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The trends in virtualization as well as multi-core, multiprocessor environments 

have translated to a massive increase in the amount of main memory each individual 

system needs to be fitted with, so as to effectively utilize this growing compute capacity. 

The increasing demand on main memory implies that the main memory devices and their 

issues are as important a part of system design as the central processors. The primary 

issues of modern memory are power, energy, and scaling of capacity. Nearly a third of 

the system power and energy can be from the memory subsystem. At the same time, 

modern main memory devices are limited by technology in their future ability to scale 

and keep pace with the modern program demands thereby requiring exploration of 

alternatives to main memory storage technology. This dissertation exploits dynamic 

knowledge of memory state and memory data value to improve memory performance and 

reduce memory energy consumption.  

A cross-boundary approach to communicate information about dynamic memory 

management state (allocated and deallocated memory) between software and hardware 
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memory subsystem through a combination of ISA support and hardware structures is 

proposed in this research. These mechanisms help identify memory operations to regions 

of memory that have no impact on the correct execution of the program because they 

were either freshly allocated or deallocated. This inference about the impact stems from 

the fact that, data in memory regions that have been deallocated are no longer useful to 

the actual program code and data present in freshly allocated memory is also not useful to 

the program because the dynamic memory has not been defined by the program.  By 

being cognizant of this, such memory operations are avoided thereby saving energy and 

improving the usefulness of the main memory. Furthermore, when stores write zeros to 

memory, the number of stores to the memory is reduced in this research by capturing it as 

compressed information which is stored along with memory management state 

information.  

Using the methods outlined above, this dissertation harnesses memory 

management state and data value information to achieve significant savings in energy 

consumption while extending the endurance limit of memory technologies. 
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Chapter 1:  Introduction 

Memory subsystems are power and performance bottlenecks in computer systems. 

It is important that the memory system caters to modern applications by supporting their 

growing working set, implying that the memory capacity has to grow along with the 

working set size to keep up with the applications. Virtualization has become extremely 

common, primarily with the advent of modern data centers, for reasons of operating 

efficiency of server infrastructure for cloud and enterprise computing. Therefore, the 

pressures and the demands on memory are on the rise. The growing use of virtualization 

coupled with the deployment of multicore processor and multiprocessor environments 

requires a massive increase in the amount of main memory needed in each individual 

system so that the growing computing facility may be effectively utilized. Hence, the 

issues with main memory devices are extremely important problems.  

1.1 DYNAMIC RANDOM ACCESS MEMORY (DRAM) ISSUES 

Dynamic Random Access Memory (DRAM) technology is the corner stone of 

main memory in computer systems. Main memory built from DRAM technology faces 

severe limitations in terms of power, scaling, and cost [L03]. According to observations 

made at a recent International Solid-State Circuits Conference (ISSCC), Sun 

Microsystems revealed that the power consumption of DRAM in the UltraSPARC T1 

(“Niagara”) systems running SPECjbb was approximately 60 watts [L06], which amounts 

to almost as much as the processor core power. Another study by Lefurgy et al. [L03] 

indicates that about 40% of the system power in a Power 4 based system (IBM p670) 

comes from the memory subsystem (Table 1.1), which includes the DRAM, the memory 

controllers, buses, etc. Measurements done by Samsung via sensors installed on several 

Fujitsu PRIMERGY systems also bills the DRAM memory at 33% (Figure 1.1) factor in 
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1.2 ISSUES WITH EMERGING MEMORY TECHNOLOGIES 

In DRAM technology, DRAM places charge in a storage capacitor and must 

mitigate sub-threshold charge leakage through the access device. DRAM technology 

requires capacitors large enough to store charge for reliable sensing and transistors that 

are large enough to have effective control over the channel – a formidable challenge in 

manufacturing. In light of these challenges, viable solutions to manufacture DRAM with 

scaling beyond 36 nm are unknown [ITRS09]. Recent academic and industry research is 

exploring emerging memory technologies such as Phase-Change Memory (PCM) as 

alternatives to the main memory. The storage material in a PCM cell can be in more than 

one degree of partial crystallization allowing for more than one bit to be stored per cell. 

The different crystalline states and their associated difference in resistance can be 

exploited to store multiple bits. For example, a recently constructed prototype [B08] 

stores four states, with two bits stored in the same physical area. However, PCM too has 

its drawbacks. Currently, PCM writes require energy intensive current injection. More 

importantly, these writes induce thermal expansion and contraction within the storage 

element which degrades the injection contacts and limits the endurance of the PCM 

device to hundreds of millions of writes per cell [ITRS09, FW08]. PCM based memory 

also suffers from a higher latency compared to DRAMs. The endurance limits as well as 

the higher latency of PCM relative to DRAM are challenges that need to be addressed 

before the positive attributes of PCM, such as scaling and density, can be exploited.  

Table 1.2 contains a summary of the various memory technologies which are 

candidates for main memory, i.e., hierarchy level before the disk drive. PCM is a 

relatively dense technology, 2X-4X denser than DRAMs and yet they have comparable 

feature sizes. The term “Write Endurance” refers to the maximum number of writes for 



 4 

each cell while “Data retention” refers to the duration the storage technology can retain 

data.  

 

Parameter PCM NOR 

Flash 

NAND 

Flash 

DRAM 

Density 2X-4X 0.25X 4X 1X 

Write Endurance 10
6
 to 10

8
 10

4
 10

4
 10

16
 

Read Latency 200-300 ns 300 ns 25 us 60 ns 

Write Speed ≈ 100 MB/s 0.5 MB/s 2.4 MB/s ≈ 1Gbps 

Retention 10 yrs 10 yrs 10 yrs Refresh 

Table 1.2 Comparison of memory technologies [QSR09] 

Among flash technologies, NOR based flash shows itself to be an ill fit 

considering the low density it supports. NAND based flash has a very high density, even 

higher than DRAM but has high access latency. In addition to the difference in the 

latency, flash memory has very low write endurance making it a very poor fit for main 

memory. The reasons for PCM coming up as a viable option is evident from its 

characteristics which are similar to the NAND flash but with a better read latency and 

write speed. PCM’s write endurance (10
6
 to 10

8
) is a few orders higher than Flash’s (10

4
). 

The drawback of Flash is that it is 200X slower than DRAM and has a limited endurance 

for the number of writes [ITRS09] it can sustain, making it unsuitable for the main 

memory. PCM fares much better since it is only 2X – 4X slower than DRAM and can 

provide up to 4Xx more density than DRAM. Phase change memory (PCM) has the 

appeal of being a non-volatile storage mechanism amenable to process scaling. Based on 
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these characteristics PCM and DRAM are the primary technology candidates for main 

memory.  

All these point to the problems with the memory systems of today and the need to 

focusing on aggressive mechanisms to optimize them.  

1.3 MEMORY OCCUPANCY AND STATE OF COMPUTER SYSTEMS 

Memory systems treat all regions of memory as important and go to great lengths 

to conserve their fidelity. In programming languages ranging from C, C++, C#, Java, 

Python to Ruby, mechanisms exist for explicit or implicit dynamic allocation of memory. 

When a user’s code invokes memory allocation and allocates a region of memory whose 

existing content is uninitialized, the computer system is normally ignorant of the fact that 

the current value present in the physical memory location is unused during the correct 

execution of the program, i.e., it is inconsequential data. Similarly, when a program is 

done with its use of the dynamically allocated memory, it is returned to the memory 

manager routine which now knows that the program is done using that region of memory. 

Thus, the memory block that was given up by the program too contains data that is 

normally considered important by the computer, which thus maintains its fidelity. In 

reality it is never used during the correct execution of the program i.e., that data too is 

inconsequential. This dissertation calls regions of the memory that contain data that is 

unused by the correct execution path of the program inconsequential memory.   

This dissertation characterizes and exploits inconsequential memory information 

to optimize memory systems. Most current computer systems operate agnostic of 

semantic information about memory state and values which are present in the program. 

They fail to exploit knowledge about inconsequential memory and hence, do not optimize 

the memory hierarchy to enhance energy, reliability, and performance characteristics of 
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the memory hierarchy. Although there have been memory hierarchy optimizations such 

as cache-locking, cache-bypass and prefetching, most of the modern optimizations done 

in the microarchitecture and memory subsystem tend to be agnostic of the program 

semantic based memory state. For example, when a program or operating system memory 

manager allocates or frees up a memory region, the system does not have this information 

and does not try to act on it. 

1.3.1 Key Ideas using Memory State Information 

Regions of memory that the program deallocates (gives back to the memory 

manager) and hence is inconsequential, can still be present in the memory hierarchy. In 

most cases, such memory will contain modified data that is useless to the program. 

Usually, when a part of the memory hierarchy containing inconsequential and modified 

data is evicted, the data is written back to the next level of the hierarchy. However, in the 

case of inconsequential data this write back is unnecessary. Similarly, when a store 

operation is issued on a freshly allocated memory region not present in the memory 

hierarchy, it normally results in a write miss which results in a fetch operation from the 

next level of the memory. However, write miss operations to inconsequential data are 

unnecessary and can be avoided. This dissertation proposes to avoid write back and write 

miss accesses to inconsequential memory. Avoiding write back and write miss access 

helps in reducing access traffic to the DRAM, which in turn helps in reducing the power 

and energy consumption of the DRAM based memory. Reducing write backs also helps 

in reducing the number of write operations that go out to the main memory, which helps 

in extending the life of PCM (and other EMT) based memory.  

Furthermore, when stores write zeros to memory, the number of stores to the 

memory can be reduced by capturing it as compressed information. This dissertation 
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proposes to compress and bypass zero value stores to the main memory and thereby 

reduce the number of write operations that go out to the main memory. This, in turn, 

extends the life of the EMT based memory.  

This dissertation harnesses and exploits memory management state and data value 

information from the semantics of the program to optimize the main memory system. 

1.4 THESIS STATEMENT 

By harvesting dynamic memory management state visible to the user code and 

dynamic memory data value visible to the hardware, we can significantly improve energy 

consumption and endurance of memory systems.  

1.5 CONTRIBUTIONS 

This dissertation makes several key contributions: 

1) This dissertation evaluates the dynamic memory management based state for 

all the benchmarks in SPEC CPU2006. Further, this dissertation analyzes the 

relationship of the benchmark behavior to the behavior of the last level cache 

and memory level cache.  

2) This dissertation presents the concept of inconsequential memory and the use 

of inconsequential memory to reduce write backs and write misses.  

3) This dissertation also presents the concept of zero value stores and ways to 

reduce data store operations to the memory.  

4) This dissertation presents ESKIMO, an architectural mechanism to exploit 

inconsequential memory based on their memory management state. ESKIMO 

optimizes the DRAM based memory to avoid write back and write miss 

accesses as well as refresh operations related to inconsequential memory 

regions. This dissertation develops and discusses in detail the necessary 
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hardware structures, ISA changes, their operations and interactions. Further, 

this dissertation presents a complete evaluation of the efficacy of the DRAM 

energy optimizations and finds that on an average (volume weighted) 10% of 

memory subsystem energy is saved.  

5) This dissertation presents mFilter, an architectural mechanism to avoid write 

backs of inconsequential memory and zero value data to reduce store 

operations to the emerging memory technology based memory. The 

dissertation develops and presents the necessary hardware structures (mFilter), 

ISA changes, their operations and interactions. Further, the dissertation 

presents a complete evaluation of the efficacy of these proposals and their 

effect on the endurance of such a memory device and finds that on average 

(volume weighted), 11% of the destructive memory access can be avoided 

using an mFilter.  

1.6 ORGANIZATION 

This dissertation is organized as follows: 

Chapter 2 provides an overview of the main memory technologies and their 

problems. Chapter 2 also provides a background into their working and the reason for 

some of the issues.  

Chapter 3 presents a discussion on research work relevant to this dissertation. 

Various techniques and ideas that are related to this dissertation are discussed in this 

chapter.  

Chapter 4 discusses the benchmarks used in this dissertation as well as details of 

the simulation methodology used.  



 9 

Chapter 5 describes the main ideas of inconsequential memory zero value stores 

presented and used in this dissertation. It details those ideas and their uses. 

Chapter 6 presents some preliminary workload analysis to understand how these 

benchmarks perform in relation to the events targeted.  

Chapter 7 describes the application and implementation of these ideas for DRAM 

memory optimization particularly to reduce its energy consumption. An analysis of the 

results obtained is also presented.  

Chapter 8 describes the application and implementation of these ideas for 

emerging memory technologies particularly to improve its endurance and lifetime. An 

analysis of the results obtained is also presented.  

Finally Chapter 9 presents conclusions, observations and insights and some future 

avenues for application of the insights gained.  
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Chapter 2: Overview of Memory Technologies 

 

2.1 DRAM MEMORY  

To better understand efficiencies, strengths and weakness of the DRAM based 

memory systems, this chapter describes basic circuits and architecture of DRAM devices. 

This chapter will focus on the high level details and other details that are important to the 

dissertation.  

The organization and structure of a Fast Page Mode (FPM) DRAM device is 

illustrated in Figure 2.1. Internally, the array of DRAM storage cells in Figure 2.1 is 

organized as 4096 rows, 1024 columns per row, and 16 bits of data per column. Each 

time a row is accessed in these devices, the external memory controller supplies a 12 bit 

address on the address bus and the row address strobe (RAS) is asserted. The 12 bit 

address is buffered by the row address buffer inside the DRAM device and then sent to 

the row decoder. The row address decoder in turn uses the 12 bit address and selects one 

of the 4096 rows of storage cells.  

The data stored in the selected row of storage cells is then sensed and cached by 

the array of sense amplifiers. In the DRAM cells illustrated, each row consists of 1024 

columns and each column is 16 bits wide. The 16 bit wide column is the basic 

addressable unit of the memory in this device. Column accesses that follow the row 

access would normally read or write 16 bits of data from the same row of DRAM. The 

FPM DRAM device is structured to allow each 8 bit half of the 16 bit column to be 

accessed independently through the use of separate column access strobe high (CASH) 

and column access strobe low (CASL) signals. A column access is engaged similar to the 

row access. The main memory controller places a 10 bit address on the address bus and 
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then asserts the appropriate column access strobe (CAS#) signals. Inside the DRAM chip 

the 10 bit column address is decoded and used to select one of the columns out of 1024 

columns. The data present in that column is then placed on the data bus or is overwritten 

with data from the data bus depending on the status of the write enable (WE) signal. 

 

Figure 2.1 64 Mbit fast page mode DRAM device (4096 x 1024 x 16) (borrowed figure) 

[W05] 

All DRAM devices, from the FPM DRAM device to modern DDRx (denotes 

DDR, DDR2, DDR3) SDRAM devices, have similar basic organizations. The DRAM 

devices have one or more arrays of DRAM cells which are organized into a mesh of a 

certain number of rows and columns. The column is the smallest unit of addressable 

memory on that device. The timing and sequence of how the device operates on all 

DRAM devices is controlled by logic circuits. For example, in the Figure 2.1 illustrating 
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an FPM DRAM device, the chip has an internal clock generator as well as a built-in 

refresh controller. In most cases the DRAM device along with the memory controller 

controls the relative timing and sequence of events for a particular action. The FPM 

DRAM also stores the address of the next row that needs to be refreshed. When the 

memory controller asserts a new refresh command to the DRAM device, the row address 

can be loaded internally from the refresh counter rather than having to load the row 

address from an off chip address bus. Historic limitations restrict the number of pins used 

in DRAM devices. Due to the limitation on pin count DDRx and variants of future DDRx 

SDRAM devices modern DRAM devices move data onto and off the device through a set 

of bi-directional input-output pins connected to the system. There are more advanced 

DRAM devices such as ESDRAM, Direct RDRAM and RLDRAM which have evolved 

to include more logic circuitry and functionality such as row caches and write buffers to 

permit read-around-write functionality. The additional integrated logic helps to improve 

the performance at the expense of die area in the DRAM device. However, due to the 

additional hardware cost standard DRAM devices do not integrate such logic. 

2.1.1 DRAM Storage Cells 

The circuit diagram of the basic one transistor, one capacitor (1T1C) cell structure 

used in modern DRAM devices as the basic storage unit is illustrated in Figure 2.2. In the 

circuit structure in Figure 2.2, applying a voltage on the gate of the access transistor turns 

it on, causing a voltage representing the data value to be placed onto the bit line. The 

voltage on the bit line charges the storage capacitor. The capacitor retains the stored 

charge for a limited period of time after the voltage on the word line has been removed 

and the access transistor is turned off. Due to leakage of currents through the access 

transistor, the charge stored in the capacitor gradually dissipates. As a result, the data 
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stored in the DRAM cells must be periodically read-out and written back before the 

stored charge decays to an indistinguishable value; this process is known as refresh. 

Failing to do a refresh will cause the electrical charge to leak away and cause the stored 

value to be unresolvable.  

 

Figure 2.2 Basic 1T1C DRAM cell structure  

2.1.1.1 Cell Capacitance, Leakage and Refresh 

The capacitance of a typical DRAM storage cell built in the 90 nm process 

technology is on the order of 30 fF and the leakage current of the DRAM access 

transistor is on the order of 1 fA [LAPKLLCK03]. With this level of leakage current and 

capacitance, a typical DRAM cell can retain the state for hundreds of milliseconds. In 

other words, hundreds of milliseconds after the data write, the differential sense amplifier 

will resolve the charge stored in the DRAM cell to the stored digital value. All DRAM 

cells are not built the same and hence some of them can hold the stored charge for much 

longer, in the order of several seconds. Since memory systems have to be reliable and not 

loose a single bit, every single DRAM cell must be refreshed at least once before any 

single bit in the whole device loses its stored charge. Most modern DRAM memory 
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systems typically refresh the storage cells once every 32 ms or 64 ms or 110 ns 

depending on the DRAM technology. In cases where the DRAM cells have low 

capacitance storage capacitors or high leakage currents through the access transistor, the 

refresh interval (time period between refresh) must be reduced so as to ensure reliable 

data storage.  

2.1.2 DRAM Power and Energy Modes 

Figure 2.3 illustrates the different power and energy modes and their transitions in 

a DRAM.  

Active: An active state is where the DRAM stores its data in the sense-amplifier. 

In the active state the DRAM module is ready to accept row and column address packets. 

Upon accepting such a packet the module transitions into a read/write state. A read/write 

state has two components to it; the selection and activation of the correct bank for 

read/write and the actual read/write of the target row. Both the row and column 

multiplexer receivers are turned to active in order to enable the arrival of address packets 

(row or column). The energy consumption of this mode is the highest.  

Standby: In the standby mode, the column multiplexers are disabled resulting in 

significant energy savings compared to the active state. The memory banks are idle with 

the memory clock set to high. A read or write request causes an ACTIVATE command to 

be issued to the DRAM module which in turn causes it to transition to the active state.  

Power-down: Power-down mode is one more step in energy savings. The DRAM 

device in this mode shuts down the periodic clock and the synchronization circuitry. 

When it receives an ACTIVATE command in this state, the DRAM will transition to the 

active state. Power-down mode is costlier and typically costs several thousand cycles.  
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Figure 2.3 State transition diagram in DRAM 

Precharge: Accessing the DRAM via the sense-amplifier is a destructive 

operation. Once the charge corresponding to the data has been stored in the sense-

amplifier, the charge is lost from the memory cell and cannot be reconstructed. Hence, 

the cell contents need to be reconstructed based on the content of the sense amplifiers and 

is reconstructed using a precharge operation. After every read or write operation the 

memory controller sets up a precharge operation. After a precharge operation the memory 
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controller can switch to a read/write state if the same bank is being accessed. If a 

different bank contains the data then that bank needs to be selected for read/write. If there 

are no more pending read or write operations following the precharge, the DRAM may be 

put into standby, power-down or active states. The choice of power saving mode is 

determined by the policy in the memory controller.  

Refresh: Since the memory cells are based on a capacitor, it loses charge over 

time due to leakage effects. The charges on these cells need to be restored in a periodic 

fashion. These intervals can range from 64 ms (DDR2) to 110 ns (DDR3) depending on 

the technology. The operation to restore the data is called refresh operation. Thus, the 

memory controller has to issue REFRESH commands to the DRAM periodically.  

2.1.3 DRAM Refresh Techniques 

Due to the dynamic nature of a DRAM cell, periodic refresh operations are 

required for keeping the data stored. Even in standby mode, such regular refreshes 

account for large energy consumption in DRAMs. Some studies have shown that even in 

the lowest power mode, the power needed to keep the DRAM contents is about a third of 

the total power dissipated. Factors such as the memory vendor and the design technology 

affect the refresh rate; a typical refresh interval would be 64 ms. This means, a refresh 

operation takes place every 64 ms. A refresh operation fundamentally involves reading 

the DRAM cell out and writing back to the same cell. Although a refresh operation 

consumes power and bandwidth, it is inevitable for the sake of data correctness.  

There are two commonly used refresh modes in commercial DRAM designs: 

Burst Refresh: In this mode, the entire refresh operation, for all the rows is done 

one after the other in a burst. The drawback of this scheme is that it increases the peak 

power consumption of the DRAM. Additionally, it can cause potential performance 
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degradation during the time of the refresh operations since the DRAM memory module is 

unable to handle normal access requests.  

Distributed Refresh: In distributed refresh mode, refresh operations are spread 

evenly throughout the refresh interval. The distributed refresh mode has several 

advantages over burst mode. If the memory controller ensures that a large number of 

refresh operations are done while the DRAM is idle, then the performance impact will be 

minimized. Since the refresh cycles are not adjacent to each other it reduces the peak 

power when compared to the burst mode.  

 

DRAM Refresh Time Number of Cycles Refresh Rate 

4 Meg x 1 16 ms 1,024 15.6 µs 

256K x 16 8 ms 512 15.6 µs 

256K x 16 64 ms 512 125 µs 

4 Meg x 4 (2K) 32 ms 2,046 15.6 µs 

4 Meg x 4 (4 KB) 64 ms 4,096 15.6 µs 
 

Table 2.1 Refresh specifications for standard DRAMs [MICRON] 

2.2 PHASE CHANGE MEMORY  

The technology that forms the underpinnings of Phase Change Memory has its 

roots in research by Ovshinsky [O68] on the properties of a class of amorphous materials. 

Amorphous materials do not have a definite ordered crystalline structure. It was found, in 

1968, that these glasses exhibited a reversible change in resistivity upon changes in 

phase. Several decades later companies such as Intel, Micron and STMicroelectronics 

spurred the modern resurgence of this technology. 
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Figure 2.4 Cell structure circuit diagram (borrowed figure) [LIMB09] 

2.2.1 The Theory of Operation 

Two electrodes separated by a resistor and a phase change material (typically a 

chalcogenide) are the basic storage elements in the memory. Ge2Sb2Te5 (GST) is the 

most commonly used chalcogenide. The phase change is induced in the material by 

injecting current into the base storage element, the resistor-phase change material 

junction, and heating the chalcogenide to 650 C. In the amorphous phase, the material is 

highly disordered (absence of regular order to the crystalline lattice). The material has 

high resistivity and reflectivity in this state. On the other hand, in the polycrystalline 

phase, the regular crystalline structure exhibits low reflectivity and low resistivity. The 

programming complexity and latency is lowered by the fact that the current and voltage 

characteristics of the chalcogenide are identical (regardless of the initial phase) 

[LIMB09]. The programmed state in the device is controlled by the width and amplitude 

of the current pulse injected. Phase change memory devices are comprised of an access 

transistor and the resistive storage element (Figure 2.4 and Figure 2.5). A Field-effect 



 19 

transistor (FET), bipolar junction transistor (BJT) or a diode is used to control access to 

the device.   

 

Figure 2.5 Phase change memory: storage element with heating resistor and chalcogenide 

material between electrodes (borrowed figure) [LIMB09] 

2.2.2 Writes 

The PCM memory has two states of operations: The SET state and the RESET 

state. The SET and RESET states refer to the crystalline (low resistance) and amorphous 

(high-resistance) states of the chalcogenide. The storage element is RESET by a high, 

short current pulse. The abrupt discontinuation of the current flow due to the short pulse 

squashes the heat generation and freezes the chalcogenide into the amorphous state it was 

converted to due to the pulse. The storage element is SET by using a long current pulse of 

moderate value. The current pulse ramps down over the duration of the write causing 

gradual cooling of the chalcogenide thereby inducing crystal growth and conversation 

into the crystalline state.  
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Since the SET operation is the longer of the two, it determines the write 

performance. Works by Ahn et al. and Bedeschi et al. [A04, B04] suggests a write 

latency of 150 ns. Values from this work have been extrapolated by Lee et al. [LIMB09] 

to arrive at a SET current and voltage of 150 µA and 1.2 V. This implies that SET 

dissipates 90 µW for 150 ns, consuming approximately 13.5 pJ. The RESET latency is 

dependent on the write energy. Lee et al. [LIMB09] derived the RESET latency of 40 ns 

based on the work of Bedeschi et al. [B04] and also suggests that the REST operation 

requires 300 µA at 1.6V and dissipates 480 µW for 40 ns and consumes approximately 

19.2 pJ. Lee at al [LIMB09] arrived at this by extrapolating across process generations 

using current scaling rules. Shorter SET latencies in the range of 80 ns to 100 ns are 

being demonstrated by emerging technologies in this field. The longer SET latencies are 

in the range of 180 ns to 400 ns and it occurs because of the choice of dense devices that 

are slow in access [K06, L08, O05]. Most PCM prototypes consider the storage elements 

as a two state devices (i.e. crystalline and amorphous) and hence produce single-level 

cells (SLC). However recent research has demonstrated additional intermediate states 

[B08, N08] which can be used to device multi-level cells (MLC). Such multi-level cells 

store multiple bits by programming the cell to transition into intermediate resistance 

levels. Essentially a smaller current slope (i.e. slow ramp) produces lower resistance 

states while larger slopes (i.e. fast ramp down) result in higher resistance states. Thus by 

varying the slopes, partial phase transitions in size and shape of the amorphous material 

is caused in the junction area which results in the resistance grades ranging from that of 

the fully crystalline to fully amorphous chalcogenide. MLC is still a hard problem due to 

the difficulty in differentiating between a large numbers of resistances.  
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2.2.3 Write Endurance 

The operation of writing to the storage device causes the device to wear and hence 

is a limiting factor in the endurance of the phase change memory. The injection of current 

into the storage device causes thermal expansion and contraction which causes the 

electrode-storage contact to degrade. A degraded contact prevents reliable delivery of 

current pulses in future which limit the ability to program the storage cell. Variation in 

the current delivered by the electrodes cause variability in resistance too, which in turn 

reduces the window, the difference between the minimum and maximum resistance states 

that can be programmed using the current pulse, to also degrade. Due to this, the number 

of writes that can be performed before the cells stop being capable of being programmed 

reliably ranges from 10
4
 to 10

9
. The write endurance depends on the techniques used for 

manufacturing. The ITRS roadmap projects a higher endurance of 10
9
 writes at 65 nm 

[ITRS09].  

2.2.4 Reads 

For the read operation the bit line is precharged to the read voltage before reading 

the cell. If the selected cell is in a crystalline state, the bit line discharges and the current 

flows via the storage element. If the cell is in an amorphous state it prevents or limits the 

bit line current. The work by Bedeschi et al. [B04] suggests a cell read latency of 48 ns. 

The bit line precharge while using a BJT for access control and current sensing is used to 

arrive at this latency. Based on the same estimation, the cell requires 40 µA of read 

current at 1.0 V and it dissipates 40 µW for 48 ns resulting in 2 pJ of energy being 

consumed. Other research works and prototypes, using FET and diode access devices, 

have demonstrated read latencies which are higher, in the range of 55 ns to 70 ns.  
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Figure 2.6 PCM RESET energy scaling (borrowed figure) [LIMB09] 

2.2.5 Process Scaling 

Scaling in PCM reduces the programming current required to be injected via the 

electrode-storage contact. As scaling reduces the contact area (due to feature size), the 

thermal resistivity increases. The increase in thermal resistivity means that the volume of 

phase change material that must be altered to block current flow decreases. This aspect 

enables the access devices for current injection to be smaller. Figure 2.6 outlines the 

PCM scaling rules of Pirovano et al. [P03] which was confirmed empirically by Lai 

[Lai03] in the survey. A reduction in feature size by k results in a corresponding 
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reduction in contact area quadratically (1/k
2
). The reduced contact area increases the 

resistivity linearly (k), which in turn causes a linear (1/k) reduction in the programming 

current. These projections are based on the assumption that the SET/RESET voltage does 

not scale [P03]. At the same time the SET and RESET currents scale together. The SET 

current is typically 40-80 percent of the RESET current. Both the read and write latencies 

are not impacted by process scaling. The material used to build the phase change memory 

determines the write latency. 

There are challenges that come with process scaling for PCM technology. The 

lateral thermal coupling for the decreased contact area, due to scaling, may cause the 

programming current pulse in one cell to affect the adjacent cell and its state. In the 

survey done by Lai [Lai03] these effects are shown to be negligible in measurement and 

simulation. The impact of thermal coupling should be minimal since temperatures fall 

exponentially with the distance from cell. Another aspect to consider is the effect of 

increasing resistivity due to the smaller contact area reducing the signal strength because 

of the smaller difference in resistivity between the crystalline and amorphous states. 

However, these signal strengths are within the limits of modern memory sense circuits 

[Lai03].  

 

2.3 OTHER EMERGING MEMORY TECHNOLOGIES  

There are several other memory technologies that have also emerged as 

candidates to replace or work with DRAM based memory. In addition to PCM, Several 

recent academic works as well as industry research are exploring emerging memory 

technologies such as MRAM (Magnetic RAM), FeRAM (Ferroelectric RAM) and Flash 

[ZYZ09, LIMB09, Q09, QSR09]. 



 24 

Flash memory is already being employed as a Solid State Disk (SSD) cache 

[KRM08] (e.g. Intel® Turbo Memory). The drawback of Flash is that it has very limited 

endurance for the number of writes [ITRS09] it can sustain (only 10
5
) and also has low 

density at its current and projected nodes relative to other technologies. The limited 

endurance makes it unsuitable for the main memory. Table 2.2 summarizes the various 

emerging memory technologies. Most of the emerging memory technologies have the 

appeal of being a non-volatile storage mechanism (data retention >10 years). 

 

 DRAM PCM MRAM FeRAM Flash 

Read Latency vs. DRAM 1x 4x 2x 3x 4x 

Write Endurance - >10
8
 >10

16
 >10

14
 10

5
 

Write Energy (J/bit) 5x10
-15

 6x10
-12

 1.5x10
-10

 3x10
-14

 1x10
-14

 

Retention time 64 ms >10 years >10 years >10 years >10 years 

Process Scaling  36 nm 8 nm 65 nm 65 nm 25 nm 

Current Process Node 45 nm 45 nm 130 nm 180 nm 90 nm 

Table 2.2 Summary of different main memory technologies [ITRS09] 

However, these memories have their drawbacks too. For example in MRAM, 

write operations require very high current [ITRS09, BZE10, Z09], about 5 order higher 

than DRAM writes, making write operations very expensive in terms of power. FeRAM, 

PCRAM and other memories also suffer from endurance limits as can be seen in Table 

2.2. These emerging memories also suffer from a higher latency compared to DRAMs. 

The endurance limits, the write cost, as well as the higher latency relative to DRAM are 

challenges that need to be addressed before the positive attributes of emerging memory 

technology such as scaling and density can be exploited.  
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New applications, languages, and design constraints such as process scaling, 

power, energy consumption, etc. make it essential to optimize the design across 

architectural boundaries. This dissertation solves some of the problems of Emerging 

Memory Technology based Main Memory (EMT) by taking advantage of the memory 

state of the program and using it to reduce read/write access to EMT.  
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Chapter 3: Related Work 

3.1 IDENTIFICATION OF INVALID DATA 

Prior research in making informed decisions based on the block status and future 

usefulness has been done both in software and hardware. Some techniques have tried to 

identify block usefulness at the software level [SVMW05, WMRW02] while others have 

attempted to do so at the hardware level [AGVO05, HKM02, KS08, LFF01].  Most of 

these techniques try to identify blocks that are not likely to be used in the near future. 

Software solutions do this by passing hints to the hardware about blocks that are thought 

to be not likely to be used in the near future to the hardware – based on inferences from 

profiling or compiler analysis [SVMW05, WMRW02]. Hardware solutions employ 

predictors to predict those blocks that are not likely to be used in the near future. The 

predictor does the prediction of future usefulness based on the data address [HKM02] or 

the program counter (PC) [AGVO05, KS08, LFF01]. All these approaches differ 

significantly from the approach in this dissertation due to the fact that they predict the 

likelihood of usage and attempt to use that while this dissertation uses the knowledge 

from program semantics about validity of a block from the programs perspective.  This 

dissertations approach is different from predicting how likely a block is to be used in the 

near future and thereby predicting how useful it is to keep a certain block in the cache. 

The knowledge based on program semantics allows one to optimize the DRAM 

subsystem to avoid some of the access operations without fear of incorrectness; the same 

cannot be done with predictive techniques. Lewis et al. [LBL02] explored using program 

semantic information about allocated space for caches and at cache block granularity to 

improve performance. Additionally, energy savings were never explored in Lewis et al. 

[LBL02]. Sartor [S10] extended the ideas of inconsequential write back for Java 

benchmarks. An upper and lower bound of the free heap was employed in Sator’s 
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research to track Java memory. Such a mechanism would not work on native 

(unmanaged) benchmarks due to the lack of a garbage collector compacted and well 

defined contiguous heap. Jouppi [J93] investigated a cache policy, ‘write-validate”, 

which does word-level sub-blocking [C96]. In the ‘write-validate’, policy data for the 

write is not fetched but rather written directly to the cache line with the valid bits turned 

off for all but the data being written. Thus, write-validate could potentially eliminate all 

write misses; but the implementation overhead of this scheme is significant. Wulf and 

McKee [WM95] proposed having a “first write” instruction to bypass cache stall due to 

write miss. The PowerPC instruction set has an instruction dcbz geared towards this end. 

This dissertation proposes a few instructions, the application of which transcends write 

misses and helps to track several different artifacts of data values and reap benefits from 

them. 

3.2 DEAD CACHE BLOCK LIFETIME PREDICTIONS 

The application of memory state knowledge has some similarity to existing uses 

of block lifetime prediction. Some of the uses explored in prior research related to block 

lifetime prediction are prefetching [HKM02, LFF01], replacement [KS08], bypassing 

[GAV95, JS03, JCMH99, RTDF98, TFMP95], coherence protocol optimizations [LW95, 

LF00, SWHKAF04] and to a limited extend power reduction [KHM01, AGVO05]. 

Works by Lai et al. [LFF01], Hu et al. [HKM02], Ferdman and Falsafi [FF07] use the 

predictions of the block lifetime to trigger prefetches; Lai et al. [LFF01], Hu et al. 

[HKM02], prefetched into the L1 data cache while Ferdman and Falsafi did the same 

from off-chip to on-chip memory.  Kharbutli and Solihin [KS08] used the knowledge of 

block lifetime to improve the LRU algorithm by replacing the dead blocks first and then 

bypassing the cache. Cache coherence protocols have also been tuned to take advantage 
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of block lifetime prediction to maintain or avoid status updates. Lebeck and Wood 

[LW95] proposed a reduction in cache coherence protocol overhead by invalidation some 

of the shared cache blocks early. Lai and Falsafi [LF00] employed a predictor based on 

program counter (PC), to predict last-touch and decide when blocks should be 

invalidated. PC-traces are used to identify last stores to a cache block in Somogyi et al.’s 

work [SWHKAF04]. There were also proposals for power saving techniques based on 

block lifetime prediction work by turning off (Kaxiras et al. [KHM01]) or gating (drowsy 

caches [FKMBM02]) transistors. The ideas in this dissertation can help most of these 

usage models while complementing the already existing ideas. 

3.3 POWER AND ENERGY DRAM OPTIMIZATION 

Venkatesan et al. in [VHR06] introduced a retention-aware placement algorithm 

which tried to reduce the refresh operations by experimentally identifying that, different 

rows require different refresh times. Mrinmoy et al. [GL07] suggested a technique to 

identify rows that were refreshed by a memory access and avoid refreshing those rows 

when possible. Murakami [OKM98] presents the benefits of selective DRAM refreshing 

using OS or compiler, however they do not describe how exactly this is done. It is a limit 

study evaluating the benefits of capturing all condition where refresh can be avoided. In 

this dissertation there are descriptions and evaluation of mechanisms to achieve part of 

the benefits.  

3.4 EMERGING MEMORY TECHNOLOGY 

Work related to emerging memory technologies such as MRAM, PCM, FeRAM 

etc, is relatively new in computer architecture. The published works have focused on 

analyzing the prospects of PCM as well as techniques to improve its life time and 

hide/tolerate its latency. Qureshi et al. [QSR09] proposes a wear leveling technique to 
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shift cache lines within a page which makes the wear more uniform over all lines in the 

page. A more refined technique is proposed by Qureshi et al. recently [Q09]. The work 

by Zhou et al. [ZYZ09] proposed shifting bits in a line, shifting lines in a segment, and 

segment swapping; all of which are various layers of wear leveling. Another approach to 

reducing the wear of PCM is to reduce the write traffic to PCM. Lee et al. [LIMB09] 

proposed partial write buffers which allow only modified data to be written to the PCM 

thereby avoiding unnecessary writes. Line level write back was proposed by Qureshi et 

al. [QSR09] which attempts to write to the PCM at a line level granularity. A line level 

write back technique could be complex since it requires the write buffer mechanisms to 

operate at a much finer granularity than the typical memory controller. Qureshi et al. 

[QSR09] also proposed lazy write which is essentially a cache for the PCM memory and 

use this to hide some of the latency of PCM.  The idea of silent store removal [LBL01] 

exploits the fact that some of the stores tend to write the same data over and over again 

which is unnecessary and can be avoided. Zhou et al. [ZYZ09] proposed to reduce the 

write energy spent on MRAM by avoiding redundant writes, i.e. when the value written 

back is the same as the old value. They modify the read/write logic and perform a read 

operation parallel to the write operation and abort the write operation if the read value is 

the same as the value to be written. There have been several fine-grained approaches that 

try to reduce unnecessary writes to the EMT memory, including data comparison write 

(DCW) [YLK07], Flip-N-Write [SL09], and many others [ZYZ09, ZL09, YND10]. 

These fine-grained ideas utilize read-before-write to detect modified data and potentially 

selectively invert bits.  

Another class of proposals, known as wear-leveling, improve lifetime by 

distributing writes equally to all cells in the device. Wear-leveling is commonly used with 

FLASH memory. Researchers have adapted ideas from FLASH memory to perform 
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wear-leveling in EMT’s by performing row shifting [ZYZ09, SLSB10], word shifting 

[ZL09], randomized address mapping [Q09,QSR09, SWL10] and data remapping 

[SLSB10, YMC11].  

These schemes are complementary to ideas in this dissertation and contribute 

towards making emerging memory technologies much more viable an option. 

3.5 VALUE LOCALITY AND CACHE FILTERS 

Prior work focusing on data value has been centered on value locality. For 

example, Lipasti et al. [LWS96] pointed out that load instructions exhibit value locality 

and proposed that there is potential for prediction. Last-value predictors, stride predictors, 

context predictors, and hybrid predictors have been proposed to predict load values 

[BZ02, CR00, LWS96]. In the large body of work related to value and stride prediction, 

the focus has been on performance and hence attempts to exploit value locality in 

memory operations has been focused on loads since loads are performance critical and on 

the critical path of program execution. What this dissertation presents is based on a 

similar intuition but the focus is on store operations.  

Kin and Magione-Smith [KMS97] introduced the filter cache, a small cache 

placed between the CPU and L1, to achieve power reduction. This works well for 

embedded application but not so well for larger workloads especially modern workloads 

with a large appetite for heap memory. The Frequent Value Cache (FVC) was proposed 

by Yang and Gupta [YG02] and works by encoding frequently used values in a 

compressed format. FVC saves time in accessing frequently used values but suffers 

performance loss for non-frequently used values. Islam and Stenstrom proposed Zero-

Value Caches [IS09] to filter out loads that load data whose values are zero. Their idea 
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works by placing a small cache dedicated to storing zero value data in a small separate 

cache directly accessible by the CPU.  

The optimizations in this dissertation rely on semantic information available from 

the program allowing for the system to act without fear for correctness. The techniques 

can work in a complementary fashion with most of the previous power saving techniques. 

It could also be applied to other areas were block lifetime prediction has been put to use 

to but the converse is not true since it requires accurate information.  
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Chapter 4: Experimental Methodology and Benchmarks 

This chapter reviews the benchmarks and methodology used for experiments and 

measurements. 

 

4.1 BENCHMARKS 

Languages such as Java, C++ and C# have become the languages of choice in 

many domains due to their object oriented nature. Object oriented programs are rich with 

features that reduce the programmer’s effort while increasing the manageability of code 

by encouraging modularity. The object oriented nature of programs has resulted in an 

increase in dynamic nature of control flow as well as memory management, an aspect 

that is targeted in this research.  

Based on the suggestions of Phansalkar et al. [PJJ07], a subset of SPEC CPU2006 

benchmark inputs were used to evaluate the optimizations. Since the experiments of 

interest require tracking explicit memory allocation, a subset of the SPEC CPU2006 

benchmark suite was picked to avoid benchmarks which did not have explicit dynamic 

memory allocation or whose memory allocation could not be tracked (particularly 

FORTRAN code).  

 



 33 

 

Figure 4.1 Data flow for a load instruction in a processor-memory system (borrowed 

Figure) [WGTBJJ05] 

4.2 EXPERIMENTAL METHODOLOGY  

The Figure 4.1 shows the topology and data flow of a processor-memory system. 

There are three separate and distinct parts of the system that interact during the life of a 

memory operation. These are the processor(s), memory controller(s), and DRAM 

memory system(s). The experimental methodology uses a cache/memory simulator built 

on top of PIN [PIN, PIN05] to handle the first two parts of the system. The PIN tool 

tracks both memory access operations (loads and stores) as well as memory management 

operations (malloc, free, calloc, valloc, realloc, mmap, munmap etc). This allows the 
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emulation of the necessary state changes corresponding to memory state i.e. 

inconsequential or not. For the DRAM optimizations (third part of the system) a DRAM 

simulator, DRAMsim [WGTBJJ05] that models both power and latency is used. 

DRAMsim is a hardware-validated, public-domain DRAM system simulation code that 

was developed by members of the Systems and Computer Architecture Lab (SCAL) in 

the Department of Electrical and Computer Engineering at the University of Maryland. It 

is a detailed and highly-configurable C-based memory system simulator which 

implements detailed timing models for a variety of existing memories including SDRAM, 

DDR, DDR2, DRDRAM and FBDIMM. It also models the power consumption of 

SDRAM and its derivatives. The DRAM simulator is used to model DRAM energy and 

is tied into the PIN memory model using the hooks on it. The simulator built, uses x86 

binaries of the SPEC CPU2006 benchmarks and can simulate the allocation and de-

allocation behavior in C and C++ benchmarks. 

For modeling the PCM based system the PIN based model is extended to use a 

PCM based memory hierarchy. The PCM based memory hierarchy employs a DRAM 

based cache similar to Qureshi et al. [QSR09]. This model does not model energy and 

power but models basic scheduling as well as latency for the PCM based memory 

hierarchy.  

All the benchmarks were run for 10%-20% of their run length for detailed 

memory simulation using DRAMsim. In cases where general behavior statistics were 

collected the benchmarks ran for the full length, if applicable. The benchmarks used in 

this dissertation are summarized in Table 4.1. Statistical sampling approaches such as 

SIMPOINT [PHBSC03] are not suited for this dissertation because all the memory 

allocation calls as well as their effect on the memory hierarchy has to be tracked 

completely to ensure correct estimation of memory state. Sampling instruction ranges 
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will result in loss of information regarding memory allocation and memory reads and 

writes which are very important in estimating the usefulness of memory ranges.  

The memory system configuration assumed for the DRAM based memory is 

presented in Table 4.2. The memory system configuration assumed for the emerging 

memory technology based main memory is presented in Table 4.3.  

 

Benchmark Instruction Count(Billions) Benchmark Instruction Count(Billions) 

 Total  Simulation   Benchmark Simulation 

astar 869 87 milc 1178 118 

bzip2 341 34 namd 2333 233 

dealII 2007 201 omnetpp 611 61 

gcc 57 6 perlbench 674 67 

gobmk 328 33 povray 1013 101 

h264ref 2595 259 sjeng 2319 232 

hmmer 2004 200 soplex 381 38 

lbm 136 14 sphinx3 3101 310 

libquantum 2242 224 xalancbmk 1131 113 

mcf 372 37    

Table 4.1 SPEC CPU2006 benchmarks used in this dissertation  
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Parameter Value Parameter Value 

Type DDR2 Number of Columns 1024 

Size 1 GB Data Width 72 bits (64 data + 8 ECC) 

Rows 16384 Refresh Interval 32ms 

Frequency 667 MHz L2 cache size 1-8 MB 

Number of Banks 8 L2 cache way 8way (64 byte line) 

Number of Ranks 2 L1 cache 64 KB, 2 way, 64byte line  

Table 4.2 Memory subsystem configuration for DRAM based memory  

 

 

 

L1  64 KB, 64 byte line, 2 way  DRAM  cache 64 MB, 320 cycle latency 

L2  2 MB, 64 byte line, 16 way EMT(PCM)  4 GB, 1280 cycle latency 

Table 4.3 Memory subsystem configuration for emerging memory technology based 

memory  
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Chapter 5: Memory State Knowledge Based Optimizations 

Computer systems tend to operate agnostic of semantic information about 

memory state and the value which is present in the program and fail to exploit this 

knowledge to optimize the memory hierarchy to enhance energy, reliability and 

performance characteristics of the memory hierarchy. Although there have been memory 

hierarchy optimizations such as cache-locking, cache-bypass, prefetching etc, most of the 

modern optimizations done in the microarchitecture and memory subsystem tend to be 

agnostic of program semantics. This dissertation harnesses memory state and value 

information from the semantics of the program and exploits it to optimize the main 

memory system.  

5.1 CONCEPT OF INCONSEQUENTIAL MEMORY 

When a program or operating systems memory manager allocates or frees up a 

memory region, this program semantic information is used by the architecture to optimize 

the working of the memory system. The idea of inconsequential memory is explained 

with some examples in this section. Most program languages provide means for dynamic 

memory allocation (implicitly or explicitly). Considering its wide use and understanding, 

the constructs and assumption of C language will be used for the purpose of examples. 

For example, malloc, calloc, or realloc etc allocate a region of memory whose existing 

content is uninitialized. The uninitialized memory is inconsequential until actual data is 

written to it by the program. The malloc function prototype is 

void *malloc (size_t size); 

this prototype allocates size bytes of memory. If the allocation is successful, a pointer to 

the block of memory is returned. If it fails, a null pointer is returned. The pointer returned 

by malloc is a void pointer (void *), indicating the lack of any known data type. This 
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pointer can be cast to the necessary type and assigned to a pointer variable. The memory 

allocated via malloc is persistent, i.e. it will continue to exist until it gets explicitly 

deallocated by the programmer (in the code) or the program terminates. The explicit 

deallocation (freeing the block of memory) is done with the help of the function “free”. 

Its prototype is 

void free (void *pointer); 

and this prototype releases the block of memory pointed to by pointer. The address, 

pointer must have been returned previously by memory allocation functions such as 

malloc, calloc, or realloc etc. Once the address is freed any access to this memory 

location will be erroneous and its behavior undefined. Hence, the programmer will not be 

using this location after it is freed and many modern programming languages have 

mechanisms to prevent such erroneous accesses. Consider the following example 

program:  

1.  int main (void) { 

2.       const char *p1 = "hello"; 

3.       char *p2; 

4.       p2 = malloc (strlen (p1) + 1); 

5       strcpy (p2, p1); 

6.       free (p2); 

7.       return 0;        } 
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(a) No data region is reserved or in use in the 

heap; i.e. all the heap is unallocated 

(b) Part of the heap is reserved for use by 

pointer p2, but the reserved region still 

contains no useful data. 

 
 

(c) Memory region is used for storing data. (d) Memory reserved for pointer p2 is now 

unallocated and hence it is in the same state as 

the rest of the heap. 

Figure 5.1 Memory state during different stages of memory allocated, in use and 

unallocated 
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The diagrams (Figure 5.1 (a) – (d)) show the situation at line 3, line 4, line 5 and 

line 6. At line 3, the pointer p2 has no memory allocated to it. At line 4, the pointer p2 

has memory allocated to it but has no useful data occupying the allocated space and at 

line 5 the pointer p2 has data copied into the allocated space. Note that at line 6 the 

pointer variable p2 still contains the address of a byte in the free store but there is no 

longer an allocated block at that address. It would be a serious error to actually use that 

address. Thus, according to program semantics, the address pointed to by p2 is not 

expected to contain useful data after line 6. Similarly, if pointer p2 was read before the 

strcpy function (line 5) the result would be an error or some random data. Thus before 

strcpy function writes data to the allocated memory it contains random data and the 

program does not read from it without writing to it first. In both these cases the data 

present is invalid, hence inconsequential to the program execution.  

Therefore, some memory accesses are inconsequential memory accesses, i.e. the 

transfer of data between the caches, the memory and the disk drive are those that have not 

been initialized by the program, or have already been released by the program. The data 

is transferred by the hardware based on demand, regardless of the memory state. During a 

typical program execution all structures such as the stack and heap contain 

inconsequential data until they are allocated to some data structures and are initialized. 

Figure 5.2 illustrates the different states a memory location can be in as a result of 

memory management. An unallocated-invalid memory location becomes allocated-

invalid after allocation. It remains in this state until the memory location is written to, 

causing it to transition to the allocated-valid state. From this point on, that memory 

location cannot be considered inconsequential. Eventually, when the program is done 

with the memory location, a free operation causes it to be returned to the heap; i.e. the 

location transition from an allocated-valid state to an unallocated-invalid state. 
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Figure 5.2 Inconsequent memory state transitions  

5.2 ZERO VALUE DATA 

Another important memory state this dissertation focuses on relates to the sparse 

nature of data and its value in stores. In most programming languages, data structures are 

often initialized to zeros.  Furthermore, very often, large data sets contain arrays and 

matrices which are sparse matrices heavily populated with zero. It is found that stores too 

have value sparseness, particularly for zero data value. 

5.3 KEY MICROARCHITECTURAL IDEAS 

There are three major insights that come from the memory state:  

a) Inconsequential write backs.  

b) Inconsequential write miss. 

c) Zero Value Stores.  

The details of how this is applied and implemented along with its results are 

presented in the following chapters.  The remainder of the present chapter explains the 

key microarchitectural ideas of this dissertation. 
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Figure 5.3 Cache line states (write back and write allocate cache) 

5.3.1 Inconsequent Write Backs (IWB) 

The cache hierarchy of a processor operates with a write through or a write back 

policy. Most modern caches tend to be write back. Figure 5.3 is an illustration of the 

different states of a cache line. In a write back cache, writes are not immediately stored 

into the memory. Instead, the cache keeps track of the locations that have been written 

over (marks them as dirty). The data in the modified locations are written back to the 

memory when the data is evicted from the cache due to the cache replacement policy. 

Hence a read miss in a write back cache, i.e. replacing a block with another, will require 

two memory accesses to be serviced if the replacement candidate is in modified state – 
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one to fetch the necessary data for the read and one to write the replaced data from the 

cache to the store.  

Programs typically allocate memory regions to compute and store data that may 

persist across different parts of the program in somewhat temporal fashion. Modified data 

stored in an allocated region will appear as dirty data, but once the temporary use of the 

memory region is over (marked by a call to free), the correct execution of the program 

does not use the data stored in these memory addresses. The data is in inconsequent state 

since the data stored in a location that has been freed is of no consequence to the correct 

execution of the program. The inconsequential memory region information can be stored 

in the cache line using the invalid bit that already exists to mark the cache line as 

inconsequential.  

When a modified and inconsequential line is evicted, one can avoid writing the 

replaced data to the next level of the memory. Furthermore, marking an inconsequential 

line as invalid makes it the next candidate for replacement which can improve the 

efficiency of the cache and thereby reduce load latency. Doing so would also reduce the 

number of writes performed on the memory device.  

Sartor [S10] in her dissertation extends my idea of inconsequential write back for 

Java benchmarks. An upper and lower bound of the free heap was employed to track 

Java. Such a mechanism would not work on native (unmanaged) benchmarks due to the 

lack of a garbage collector compacted and well defined contiguous heap but lends credit 

to the applicability and expandability of my proposal. 

5.3.2 Inconsequential Write Miss Servicing (IWM) 

A write miss occurs in a cache when a store attempts to store data and none of the 

cache ways contain the necessary cache line. In a cache that has write allocate policy, a 
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write miss would result in a corresponding fetch from memory and store in a cache line 

as shown in Figure 5.3. The necessary cache line is fetched from memory and brought to 

the cache so that the write to the cache can proceed. Fetching the data from the memory 

hierarchy during a write miss is important for correctness, particularly for partial writes 

(writes a fraction of the cache line in size). If the write miss’s target data is not brought 

from the main memory and the data write executed, the data will be written to the cache 

line with the rest of the cache line filled up with random data. Since the write miss 

candidate cache line will be marked as dirty after a write operation, a future eviction to 

this cache line would result in the whole cache line (including the random data) being 

written back to the main memory, resulting in loss of data. To avoid such data corruption, 

a write miss requires a corresponding read to memory.  

The memory management library allocates and frees data for the program and 

these operations on the heap are done on a contiguous memory range. A write to a newly 

allocated memory space resulting in a write miss gains no useful data by fetching the data 

from memory since the data present in this address range is ”inconsequent”.  

Lewis et al. [LBL02] explored using program semantic information about 

allocated space for caches by tracking limited allocation ranges in the cache to improve 

performance. Lewis’s approach suffers when there is very active dynamic memory use 

because it causes the allocated ranges to become very fragmented. Jouppi [J93] 

investigated a cache policy, ‘write-validate”, which does word-level sub-blocking [C96]. 

In Jouppi’s policy, data for the write is not fetched but rather written directly to the cache 

line with the valid bits turned off for all but the data being written. ‘Write-validate’ could 

potentially eliminate all write misses; but the implementation overhead (one bit per word 

in caches) of this scheme is significant. 
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5.3.3 Zero-Value Stores (ZVS) 

In the past, data patterns were explored in loads by works related to Value 

Prediction. Store operations arising from the program too can have certain data patterns. 

This dissertation focuses the intuition of value locality on to stores since data structures 

are often initialized to zeros.  Initializing to zero is also often the case with the 

heap/generational regions of managed languages. Furthermore, very often large data sets 

contain arrays and matrices which are sparse matrices heavily populated with zero. Past 

studies, on the data distribution of zero value data stored in the memory done by Ekman 

and Stenstrom [ES05], demonstrated that a significant amount of memory contains zero 

value. When stores write zeros to memory, this dissertation attempts to reduce the 

number of stores to the memory by capturing it as compressed information. This can help 

condense and bypass stores to the memory.  

Prior work focusing on data value was centered on value locality. Last-value 

predictors, stride predictors, context predictors, and hybrid predictors have been proposed 

to predict load values [BZ02, CR00, LWS96]. A Frequent Value Cache (FVC) was 

proposed by Yang and Gupta [YG02] which works by encoding frequently used values in 

a compressed format. FVC saves time in accessing frequently used values but suffers 

performance loss for non-frequently used values. Islam and Stenstrom proposed Zero-

Value Cache [IS09] to filter out the loads that load data values of zero. Zero-Value cache 

works by placing a small cache dedicated to storing zero value data in a small separate 

cache directly accessible by the CPU. In the past, the focus has been on performance and 

hence attempts to exploit value locality in memory operations has been focused on loads. 

Loads were targeted because loads are performance critical and on the critical path of 

program execution. What this dissertation presents is based on a similar intuition but the 

focus is on store operations.  
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5.3.4 Application to DRAM and EMT memory 

In Chapter 7 and Chapter 8 the ideas of IWB, IWM and ZVS are exploited to 

optimize DRAM energy consumption and the lifetime of emerging memory technology 

(EMT) based memory.  

In Chapter 7, ESKIMO uses the concept of IWB and IWM and reduces such 

access by storing information regarding inconsequential memory in the TLB and page 

table. ESKIMO helps reduce activity to the DRAM by avoiding access that are IWM or 

IWB. In addition, the inconsequential memory blocks in DRAM’s are identified and 

avoided during refresh operations since the data fidelity of blocks known to be 

inconsequential is not important.  

Chapter 8 presents mFilter, an augmentation to an emerging memory technology 

based memory hierarchy. This filter stores information regarding allocated and 

deallocated memory as well as memory regions containing zero value data. This way the 

mFilter helps avoid IWB and ZVS related write operations as well as IWM related load 

operations. 
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Chapter 6: Workload Characterization 

 

Before perusing mechanisms to exploit inconsequential data, it would be valuable 

to profile the workloads to understand the amount of such data in them. In this chapter, 

some preliminary profiling of the benchmarks is performed to get an insight into their 

inconsequential state as well as zero data value.  

6.1 DYNAMIC MEMORY ALLOCATION AND FREE PATTERN 

Any microarchitectural technique that aims to exploit the temporal existence of 

inconsequential memory has to track as well as signal memory ranges based on allocation 

and free patterns.  For this reason, it is important to look at the benchmarks with an 

interest in their data allocation and data free behavior. In Table 6.1 and 6.2 we have the 

allocation call behavior of the SPEC CPU2006 benchmarks used in this dissertation. The 

calls to allocation memory were recorded and categorized according to their granularity. 

In general, the smaller the granularity, the higher is the tracking overhead. It is desired 

that most of the dynamic memory allocation and free related behavior are of large size 

granularity thereby enabling easier tracking of inconsequential state arising from it.  The 

reasoning behind this is that smaller granularity of state leads to fragmented memory 

which requires a larger number of state storage memories. Implementing state storage, 

related to tracking, in the hardware can be a significant cost. In Table 6.1 we see that 

benchmarks such as dealII, gcc, gobmk, libquantum, povray, sphinx3 and xalancbmk 

have majority of the allocation calls for issuing memory that is of any size smaller than 

64 byte, the size of a cache line assumed in this dissertation. On average the top 3 

granularity of allocation for allocation calls are less than 64 byte, 256 B to 1 KB and 4 

KB to 256 KB.  
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Benchmark1 
% of Allocation Calls per Size Bucket Total 

Calls 

(1K) 

   <64 <256 <1K <4K <256K <1M <16M >16M 

astar* 21.7 0.8 74.1 3.0 0.5 0 0 0 1117 

bzip2 0 0 0 0 46.4 10.7 32.1 10.7 <1 

dealII* 92.5 6.5 0.9 0.1 0 0 0 0 153873 

gcc* 64.8 21.0 2.0 4.3 7.8 0 0 0 2920 

gobmk 73.6 0 0.2 24.3 1.8 0 0 0 119 

h264ref* 4.8 1.4 87.5 0.8 4.8 0.6 0.1 0 105 

hmmer* 3.1 14.8 74.7 7.3 0 0 0 0 1000 

lbm 0 0 50 0 0 0 0 50 <1 

libquantum 28.9 2.2 2.2 2.2 8.3 16.7 23.3 16.1 <1 

mcf 0 0 40 0 0 0 40 20 <1 

milc* 0.1 0.1 0 0 0 0.2 61.6 38.0 7 

namd* 0.2 0.3 41.5 0.3 56.4 0.2 1.1 0 1 

omnetpp* 18.8 81.2 0 0 0 0 0 0 267065 

perlbench* 18.1 63.5 0.3 0.3 15.0 2.8 0 0 22917 

povray* 96.3 2.2 1.4 0 0.1 0 0 0 2462 

sjeng 0 0 20 0 0 0 20 60 <1 

soplex* 1.3 0.4 0.9 0.8 89.7 5.3 1.3 0.3 9 

sphinx3* 65.5 0.9 5.7 27.0 0.8 0 0 0 14225 

xalancbmk* 67.5 5.1 12.1 13.8 1.5 0 0 0 135184 

AVG 29.33 10.55 21.76 4.43 12.27 1.92 9.45 10.27 31632 

Table 6.1 Granularity of allocation calls (allocation calls per size) 

 

                                                 
1 Benchmarks that are marked by an asterisk symbol are the ones that demonstrate better response to 

Inconsequential Write Miss 
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Benchmark2 % of Allocated Bytes per Size Bucket Total 

Allocated 

Bytes(MB) 

  <64 <256 <1K <4K <256K <1M <16M >16M 

astar* 1.1 0.1 79.4 7.2 4.6 1.8 5.8 0 997 

bzip2 0 0 0 0 0.1 0.1 3.8 96.0 628 

dealII* 49.2 13.9 6.6 3.1 4.8 2.6 5.1 14.6 10819 

gcc* 0.8 0.8 0.5 5.0 89.5 2.4 0.9 0 6634 

gobmk 1.2 0 0.1 71.4 8.5 0.8 18.1 0 123 

h264ref* 0 0 4.3 0.1 22.9 28.8 43.9 0 1026 

hmmer* 0.2 4.4 77.6 15.1 0.2 2.5 0 0 545 

lbm 0 0 0 0 0 0 0 100 409 

libquantum 0 0 0 0 0.1 1.8 37.0 61.2 1486 

mcf 0 0 0 0 0 0 0.5 99.5 1676 

milc* 0 0 0 0 0 0 34.8 65.2 84226 

namd* 0 0 1.2 0 28.2 1.6 69.0 0 45 

omnetpp* 2.7 97.0 0 0 0.2 0 0 0 42503 

perlbench* 0 0.2 0 0 68.0 31.7 0 0 59254 

povray* 42.5 6.1 14.5 0.2 36.7 0 0 0 114 

sjeng 0 0 0 0 0 0 6.7 93.3 172 

soplex* 0 0 0 0 9.0 5.1 17.4 68.5 3186 

sphinx3* 1.3 0.1 1.8 77.9 8.5 10.3 0.2 0 15398 

xalancbmk* 2.8 1.6 15.8 60.7 18.9 0.1 0 0 59352 

AVG 5.36 6.54 10.62 12.67 15.80 4.72 12.80 31.49 15189 

Table 6.2 Distribution of allocated bytes (allocated bytes per size) 

                                                 
2 Benchmarks that are marked by an asterisk symbol are the ones that demonstrate better response to 

Inconsequential Write Miss 
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In Table 6.2 we have the amount of memory allocated in bytes recorded per size 

class i.e., a distribution of the bytes allocated more than the allocation function call count. 

The amount of dynamic memory allocated is more important than the number of calls 

belonging to a class of allocation granularity. With the exception of dealII and povray, all 

the benchmarks allocate data larger than 64 bytes. In fact, on an average, the top 3 size 

classes of dynamic memory allocated are larger than 16 MB, 4 KB to 256 KB and 1 MB 

to 16 MB. The benchmarks that are marked by an asterisk symbol are the ones that 

demonstrate better response to IWM according to results shown is the later chapters. This 

is encouraging because even dealII and povray tracking mechanisms, with a minimum 

granularity of a cache line, gave reasonable results. In fact, by constructing a cumulative 

distribution from Table 6.2 we see that a tracking size of 64 bytes or greater can account 

for 95% of the allocated bytes while 256 bytes, 1 KB and 4 KB size tracking can account 

for 88%, 78% and 65% of the total allocated bytes. 

In Table 6.3 and 6.4, the free call behavior of the SPEC CPU2006 benchmarks 

used in this dissertation are presented. The calls to deallocate memory were recorded and 

categorized according to their granularity. The reasoning for granularity of free sizes is 

similar to the previous rational about allocation. In Table 6.3 we see that in benchmarks 

such as dealII, gcc, gobmk, libquantum, povray, sphinx3 and xalancbmk, the majority of 

the free calls issue memory that is smaller than 64 byte, the size of a cache lines assumed 

in this dissertation. The pattern for free calls is similar to the observation for allocation 

pattern before. On an average the top 3 granularity of allocation for allocation calls are 

less than 64 bytes, 256 to 1 KB and 4 KB to 256 KB.  
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Benchmark3 
% of Deallocation (Free) Calls per Size Bucket Total 

Calls 

(1K) 

   <64 <256 <1K <4K <256K <1M <16M >16M 

astar* 21.7 0.8 74.1 3.0 0.5 0 0 0 1117 

bzip2 0 0 0 0 50 12.5 37.5 0 <1 

dealII* 92.5 6.5 0.9 0.1 0 0 0 0 153873 

gcc* 65.1 20.9 1.9 4.3 7.8 0 0 0 2876 

gobmk 71.9 0 0.2 26.0 1.8 0 0 0 104 

h264ref* 4.8 1.3 87.5 0.8 4.8 0.6 0.1 0 105 

hmmer* 3.1 14.8 74.8 7.3 0 0 0 0 1000 

lbm 0 0 50 0 0 0 0 50 <1 

libquantum 39.1 1.6 1.6 1.6 7.8 21.9 4.7 21.9 <1 

mcf 0 0 40 0 0 0 40 20 <1 

milc 0 0 0 0 0 0 61.7 38.3 6 

namd 0.2 0.3 41.5 0.3 56.5 0.1 1.1 0 1 

omnetpp* 18.8 81.2 0 0 0 0 0 0 266999 

perlbench* 19.7 77.2 0.3 0.2 2.5 0 0 0 18646 

povray* 97.6 2.0 0.3 0 0 0 0 0 2427 

sjeng 0 0 100 0 0 0 0 0 <1 

soplex 3.1 0.5 1.9 1.5 84.1 7.4 1.5 0.2 4 

sphinx3 65.0 0.9 5.8 27.4 0.8 0 0 0 14024 

xalancbmk* 67.5 5.1 12.1 13.8 1.5 0 0 0 135184 

AVG 30.01 11.22 25.94 4.54 11.48 2.24 7.72 6.86 31388 

Table 6.3 Granularity of deallocation calls (free call per size) 

                                                 
3 Benchmarks that are marked by an asterisk symbol are the ones that demonstrate better response to 

Inconsequential Write Miss 
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In Table 6.4 we have the amount of memory freed in bytes recorded per size class 

i.e., a distribution of the bytes allocated. Now we see that with the exception of dealII and 

povray, all the benchmarks allocate data larger than 64 bytes. In fact, on an average the 

top 3 size classes of dynamic memory mostly allocated are larger than 16 MB, 4 KB to 

256 KB and 256 KB to 1 KB. The benchmarks that are marked by an asterisk symbol are 

the ones that demonstrate better response to IWB in results shown in later chapters. This 

is encouraging because even in dealII and povray tracking mechanisms with a minimum 

granularity of a cache line gave reasonable results. In fact, by construction a cumulative 

distribution from Table 6.4, we see that a tracking size of 64 bytes or greater can account 

for 93% of the allocated bytes while 256 bytes, 1 KB and 4 KB size tracking can account 

for 86.4%, 71% and 57% of the total allocated bytes. 

In addition to malloc and free operations there are larger system level functions to 

allocate memory such as mmap and munmap. Both these functions (mmap and munmap), 

are used to allocate large chunks of memory in granularities of the page size. They are 

typically used by the memory manager or allocator to allocate memory used to construct, 

replenish, scale down or empty the dynamic heap, a reservoir of memory space. The heap 

is then used to allocate dynamic memory requests for memory over the course of the 

program. Thus mmap and munmap are the calls that fill up and empty the heap, which is, 

in turn, used by the memory manager or allocator to provide for on demand dynamic 

memory quickly. Table 6.5 presents the ratios of memory allocated via malloc calls to the 

amount of memory allocated via mmap i.e. a representation of the amount of dynamic 

memory recycling. This is also an indication of the rate of allocation and free operations 

because, the higher the rate of allocations followed by free, the more capable it is in 

reusing the heap space. Thus, programs with higher rate of dynamic memory recycling 
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require a smaller amount of heap space to satisfy the dynamic allocation. If most of the 

heap fits in the cache, it is unlikely for IWB and IWM to help.  

Benchmark4 % of Deallocated (Freed) Bytes per Size Bucket Total 

Bytes 

(MB) 

  <64 <256 <1K <4K <256K <1M <16M >16M 

astar* 
1.1 0.1 79.4 7.2 4.6 1.8 5.8 0 997 

bzip2 
0 0 0 0 1.5 3.0 95.5 0 25 

dealII* 
49.2 13.9 6.6 3.1 4.8 2.6 5.1 14.6 10819 

gcc* 
0.8 0.8 0.5 5.0 89.5 2.5 0.9 0 6521 

gobmk 
1.5 0 0.1 88.5 9.9 0 0 0 93 

h264ref* 
0 0 4.3 0.1 22.9 28.8 43.9 0 1026 

hmmer* 
0.2 4.4 78.1 15.2 0.2 1.9 0 0 542 

lbm 
0 0 0 0 0 0 0 100 409 

libquantum 
0 0 0 0 0.1 2.6 4.9 92.4 951 

mcf 
0 0 0 0 0 0 0.5 99.5 1676 

milc 
0 0 0 0 0 0 34.9 65.1 83613 

namd 
0 0 1.2 0 28.5 0.8 69.5 0 45 

omnetpp* 
2.7 97.0 0 0 0.2 0 0 0 42499 

perlbench* 
0.3 5.3 0.1 0.3 82.0 12.0 0 0 23383 

povray* 
66.5 8.1 5.4 0.1 20 0 0 0 73 

sjeng 
0 0 100 0 0 0 0 0 <1 

soplex 
0 0 0 0 14.6 8.1 23.3 54.0 1160 

sphinx3 
1.3 0.1 1.8 78.1 8.4 10.3 0 0 15358 

xalancbmk* 
2.8 1.6 15.8 60.7 18.9 0.1 0 0 59352 

AVG 6.65 6.91 15.44 13.59 16.11 3.92 14.96 22.40 13081 

Table 6.4 Distribution of deallocated bytes (freed bytes per size) 

                                                 
4 Benchmarks that are marked by an asterisk symbol are the ones that demonstrate better response to 

Inconsequential Write Miss 
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Benchmark Allocated/ 

Mmap'd 

Freed/ 

munmap'd 

Benchmark Allocated/ 

Mmap'd 

Freed/ 

munmap'd 

astar 
24 33 

milc 
154 3801 

bzip2 
1 2 

namd 
1 1 

dealII 
7 7 

omnetpp 
2237 5312 

gcc 
332 502 

perlbench 
871 866 

gobmk 
4 93 

povray 
10 0 

h264ref 
27 32 

sjeng 
1 0 

hmmer 
78 181 

soplex 
86 2 

lbm 
1 1 

sphinx3 
497 1920 

libquantum 
2 1 

Xalancbmk 
1915 2968 

mcf 
1 1 

AVG 
329 827 

Table 6.5 Allocated to mmap’d and freed to munmap’d memory ratios 

Tables 6.6 to 6.9 present data similar to 6.1 to 6.4 but for mmap and munmap. 

These calls have a minimum granularity of a page size because it is the granularity at 

which the OS issues memory to the requester via mmap. Such a large granularity could 

simplify tracking significantly; but typical dynamic memory allocation and free behavior 

operates by cycling through such pages of heap memory allocated. This means the 

amount of memory allocated via mmap would be used by the memory manager or 

allocator as its repository of space that it issues and reclaims based on malloc and free 

calls. This also means that the amount of memory allocated and freed using mmap and 

munmap will typically be a fraction of what is requested by malloc and free. 
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Benchmark % of mmap Calls per Size Bucket Total 

mmap 

Calls 

  

<4K =4K <8K <64K <256K <1M <16M >16M 

astar 0 24.1 3.4 10.3 6.9 17.2 37.9 0 29 

bzip2 0 21.1 0 10.5 10.5 5.3 36.8 15.8 19 

dealII 0 11.9 1.7 5.1 3.4 1.7 23.7 52.5 59 

gcc 0 21.7 4.3 8.7 17.4 8.7 39.1 0 23 

gobmk 0 91.5 0.8 1.7 0.8 0.8 4.2 0 118 

h264ref 0 29.6 3.7 7.4 7.4 22.2 29.6 0 27 

hmmer 0 43.8 6.3 12.5 25.0 0 12.5 0 16 

lbm 0 46.7 6.7 13.3 6.7 0 13.3 13.3 15 

libquantum 0 11.4 2.3 4.5 2.3 6.8 11.4 61.4 44 

mcf 0 43.8 6.3 12.5 6.3 0 25.0 6.3 16 

milc 0 12.5 2.1 4.2 2.1 33.3 37.5 8.3 48 

namd 0 24.3 2.7 8.1 8.1 5.4 51.4 0 37 

omnetpp 0 14.3 1.6 4.8 71.4 1.6 6.3 0 63 

perlbench 0 8.2 1.6 3.3 13.1 27.9 45.9 0 61 

povray 0 72.2 2.8 8.3 5.6 0 11.1 0 36 

sjeng 0 33.3 0 16.7 8.3 0 16.7 25.0 12 

soplex 0 23.3 3.3 10 23.3 10 30 0 30 

sphinx3 0 90.7 0.7 1.3 2.0 0.7 4.7 0 150 

xalancbmk 0 10.2 1.0 3.1 51.0 29.6 5.1 0 98 

AVG 0 33.40 2.70 7.70 14.29 9.01 23.27 9.61 47 

Table 6.6 Granularity of allocation calls (Mmap calls per size) 

 

 



 56 

 

Benchmark % of mmap’d Bytes per Size Bucket Total 

Bytes 

(MB) 

  

<4K =4K <8K <64K <256K <1M <16M >16M 

astar 0 0.1 0 0.2 0.4 6.3 93.0 0 41 

bzip2 0 0 0 0 0 0 3.1 96.8 623 

dealII 0 0 0 0 0 0 4.5 95.5 1575 

gcc 0 0.1 0 0.2 3.3 6.3 90.1 0 20 

gobmk 0 1.4 0 0.1 0.4 3.2 94.8 0 30 

h264ref 0 0.1 0 0.1 0.7 7.7 91.4 0 38 

hmmer 0 0.4 0.1 0.5 10.7 0 88.3 0 7 

lbm 0 0 0 0 0 0 1.4 98.5 415 

libquantum 0 0 0 0 0 0.1 2.0 97.9 866 

mcf 0 0 0 0 0 0 0.8 99.2 1682 

milc 0 0 0 0 0 1.8 4.7 93.5 546 

namd 0 0.1 0 0.2 0.9 1.6 97.2 0 43 

omnetpp 0 0.2 0 0.4 40.6 1.3 57.5 0 19 

perlbench 0 0 0 0.1 1.8 9.7 88.4 0 68 

povray 0 0.9 0.1 0.6 1.6 0 96.8 0 11 

sjeng 0 0 0 0 0.1 0 8.4 91.5 175 

soplex 0 0.1 0 0.2 2.6 3.8 93.3 0 37 

sphinx3 0 1.7 0 0.1 1.8 2.5 93.9 0 31 

xalancbmk 0 0.1 0 0.2 29.5 29.1 41.0 0 31 

AVG 0 0.27 0.01 0.15 4.97 3.86 55.29 35.42 329 

Table 6.7 Distribution of allocated bytes (Mmap’d bytes per size) 
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Benchmark % of munmap Calls per Size Bucket Total 

Calls   <4K =4K <8K <64K <256K <1M <16M >16M 

astar 0 7.1 0 0 7.1 35.7 50 0 14 

bzip2 0 0 0 0 12.5 12.5 75.0 0 8 

dealII 0 0 0 0 2.3 2.3 23.3 72.1 43 

gcc 0 8.3 0 0 25.0 16.7 50 0 12 

gobmk 0 99.0 0 0 1.0 0 0 0 104 

h264ref 0 17.6 0 0 11.8 35.3 35.3 0 17 

hmmer 0 33.3 0 0 16.7 50 0 0 6 

lbm 0 40 0 0 20 0 0 40 5 

libquantum 0 0 0 0 2.9 5.9 8.8 82.4 34 

mcf 0 33.3 0 0 16.7 0 33.3 16.7 6 

milc 0 0 0 0 50 0 0 50 2 

namd 0 5.3 0 0 10.5 5.3 78.9 0 19 

omnetpp 0 4.3 0 0 93.6 2.1 0 0 47 

perlbench 0 2.6 0 0 15.8 42.1 39.5 0 38 

povray 0 95.2 0 0 4.8 0 0 0 21 

sjeng 0 50 0 0 50 0 0 0 2 

soplex 0 0 0 0 21.4 14.3 35.7 28.6 14 

sphinx3 0 97.0 0 0 0.8 0.8 1.5 0 132 

xalancbmk 0 3.7 0 0 59.8 35.4 1.2 0 82 

AVG 0 26.14 0.00 0.00 22.25 13.60 22.76 15.25 32 

Table 6.8 Granularity of deallocation calls (Munmap per size) 
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Benchmark % of munmap’d Bytes per Size Bucket Total 

Bytes 

(MB) 

  

<4K =4K <8K <64K <256K <1M <16M >16M 

astar 0 0 0 0 0.4 8.6 91.0 0 30 

bzip2 0 0 0 0 0.7 1.5 97.8 0 16 

dealII 0 0 0 0 0 0 3.8 96.2 1564 

gcc 0 0 0 0 4.0 9.8 86.1 0 13 

gobmk 0 78.6 0 0 21.4 0 0 0 1 

h264ref 0 0 0 0 0.8 9.1 90 0 32 

hmmer 0 0.3 0 0 3.9 95.8 0 0 3 

lbm 0 0 0 0 0 0 0 100 409 

libquantum 0 0 0 0 0 0.1 1.3 98.6 891 

mcf 0 0 0 0 0 0 0.5 99.5 1676 

milc 0 0 0 0 0.5 0 0 99.5 22 

namd 0 0 0 0 1.0 1.1 97.9 0 32 

omnetpp 0 0.1 0 0 96.7 3.2 0 0 8 

perlbench 0 0 0 0 2.8 23.3 73.9 0 27 

povray 0 41.6 0 0 58.4 0 0 0 <1 

sjeng 0 3.4 0 0 96.6 0 0 0 <1 

soplex 0 0 0 0 0.1 0.2 5.5 94.2 533 

sphinx3 0 6.3 0 0 1.4 9.7 82.6 0 8 

xalancbmk 0 0.1 0 0 45.3 45.0 9.7 0 20 

AVG 0 6.86 0 0 17.58 10.92 33.69 30.95 278 

Table 6.9 Distribution of deallocated bytes (Munmap’d bytes per size) 
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6.2 LIFETIME DISTRIBUTION OF DYNAMIC MEMORY ALLOCATION AND FREE PATTERN 

The ideas of inconsequential write back (IWB) and inconsequential write miss 

(IWM) are also affected by the rate of dynamic memory allocation and deallocation. For 

example, programs that allocate all the memory at the start of the program and then 

release them at the very end are typically not good candidates for optimizing 

inconsequential write backs. It would be too late in the execution cycle to identify 

memory as free and inconsequential. Furthermore, the longer it takes for blocks of data to 

be identified as free and hence as an inconsequential block, the less likely is it for those 

blocks to be present in the cache. The inconsequential blocks could also be replaced by 

newer data thereby denying IWB a chance to have any impact. Thus, a program that 

waits until the very end of its life to free up its dynamic memory is less likely to 

contribute to inconsequential write backs. On the other hand, programs that allocate 

memory at the start could make tracking of inconsequential write miss candidates easier 

because such blocks can be coalesced and identified as large blocks of freshly allocated 

data allowing it to be represented at larger granularity.  

Given these effects and intuitions, this section presents data that charts out the 

dynamic memory allocation and deallocation pattern through the lifetime of the 

benchmark. Figures 6.1 (a) to 6.1 (j) plot two figures per benchmark where one figure 

shows the timeline distribution of memory allocated and the other shows the timeline 

distribution of memory being deallocated. Each point in the graph shows the percentage 

of total allocated or freed memory that was allocated or freed at that particular point in 

time. The x-axis represents time measured in instruction count (using multiples of 100 

million). The y-axis represents the percentage of the total allocated or freed memory.  

The benchmark data that is presented in the following set of paragraphs and 

figures can be summarized as follows:  
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1) Benchmark astar could benefit from IWB but would require a last level cache 

size large enough to hold the data long enough to be identified by a free 

operation. 

2) Benchmark bzip2’s limited dynamic memory use limits the gains from IWB 

but it could benefit from IWB.  

3) Both gcc and dealII have good potential to benefit from IWB as well as IWM 

due to their distributed allocation behavior. 

4) Benchmark gobmk‘s allocation and free behavior could benefit from IWB and 

IWM but is limited by the overall light use of dynamic memory in the 

program.  

5) Benchmark h264 has an even distribution of free and memory allocation, 

suggesting that it would benefit well from IWB and IWM. 

6) Benchmark hmmer also has a reasonably distributed allocation and free 

pattern which suggests it could benefit from IWM and IWB.  

7) Benchmark lbm releases its dynamic memory only at the very end making it 

impossible to benefit from IWB.  

8) Benchmark milc has a moderate chance to benefit from IWM and can also 

benefit from IWB with the right cache size.  

9) Benchmark namd gives up all its dynamic allocated memory only at the very 

end making it impossible to benefit from IWB. The lump sum allocation of 

memory at the start also makes it hard for namd to benefit from IWM.  

10) Benchmark perlbench has a strong prospect of benefiting from IWB and 

IWM.   

11) The memory deallocation pattern of povray suggests that it is a very good 

candidate to benefit from IWB.  



 

12) Benchmark soplex 

IWB.  

13) Benchmarks xalancbmk, 

IWB. 

 

Figure 6.1 (a) Byte allocation and deallocation

Figure 6.1 (a) clearly illustrates that the benchmark 

and free very early on followed by a relatively steady state behavior.
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oplex seems to be a good candidate for IWM but not so much for 

alancbmk, sphinx and omnetpp are promising candidates for 

 

 

Byte allocation and deallocation distribution timeline for astar

Figure 6.1 (a) clearly illustrates that the benchmark astar has a spike in allocation 

and free very early on followed by a relatively steady state behavior. The early spikes 

seems to be a good candidate for IWM but not so much for 

promising candidates for 

 

 

star and bzip2  

has a spike in allocation 

The early spikes 
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followed by steady allocation rate suggest that astar is a potential candidate for IWM. Its 

early spike and steady data deallocation rate suggest that astar has potential for IWM. 

The spikes of free operations in the range of 4%, 11% etc suggest that astar requires a 

last level cache size large enough to capture the memory free operations. If the cache is 

not large enough, potential candidate lines could be evicted without benefiting from IWB.  

The bottom part of Figure 6.1 (a) shows the pattern for the bzip2 benchmark. The 

Bzip2 benchmark allocates almost all its dynamic data early on in the program lifetime 

and sporadically clears it up via free operations. One can see spikes of data free at 79 

billion, 105 billion, 190 billion, 220 billion etc. This could suggest that bzip2 has good 

potential for early identification of freshly allocated dynamic memory. From Table 6.3 

we can see that almost all of the 0.63 GB of allocated memory has a granularity larger 

than 16 MB. Even though these signs are positive, the total freed dynamic memory is 

only 25 MB (Table 6.1) suggests that bzip2 might not benefit from IWB but it could 

benefit from IWM. The allocation to mmap ratio of 1 in Table 6.5 demonstrates that 

bzip2 needs as much heap space as the total dynamic memory allocated because it 

recycles very little data. This concurs with the time line behavior in Figure 6.1 (a).  

Figure 6.1 (b) presents the byte allocation and deallocation behavior for dealII 

and gcc. In both these benchmarks we see that the allocation as well as free behavior is 

fairly distributed over time. In the case of dealII, there are a lot more spikes in its 

allocation and free behavior while gcc is mostly uniform except in the middle where it 

has some spikes. This suggests that both these benchmarks are good candidates to show 

positive impact for both IWB and IWM optimization. The gcc benchmark has a very high 

allocation to mmap ratio (332) in Table 6.5 which is supported well by the very 

distributed allocation pattern exhibited in the time line chart here.  

 



 

Figure 6.1 (b) Byte allocation and d

The top section of Figure 6.1 (c) presents the behavior of 

spike (18%) in allocation very early on followed by a slow steady state behavior. Its data 

deallocation behavior is quite t

operations. Both these factors could play well for 

but the light use of dynamic memory by 
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Byte allocation and deallocation distribution timeline for dealII

The top section of Figure 6.1 (c) presents the behavior of gobmk. It has a high 

spike (18%) in allocation very early on followed by a slow steady state behavior. Its data 

behavior is quite the opposite to this, with a fairly distributed rate of free 

operations. Both these factors could play well for gobmk with respect to IWB and IWM

but the light use of dynamic memory by gobmk reduces suggests a reduced impact for its 

 

 

ealII and gcc 

. It has a high 

spike (18%) in allocation very early on followed by a slow steady state behavior. Its data 

with a fairly distributed rate of free 

with respect to IWB and IWM, 

reduces suggests a reduced impact for its 



 

characteristics. Tables 6.2 and 6.4 show the light use of dynamic memory employed by 

gobmk; where 123 MB of total dynamic allocation and 93

are being tracked. The h264ref

allocation and data free with 

chunk (6%) of dynamic memory is freed. The 

suggests that h264ref could be

Figure 6.1 (c) Byte allocation

h264ref 
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6.2 and 6.4 show the light use of dynamic memory employed by 

of total dynamic allocation and 93 MB of dynamic memory freed 

264ref benchmark has a fairly distributed behavior for memory 

ith an exception at the very end of the lifetime when a larger 

chunk (6%) of dynamic memory is freed. The evenly distributed nature of data free 

could be a good candidate for both IWB and IWM.  

Byte allocation and deallocation distribution timeline for gobmk

6.2 and 6.4 show the light use of dynamic memory employed by 

of dynamic memory freed 

has a fairly distributed behavior for memory 

the very end of the lifetime when a larger 

distributed nature of data free 

 

 

obmk and 



 

Figure 6.1 (d) Byte allocation and deallocation

The hmmer benchmark has a non uniform behavior of allocation and free without being 

too biased to the beginning and end

light rate and evenly for most of the program lifetime except for a few points early on. 

This suggests that it will be a 

of its life. Its data deallocation

65 

 

 

Byte allocation and deallocation distribution timeline for hmmer

has a non uniform behavior of allocation and free without being 

beginning and end of the program lifetime. It allocated data at a very 

light rate and evenly for most of the program lifetime except for a few points early on. 

be a good candidate for IWM early on and possibly for the rest 

deallocation operations also have very light distributed rate with 3 

 

 

mmer and lbm 

has a non uniform behavior of allocation and free without being 

of the program lifetime. It allocated data at a very 

light rate and evenly for most of the program lifetime except for a few points early on. 

and possibly for the rest 

operations also have very light distributed rate with 3 



 

major spike points, two early on and one at the very end of the program life. Since only 

0.5% of the memory is freed

for finding IWB candidates throughout the program lifetime unlike benchmarks which 

free most of its memory at the very end such as 

The bias in allocation and free for 

free operation at the end of the life time 

Figure 6.1 (e) Byte allocation and deallocation

mcf 
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early on and one at the very end of the program life. Since only 

freed at the very end, it suggests that there is a reasonable chance 

for finding IWB candidates throughout the program lifetime unlike benchmarks which 

free most of its memory at the very end such as lbm (bottom portion of Figure 

The bias in allocation and free for lbm (all of the allocation at the start and all of its data 

the end of the life time lbm) makes lbm unappealing for IWB and IWM. 

 

 

Byte allocation and deallocation distribution timeline for libquantum

early on and one at the very end of the program life. Since only 

sonable chance 

for finding IWB candidates throughout the program lifetime unlike benchmarks which 

(bottom portion of Figure 6.1 (d)). 

start and all of its data 

unappealing for IWB and IWM.  

 

 

ibquantum and 
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Both libquantum and mcf are presented in Figure 6.1 (e). For mcf, almost all of its 

allocation is done early on and most of its free operations performed at the end (similar to 

lbm). This makes them very bad candidates for IWB because all the free operations 

happen at the end, i.e., at a point which is too late to be of use. Both these benchmarks 

allocate large chunks of memory in granularities too large to even fit in last level caches 

(1 MB to 16 MB and larger). Most of the miss might arise from capacity miss which 

makes the effect of IWM harder.  

In Figure 6.1 (f), the top portion represents milc benchmark which has a small 

allocation spike of 0.6% at the start but in general has a relatively even pattern of 

allocation through its life. This makes it an average candidate for IWM. Its memory free 

operations on the other hand are very evenly distributed. This does raise the expectation 

of milc to perform well for IWB provided the cache can capture and hold IWB candidates 

long enough to be identified as IWB. Given the large granularity of its object sizes (1 MB 

- 16 MB and larger) this could be hard to achieve in last level caches (LLC). Benchmark 

namd on the other hand has a pattern we saw in the case of both mcf and libquantum. 

From Table 6.2 we do see that smaller but reasonable portion of its dynamic memory 

belongs to granularities that are small enough to fit in LLC. Thus, namd can be expected 

to have a reasonable positive contribution for IWM. The same does not hold true for IWB 

because of the focus of all free operations at the end of the program lifetime. 

 



 

Figure 6.1 (f) Byte allocation and deallocation

Figure 6.1 (g) presents

and perlbench. Both these benchmarks have very dynamic and fairly u

of allocation and data free operations. In the case of 

behavior seems to be very scattered with allocation and 

point contributing only a very small portion of the total i.e.

might be correlated to the fact that most of the dynamic memory allocations have a size 
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Byte allocation and deallocation distribution timeline for milc and

presents the dynamic memory consumption pattern for 

. Both these benchmarks have very dynamic and fairly uniform distribution 

of allocation and data free operations. In the case of omnetpp, the dynamic memory 

very scattered with allocation and deallocation operations at each 

point contributing only a very small portion of the total i.e., in the 0.02% range. This 

might be correlated to the fact that most of the dynamic memory allocations have a size 

 

 

and namd 

the dynamic memory consumption pattern for omnetpp 

niform distribution 

the dynamic memory 

operations at each 

n the 0.02% range. This 

might be correlated to the fact that most of the dynamic memory allocations have a size 
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granularity (Table 6.2 and Table 6.4) in the 64 byte to 256 byte range. Thus, it does not 

give us a clear expectation on the effects of IWB and IWM. On the other hand, perlbench 

has granularities of allocation and free operations (Table 6.2 and 6.4) that are in the 4 KB 

to 256 KB as well as the 256 KB to 1 MB range. Each point tends to allocate and free a 

larger amount of the total dynamic memory (0.1% range) compared to omnetpp. This, 

combined with the strong dynamic memory usage, could make perlbench a good 

candidate for IWB and IWM.  

The top portion of Figure 6.1 (h) has the dynamic memory pattern for povray. 

There is a large spike in allocation (35%) early in the life of povray with the rest of the 

pattern being flat and even. Its deallocation operations also have a similar spike at the 

start with roughly 15% of the free operations occurring very early on followed by a flat 

even distribution until the end where a small spike in data deallocation occurs. The early 

spike in memory allocation plays well for IWM because it permits early identification of 

allocated memory which is consumed over time. The early spike in memory deallocation 

means that, as the execution progresses, povray has a good chance that dirty data in the 

cache is identified as IWB candidates. Future instructions could evict and cause write 

backs which could be saved by IWB, thus making IWB based gains more likely for 

povray.  

The bottom portion of Figure 6.1 (h) shows the dynamic memory behavior of 

sjeng. Its behavior is very similar to that of mcf, libquantum, namd etc; i.e., heavy 

allocation at the start (almost 100%) and heavy amount of free operation at the very end.  

This could play well for IWM optimization since most of the allocation is very early on 

and this dynamic memory gets consumed over time. Table 6.2 shows that sjeng has a 

heavy bias in its allocation granularity to data sets larger than 16 MB. This could make it 

very hard for data to fit in LLC and hence could shadow the impact of IWM unless the 



 

memory hierarchy can encompass the data requested. Since almost all the memory free 

operations for sjeng happen at the very end, it occurs too late to be of use in identifyin

useful IWB candidates that are still present in the memory hierarchy. 

 

Figure 6.1 (g) Byte allocation and deallocation

perlbench 
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memory hierarchy can encompass the data requested. Since almost all the memory free 

happen at the very end, it occurs too late to be of use in identifyin

useful IWB candidates that are still present in the memory hierarchy.  

 

 

Byte allocation and deallocation distribution timeline for omnetpp

memory hierarchy can encompass the data requested. Since almost all the memory free 

happen at the very end, it occurs too late to be of use in identifying 

 

 

mnetpp and 



 

 

 

Figure 6.1 (h) Byte allocation and deallocation
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Byte allocation and deallocation distribution timeline for povray

 

 

ovray and sjeng 



 

 

 

Figure 6.1 (i) Byte allocation and deallocation

sphinx3 
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Byte allocation and deallocation distribution timeline for soplex

 

 

oplex and 



 

Figure 6.1 (j) Byte allocation and deallocation

The allocation pattern of 

very early on followed by low and steady activity through the rest of its life. This makes 

it a very good candidate for IWM. On the other hand, 

of its data at the very end, which could make it harder for it to do well with IWB. The 

small spikes in data free operation early o

provided that the memory hierarchy being considered can encompass the object sizes 

used by soplex; object sizes mostly larger than 16

MB range. The patterns for 

which suggests a mixed expectation for impact for IWM and a better impact for IWB. 

Since the distribution of allocation and free seems to be very fragmented and scattered 

over time, the impact on IWB and IWM due to its temporal nature is hard 

In Figure 6.1 (j), we have the dynamic memory consumption and release pattern 

for xalancbmk. This program

patterns as well as data free operations pick up almost at the 30% mark. This constant 
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Byte allocation and deallocation distribution timeline for xalancbmk

The allocation pattern of soplex (top-left of Figure 6.1 (i)) shows strong spikes 

very early on followed by low and steady activity through the rest of its life. This makes 

it a very good candidate for IWM. On the other hand, soplex deallocates more than 50% 

which could make it harder for it to do well with IWB. The 

in data free operation early on (10%) can still give some benefit 

the memory hierarchy being considered can encompass the object sizes 

es mostly larger than 16 MB and many others in the 1
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suggests a mixed expectation for impact for IWM and a better impact for IWB. 
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activity from the 30% mark with dynamic memory object granularities in the range of 1 

KB to 4 KB makes xalancbmk a possible candidate but it is harder to estimate its impact 

on IWB and IWM.  

The dynamic memory behaviors of these benchmarks are very varied and diverse. 

This gives strength to the use of these benchmarks for the studies in this dissertation. 

More importantly, the behavior of these benchmarks gives some insight into the scope for 

IWB and IWM for each of them.  

6.3 INVALIDATION HIT RATE 

In this section, this dissertation looks into the amount of free calls and freed 

blocks that are present in the cache. It is of interest to find out what percentage of the 

memory free operations find the address it frees in the cache hierarchy. The more the free 

function call finds the freed address in the cache the more are the chances for it to be a 

future candidate for an IWB or a candidate for replacement. The last level cache here is a 

2 MB L2, the base line used in this dissertation. Table 6.10 presents the free line hit rate, 

defined as the percentage of “free” function calls that find at least one cache line worth of 

freed block in the cache. Table 6.10 also presents the free block hit rate, defined as the 

percentage calls whose whole freed block is found in the L2 cache. The same data is also 

collected in Table 6.10 for munmap operations. In almost all cases, we find at least one 

block from the freed area is still residing in the L2 cache. The chances of the whole block 

residing in the cache are significantly lower.  

On average only 50% of the free calls find its freed data block in the L2 cache. In 

the case of munmap operation this falls to 35.52%. Benchmarks such as gcc, hmmer, 

perlbench, povray and sphinx3 have 90% or more of the freed blocks present in the L2 

cache. This can translate into a good amount of IWB provided dirty data caused by 
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dynamic memory is a significant percentage of the dirty data in the cache. The effect of 

IWB can be lower if the freed block gets reused by a future allocation, which is likely 

given that memory allocators typically work on a LIFO (last in first out) policy for reuse 

of dynamic memory blocks. 

 Memory Deallocation (Free) Large Scale Deallocation (Munmap) 

Benchmark Line Hit  Block Hit Line Hit Block Hit   

astar ~100 25.6 ~100 62.3 

bzip2 ~100 76.5 ~100 82.1 

dealII ~100 63.4 ~100 5.8 

gcc ~100 89.1 ~100 37.9 

gobmk ~100 56.4 ~100 30.8 

h264ref ~100 20.7 ~100 0.6 

hmmer ~100 ~100 ~100 1.4 

lbm ~100 2 ~100 2 

libquantum ~100 15.8 ~100 13.5 

mcf ~100 0 ~100 0.5 

milc ~100 26.8 ~100 27.9 

namd ~100 23.1 ~100 8.4 

omnetpp ~100 78.5 ~100 93.8 

perlbench ~100 96.6 ~100 92.8 

povray ~100 94.9 ~100 37.6 

sjeng ~100 0 ~100 0.8 

soplex ~100 17.4 ~100 1.4 

sphinx3 ~100 92.8 ~100 87 

xalancbmk ~100 75.7 ~100 88.3 

AVG ~100 50.28 ~100 35.52 

Table 6.10 Invalidation call hit rate in L2 cache  
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Figure 6.2 Last level cache occupancy based on snapshot at end of simulation - % of dirty 

line, % invalid lines and % lines that are both dirty and invalid 

6.4 LAST LEVEL CACHE OCCUPANCY  

The previous sections studied the benchmarks memory management behavior to 

understand the allocation and free pattern and estimate the benchmarks that are more 

likely to benefit from IWB and IWM. In this section, this dissertation analyzes the actual 

last level cache occupancy. The data in Figure 6.2 presents the occupancy level of the L2 

cache measured at the end of the simulation used for energy estimation i.e., the 

benchmarks were run for the simulation length used to estimate energy in the next 

chapter i.e., 10% of the execution length. Hence, this is a snapshot of the cache state. The 

first bar represents the percentage of the total cache lines that are currently in dirty state. 

The snapshot of cache occupancy at the end of simulation is an indication of future 

impending write back for that benchmark. Figure 6.2 shows that most of the benchmarks 
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have about 40% of the cache lines in dirty state. A few clear exceptions are sphinx3 and 

milc which has less than 10% of the cache lines in dirty state. What is of more interest is 

the amount of cache lines that are dirty but are also invalid or are dirty and contain zero 

value data. Both of these are indicators of the potential for IWB and ZVS in those 

benchmarks. The percentage of cache lines that are in the dirty and invalid or zero data 

state for astar, bzip2, dealII, gcc, h264ref, hmmer, milc, perlbench, povray, soplex and 

xalncbmk demonstrate signs of having potential for IWB and ZVS optimizations.  

 

 

Figure 6.3 Last level cache dirty line occupancy composition based on snapshot at end of 

simulation 

Focusing on the write backs, Figure 6.3 shows the split of the dirty lines i.e., the 

percentage of dirty lines that are invalid and the percentage of dirty lines that contain zero 

data. Here we see that astar, dealII, gcc, hmmer, perlbench, povray and xalancbmk 

contain dirty lines that have been marked as invalid i.e., inconsequential. Benchmark 

povray has the maximum amount of such cache lines, while dealII, hmmer, perlbench 
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and xalancbmk have 15-20% of the dirty lines in inconsequential state because they have 

been marked invalid by either a free or munmap operation. 

 

 

Figure 6.4 Last level cache occupancy composition based on average behavior 

The data in the previous charts represent only a snapshot of time. In the interest of 

better coverage and better understanding the true nature of these benchmarks, this 

dissertation inspects the benchmarks over its whole length and records the average 

occupancy level. Figures 6.4 and 6.5 are counterparts to Figures 6.2 and 6.3 but present 

the average program behavior sampled at a million instruction interval. The average 

cache occupancy for the amount of lines that are dirty stays roughly the same for most 

benchmarks. The benchmarks that deviate significantly i.e., more than 10%, are dealII, 

libquantum, mcf and milc. Except for milc the amount of dirty lines present in the whole 
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run reduces. Although this does not directly correspond to the amount of invalid and dirty 

lines as well as amount of write backs, it does reduce the amount of dirty lines that could 

be candidates for identification as inconsequential. It also means that, for these 

benchmarks, the dirty lines decrease over time, possibly because more of its data writes 

are concentrated earlier in its execution. For certain other benchmarks such as bzip2, 

h264rerf and milc the trend is reversed i.e., the amount of dirty lines increase over time 

suggesting that more of the data writes happen in the latter half of the program execution.  

In Figure 6.5 the composition of dirty cache lines, i.e., the split between invalid 

and zero lines that are dirty, is presented. It is encouraging to see that both dealII and 

povray have increased the percentage of the dirty lines that are marked as invalid and 

hence inconsequential compared to the observation based on the snapshot shown in 

Figure 6.3. In the case of milc, which had an increase in the percentage of dirty lines for 

the full program run, the amount of zero data dirty lines decrease, thereby reducing the 

scope of ZVS gained due to the increase in the percentage of dirty lines. In general it is 

observed that astar, dealII, gcc, hmmer, perlbench, povray and xalancbmk are good 

candidates for IWB. Benchmarks astar, bzip2, dealII, gcc, gobmk, h264ref, milc, povray, 

soplex and sphinx3 are good candidates for ZVS.  
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Figure 6.5 Last Level cache dirty line occupancy composition based on average behavior 

 

Figure 6.6 Load-Store instructions as a percentage of total instruction 
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6.5 ZERO VALUE LOAD/STORE DISTRIBUTION 

This section inspects these benchmarks to better understand their data value 

characteristics. Figure 6.6 is a representation of the load-store instruction mix. As 

expected, loads are more common than stores. On an average loads are three times more 

common that stores. In benchmarks such as gcc, gobmk, mcf, omnetpp and povray have a 

higher amount of stores; about half as much stores as loads.  

In Figure 6.7 all the stores issued by the benchmarks are analyzed and the 

percentages of the stores that store zero value are presented based on the granularity. 

There are four granularities that are recorded. From left to right they are: (1) stores that 

have all the data in one instruction storing zero value, (2) stores that store zero value data 

and have the whole target cache line containing zero value, (3) stores that store zero value 

data and have 1 KB of aligned memory range around the target memory as zero and (4) 

stores that store zero value data and have 1 page (4 KB) of aligned memory range around 

the target memory containing all zeros. As the granularity is increased the amount of 

stores that meet the criterion tends to decrease. For example, astar has a large amount of 

stores which stores all of its data as zeros but at higher granularity of aligned memory 

ranges this percentage falls to almost zero. Benchmarks such as gcc, gobmk, h264ref, 

milc, namd, omnetpp, povray, sjeng and sphinx3 have some amount of zero valued stores 

which stores to a cache line which contains zero value data. On expanding the granularity 

to 1 KB, only gcc demonstrates a significant amount of zero value stores. This in turn 

gives the insight that tracking zero value data ought to be done at least at a cache line to 

generate some reasonable impact. Thus, zero value stores exist in quite a few of the 

benchmarks with 10 out of the 19 benchmarks used in the study having almost 20% or 

more of the stores belonging to this category. On an average, 20% of the stores attempt to 

store zero value while about 8% of stores store zeros into a cache line which also contains 
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zeros. 

Figure 6.7 Zero data stores as percentage of total stores 

In Figure 6.8 all the loads issued by the benchmarks are analyzed and the 

percentages of the loads that load zero value are presented based on the granularity. 

There are four granularities that are recorded. From left to right they are: (1) loads that 

have all the data in one instruction loading zero value, (2) loads that load zero value data 

and have the whole target cache line containing zero value, (3) loads that load zero value 

data and have 1 KB of aligned memory range around the target memory as zeros and (4) 

loads that load zero value data and have 1 page (4 KB) of aligned memory range around 

the target memory containing all zeros. As with stores, when the granularity is increased 

the amount of loads that meet the criterion tends to decrease. For example, astar has a 

large amount of loads which load all of its data as zeros. But at a higher granularity of 

aligned memory ranges this percentage falls to almost zero. In benchmarks such as gcc, 

gobmk, milc, povray, sjeng and sphinx3 a noticeable amount of zero valued loads also 

have their target cache line containing zero. However, on expanding the granularity to 1 
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KB none of the benchmarks demonstrate a significant amount of zero value loads. This in 

turn gives the insight that tracking loads with zero value data target ought to be done at 

least at a cache line to generate some reasonable impact. This implies mechanisms to 

store this information too have to exist at a cache line granularity even if the level in the 

memory hierarchy data is being fetched from has a larger granularity. Unless the zero 

value loads target previous zero value stores, it becomes harder to identify loads that will 

result in zero value data loads. For example, if a memory page is the target one would 

need 64 bits per page to identify zero value data in a page at a cache line granularity.  

Figure 6.8 Zero data loads as a percentage of total loads 

Irrespective of how IWB, IWM and ZVS are employed there are a few essential common 

high level aspects to its implementation.  

1) One has to be able to detect the transition of normal memory into inconsequential 
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2) One has to be able to store inconsequential memory ranges so that this 

information is available when needed. A mechanism is needed to encode 

information regarding inconsequential memory and allow update and retrieval of 

this information.  

3) One has to be able to detect the transition of inconsequential memory into normal 

state. Detecting this transition will require co-operation between the memory 

manager as well as the hardware.  

4) One has to be able to use the stored information for the optimizations such as 

IWB, IWM and ZVS.  

An additional aspect involved in this determination is the granularity at which 

inconsequential memory information is detected and stored. The discussions related to 

the last few figures make the importance of granularity a lot more obvious. Larger the 

granularity lesser are the chances for IWB, IWM and ZVS. The next few chapters go 

over the details of how such mechanisms are implemented for DRAM energy savings and 

improving the endurance and lifetime of an emerging memory technology based memory.  
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Chapter 7: ESKIMO – Saving Energy in DRAM based Memory 

Dynamic Random Access Memory (DRAM) is used as the main memory in most 

computing systems. Observations about the memory power being comparable to that of 

the core power in large scale systems, points to the need to focus our attention on the 

energy consumed by the memory subsystem. With the need to reduce the energy 

consumption of the DRAM subsystem of modern systems in mind, this dissertation 

presents ESKIMO which uses a few techniques based on memory state to save energy 

and power in the DRAM based memory subsystem. It leverages insights discussed in the 

previous chapters and use those to optimize the system architecture.  

7.1 ADAPTATIONS FOR DRAM ENERGY SAVINGS 

7.1.1 Semantics Aware DRAM Refresh  

 

Figure 7.1 DRAM refresh optimization 

Due to the dynamic nature of a DRAM cell, periodic refresh operations are 

required for keeping the data stored. Even in standby mode, such regular refreshes 

account for a large energy consumption in DRAMs. Some studies have shown that even 

in the lowest power mode, the power needed to keep the DRAM contents is about a third 
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of the total power dissipated. Factors such as the memory vendor and the design 

technology affect the refresh rate. A refresh interval of 110 ns means, a refresh operation 

takes place every 110 ns. A refresh operation fundamentally involves reading the DRAM 

cell out and writing back to the same cell. Although this refresh operation consumes, 

power and bandwidth, it is inevitable for the sake of data correctness.  

This dissertation presents a technique to eliminate unnecessary refreshes by using 

the program semantics information. The regions of memory that are marked as free 

(inconsequential) or freshly allocated (inconsequential) have no concern related to 

correctness since the data stored is of no consequence to the correct execution of the 

program. Thus, not refreshing the data stored in these regions will not be a concern. 

Hence, this dissertation avoids refreshing the rows that are known to be inconsequential 

from the program semantics. There are several technologies proposed in literature 

[OKM98] as well as patents [SPS1] [SPS2] that allow selective refresh of DRAM rows. 

Any of these technologies could be used along with knowledge of memory state to save 

power and energy. 

7.1.2 Inconsequential Write Back Optimization (IWB) 

The concept of inconsequential memory and inconsequential write back was 

explained in Chapter 5. The inconsequential state of the cache lines are stored using the 

validity flag present with each cache line. When a cache lines that has been marked dirty 

becomes free, and hence inconsequential, its validity bit is reset. When a read miss occurs 

requiring an eviction of this cache line, one can avoid writing the replaced data to the 

next level if the validity bit is not set. Hence, it has just one access to the next level case 

as opposed to two as in regular caches. Doing this reduces the number of access to the 

DRAM resulting in the reduction of the number of pre-charge discharge cycles as well as 
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more opportunity for the DRAM to enter into a power saving mode. Hence one can 

reduce power while also saving on energy. IWB is not applicable to all the cache lines 

that need a write back since one can only avoid the write backs to cache lines that are 

inconsequential. The data in these cache lines are not required by future state of the 

application since it was deallocated by the program. Thus, not reflecting the modified 

value in the main memory does not affect the program. Since this assumption is based on 

the program semantic, the system is not introducing any additional error. 

 

Figure 7.2 DRAM optimization for inconsequential write backs 
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Figure 7.3 DRAM optimization for inconsequential write miss 

7.1.3 Inconsequential Write Miss Servicing (IWM) 

The concept of inconsequential memory and inconsequential write miss was 

explained in Chapter 5. The inconsequential state of the cache lines is stored using the 

TLB; details are explained in the coming sections.  

When a write miss occurs, a load is issued to the memory to fill the cache line. If 

the fetch is from an inconsequential memory segment, one can reduce the number of 

accesses to the DRAM. Reducing DRAM access results in reduction in the number of 

precharge discharge cycles as well as more opportunity for the DRAM to enter power 

saving mode. Lewis et al. [LBL02] explored the use of program semantic information 

about allocated space for caches to improve performance. Lewis et al. proposes an 
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allocation range cache and a dedicated instruction to track memory allocation. The 

allocation range cache is a fully associative 64 entry cache structure that holds allocated 

memory ranges represented as an address pair (start address and end address). The 

dedicated instruction is invoked by a modified allocator code during memory allocation. 

The instruction adds the allocated memory range in the allocation range cache as an 

address pair entry. Write operations to newly allocated memory are checked by a fully 

associative search in the allocation range cache. When an address match is found in the 

allocation range cache, the load issued by a write miss is squashed. Write operations also 

update the allocation range cache and change the upper or lower bounds represented in 

the allocation range cache.  

Lewis et al. assumes that allocated memory can be tracked using a very small set 

of memory ranges (64 ranges). Unfortunately the increase in dynamic memory usage and 

the fragmentation of allocated ranges caused by frequent allocation makes a small subset 

of ranges inadequate to provide enough coverage. The range based tracking does not 

perform well with workloads which does not have a strictly incremental allocation 

pattern. Furthermore, the need to do range check and range adjustment during each store 

operation is very costly. Using a TLB based structure as proposed in this dissertation 

provides better scalability since TLB can use the page tables as caches. Furthermore, the 

TLB based structure can scale memory allocation as well as deallocation. The research 

presented in this dissertation is compared against an implementation of the ideas of Lewis 

et al. applied to DRAM at DRAM row granularity. The results for these are represented 

as Lewis ++ in the relevant charts.  
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7.2 IMPLEMENTATION DETAILS OF ESKIMO 

ESKIMO takes advantage of IWB and IWM for optimizing DRAMs, but ESKIMO needs 

a few essential common high level aspects for its implementation.  

1) One has to be able to detect the transition of normal memory into inconsequential 

state. This requires co-operation between the memory manager and the hardware. 

2) One has to be able to store inconsequential memory ranges so that this 

information is available when needed. A mechanism is needed to encode 

information regarding inconsequential memory and allow update and retrieval of 

this information.  

3) One has to be able to detect the transition of inconsequential memory into normal 

state. Detecting this transition will require co-operation between the memory 

manager as well as the hardware.  

4) One has to be able to use the stored information for the optimizations such as 

IWB and IWM.  

An additional aspect involved in this determination is the granularity at which this 

information is detected and stored. The next few sections will deal with the details of the 

implementation mechanisms which address these aspects.  

7.2.1 Storage of Inconsequential Memory Status 

The inconsequential status of memory ranges need to be stored to facilitate the 

identification of memory ranges as inconsequential during a write back or write miss to 

get the advantage of IWB or IWM. In this dissertation, this data is stored as an 

augmentation to the TLB. A single additional bit per entry in the TLB, i.e., a bit per page 

(4 KB) stores the inconsequential status of that particular page. By extension, the same 

bit is swapped out on a TLB replacement into the page table by leveraging existing page 

table management policies and design. The addition of this bit does not affect the existing 
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TLB-Page Table policies. The new status bit rather benefits from existing page table 

policies for managing TLB capacity, TLB entry replacement and TLB coherence.  The 

additional flag bit representing inconsequential state will now on be referred to as the 

INQ flag bit. 

7.2.2 Detection 

To communicate the inconsequential memory state, this dissertation presents two 

instructions similar in format to a few existing memory instructions. For example, the 

x86 ISA has the INVD (invalidate data cache) and WBINVD (write back and invalidate 

data cache) instructions while PowerPC ISA has DCBI (data cache block invalidate) and 

ICBI (instruction cache block invalidate) instructions. The INVD instruction invalidates 

the whole data cache rather than specific lines while the WBINVD instruction invalidates 

a cache line but causes a write back if the data contained is dirty. Both the PowerPC 

instructions unfortunately exist in privileged mode but provide part of the benefit 

required. The x86 instructions too only exist in privileged mode making all these 

instructions a good model but not suitable for the desired purpose. To be able to help in 

the optimizations presented, the instructions devised needs to exist in user mode because 

they are triggered by the memory management library which exists in user mode. If the 

instruction is privileged, the cost of transitioning from user to privileged mode during 

each memory state change i.e. possibly during each allocation or free operation and that 

would be too costly. The instructions also need to aid in invalidating a cache line 

irrespective of its modified flag. Additionally they serve to communicate the state of 

memory ranges to the bookkeeping storage used to store the state of memory ranges. To 

this end two instructions are discussed here.  
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INQCL addr, size: This is an instruction meant to be invoked by deallocation 

operation of at least cache line size. It tells the processor, which in turn communicates to 

the TLB based storage, that the address range starting at addr of size equal to size cache 

lines (i.e. size*64 bytes) has either been freed by the memory manager or the operating 

system. The system can now safely assume this address range to contain inconsequential 

data by setting the corresponding cache lines as invalid using the validity bit.  The 

insertion of INQCL is assumed to be part of the modified memory management library 

and hence part of the code without explicit invocation by the programmer. The primary 

purpose of this instruction is to mark cache lines as inconsequential. The maximum size 

of size is one page, thus 6 bits are required for this part of the instruction, if page size is 4 

KB and line size is 64 bytes. 

INQPG addr, size: This is an instruction meant to be invoked by free or malloc of 

at least a page. It tells the processor, which in turn communicates to the augmented TLB 

storage, that the address range starting at addr of size equal to size pages (i.e. size*4 KB) 

has either been freed or freshly allocated by the memory manager or the operating 

system. The system can now safely assume this address range is inconsequential and this 

information can be stored in the TLB entry by setting the INQ bit.  The insertion of 

INQPG is also assumed to be part of the modified memory management library or 

operating system and hence part of the code without explicit invocation by the 

programmer. The primary purpose of this instruction is to mark TLB entries as 

inconsequential. The same instruction doubles up to reset the INQ flag bit. INQPG can be 

made to act as a reset instruction for INQ flag by encoding this information into the flags 

in the instruction.  
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7.2.3 Allocator based Book Keeping - HOARD 

The previous two instructions track allocations and free operations of memory 

ranges at two different granularities, one at a cache line granularity and the other at page  

granularity. The allocation and deallocation of memory happens at various granularity 

levels which are not necessarily multiples of a page size or page aligned. This makes it 

essential that some system be responsible for aggregating fragmented allocations and 

grouping it together to be identified as a whole range worth of inconsequential memory. 

Even allocations that are larger than a page size can lead to fragmentation. Ignoring those 

fragments will not only cause loss of opportunity but also complicate the tracking of 

memory ranges. Consider the following sequence of allocations: 

A = Malloc (6 KB); 

B= Malloc (1 KB); 

C= Malloc (4 KB); 

Here, the first 4 KB of the A takes up a whole page which is easy to identify and 

mark the INQ flag bit the TLB, but the next 2 KB of A takes up only half a page. The 1 

KB given to B adds to this fragmentation of the second memory page. This offsets the 

address range of C to start a little further from middle of the second page causing both the 

second page as well as the third page to be fragmented even though C allocated a whole 

page worth of memory. In most memory allocators, memory is allocated in size groups 

i.e. allocations of a certain size range are all allocated from the same large segment of 

memory. So requests for 64 bytes and 1 KB will not be allocated from the same physical 

memory space. Even then, fragmentation exists and is a common issue dealt with by 

memory managers. In addition to fragmentation, since the assumption of inconsequential 

nature of data is very hard and strict, it is important to estimate it correctly and 

conservatively. In this dissertation, this job is piggy backed on the memory manager itself 
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since it has to perform this job anyway. This allows for the book keeping of allocations 

and free operations as well as their sizes to be done via software and without needing 

additional support for hardware. Memory mangers are ideal candidates for this because 

this task is performed by default by them and they can also take care of ensuring safe 

estimating of memory state i.e. about it being allocated or free.  

This research targets the HOARD [BMBW00] allocator as the sample allocator. 

This allocator has the benefit of attempting to aggregate recently freed and allocated 

memory into segments of pages which plays well for the needs of this dissertation. 

HOARD is chosen because it is a modern allocator compared to the standard glibc 

allocator and it also leads to less fragmentation. Below is the pseudo-code for HOARD 

allocation and free operations quoted from Berger et al. [BMBW00]: 

 

“malloc (sz) 

1. If sz > S/2, allocate the superblock from the OS and return it. Here S is the size 

of a super block. 

2. i � hash (the current thread). 

3. Lock heap i. 

4. Scan heap i’s list of superblocks from most full to least (for the size class 

corresponding to sz). 

5. If there is no superblock with free space, 

6.  Check heap 0 (the global heap) for a superblock. 

7.  If there is none, 

8.   Allocate S bytes as superblock s and set the owner to heap i. 

9.  Else, 

10.   Transfer the superblock s to heap i. 

11.   u0 � u0 - s:u 

12.   ui � ui + s:u 

13.   a0 � a0 - S 

14.   ai � ai + S 

15. ui � ui + sz. 

16. s.u � s:u + sz. 

17. Unlock heap i. 

18. Return a block from the superblock.” 

Figure 7.4 (a) Memory allocation algorithm in HOARD 
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“free (ptr) 

1. If the block is “large”, 

2.  Free the superblock to the operating system and return. 

3. Find the superblock s this block comes from and lock it. 

4. Lock heap i, the superblock’s owner. 

5. Deallocate the block from the superblock. 

6. ui � ui - block size. 

7. s.u � s.u - block size. 

8. If i = 0, unlock heap i and the superblock and return. 

9. If ui < ai - K * S and ui < (1 - f) * ai, 

10.  Transfer a mostly-empty superblock s1 to heap 0 (the global heap). 

11.  u0 � u0 + s1.u, ui � ui - s1.u 

12.  a0 � a0 + S, ai � ai - S 

13. Unlock heap i and the superblock.” 

Figure 7.4 (b) Memory deallocation algorithm in HOARD 

 

In both the allocation (malloc) and deallocation (free) operations, there are several steps 

that track the size of the super block as well as the heap space; lines 15 and 16 in malloc 

and 6 and 7 in free in particular. These steps are used to insert the correct call to the ISA 

to convey information about memory management state i.e. information about allocated 

or deallocated memory region.  

The new pseudo-code for the allocator with the new instructions inserted appropriately 

looks as follows: 

 

“malloc (sz) 

1. If sz > S/2, allocate the superblock from the OS and return it. Here S is the size 

of a super block. 

2. i � hash(the current thread). 

3. Lock heap i. 

4. Scan heap i’s list of superblocks from most full to least (for the size class 

corresponding to sz). 

5. If there is no superblock with free space, 

6.  Check heap 0 (the global heap) for a superblock. 

7.  If there is none, 
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8.   Allocate S bytes as superblock s and set the owner to heap i. 

9.  Else, 

10.   Transfer the superblock s to heap i. 

11.   u0 � u0 - s:u 

12.   ui � ui + s:u 

13.   a0 � a0 - S 

14.   ai � ai + S 

15. ui � ui + sz. 

16. s.u � s:u + sz.” 

17. If (s.u multiple of Page_Size)  

18.       INQPG s.u, (s.u/Page_Size) 

“19. Unlock heap i. 

20. Return a block from the superblock.” 

Figure 7.4 (c) Memory allocation algorithm modified to use INQPG instruction 

“free (ptr) 

1. If the block is “large”, 

2.  Free the superblock to the operating system and return. 

3. Find the superblock s this block comes from and lock it. 

4. Lock heap i, the superblock’s owner. 

5. Deallocate the block from the superblock. 

6. ui � ui - block size. 

7. s.u � s.u - block size.” 

8. If (s.u/Page_Size) 

9.     INQPG s.u, (s.u/Page_Size) 

10. INQCL 0xAB14, (S/Line_Size) 

“11. If i = 0, unlock heap i and the superblock and return. 

12. If ui < ai - K * S and ui < (1 - f) * ai, 

13.  Transfer a mostly-empty superblock s1 to heap 0 (the global heap). 

14.  u0 � u0 + s1.u, ui � ui - s1.u 

15.  a0 � a0 + S, ai � ai - S 

16. Unlock heap i and the superblock.” 

Figure 7.4 (d) Memory allocation algorithm modified to use INQPG and INQCL 

instructions 

As seen from the pseudo code, after a malloc operation, when the super block size 

reaches a multiple of the page size an INQPG instruction is invoked with the start of the 

page address as its argument (lines 17 and 18). INQPG conveys to the TLB that this data 



 97 

block has been freshly allocated and this information is stored. In the case of the free 

operation, when the super block becomes empty, those whole super block whose size is a 

multiple of the page size; can be marked as inconsequential using INQPG as well as 

INQCL. INQPG marks the line as free in the TLB while INQCL marks it as free in the 

caches.  

7.3 OPERATION  

This section will explain the operation of the additional structures for DRAM 

optimization for each of the following memory events. 

7.3.1 Memory Allocation 

 

 

Figure 7.5 (a) Events during allocation of memory 

As stated before, the memory manager library will be modified to take advantage 

of the augmented TLB via the INQPG instruction, since memory management libraries 

are shared libraries, it saves the normal programmer from having to make changes to his 

code. As illustrated in Figure 7.5 (a), the library (HOARD in this case) communicates the 

allocation of an address range using the INQPG instruction which tells the processor that 

the address range starting at address A of size S has been freshly allocated by the memory 

allocator. The instruction informs the TLB, which then looks up the corresponding TLB 

entry using the virtual address tag (0xAB14) corresponding to the address (0xAB143C2). 

If a tag is present then the INQ flag bit corresponding to address is set to one. Note that 
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the size S is represented at the page granularity. If the TLB does not have a tag 

corresponding to the current segment, then branding it inconsequential in that attempt is 

discarded. If the size spans multiple pages then multiple TLB lines will need to be 

updated.  

 

7.3.2 Memory Free  

 

  

Figure 7.5 (b) Events during free operation 

When the memory manger frees a region of memory, the update process to the 

TLB is the same as that of the allocation, as illustrated in Figure 7.5 (b). The memory 

manager uses the INQPG instruction to inform the TLB that the address starting at 

0xAB143C2 of size S has now been set as free. The INQ flag bits in the augmented TLB 

are updated as in the case of allocation. Additionally the free operation invokes the 

INQCL instruction to mark the L2 cache lines as inconsequential. The cache lines 

typically have a valid flag which is reused in this case by the INQCL to mark the cache as 

inconsequential. This makes the cache line available for replacement and also avoids the 
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need for write backs even if the line is dirty. The INQCL instruction looks up the TLB to 

determine the physical address. If there is an entry, the corresponding physical addresses 

is used to lookup the L2 cache and mark that line as inconsequential by setting the invalid 

bit. If the instruction fails to find a TLB entry for the address being deallocated, that 

INQCL instruction is squashed. For example the 0xAB143C2 address range of size S is 

converted to one or more INQCL instructions. The maximum size of size in INQCL is 

one page so if S>page_size more than one INQCL is needed. INQCL 0xAB143C2 looks 

up the TLB and converts the virtual address to a physical address 0x1B14C. Should 

INQCL not find the physical address translation of 0xAB143C2 in the TLB, then the 

INQCL instruction is squashed.  

7.3.3 Store Operation 

 

Figure 7.6 Events during store operation 

When an address is accessed via a store operation (from any part of the code, not 

just memory manager code), the TLB is accessed to lookup the address. During the 

translation process if there is a TLB entry and the TLB INQ flag is set, the store is 

converted to a special store that requires no write miss servicing. The write miss arising 

from such a store is satisfied by populating the cache with a new line and filling the data 

with zero. After the first write miss, future write miss operations cannot safely assume the 

address range as inconsequential because the store operation has written data. So the TLB 

INQ flag is reset by the store.  
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7.3.4 Load Operation 

During a load operation, the cache and TLB act normally. If the load causes a 

write back, then inconsequential write backs are avoided by discarding write backs for 

cache lines with the invalid bit set even if the dirty flag is set. Other actions in cases such 

as a TLB miss, page fault, etc are the same.  

7.3.5 Caveats  

One of the important system effects that come into play in schemes using 

inconsequential memory is the operation of the Direct Memory Access (DMA). A DMA 

access fetches data for a memory range in the background. This implies that it is possible 

for a memory to be considered allocated and unused but data might be in the process of 

being fetched into that memory range via the DMA operation. Since the DMA access is 

initiated by the operating system, it is detectable; and the TLB is updated using the reset 

mode of the INQPG instruction. Unlike the set operation of INQPG which ignores the 

instruction if it fails to be a TLB hit, the reset mode of the INQPG instruction needs to go 

through the operation of fetching the TLB entry from the page table on a TLB miss. This 

is necessary to ensure future correctness.  

The tracking system proposed uses the TLB to store information. This can 

introduce coherence issues in a multiprocessor system. The TLB associated with each 

processor could have cached copies of the page mapping which could become out of sync 

if one of the threads on one of the processor cores updates the INQ flag in the TLB. This 

is a concern for scalability because the second core is not aware of the information 

created by the first core. Furthermore, if processor core 1 identifies a page as 

inconsequential without propagating it to the other cores, then an eviction of core 1’s 

TLB will update the page table even if another core holds a copy of the translation. In 

such a case, the second core could start using the page after a memory allocation and data 
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write without updating the page table, hence resulting in an incorrect state. To solve this, 

a coherence protocol will need to be developed to keep the TLBs and page table 

consistent even as multiple threads or programs update the inconsequential status of the 

pages. Another approach would be to use a single unified last level TLB operating in an 

inclusive cache like fashion. 

In a multiprocessor system, the cache coherence protocol also becomes a factor. 

When a recently modified cache block is shared between cores, cache line invalidation 

due to the INQCL instruction has to update the other core caches too to gain full benefit. 

Fortunately there is no correctness issue, but not updating the other cores can lead to lost 

opportunity. 

The other caveat relates to cases in which the assumption of unnecessary write 

back does not hold. If the allocated regions of memory are zeroed out for security 

reasons, the IWB optimization would prevent those writes from propagating from the 

cache to the memory.  When it is necessary to erase current data values in the main 

memory for security reasons it is not desirable that IWB block such write backs. This 

issue can be solved by facilitating a specialized case of the deallocation operation which 

does not mark the deallocated memory regions as inconsequential.  
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Figure 7.7 Write back related cache statistics 

7.4 RESULTS 

In this section the results of the analysis and measurements are presented and 

analyzed. My earlier publication [IJ09] uses the same ideas but ran the benchmarks for 

only the first billion instructions. The results here are based on at least a 10% run for the 

benchmark.  

7.4.1 Inconsequential Write Back 

The analysis of the results starts off with a look at last level cache behavior i.e. a 2 

MB, 8-way L2 cache. In Figure 7.7 data related to the load store mix and write back 

related statistics are presented. The first bar (from the left) in the figure stands for the 

ratio of store to load instructions. This gives us an insight into the importance of stores in 

a program. This is of importance because IWM primarily benefits from store instructions 

that miss the cache. On an average, stores are about 30% of loads. Benchmarks such as 

gobmk, h264ref and lbm have half as many stores as loads. It is of interest to look at the 
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second data bar, the write back/evictions ratio. This ratio is the ratio of all write back 

operations to the number of evictions from the L2 cache. This represents the percentage 

of evictions that causes a write back. The higher this ratio the more chance IWB has in 

finding candidates and reducing energy consumed by the DRAM but what matters is the 

amount of activity caused in the DRAM because evictions that do not cause a write back 

normally does not contribute to DRAM cycles and activity. Here most of the benchmarks 

have a fairly high ratio. For example, hmmer has 70% of the evictions resulting in write 

backs. The next piece of data represents a ratio of the write backs witnessed by the L2 

cache to the amount of cache line modifications experienced by the L2 cache. This ratio 

is on average about 30%. Although this data is a useful indicator, too much cannot be 

interpreted from this data. Store operations tend to update the same location over and 

over again hence contributing to the amount of cache line modification count while write 

backs happen only when the line has become old and is evicted based on LRU. The next 

bar presents the ratio of the number of times cache lines were marked as both dirty and 

invalid to the number of times caches were modified.  
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Figure 7.8 Inconsequential write back last level cache size sensitivity 

Figure 7.8 is a true measure of the effect of inconsequential write back 

optimization. The figure presents the sensitivity of this optimization to the size of the L2 

cache size (1 MB, 2 MB, 4 MB and 8 MB). The effect of cache size is complex and hard 

to gauge with two opposing factors at work. On one hand the larger the cache, the more 

dirty data can stay resident in the cache. This means a free operation will have a better 

chance of finding its memory range in the L2 cache thereby enabling the IWB 

optimization. On the other hand, larger caches also facilitate large ranges of memory to 

be resident and reused. Since memory allocators work on a LIFO principle, recently freed 

memory locations are first allocated. As time progresses, more and more freed data could 

become allocated. In self-managed languages with explicit allocation such as C and C++, 

this pattern is hard to predict. Among the benchmarks here astar, perlbench, povray and 

xalncbmk show a positive correlation to the L2 cache size. This suggests that larger cache 
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sizes capture more of IWB candidates for these benchmarks. The benchmark hmmer on 

the other hand stays unaffected by the cache size. But dealII has the odd behavior were it 

does better with a 2 MB cache than with 1 MB, 4 MB or 8 MB.  

 

Figure 7.9 (a) Inconsequential write back memory access savings 

In Figure 7.9 (a) the effect of IWB on the total memory access, i.e. traffic from L2 

to the DRAM memory is presented. Here astar, dealII, gcc, h264ref, hmmer, perlbench, 

povray and xalancbmk show response to IWB in relation to the total memory access. On 

average about 6% of the memory accesses can be avoided using IWB optimization. 

Figures later on will demonstrate its impact on DRAM energy savings. To put this in 

perspective Figure 7.9 (b) shows the amount of write backs per thousand instructions.  
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Figure 7.9 (b) Write back per thousand instructions from LLC 

7.4.2 Refresh Power Savings  

Refresh optimization based power saving technique was modeled using the 

simulator setup. In Figure 7.10 this dissertation presents the savings in total power arising 

from the semantic aware DRAM refresh. Note that, the refresh power of a DRAM is only 

a part of the power consumed by the DRAM. The benchmarks that gain from semantic 

aware DRAM refresh are the benchmarks that tend to have a larger amount of allocated 

or freed memory that is not necessarily hot and in the cache but is occupying the DRAM 

allowing it to be skipped over during refresh. Benchmarks such as astar, dealII, gcc, 

h264ref, omnetpp, perlbench, povray, sphinx3 and xalancbmk are able reduce total power 

by a significant amount. The benchmark to demonstrate the best power savings is 

omnetpp, with a 10% reduction in total power consumed by the DRAM. The savings in 

power among the benchmarks with some impact ranges from 6% to 10%.  
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Figure 7.10 Inconsequential data occupancy based DRAM power savings 

7.4.3 Inconsequential Write Miss 

The next optimization that was modeled is the inconsequential write miss. Figure 

7.11 shows the amount of write miss operations that can be avoided for each benchmark 

as well as the percentage of memory access that can be saved by enabling IWM. The 

inconsequential write miss optimization leverages the TLB to mark and store the 

inconsequential state due to fresh memory allocation. Thus, benchmarks that tend to 

allocate more memory are better candidates for inconsequential write miss. All the 

benchmarks that show good results from IWM tend to be the ones with good allocation 

rate particularly with a heavy churn of memory space i.e. memory is allocated, used, 

freed and then reallocated heavily. The data from Table 6.5 and Table 6.2 shows that the 

benchmarks astar, gcc, h264ref, hmmer, milc, omnetpp, perlbench, povray, soplex 

sphinx3 and xalancbmk both allocate a large amount of data and also cycle through heap 

space. Cross referencing this data with the benchmarks results in Figure 7.11, uncovers 
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that there is a strong correlation. The only exception is namd, a benchmark which did not 

intuitively seem a good candidate and yet managed to save a significant percentage of its 

write miss traffic. On average the benchmarks reduce the write miss traffic by 20%. 

Benchmarks astar and perlbench does exceedingly well in write miss reduction by 

reducing as much as 70% of the write miss operations. Since write miss reduction is 

measured in relation to the amount of write miss traffic, the reduction in real memory 

access is a better indicator of potential DRAM energy savings. In Figure 7.11 (a) the 

percentage of memory access avoided is also plotted. Not all the benchmarks manage to 

convert the reduction in write miss to reduction in memory access. Only astar, h264ref, 

hmmer, perlbench and povray manage to convert the write miss to savings in memory 

access. This implies that for the other benchmarks, the write miss traffic is overshadowed 

by the normal memory access traffic due to capacity misses. On average, the memory 

access is reduced by 5% using IWM. In Figure 7.11 (b) the write miss per thousand 

instructions is shown. In comparing Figure 7.11 (a) and Figure 7.11 (b), we see that 

perlbench benefits the most from IWM. In Figure 7.12 the sensitivity of write miss to last 

level cache (LLC) size is examined. In this dissertation L2 is the LLC. Figure 7.13 looks 

at sensitivity of IWM based memory savings to LLC cache size. A larger cache could be 

capable of capturing more of the access misses due to the capacity limitations of the L2 

and filtering that out. Hence the memory access left after that is composed more of 

misses such as write miss. Compared to Figure 7.11 (a), in Figure 7.13 bzip2 and gcc 

showed an increased impact with a larger cache size. Benchmark hmmer on the other 

hand has the opposite effect and it suggest that the larger cache is working too well for 

hmmer in capturing most of its working set thereby reducing write misses mostly to first 

time references. 
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Figure 7.11 (a) Write miss reduction and memory access savings 

 

Figure 7.11 (b) Write miss per thousand instruction from LLC 
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Figure 7.12 LLC size sensitivity - inconsequential data based write miss reduction 

 

Figure 7.13 LLC size sensitivity - IWM based memory access savings   
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7.4.4 Energy Savings 

The most important measure of all these optimizations is the final aim, which is 

energy reduction. In Figure 7.14 the reduction in energy due to IWM, IWB and the 

extended version of Lewis et al.’s [LBL02] work has been compiled. The key difference 

between Lewis++, the extension of Lewis et al.’s [LBL02] work (Lewis++) for DRAM 

energy savings, and IWM in this dissertation is in the ability to piggy back on the TLB 

thereby simplifying implementation, scalability as well as correctness. The energy 

savings presented here is as a percentage of the total DRAM system power. The memory 

access reduction due to write backs translates to energy savings for astar, dealII, gcc, 

h264ref, hmmer, perlbench, povray and xalancbmk.  

 

 

Figure 7.14 DRAM memory energy savings – IWB and IWM 
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Figure 7.15 Total DRAM memory energy savings 

 

Figure 7.16 Power consumed by in the baseline DRAM 
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The cumulative result of putting together all the optimization is recorded in Figure 

7.15. To put the results in perspective, the power consumed by the benchmarks is 

presented in Figure 7.16. As indicated in Figure 7.16, different benchmarks consume 

different amounts of power. Hence instead of simple average, a volume weighted average 

is more meaningful. The “V.W AVG” refers to ratio of total energy saved in all the 

benchmarks to the total energy consumed by all the benchmarks. The volume weighted 

average energy savings is about 10% which is about 7% higher than Lewis++. Four of 

the benchmarks (astar, hmmer, perlbench and povray) attain as much as 35% reduction 

in DRAM energy consumption. Three other benchmarks, (dealII, gcc and h264ref) show 

20% or more reduction in energy consumption. These results speak of the usefulness of 

these optimizations based on the knowledge of inconsequential memory state such as 

IWB, IWM as well as semantic aware refresh. Among the high power consuming 

benchmarks shown in Figure 7.16, (libquantum, mcf, milc, omnetpp, sphinx3 and 

xalancbmk) omnetpp, sphinx3 and xalancbmk achieve reduction in energy consumption. 

It should be noted that in addition to reduction in power, the gains in energy also comes 

from reduction in active DRAM cycles. 

In the contemporary world where power is a first class design constraint for 

system architects (both in the server and mobile space), the consumption of power by the 

memory subsystem is of particular importance. In this chapter, this dissertation 

demonstrates ESKIMO which uses a few mechanisms that reduce the amount of power 

consumed by refresh operations and the amount of write back and write miss reads and 

writes. These techniques reduce the pressure on the memory and the amount of charging 

and discharging of lines required, thereby reducing the energy consumed by the memory 

subsystem. Thus ESKIMO is shown to be a promising adaptation for DRAM based 

memory.   
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Chapter 8: mFilter – Increasing Effective Endurance of Emerging 

Memory Technology based Main Memory 

The increasing complexity and size of modern applications puts tremendous 

pressure on the memory subsystem. Typically, the disk is about four orders of magnitude 

slower than the main memory making frequent misses in the system main memory very 

costly for overall performance. Hence, it is important that the memory system be able to 

feed these applications by supporting their growing working set; which means the 

memory capacity has to grow along with the working set size to keep up with the 

applications. DRAM technology has been the corner-stone of main memory in computer 

systems. Unfortunately, the main memory built from DRAM technology faces severe 

limitations in terms of power, cost [L03, BZE10] and scaling. In the DRAM technology, 

DRAM must not only place charge in a storage capacitor but it must also mitigate sub-

threshold charge leakage through the access device. It requires the capacitors to be large 

enough to store charge for reliable sensing and transistors to be large enough to have 

effective control over the channel. Due to these challenges, viable solutions to 

manufacture DRAM with scaling beyond 36 nm does not exist and the knowledge on 

manufacturing techniques are projected only until 21 nm [ITRS09].  

Several recent academic works as well as industry research have explored 

emerging memory technologies such as Phase-Change Memory (PCM), MRAM 

(Magnetic RAM), FeRAM (Ferroelectric RAM) and Flash [ZYZ09, LIMB09, Q09, 

QSR09]. For PCM, a 20 nm device prototype has already demonstrated the scaling 

mechanism and it is projected to scale to 8 nm [ITRS09, ITRS07, R08]. Table 8.1 

summarizes the various emerging memory technologies. Most of the emerging memory 

technologies have the appeal of being a non-volatile storage mechanism (data retention 

>10 years) with better scaling potential and storage density than DRAM. 
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 DRAM PCM MRAM FeRAM Flash 

Read Latency vs. DRAM 1x 4x 2x 3x 4x 

Write Endurance - <10
8
 <10

16
 <10

14
 10

5
 

Write Energy (J/bit) 5x10
-15

 6x10
-12

 1.5x10
-10

 3x10
-14

 1x10
-14

 

Retention time 64 ms >10 years >10 years >10 years >10 years 

Process Scaling  

(Manufacturing solutions 

exist) 

36 nm 8 nm 65 nm 65 nm 25 nm 

Current Process Node 45 nm 45 nm 130 nm 180 nm 90 nm 

Table 8.1 Summary of different main memory technologies [ITRS09] 

However, these memory technologies have their drawbacks too. For example, in 

an MRAM, write operations require a very high current [ITRS09, BZE10, Z09], about 5 

orders higher than DRAM writes, making write operations very expensive in terms of 

power. FeRAM, PCM and other memories also suffer from endurance limits as can be 

seen in Table 8.1. Additionally, these emerging memories suffer from a higher latency 

compared to DRAMs. The endurance limits, the write cost, as well as the higher latency 

relative to DRAM are challenges that need to be addressed before the positive attributes 

of emerging memory technology such as scaling and density can be exploited.  

New applications, languages and design constraints such as process scaling, 

power, energy consumption etc makes it important to optimize the design across 

architectural boundaries. To this end, this dissertation extends the ideas of 

inconsequential memory optimizations such as inconsequential write backs (IWB) and 

write misses (IWM) along with zero valued sparse (ZVS) nature of datasets to reduce 

read/write access to Emerging Memory Technology based Main Memory (EMT).  



 116 

This dissertation bases the memory organization, shown in Figure 8.1 (a), on the 

proposal of Qureshi et al. [QSR09] and uses that organization as the baseline. A filter 

mechanism capable of tracking the inconsequential and zero value states of memory is 

presented in this chapter. The zero value information is then used to improve emerging 

memory systems by skipping reads and writes identified as avoidable by the filter. The 

mFilter is an augmentation to the main memory as seen in Figure 8.1 (b). Its operation 

and other details are explained in the sections that follow.  

 

  

Figure 8.1 A DRAM-emerging memory technology hierarchy based main memory        

(a) the baseline [QSR09] (b) the version with mFilter in this research 

8.1 MEMORY EVENTS INFLUENCING THE MFILTER DESIGN 

The mFilter is meant to track and store certain events which are covered next. The 

key factor in the design of the mFilter is that it needs to encompass information related to 

all these events uniformly.  
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8.1.1 Inconsequent Write Backs (IWB) 

The insight into IWB detailed in Chapter 5 can also be used for EMT’s. When a 

line is evicted, one can avoid writing the replaced data to the second level main memory 

which is the EMT based main memory, if it can be cross checked as to being in an 

inconsequent write i.e. IWB. Furthermore, marking a line as invalid makes it the next 

candidate for replacement which can improve the efficiency of the cache and thereby 

reduce load latency. Doing so would reduce the number of writes performed on the 

memory device. IWB optimization is used in this dissertation to reduce the write back 

traffic to the EMT memory which helps improve the endurance of EMT. 

8.1.2 Inconsequential Write Miss Servicing (IWM) 

Chapter 5 has dealt with the details of the basic concept of IWM. The concept of 

IWM is useful in optimizing EMT’s too. In the case of EMT based memory IWM works 

as follows. When a write miss occurs the corresponding fetch searches the DRAM cache 

and the mFilter simultaneously. When a match is found in the mFilter, it implies that a 

previous malloc or operating system page allocation had allocated this memory region. 

Hence the load from EMT for a DRAM cache miss can be bypassed when possible and 

the request can be serviced quite easily with a set of zero bits. Reducing load misses due 

to IWM helps in reducing the access latency of EMT. During a read operation, the access 

occurs in parallel and the savings that arise from a faster response due to a hit in the 

mFilter is in latency and not reduction in access.  

8.1.3 Zero-Value Stores (ZVS) 

The concept of ZVS, discussed in detail in Chapter 5, is useful for EMT’s. When 

stores write zeros to memory one can attempt to reduce the number of stores to the 

Emerging Memory Technology based Main Memory (EMT) memory by reducing the bit 
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writes to EMT. The stores can be reduced by using a bit map device (the mFilter) to store 

the data values. A small DRAM based bit array, shown in Figure 8.1, is used in 

conjunction with the EMT memory to flag blocks of cache line granularity as zeros. The 

granularity is assumed to be a cache line with one bit per cache line representing zero 

value. The bit array does not need to be as large as the memory; rather it can operate like 

a cache. If the granularity of zero value representation is larger, the storage size required 

would be correspondingly smaller. Thus, zero value stores can be stored in a bit array in a 

compressed form and avoid updates to the memory.  

8.2 DESIGN OF THE MFILTER - ARCHITECTURAL IMPLEMENTATION DETAILS 

8.2.1 mFilter –Segmented Bit Map Array 

The mFilter is a bit array used to track both allocation/free state of memory as 

well as zero value stores to memory (Figure 8.2). The intuition applied here is that, data 

that is in an inconsequential state can be stored as any random set of bits. The choice of 

the bit values will not affect the correct execution to the program. For this very reason 

this dissertation represents data in inconsequential memory regions as zeros in the mFilter 

array. Thus allocated, freed, as well as zero value data can all be stored as zeros.  The 

mFilter array tracks the data at a cache line granularity using one bit per cache line to 

store state. In essence, the mFilter is a bit array which reflects whether a certain cache 

line contains zero or not. We could maintain one bit per cache line but it is empirically 

observed that a smaller set of bits is sufficient to cover the temporal foot print, less than 1 

MB. To provide better coverage, the bit map array is organized as a set of address tags 

and bit map pairs. This dissertation uses a 4 MB storage split into bit maps segments of 

size 128B i.e. 32K segments. Each bit map segment has a corresponding address tag 

which provides the start address of the cache lines represented by the bit map. 
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Additionally, a zero detector is used as a part of the mFilter. Zero detection circuits, like a 

tree of OR gates, are abundant in literature and hence it is not dwelt upon here. It must be 

noted that the zero detection logic is located inside the memory controller which in turn 

talks to the DRAM/ EMT as well as the mFilter, as shown in Figure 8.2. The data for the 

mFilter is modeled to be stored in a DRAM memory which facilitates a fast and cheap 

resource to be used to augment the EMT memory.  

 

 

Figure 8.2 The segmented bit map array structure for mFilter 

8.2.2 Adaptation in ISA  

To communicate memory state to the mFilter, this dissertation proposes a single 

instruction similar in format to INQCL (from Chapter 7) and a few existing memory 

instructions. For example, the x86 ISA has the INVD (invalidate data cache) and 

WBINVD (write back and invalidate data cache) instructions while PowerPC ISA has 

DCBI (data cache block invalidate) and ICBI (instruction cache block invalidate) 

instructions. The INVD instruction invalidates the whole data cache rather than specific 
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lines while WBINVD instruction invalidates a cache line but causes a write back if the 

data contained is dirty. Both the PowerPC instructions unfortunately exist in privileged 

mode but provide part of the benefit required. The x86 instructions too exists only in 

privileged mode making all these instruction a good model but not suitable for the 

purpose desired. To be able to help in the optimizations presented in this dissertation the 

instruction needs to exist in user mode because they are expected to be triggered by the 

memory management library, which exists in user mode. If the instruction is privileged, 

the cost of transitioning from user to privileged mode during each memory state changes 

i.e. possibly during each allocation or free operation, which would be too costly. The 

instructions also need to aid in invalidating a cache line irrespective of its modified flag. 

Additionally they serve to communicate the state of memory ranges to the bookkeeping 

storage used to store the state of those memory ranges, the mFilter.  

This dissertation proposes INQD addr, size, an instruction meant to be invoked by 

free or malloc of at least cache line size. The instruction communicates to the processor, 

which in turn communicates to the mFilter, that the address range starting at addr of size 

size has either been freed or freshly allocated by the memory manager or the operating 

system. The size is assumed to be a multiple of the cache line size. The system can now 

safely assume this address range to contain only zeros and this information can be stored 

in the mFilter by setting the corresponding bits.  The insertion of INQD is assumed to be 

part of the modified memory management library and hence part of the code without 

explicit invocation by the programmer. The memory allocator or memory manager code 

helps in detections similar to Chapter 7. Each time a block of memory is allocated or 

freed, the memory allocator will invoke the INQD addr, size instruction similar to the 

detection mechanism in the DRAM optimization.  
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8.3 OPERATION OF THE MFILTER 

In this section the dissertation presents a walk through the operation of each of the 

mFilter for various memory events. 

 

Figure 8.3 Working of mFilter during allocation of memory 

8.3.1 Memory Allocation 

As stated before, the memory manager library is modified to take advantage of the 

mFilter via the INQD instruction. Since the memory manager is a system library, it saves 

the normal programmer from having to do any changes to the application code. As 

illustrated in Figure 8.3, the library communicates the allocation of an address range 

using the INQD instruction. The INQD instruction tells the processor that the address 

range starting at address A of size S has been freshly allocated by the memory manager. 

The instruction informs the memory controller which looks up the mFilter for a tag 

(0xAB14) corresponding to the address (0xAB143C2). If a tag is present, then the bit 

corresponding to address is set to 1. If the address spans multiple cache lines, multiple 

bits are set to cover the necessary range. Note that the size S is represented at cache line 

granularity. If the mFilter does not have a tag corresponding to the current segment, the 

mFilter segment data (the tag and the bit array) is evicted based on LRU and the evicted 

data is stored in the disk. This action requires an interrupt service similar to a page fault 

and a penalty similar to a page fault is assumed for such an event in the model.  
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8.3.2 Memory Free  

 

Figure 8.4 Working of mFilter during deallocation of memory 

When the memory manger frees a region of memory the update process to the 

mFilter is the same as that of the Allocation as illustrated in Figure 8.4. The memory 

manager uses the INQD instruction to inform the memory controller via the processor 

that the address starting at 0xAB143C2 of size 2 has now been set as free. The bits in the 

mFilter are updated as in the case of allocation.  

8.3.3 Store Operation 

 

Figure 8.5 Working of mFilter during a store operation to memory 

When an address is accessed using a store operation (from any part of the code, 

not just memory manager code) the memory controller signals the mFilter of this access, 

as shown in Figure 8.5. If the segmented address tag matches that of the mFilter entry 

then the bits corresponding to the address are reset to indicate that the address is not in 

any of the states the mFilter has information about (Allocation, Free or Zero Value).  In 

parallel, the data being stored by the store instruction is examined by a zero checker 
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circuit. If the data turns out to be a zero value data then the array bits are set to 1. If the 

mFilter does not have the corresponding tag, the LRU algorithm operates to replace one 

of the segments. 

8.3.4 Load Operation 

During a load operation, the memory controller probes the mFilter to check for 

the status of the address being issued by the memory controller. If a tag exists then the bit 

corresponding to the tag is checked. If the bit is set, it implies that the memory controller 

can safely assume the data is a set of zeros and feed the processor zeros without need for 

further probing in the main memory.  

8.3.5 Main Memory Hierarchy augmented with mFilter 

The memory hierarchy of an Emerging Memory Technology (EMT) based main 

memory with a DRAM based cache and an mFilter is shown in Figure 8.1. The DRAM 

cache helps filter out access to the EMT as well as page fault related stores to the EMT. 

The access flows down from L1 to L2 and then simultaneously to both DRAM and 

mFilter. Since the mFilter is based on DRAM and is a fraction of the size of EMT and the 

DRAM cache, very fast access is possible. Loads that miss the DRAM cache and find a 

match in the mFilter can be resolved quickly without any access to EMT, thereby hiding 

the EMT access latency in such cases. For a store operation, the mFilter is set instead of 

the EMT memory if the data stored happens to be zero value. Thus, the mFilter helps in 

two fronts. Firstly, it helps reduce the latency of certain loads that find a match in the 

mFilter. These loads could be loads that load previously stored zero data value or loads to 

freshly allocated memory or page. Secondly, the mFilter avoids the need to store zero 

value data in the EMT. A single bit corresponding to the cache line is set to represent 

zero data value store as well as freshly allocated or freed memory.  
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Thus, the mFilter avoids a memory request from being serviced if the memory 

page/cache line being fetched has been allocated recently or if it contains zero value data. 

If the address being fetched belongs to a region that is inconsequential, that memory 

region and page is not fetched from the disk. Furthermore, since this data region is 

inconsequential, the data that is present in the cache line is not important. Thus, it is 

sufficient to fill up the data region in the cache with zeros instead of random bits. This 

factor is important because the optimization in this dissertation stores both 

inconsequential regions and zero data regions using a single bit flag. Although the 

mFilter does not know the distinction between the inconsequential/unimportant regions 

and zero data regions, it does not matter and it is able to provide the latency and write 

optimization benefits. Similarly, when the cache line data write to the memory occurs and 

is filled with zero value data, the data is stored in the mFilter using a bit flag to indicate 

that cache line area is zero or inconsequential. The key insight to reiterate here is that 

both inconsequential data and zero value data can be stored using a single flag and at the 

time of reproduction both cases can be recreated by populating the necessary space with 

zero value data. 

8.3.6 Discussion of Impact on Other Components and Caveats 

8.3.6.1 Memory Consistency 

A system that diverges from the typical memory model has to consider its impact 

on memory correctness in a multiprocessor system particularly in the modern multi-

chip/multi-core world. In a multiprocessor system the resolution of dependency and 

correctness related to a write into the main memory already incorporates correctness 

checks that are necessary and the implementation in this dissertation does not impose any 

additional requirement of protection than what is afforded by such consistency checks. 
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To clarify further, the zero bit is set in the mFilter only when the zero value data is forced 

to be written from the cache to the main memory.  

8.3.6.2 TLB  

Since the addresses used in the mapping are important for resolving a match in the 

mFilter, the presence or absence of an address map in the TLB is a factor of concern. 

Fortunately a TLB miss does not require one to replace, flush, or invalidate the mFilter 

since the mapping is still valid and maintained by the virtual memory page table. An 

eviction of an entry from the TLB does not affect the state of the page. On the other hand, 

when the address results in a page fault, parallel to resolving the address mapping a 

selective flush and book keeping (update of data pages) of the mFilter array is necessary. 

The flushing and book keeping is necessary if the previously mapped address has become 

remapped or unmapped. It is assumed this can be done in parallel to a page fault handling 

operation and hence there is no need for an additional penalty for this.  

8.3.6.3 Page faults in baseline 

The handling of the page fault is slightly different from convention in this 

memory hierarchy. Normally a page fault would cause the page data to be fetched from 

the disk and then be stored into the main memory. With the multi-level main memory, 

instead of storing the data in the EMT memory the data is stored in the DRAM cache 

first. This avoids unnecessary writes to the EMT memory caused by page fault servicing 

especially when those pages are not written to. Note that this is not an optimization this 

dissertation presents but rather one that is present in the baseline system, the work of 

Qureshi et al. [QSR09]. 
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8.3.6.4 DMA 

One of the important system effects that come into play is the operation of the 

Direct Memory Access (DMA). A DMA access fetches data for a memory range in the 

background. This implies that it is possible for a memory to be considered allocated and 

unused but data might be in the process of being fetched into that memory range via the 

DMA operation. Since the DMA access is initiated by the operating system, it is 

detectable. Using the reset mode of the INQD instruction, the mFilter is updated to 

indicate that it is not inconsequential any more.  

8.3.6.5 Caveats 

In a multiprocessor system the cache coherence protocol also becomes a factor. 

When a recently modified cache block is shared between cores, cache line invalidation 

due to the INQCL instruction has to also update the other core caches in order to gain full 

benefit. Fortunately there is no correctness issue, but not updating the other cores can 

lead to lost opportunity. 

The other caveat relates to cases in which the assumption of unnecessary write 

back does not hold. If the allocated regions of memory are zeroed out for security 

reasons, the IWB optimization would prevent those writes from propagating from the 

cache to the memory.  For security reasons it might be necessary to erase current data 

values in the main memory and hence it is not desirable that IWB block such write backs. 

This issue can be solved by facilitating a specialized case of the free operation which 

does not mark the deallocated memory regions as inconsequential.  
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8.4 RESULTS 

8.4.1 DRAM Cache Occupancy 

Before looking at the results of the optimizations presented for EMT, it is of 

interest to look into how the DRAM cache occupancy. Figure 8.6 presents the occupancy 

of cache lines for each category. For example, the “%of Dirty Lines” presents the 

percentage of the total cache entries that are marked modified at the end of the 

simulation. For almost all the benchmarks, at least 15% of the DRAM based cache lines 

are dirty; this amounts to an average of 50% which is almost the same as the average 

dirty line percentage for L2 cache shown in Figure 5.5. The patterns for the individual 

benchmarks vary. Almost all the benchmarks have a different amount of DRAM cache 

size dirty vs. the L2 cache This is to be expected since the L2 cache is in the 2 MB range 

while the DRAM based cache is 64 MB. Since IWB benefits from the amount of dirty 

data, a high percentage of dirty data is useful to the proposed technique. Another factor 

that is very important to the usefulness of IWB is the amount of cache lines that are both 

dirty and invalid thus giving rise to IWB. Programs such as astar, gcc, hmmer, perlbench 

and xalancbmk have a notable amount of cache lines and dirty cache lines that are 

invalid. Xalancbmk leads the pack with 50% of the cache lines being marked invalid and 

those turn out to be dirty and invalid as well. On average about 4-5% of all the DRAM 

lines are dirty and invalid.  
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Figure 8.6 Pre-EMT DRAM cache occupancy  

 

Figure 8.7 Pre-EMT DRAM cache occupancy for dirty lines 
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Figure 8.7 presents the cache occupancy data as a percentage of dirty lines. The 

first bar (from the left) is the percentage of DRAM cache entries that are dirty while the 

second bar represents the percentage of those cache lines that are marked invalid i.e. 

inconsequential. On average about 12% of the dirty lines are inconsequential and hence 

marked as invalid too. 

8.4.2 Write Miss Reduction based on Inconsequential Write Miss (IWM) 

Figure 8.8 and Figure 8.9 shows the savings arising from IWM. Figure 8.8 

presents the write miss related data; the first bar (from the left) is the percentage of load 

misses in the DRAM cache due to write miss. The second bar represents the percentage 

of write misses that are inconsequential.  On average 42% of the load misses from the 

DRAM cache are caused by write misses. This is a good starting point for IWM, meaning 

the savings it achieves will affect on average 42% of the load miss accesses. Gobmk, mcf, 

omnetpp and soplex have a very low percentage of load misses that arise from write 

misses which automatically makes them bad candidates for IWM. The other benchmarks 

have more than 15% of the load misses coming from write miss. Even with the larger 

amount of write misses, IWM has an impact only if a good percentage of those write 

misses are identified as inconsequential. On average 20% of write misses are 

inconsequential. Benchmarks such as hmmer, lbm and sjeng show good promise for IWB 

with the amount of write miss based load misses, but those fail to convert to 

inconsequential write miss candidates. Hence these benchmarks too make for bad 

candidates for IWM. Even though libquantum has a much smaller percentage of the write 

misses as inconsequential it has a very high amount of write miss based load miss. The 

rest of the benchmarks are expected to be reasonable candidates for IWM. Figure 8.9 has 

the actual amount of memory access saved using IWM. As expected gobmk, mcf, 
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omnetpp, soplex, hmmer, lbm and sjeng perform poorly. All the other benchmarks 

perform reasonably. On average (volume weighted) there is a 3% reduction in memory 

access due to IWM.  

 

Figure 8.8 Pre-EMT DRAM write miss statistics 

 

Figure 8.9 Memory access reduced via IWM 
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Figure 8.10 Pre-EMT cache state  

8.4.3 Write Back Reduction due to IWB and ZVS  

Before looking at the results of the IWB optimization presented for EMT, it is of 

interest to see how the DRAM cache occupancy is related to write backs. Figure 8.10 

presents the occupancy of DRAM lines for each category. For example, “% Write 

Backs/Evictions” presents the percentage of the total DRAM cache evictions that cause a 

write back. These measurements are based on a snapshot of the DRAM cache at the end 

of the simulation. The first bar is the ratio of store operations going from the DRAM to 

the EMT memory to the load operations to the EMT from the DRAM. Based on this 

snapshot, on average EMT stores are about half that of EMT load operations. For most 

benchmarks, except namd and povray, at least 10% of the evictions result in a write back. 

The ratio of write backs operations to modification operations points to the amount of 
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representing the percentage of DRAM lines that are both dirty and invalid to the dirty 

lines represents the scope of IWB optimization; on average this is more than 26%.  

 

 

Figure 8.11 Write back reduction due to IWB and ZVS 
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weighted) about 11% of the store operations are avoided by a combination of IWB and 

ZVS. This is very significant in extending endurance of EMT based memories.  

 

 

Figure 8.12 EMT stores saved by IWB and ZVS 
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The lifetime of the system is estimated using the following formulas:  
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The lifetime of a benchmark on the EMT system is computed by finding the 

number of seconds it takes for any cell to reach the number of writes that breaches the 

EMT endurance limit. The endurance limit of the EMT technology is divided by the 

effective write rate (writes per second) for the benchmark to get the number of seconds it 

takes for the write endurance limit to be breached. Researchers have adapted ideas from 

FLASH memory to perform wear-leveling in EMT’s by performing row shifting [ZYZ09, 

SLSB10], word shifting [ZL09], randomized address mapping [Q09,QSR09, SWL10] 

and data remapping [SLSB10, YMC11].  Schechter et al. [SLSB10] also proposed a 

pointer based error correction code to avoid the constant rewriting required by a normal 

ECC. To account for the effects of many of these wear leveling techniques proposed for 

EMT based systems, the effective write rate is determined by dividing the benchmarks 

write rate over the total number of bits in the system. Thus, the formula mimics the 

behavior of having the write operations spread out over all the available storage, i.e. 

avoiding write wear from focusing on a small portion, which is the ideal effect attainable 

by wear leveling techniques.  

 

  



 135 

Benchmark Baseline Lifetime 

(years)  

Lifetime 

improvement(years) 

% Improvement in 

Lifetime 

astar 27318 N/A N/A 

bzip2 230 N/A N/A 

dealII 215 N/A N/A 

gcc 1264 N/A N/A 

gobmk 626 N/A N/A 

h264ref 10863 N/A N/A 

hmmer 56670 N/A N/A 

lbm 2.84 0.00 0% 

libquantum 24710 N/A N/A 

mcf 2.39 0.00 0% 

milc 4.46 3.28 74% 

namd 1815751 N/A N/A 

omnetpp 359 N/A N/A 

perlbench 63 446.58 700% 

povray 2917716 N/A N/A 

sjeng 162 N/A N/A 

soplex 39.79 6.73 17% 

sphinx3 17128 N/A N/A 

xalancbmk 331 N/A N/A 

Useful AVG  91.32 159% 

Table 8.2 Savings in lifetime – The improvement in lifetime gained in the optimized 

EMT based memory subsystem   
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Chapter 9: Conclusions and Future Work 

The growing importance of memory in total costs, energy consumption and 

performance consideration of servers in datacenters has forced a rethinking of the design 

of memory subsystems. Increasing pressure on memory capacity due to memory 

requirements of applications and operating systems, as an artifact of trends such as 

automatic memory management, in-memory databases, virtual machine consolidation etc, 

requires increased scaling of main memory capacity, energy and performance to meet 

modern software demands.  

9.1 SUMMARY 

In this dissertation, a cross-boundary approach to solve some of these problems is 

explored. Dynamic memory management state and dynamic data value optimizations 

used is discussed and an in-depth analysis is done on the benchmarks to observe the 

scope of these events that are targeted. Of the 19 benchmarks analyzed about 13 

benchmarks show sensitivity to such optimizations.  

On the energy front, the idea of inconsequential memory is explored via an 

augmentation to the TLB. A detailed mechanism for detecting, tracking and using 

inconsequential memory state (inconsequential write backs as well as inconsequential 

write misses) was developed. Based on such a mechanism a detailed characterization of 

the benchmarks reveals that 12% of the memory system activity can be curtailed by using 

optimizations based on inconsequential memory state. This combined with a smart 

strategy to DRAM refresh leads up to 42% energy savings for some benchmarks and 10% 

volume weighted average energy savings in memory subsystem.  

These techniques are combined with dynamic zero data value stores to improve 

the endurance of emerging memory technologies. A detailed mechanism for detecting, 
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tracking and using both inconsequential memory states (inconsequential write backs as 

well as inconsequential write misses) as well as dynamic zero data value stores was 

developed. Modeling the use of such a mechanism shows that about 3% of access to the 

slower emerging memory can be avoided and satisfied with much lower memory latency 

penalty. The model demonstrates that on an average 11% of the destructive store 

operations can be avoided thereby increasing the useful life of the emerging technology 

based memory. This translated to about 159% of increase in lifetime on average for 

benchmarks that had less than 100 years of lifetime in the baseline PCM based memory 

system. Among the SPEC CPU2006 benchmarks, only milc benefits significantly from 

the mFilter based optimization.  

9.2 FUTURE WORK 

All these analysis and results demonstrate that there is significant value in 

exploiting dynamic memory management state as well as dynamic data value.  The 

knowledge that parts of the last level cache as well as the DRAM based cache are in 

inconsequential state opens the door for it to be used for aggressive perfecting when the 

occupancy of inconsequential data increase. A prefetcher that ramps up its activity based 

on the amount of inconsequential data identified in the last level cache, could be built, 

thereby reducing the pollution effect of aggressive prefetchers. 

The spare space in the caches that are known to be data of inconsequential nature 

could also help solve reliability issues. It could be possible to exploit these spare cache 

lines to serve as redundant error correction bits. It is also possible to do this to help 

switch the cache into a more aggressive lower voltage state. At lower voltages the caches 

are more susceptible to soft errors. So in phases of the program where parts of the data 
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cache carries inconsequential data, those lines could double up as additional error 

correction code and thus allow the voltage to be dropped thereby saving power.  

The very same techniques discussed in this dissertation could help alleviate the 

pressure on memory bandwidth in other applications, particularly OLTP (Online 

transaction processing) and databases. It is known that the relationship of bandwidth 

consumption to the main memory and performance is non-linear. Thus, even a small 

reduction in bandwidth consumption at the right time can have a large impact on the 

system performance. It is also possible to design simplified communication protocols that 

take advantage of the prevalence of zero value data that this dissertation has 

demonstrated.  

These are only a few of the many applications of a coordinated approach between 

software and hardware to exploit the knowledge that the software has about memory and 

data. These approaches can help to design a less conservative hardware which can, in 

turn, help resolve some of the issues with hardware design including performance, power 

and reliability. 
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