate );

5 pstate[core] = pstate[core ]+1;

6 }

7 else if (avg < highth){}

8 else{

9 core = findMax(pstate );

10 if(core == -1)

11 WakeUpCore (1);

12 else

13 pstate[core] = pstate[core]-1;

14 }

15 }

Note that Listing 6.2 uses a global governor which makes decisions based

on the queue size instead of having a separate governor for each core. The array

pstate[numcores] holds the P-states of each core. Each core can have five pos-

sible P-states similar to Table 2.1. The functions findMin() and findMax()

return the indices of the fastest and the slowest cores, respectively. If the

queue size is less than the threshold value lowth, TAP lowers the frequency of
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the fastest core and if it is higher than the highth, TAP increases the frequency

of the slowest core. Also note that if the frequency cannot be increased fur-

ther, TAP increases the number of cores. This allows adjustment to dynamic

variation in traffic during the interval or under prediction and helps to avoid

dropping any packets.

6.3.4 Measuring Queue Length

TAP uses the average queue length during the sampling interval to make de-

cisions about choosing the appropriate P-states. A low pass filter is used to

calculate the average queue size as proposed in the RED algorithm [40]. Thus

a short term increase in traffic, which results from bursty traffic or transient

network congestion, does not affect the average queue length. The filter used

is an exponential smoothing filter and is given as

avg = α× qlength+ (1− α)× avg (6.7)

where qlength is the instantaneous size of the queue and α defines the speed

at which older values are dampened. An α of 0.025 is used in this study.

Many congestion control algorithms like RED [40], rely on the occu-

pancy of the input queue and modern network processors provide hardware

support for these congestion control algorithms. The P4080 processor pro-

vides dedicated hardware (QMan) for queue management. QMan implements

a variant of the RED algorithm and keeps track of the input queue length.
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Thus queue length can be used for power management purposes and it does

not require additional resources since it is already monitored for congestion

control purposes. Even if it is not readily available in any processor, it is easy

to add functionality in the interface logic for this purpose.

6.3.5 Deciding Threshold Values

TAP monitors the length of the input queue and compares it with predefined

threshold values to decide the state of the processor. These threshold values are

allowed to adjust dynamically according to the changing traffic load and thus

it is not needed to find a common value for all traffic rates and applications.

The optimum value of highth depends on the wake up time for a core in

deep sleep state. When qlength reaches this threshold value and all the active

processors are running at highest frequency, additional cores need to be turned

on in order to avoid dropping packets. Assuming the wakeup time of 200 µs,

extra buffer space is needed which is enough such that no additional packets

are dropped before an additional core is on line. The maximum observed

packet rate in this work was about 200 KPPS. Assuming this is the worst case

increase in the packet rate, an additional buffer space for 40 packets is needed

to store the packets before the core is on line. If the maximum queue size is

Qmax, Qmax−40 is used as the value of highth in these experiments. The value

of Qmax is set to 80.

The value of lowth can be chosen from a wide range. Essentially, it

should not be too close to highth to prevent avg qlength from oscillate between
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low and high thresholds. lowth is chosen to be such that highth = 4 × lowth.

Essentially, P-state manager tries to keep the input queue less than 50% full

all the time, but if the traffic rate is higher than what the P-states can manage,

the queue length will increase beyond highth. When the queue length exceeds

this value, it means that the current number of processors is not enough to

manage the traffic and an additional processor is woken up. If the value of

queue length reaches 95%, it means that the new processor was turned on

too late and the values of Cth, lowth and highth are decreased by 10%. If

qlength never reaches Cth value for 10 consecutive intervals, all the thresholds

are increased by 10%.

6.4 Evaluation

6.4.1 Power Savings with Real Network Traces

In this study, different power management policies are compared. Table 6.1

lists the policies under consideration. The C-state policy in the Base scheme is

similar to the Linux ladder governor. The thresholds used are based on Table

2.2. The P-state management policy is based on the Linux ondemand governor

explained in Listing 2.1. The Greedy scheme uses a similar ladder governor

for C-state management, but the P-state manager is a greedy algorithm of

Section 2.4.3 that tries to minimize EPI.

The IdleT policy uses a scheme similar to one proposed by Luo et al. [81,

82] for managing the number of active cores based on number of idle threads in
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Policy C-state Policy P-state Policy

Base ladder ondemand
Greedy ladder greedy EPI
IdleT idle threads ondemand
TAP Traffic Factor based Queue Length based

Table 6.1: Power management policies implemented for comparison

(a) equinix-sanjose (b) equinix-chicago

Figure 6.2: Power savings on real network traces.

the given interval. For a fair comparison with TAP, this scheme is modified to

go into a deeper sleep state if it remains in the current state for two consecutive

intervals. Note that the original scheme just made use of clock gating and did

not utilize deeper sleep states. This scheme is further augmented to use the

ondemand governor for frequency management of individual cores. TAP is the

proposed scheme based on traffic prediction.

Figure 6.2(a) and Figure 6.2(b) show the power savings for the equinix-

sanjose and equinix-chicago traces, respectively. The results are presented

relative to the Base policy. Table 6.2 shows the absolute numbers for power

consumption during the trace. It can be seen that TAP consistently beats the
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other policies on all applications. A major portion of the energy saving comes

from having the right number of active cores. Table 6.3 shows average number

of active cores throughout the trace for the different strategies. TAP scheme

has the lowest average number of active cores on all benchmarks. Traffic Factor

allows TAP to estimate the minimum number of active cores as compared to

other schemes that base their decisions on idle time. TAP changes the number

of cores proactively and thus reduces the lag between load changes and power

adaptation. Other schemes, being reactive in nature, lose some power saving

opportunities since the cores are turned off after some idle time has been

elapsed. The Base and tje Greedy schemes result in the highest number of

active cores. the C-state management in ithe Base and the Greedy schemes

is too conservative in the sense that it waits for break even time to elapse

before going to the deep sleep state. Also note that the number of active

cores depends on the P-state management as well. For example, if the active

cores are running at a lower speed than needed, they will result in activating

more cores than required. TAP calculates required number of active cores

directly using the traffic factor and thus results in the minimum number of

cores being active. For the IdleT scheme also, the number of active cores is a

function of frequency of individual cores and results in higher number of cores

than needed. In some situations, Greedy results in more cores than any other

policy. The reason is that P-state policy in this scheme is totally unaware

of traffic. It tries to minimize the energy per instruction irrespective of the

traffic rate. Thus it results in more cores since individual cores are running
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at lower frequency. Consider the situation presented in Figure 6.3. The input

packet rate is such that a single core is required to operate at power level P1

to sustain that traffic.

equinix-sanjose sanjose-chicago

Base Greedy IdleT TAP Base Greedy IdleT TAP

FRAG 7.82 7.29 5.93 3.53 7.4 7.32 6.6 3.8
IPV4T 6.73 7.79 6.11 4.10 6.73 6.91 6.23 4.5
IPV4R 29.80 27.80 28.1 25.23 31.5 29.1 28.3 26.1
IPSEC 63.20 60.69 59.80 56.59 71.5 69.3 68.7 62.4
MPLS 45.03 46.6 45.2 40.8 55.5 52.2 51.1 46.3
SSLD 101.6 95.4 96.1 90.1 99.4 94.1 96.1 90.1
WFQ 15.94 16.73 16.02 12.1 15.8 16.3 14.7 11.1

Table 6.2: Power consumption in Watts for different schemes
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Figure 6.3: Greedy algorithm to minimize EPI. Asterisks show optimum power
level

Figure 6.3 shows the response of greedy algorithm described in Section

2.4.3 to this input traffic. Since this greedy algorithm is unaware of the traffic

requirement, it continues to move in the direction of lowering the EPI and

overshoots the required power level and operates at frequency lower than the

required frequency for the rest of the trace. This scheme will result in running
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2 cores instead of 1 for the above situation, which will lead to more power

consumption.

Application Base Greedy IdleT TAP

Frag 3.10 2.81 2.21 1.30
IPV4T 3.34 3.69 3.10 1.42
IPV4R 7.70 7.90 7.62 5.50
IPSEC 29.10 30.10 29.00 24.30
MPLS 13.81 15.72 13.81 10.31
SSLD 30.53 31.21 31.11 26.11

Table 6.3: Average number of active cores

6.4.2 Effectiveness of DVFS

Although most of the benefit comes from having the right number of active

cores, the ability of individual cores to change frequency also provides some

power benefits. Figure 6.4 presents a comparison of proposed TAP scheme

with and without the capability of DVFS. In the scheme without DVFS, the

number of cores are controlled by the traffic aware scheme and there is no

DVFS, i.e., all the active cores run at full speed. Although most of the benefit

comes from having the right number of active cores, DVFS still has a significant

impact on performance. From the figure it can be seen that, in most cases,

DVFS improves the power consumption by 15% and as much as by 39% in

case of FRAG. This benefit comes from the fact that if TAP over predicted

the workload or there is variation in traffic during the prediction interval, then

DVFS helps to reduce the power by lowering the frequencies of the cores.

Figure 6.5 shows potential benefit of having the ability to change frequency
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Figure 6.4: Benefit of combining DVFS with on-off control

and voltage of the cores in addition to adjusting the number of active cores.

The plot is for a 16 core system running IPV4R benchmark when traffic is

varied from 0 to 100% that the given configuration can handle. The power

consumption is plotted relative to the system that has ability to change number

of active cores, but does not have a per core DVFS. It is observed that there

is a lot of potential power saving at low to medium traffic. At high traffic,

obviously there is less room for power savings. The dotted line shows potential

power savings if there is global DVFS, i.e., all cores change their frequency in

unison and at any moment all cores are at the same frequency. Global DVFS

provides a good tradeoff between design complexity and power savings since

it decreases the design complexity and is able to exploit most of the power

saving opportunities. The P-state algorithm becomes even simpler if global

DVFS is used instead of per core DVFS, i.e., instead of using the findMin() and
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findMax() functions, the frequencies of all cores can be increased or decreased

together based on the queue length.
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Figure 6.5: Global DVFS vs per core DVFS

6.4.3 Effectiveness of DES Prediction

A distinguishing feature of TAP is that the traffic factor is based on the DES

predictor for traffic (Section 6.3.1). Figure 6.6 compares the accuracy of dif-

ferent predictors. The predictors under comparison are listed in Table 6.4.

Predictor Description

LV Last observed value is used as prediction
for next interval

MA Moving average of last 8 observations
AR Auto Regression based prediction
ARMA AutoRegressive Moving Average of order
ANN Artificial Neural Network (3 layers)
DES Double Exponential Smoothing

Table 6.4: Traffic predictors compared
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Figure 6.6: Accuracy comparison of traffic predictors. Graphs show NMSE
values (lower bar is better).

The Normalized Mean Square Error (NMSE) is used to compare the

performance of predictors. This metric is widely used for evaluating prediction

performance. It is the ratio of mean square error to the variance of the series.

NMSE =
1

σ2

1

M

M
∑

t=1

(Xt − X̂t)
2 (6.8)

where Xt is the actual value of traffic during interval t, X̂t is the predicted

value of Xt and M is the total number of predictions. σ2 is the variance

of time series during prediction. This metric compares the performance of

the predictor with a trivial predictor (one that always predicts the mean of

the time series). For this trivial predictor (mean predictor) NMSE = 1.

If NMSE > 1, this means that the predictor is worse than the trivial one.

NMSE = 0 in case of a perfect predictor.

From Figure 6.6, it can be see that DES performs comparably well as
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compared to more complex ANN based predictor and it outperforms other

predictors in the study by big margin. More details about different traffic

prediction techniques can be found in [59]. Figure 6.7 shows the power savings
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Figure 6.7: Power saving when using DES Predictor compared to LV predictor.
The trace used is equinix-sanjose.

with DES predictor over LV predictor. The figure shows that a good predictor

can result in more efficient management of power.

6.4.4 Packet Queue Behavior

Figure 6.8 shows the queue length values during a portion of the equinix-

sanjose trace. It can be seen that the filtered queue length effectively neglects

the short term variation in traffic and is effective in preventing the system from

oscillating between states. Also, the scheme is able to adapt with increasing

traffic, i.e., if the queue length increases above the threshold values, the system

is able to adapt its resources to brings the queue length back within desired

limits.
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Figure 6.8: Queue size and filtered queue size

6.4.5 Power Saving at Different Traffic Rates

Figure 6.9 shows comparison of different power management schemes at dif-

ferent traffic rates with synthetic traces. The proposed scheme adapts well at

different traffic rates and is the best performer for all applications at all rates.

It is important to note that TAP does not gain much benefit from predic-

tion in these traces. These traces are of constant data rate. Reactive schemes,

which behave similar to LV predictor, are also able to accurately predict traffic.

For expensive applications like SSLD and IPSEC, there is not much room for

power saving since the load is already high, but TAP is able to get a benefit of

around 6-10% even for those applications. In general, the Greedy scheme runs

individual cores at lower power levels, but results in activating more cores. For

IPSEC and MPLS Greedy scheme seems to perform similar to TAP at some

data rates. The power numbers are similar, but the Greedy scheme results in

11% packet loss while TAP scheme does not drop any packets.
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Figure 6.9: Power consumption comparison of different power management
techniques at different traffic rates
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6.4.6 Effect of Packet Scheduling on Power Savings

TAP has so far used First Come First Served (FCFS) scheduling of packets

from a single global queue. Whenever a core becomes idle, it gets the packet

from the head of the queue for processing. FCFS scheduling can result in

poor performance as shown in Chapters 4 and 5. Careful packet scheduling,

such as LAPS, can result in better per core performance. An experiment was

conducted to observe the effect of LAPS on power consumption of the system.

Figure 6.10 shows the overall scheme. Note that the LAPS scheme is targeted

for the data plane cores which usually do not have the capability of DVFS. So

this experiment is conducted with the assumption that the cores have on-off

control only. Furthermore, these cores are generally devoid of an operating

system, hence, the traffic factor (β) cannot be calculated. In this experiment,

the resource manager of Chapter 5 is responsible for putting additional cores

to deep sleep states based on the core release policy discussed in the previous

chapter.

Figure 6.11 shows the effect of careful packet scheduling on power con-

sumption on a 16 core processor. Figure 6.11 compares power consumption of

FCFS scheduling with LAPS when the application running is IPV4T. Input

traffic rate is governed by Equation 3.8 with base line set to 6 MPPS and other

parameters are same as Set1 and service S1 of Table 5.1. Figure 6.11 shows

that more power can be saved when careful packet scheduling is done. This is

because per core performance improves when packets are scheduled carefully

to exploit data and instruction cache locality. Hence the same work can be
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Figure 6.10: Combining LAPS and TAP

done by less number of cores and rest of the cores can be turned off to save

power.

Figure 6.11: Power saving benefits of careful packet scheduling

Figure 6.11 considers only a single service active on the router. Figure

6.12 shows power consumption comparison when multiple services are active.
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This figure shows power consumption with the traffic scenarios of Table 5.3.

Significant power savings are observed at traffic scenarios T1 through T4 be-

cause LAPS is able to handle the traffic with less number of cores as compared

to FCFS. For rest of the traffic scenarios, no power gains are observed. Al-

though LAPS results in better performance in terms of packet loss (See chapter

5), all the cores are active and no power savings are observed.If we consider

per packet power, LAPS results in 30% less power consumption per packet on

average as compared to the DLB scheme for traffic scenarios T5 through T8.

Figure 6.12: Power saving benefits of careful packet scheduling on a multiser-
vice router

6.5 Summary

This chapter has presented a traffic aware power management technique for

network processors. The technique changes both the number and frequency
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of the active cores in order to save power during low traffic times. The next

chapter concludes this dissertation and provides some areas for future work.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The study was set out to explore the techniques to efficiently utilize the large

number of parallel cores in network processors. Network processors, due to

their high performance and programmability, have become the main comput-

ing elements in networking applications like enterprise, core and edge routers.

Routers are the main building blocks of networking. These routers have to

support high traffic rates and multiple complex services. Performance of the

network processors is critical for routers in order to deal with these demands.

This study sought to answer two main issues related to performance opti-

mization of network processors: (1) How to allocate work to multiple cores to

optimize performance? (2) How to meet the desired performance requirements

power efficiently? The study focussed on dynamic adaptations based on run

time traffic behavior in order to optimize the performance. The study ad-
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vances the state-of-the-art in the field of network processor design by making

three contributions.

First, the design of a hash based packet scheduler and load balancer is

presented in order to achieve the goals of preserving flow locality and packet

order. A hash based packet scheduler performs very well in order to achieve

these goals because it schedules the packets at the flow level and thereby

inherently maintains packet order and flow locality. A serious impediment

to performance of the hash based scheduler is the presence of skewed flow

sizes in network traffic. Such skewed distribution of flow sizes can result in

overloading some cores and may result in packet loss. To avoid packet loss, a

load balancer is designed that migrates some flows from the overloaded cores

to under-utilized cores. Flow migrations are undesirable because they result

in bad data locality and can result in out of order packets. The load balancer

proposed in this study minimizes the number of flow migrations by restricting

migrations only to the aggressive flows.This strategy helps to achieve load

balancing with minimum flow disruptions.

Second, the design of a dynamic resource manager is presented that allo-

cates processing cores to multiple services based on dynamic traffic variations.

This dynamic resource management scheme improves performance efficiency

in two ways. First, partitioning the cores among services helps to improve

performance by exploiting I-Cache locality. Second, multiplexing cores among

multiple services reduces the overall core provisioning level. The resource

manager is also integrated with the packet scheduler to optimize the per core
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performance. Furthermore, the use of incremental hashing is proposed which

is a low cost way of adding and removing cores to services while minimizing

flow migrations.

Finally, the design of a power management scheme is presented that

exploits variability in traffic volume to save power. The Power manager can

work seamlessly with the resource manager because incremental hashing al-

lows putting additional cores into sleep modes with minimum overhead. Also,

integration of the packet scheduler results in even more power savings because

the number of required cores to handle the input traffic is reduced if the per-

formance of the individual cores is optimized by exploiting instruction and

data locality.

The schemes presented in this dissertation show promising improve-

ments over the previous work. Hash based designs of the packet scheduler and

the resource manager have very low overhead. This makes the designs very

scalable for data rates of 100 Gbps and beyond.

7.2 Future Research Directions

The proposals made in this dissertation can be adapted or extended for further

improvement in network processor performance. Some potential areas of future

research are outlined below.
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7.2.1 Thermal Hot Spot Reduction

Since the power management scheme in this dissertation proposes to power

up and power down cores dynamically, some cores will be used more than

other cores. Such a behavior can be studied in the future work and power

management scheme could also be made thermal aware so that no individual

core becomes too hot. A tradeoff study needs to be done since one goal is to

maintain locality and migrating work from a hot core to a cold core may incur

intolerable overheads.

7.2.2 Multiple Scheduling Decisions per Packet

The processing of a packet may involve multiple steps. For example a packet

may spend a few initial cycles on the cores, the next few cycles on a hardware

accelerator and then some more cycles back on the core. This dissertation

has assumed that a packet does not relinquish a core until its processing is fin-

ished even if the processing involves some offloading to a hardware accelerator.

However in order to better utilize the resource, the core can start processing

another packet if the previous packet is offloaded to a hardware accelerator

for processing. In that case multiple scheduling decisions have to be made per

packet: on entry into the system and upon every completion of core or accel-

erator processing. Extending the scheduler to make these multiple scheduling

decisions can be studied in future.
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7.2.3 Fairness and Quality of Service

The packet scheduler presented in this dissertation tries to minimize packet

loss while minimizing packet reordering. In the future, this scheduler can

be integrated with a QoS mechanism like the Resource Reservation Protocol

(RSVP), that dictates to each router how to handle each packet (flow) based

on its reservation or Differentiated Services (Diffserv) which treats different

classes of packets differently.
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