
Copyright

by

Jian Chen

2011

The Dissertation Committee for Jian Chen
certifies that this is the approved version of the following dissertation:

Resource Management for Efficient Single-ISA

Heterogeneous Computing

Committee:

Lizy Kurian John, Supervisor

Earl E. Swartzlander, Jr.

Joydeep Ghosh

David Z. Pan

Lieven Eeckhout

Resource Management for Efficient Single-ISA

Heterogeneous Computing

by

Jian Chen, B.E.; M.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2011

Dedicated to my parents, Zelin Hu and Yuehuai Chen.

 v

Acknowledgements

 I am grateful for many people who helped me throughout my journey of PhD

study, and I would like to take this opportunity to acknowledge their efforts.

First of all, I would like to thank my advisor, Lizy K. John, for providing me with

the freedom and the resources to do high-quality research and for teaching me valuable

lessons in research and beyond.

I would also like to thank all the members of LCA group. I especially thank

Dimitris Kaseridis for establishing the simulation platform and making the group a fun

place to work at, Arun Nair for the wonderful collaboration, Ciji Isen for bringing some

software aspects in my research, Jeff Stuecheli for sharing his industry perspectives, and

Karthik Ganesan, Muhammad U. Farooq, Faisal Iqbal, Jungho Jo, YoungTaek Kim for

their valuable feedbacks on my papers and presentations.

Very special thanks to Dong Li for the intelligent discussions on research as well

as the sincere sharing of life stories, which made the stressful PhD life a bit easier.

Many thanks to Lieven Eeckhout, Earl Swartzlander, Joydeep Gosh and David

Pan for serving in my PhD committee.

Finally, I would like to thank my parents, Zelin Hu and Yuehuai Chen, my

girlfriend, Shifang Liu, for their unconditional support throughout my PhD study.

Without their encouragement and dedication, I would not have completed this

dissertation.

 vi

Resource Management for Efficient Single-ISA

Heterogeneous Computing

Publication No.__________________

Jian Chen, Ph.D.

The University of Texas at Austin, 2011

Supervisor: Lizy Kurian John

Single-ISA Heterogeneous Multi-core Processors (SHMPs) have become increasingly

important due to their potential to significantly improve the execution efficiency for

diverse workloads and thereby alleviate the power density constraints in Chip

Multiprocessors (CMPs). The importance of SHMP is further underscored by the fact

that manufacturing defects and process variation could also cause single-ISA

heterogeneity in CMPs even though the CMP is originally designed as homogeneous.

However, to fully exploit the execution efficiency that SHMP has to offer, programs

have to be efficiently mapped/scheduled to the appropriate cores such that the hardware

resources of the cores match the resource demands of the programs, which is challenging

and remains an open problem.

This dissertation presents a comprehensive set of off-line and on-line techniques

that leverage analytical performance modeling to bridge the gap between the workload

diversity and the hardware heterogeneity. For the off-line scenario, this dissertation

presents an efficient resource demand analysis framework that can estimate the resource

 vii

demands of a program based on the inherent characteristics of the program without using

any detailed simulation. Based on the estimated resource demands, this dissertation

further proposes a multi-dimensional program-core matching technique that projects

program resource demands and core configurations to a unified multi-dimensional space,

and uses the weighted Euclidean distance between these two to identify the matching

program-core pair.

This dissertation also presents a dynamic and predictive application scheduler for

SHMPs. It uses a set of hardware-efficient online profilers and an analytical performance

model to simultaneously predict the application’s performance on different cores. Based

on the predicted performance, the scheduler identifies and enforces near-optimal

application assignment for each scheduling interval without any trial runs or off-line

profiling. Using only a few kilo-bytes of extra hardware, the proposed heterogeneity-

aware scheduler improves the weighted speedup by 11.3% compared with the

commodity OpenSolaris scheduler and by 6.8% compared with the best known research

scheduler.

Finally, this dissertation presents a predictive yet cost effective mechanism to

manage intra-core and/or inter-core resources in dynamic SHMPs. It also uses a set of

hardware-efficient online profilers and an analytical performance model to predict the

application’s performance with different resource allocations. Based on the predicted

performance, the resource allocator identifies and enforces near optimum resource

partitions for each epoch without any trial runs. The experimental results show that the

proposed predictive resource management framework could improve the weighted

speedup of the CMP system by an average of 11.6% compared with the equal partition

scheme, and 9.3% compared with existing reactive resource management scheme.

Table of Contents

Acknowledgements v

Abstract vi

List of Tables xii

List of Figures xiii

 Chapter 1. Introduction 1

1.1 Single-ISA Heterogeneous Multi-core Processor 1

1.2 The Problem: Gap between Workload Diversity and Hardware Het-
erogeneity . 2

1.3 Proposed Approach . 4

1.4 Thesis Statement . 5

1.5 Contributions . 5

1.6 Dissertation Organization . 7

Chapter 2. Background and Related Work 9

2.1 Related Research on Creating SHMP 9

2.2 Related Research on Application Scheduling in Static SHMP 11

2.3 Related Research on Dynamic Resource Management 12

2.4 Related Research on Performance Modeling 14

Chapter 3. Analytical Performance Modeling 16

3.1 Basic Analytical Model . 16

3.2 Extended Performance Model . 18

3.2.1 Impact of Limited Functional Units 19

3.2.2 Impact of Operating Frequency 21

3.2.3 Impact of L2 Cache Size . 22

3.2.4 Impact of Memory-Level Parallelism 23

3.2.5 Impact of Co-executing Threads 24

3.3 Summary . 27

viii

Chapter 4. Experiment Methodology 28

4.1 Simulation Platform . 28

4.1.1 Simulation Platform for Resource Demand Analysis 28

4.1.2 Simulation Platform for Program-core Mapping 30

4.1.3 Simulation Platform for Application Scheduling in Static SHMP 31

4.1.4 Simulation Platform for Resource Management in Dynamic SHMP 32

4.2 Workloads . 34

4.2.1 Workloads for Program Resource Demand Analysis 34

4.2.2 Workloads for Program-core Mapping 34

4.2.3 Workloads for Application Scheduling in Static SHMP 34

4.2.4 Workloads for Resource Management in Dynamic SHMP 35

4.3 Metrics . 37

Chapter 5. Program Resource Demand Analysis 38

5.1 Resource Demand Definition . 38

5.2 Overview of the Framework . 39

5.3 Performance Modeling . 40

5.4 Demand on Multiple Resources . 41

5.5 Demand on Memory Bandwidth . 43

5.6 Demand on Branch Predictor Size . 45

5.7 Evaluation . 48

5.7.1 Model Accuracy . 48

5.7.2 Accuracy of Resource Demand Estimation 52

5.7.2.1 Single-Resource Demand Estimation 52

5.7.2.2 Multi-Resource Demand Estimation 56

5.7.3 Complexity Analysis . 58

5.8 Summary . 59

Chapter 6. Program-core Mapping in Static SHMP 60

6.1 Framework 60

6.2 Projection Function . 62

6.3 Weight Assignment . 66

6.4 Mapping Heuristic . 68

6.5 Evaluation 71

6.6 Summary 74

ix

Chapter 7. Predictive Scheduling in Static SHMP 75

7.1 Scheduling Framework . 75

7.2 Performance Modeling . 77

7.3 Online Profilers 77

7.3.1 Critical Dependency Chain Profiler 77

7.3.2 Ready Set Size Profiler 78

7.3.3 Stack Distance Profiler 80

7.3.4 Profiling for Other Parameters 80

7.3.5 Hardware Cost Analysis . 81

7.4 Scheduling Heuristics . 82

7.5 Evaluation 85

 7.5.1 Model Accuracy . 85

7.5.2 Migration Threshold . 87

7.5.3 Performance 87

7.6 Summary 94

Chapter 8. Predictive Resource Coordination in Dynamic SHMP 95

8.1 Resource Coordination Framework . 97

8.2 Performance Prediction 99

8.3 On-line Profiling Support 102

8.3.1 Critical Dependency Chain Profiler 102

 8.3.2 MLP Profiler 103

8.4 Resource Coordination Algorithm . 104

8.5 Implementation Cost Analysis . . 108

8.6 Evaluation 109

 8.6.1 Model Accuracy 110

 8.6.2 Epoch Size Sensitivity . . . 110

 8.6.3 Performance & Efficiency . 113

 8.6.4 QoS Enforcement 115

8.7 Summary 116

Chapter 9. Conclusions and Future Research Directions 117

9.1 Conclusions 117

9.2 Future Research Directions 119

9.2.1 Improving the Efficiency of On-line Profilers 119

9.2.2 Expanding the Types of Heterogeneous Resources 120

x

Bibliography 121

xi

List of Tables

3.1 Estimation of Effective Average Execution Rate for 2-Way SMT . . . 26

4.1 Configuration Options 29

4.2 Configurations of Each Core 30

4.3 Nominal Configurations of the CMP system 32

4.4 Configurations of the CMP system 32

4.5 Configurations of the CMP system 33

4.6 Workloads and Their Characteristics 35

4.7 Workloads and Their Characteristics 36

5.1 Evaluation of The Demand Estimation for Branch Predictor Size . . . 56

6.1

Projection Functions .

.

.

64

6.2 Correlation Coefficient between EDP and WED 71

7.1

Hardware Cost of the Online Profilers for Application Scheduling

.

.

82

8.1 Hardware Cost of the Online Profilers for Resource Management . . . 109

 xii

List of Figures

1.1 Overview of the proposed research 5

3.1

The instruction ready set and the RSS histogram.

.

.

20

3.2 Stack Distance Histogram of SPEC CPU2006 program xalancbmk. . . 23

3.3 MLP Modeling . . . 25

5.1

The PREDA framework. .

.

.

40

5.2 Branch predictor size demand estimation 46

5.3 The comparison of normalized throughput for bzip2 as one of the
 resources changes. . 49

5.4 Average error of the normalized throughput for issue width, ROB size,
L2 cache size, and frequency. .

50

5.5 Comparison of the combined error and the intrinsic error in normalized

 throughput. . 51

5.6 The accuracy of single-resource demand estimation for bzip2 53

5.7 The error of resource estimation. 54

5.8 The memory bandwidth estimation error 55

5.9 Evaluation of Multi-resource Demand Estimation. 57

6.1 Framework for multidimensional program-core matching. 61

6.2 EDP, energy and makespan comparison between different scheduling
heuristics. . 73

6.3 Scheduling results for different number of programs 74

7.1 The overview of the PHASE framework. 76

7.2 The structure of the online profilers. 79

7.3 Model Accuracy. 86

7.4 Migration Threshold. . 88

7.5 Comparison of throughput. . 89

7.6 Comparison of efficiency. . 91

7.7 Comparison of weighted speedup and efficiency. 92

7.8 Average performance and efficiency improvement vs program number. 93

xiii

8.1 Comparison of weighted speedup for different resource management
policies. . 96

8.2 The overview of the multiple resource management framework 98

8.3 The comparison of estimated and measured non-overlapped L2 load
misses . 101

8.4 The structure of the online profilers. 103

8.5 Performance Model Accuracy. . 111

8.6 Performance impact of epoch size. . 112

8.7 Performance and efficiency comparison for different resource manage-
ment policies. 114

8.8 QoS targets enforcement . 115

xiv

Chapter 1

Introduction

Chip Multiprocessors (CMP) have become the mainstream computing plat-

form to improve the utilization of the abundant yet ever-increasing on-chip resources

and alleviate the power density constraints. By integrating multiple cores in a single

chip, CMP allows multiple programs or multiple threads to simultaneously execute

on different cores on the same chip, significantly improving the system throughput

and efficiency. However, CMPs composed of homogeneous processor cores still suffer

from inefficiency because they lead to an inevitable dilemma: replicating smaller

cores compromises the throughput of the high-complexity single-threaded applica-

tions; whereas replicating larger cores sacrifices the execution efficiency of the low-

complexity low-priority applications. Therefore, to achieve high efficiency, CMPs

need certain amount of core-level heterogeneity to accommodate or adapt to the

diverse workload requirements.

1.1 Single-ISA Heterogeneous Multi-core Processor

Single-ISA Heterogeneous Multi-core Processor (SHMP) [1] emerges as an

important and attractive type of CMP that provides the core-level heterogeneity to

meet the diverse requirements of the workloads. It consists of cores with the same

Instruction-Set Architecture (ISA) yet different configurations, and hence allows any

application/task to be executed on any core in the system without modification in the

1

application binaries. Depending on the runtime configurability of the processor cores,

SHMP can be categorized as Static Single-ISA Heterogeneous Multi-core Processor

or Dynamic Single-ISA Heterogeneous Multi-core Processor.

Static SHMP is statically composed of cores with fixed yet different config-

urations. Such static heterogeneity can be introduced intentionally by integrating

cores with different complexity in a single chip at the design stage or can be caused

unintentionally by process variation and hardware defects during the manufacturing

stage. Either way, it relies on an appropriate scheduling scheme to map the program

to the processor core that matches the program’s resource demands [2][3]. On the

other hand, dynamic SHMP is realized by dynamically reconfiguring the cores as well

as other on-chip resources, such as L2 cache sizes, to meet the need of the applica-

tions. Examples of such SHMP include Tflex [4] and Core Fusion [5]. Such SHMPs

are able to meet the application resource demand changes at a finer granularity dur-

ing runtime, yet their hardware adaptation still relies on the workload heterogeneity

being properly translated to the corresponding hardware resource demands.

1.2 The Problem: Gap between Workload Diversity and
Hardware Heterogeneity

In static SHMPs, mapping the workload diversity to the hardware heterogene-

ity is achieved by heterogeneity-aware application scheduling; whereas in dynamic

SHMPs, it is typically achieved by runtime resource adaptation. However, in both

cases, the existing methods are severely constrained by their inefficiency, poor scal-

ability, and inability to enforce performance objectives.

Issues on Efficiency: The conventional approach for heterogeneity-aware

2

application scheduling relies on tentative runs to explore the appropriate application-

core mapping [2][6]. Specifically, this approach tentatively executes the application

on different cores, each for a short period of time, and then schedules the program

to the optimum core based on the sampled Energy-Delay Product (EDP) during

the tentative runs. This method suffers inefficiency from the trial runs as they incur

significant power and performance overhead in moving around the architecture states

and data sets, potentially negating the benefit of the improvement in application

scheduling. Similarly, the conventional method for dynamic resource adaptation

also uses the trial-and-error approach to explore the appropriate resource allocation,

which also causes inefficiency because a large amount of execution time is spent in

exploring the trial resource allocations.

Issues on Scalability: The trial-and-error application scheduling in static

SHMPs is only feasible for a relatively small number of cores, because the number of

trial runs for exploring all scheduling options grows almost exponentially as the num-

ber of heterogeneous cores increases. Similarly, for dynamic resource adaptation, the

time needed for tentative runs becomes almost intractable for a large reconfiguration

space, resulting in slow adaptation and poor performance.

Issues on Performance Objective Enforcement: Providing performance

isolation for the co-executing applications and enforcing the given performance ob-

jectives are becoming increasingly important as CMPs expand their usage toward

service-oriented computing, server consolidation and virtualization [7]. However,

dynamic resource adaptation using tentative runs takes long latency to find the ap-

propriate resource allocations for the system performance objectives. Such a long

response latency may occupy a significant portion of the program phase, or even

3

exceed the phase duration, resulting in inefficiency or even inability to provide per-

formance level guarantees.

As a result, to unleash the full potential for heterogeneous computing, there

is an urgent need of efficient and scalable techniques that can translate the workload

diversity to the hardware heterogeneity, and enforce system performance objectives.

To this end, this dissertation presents and evaluates a set of techniques for analyzing

the resource demands and thereby managing multiple interactive resources.

1.3 Proposed Approach

Whether it is application scheduling in static SHMP or resource management

in dynamic SHMP, efficiently identifying the resource demand of the application is

the key step to close the gap between the workload heterogeneity and the hardware

heterogeneity. To do so, this dissertation proposes to leverage analytical performance

modeling and micro-architecture independent characteristics for resource demand

identification, as shown in Figure 1.1. Unlike the regression models [8][9] or the neural

network models [10], the analytical performance model does not require training

which significantly boosts the efficiency in exploring the configuration space both

off-line and on-line. Using micro-architecture independent characteristics also allows

the resource demand identification to be isolated from any partial simulations, not

only speeding-up the process of resource demand analysis, but also enabling on-line

performance prediction.

Based on the identified resource demands, this dissertation presents a multi-

dimensional matching technique [11] for off-line program-core mapping, and a perfor-

mance prediction scheme for on-line application scheduling to improve the computing

4

Figure 1.1: Overview of the proposed research.The grey boxes highlight the scope of this
research.

efficiency in static SHMP. On the other hand, using the proposed analytical model,

this dissertation also presents a comprehensive yet cost-effective resource manage-

ment framework that can coordinate multiple shared resources while simultaneously

enforcing Quality-of-Service (QoS) performance objectives.

1.4 Thesis Statement

The combination of analytical performance modeling and micro-architecture

independent characteristics provides an attractive platform for program resource de-

mand analysis, which further enables efficient and scalable application scheduling

and multiple resource management for the single-ISA heterogeneous computing en-

vironment.

1.5 Contributions

This dissertation makes the following major contributions:

1. This dissertation presents an analytical model based on program character-

5

istics such as Instruction Level Parallelism (ILP), Memory Level Parallelism

(MLP) and branch predictability. Unlike existing analytical models [12][13],

which require simulations on caches and branch predictors, this proposed model

avoids any partial detailed simulation; yet it is still able to accurately model

the performance trend for different hardware configurations. The decoupling

from detailed simulation not only makes this model efficient in estimating the

resource demand off-line, but also allows it to be applied in proactive on-line

resource management. This dissertation also encapsulates the analytical model

and the resource demand estimation algorithms into an integrated framework

called Program REsource Demand Analyzer (PREDA), which automatically

estimates a broad set of resource demands for a workload. Compared with

the framework using a state-of-the-art analytical model [13], this framework

achieves significant speedup in estimating multi-resource demands.

2. This dissertation presents an off-line program-core mapping framework for

static heterogeneous CMPs. The proposed framework projects the core config-

urations and the programs resource demands into a unified multi-dimensional

space, where the program-core matching can be easily identified with weighted

Euclidean distances. This dissertation demonstrates that the weighted Eu-

clidean distance is strongly correlated with EDP, hence can be used to guide

program scheduling in heterogeneous multicores.

3. This dissertation builds a comprehensive yet cost-effective dynamic on-line pro-

filer, and a performance predictor that utilizes the online profile to accurately

predict the performance of cores with different configurations on multiple re-

sources. Based on the proposed performance predictor, this dissertation further

6

proposes a framework for dynamic heterogeneity-aware application scheduling.

This scheduling framework eliminates the need of trial-runs or off-line profiling,

yet can dynamically and efficiently adapt to program phases. Experimental re-

sults show that the proposed approach significantly improves the throughput

and efficiency compared with the commodity OpenSolaris scheduler and with

the best known research scheduler.

4. This dissertation presents a framework for multiple resource management based

on the proposed performance model. By using a set of on-line profilers, the per-

formance model is able to predict the performance of the running applications

for different resource allocations of both inter-core an intra-core resources, and

hence fundamentally eliminating the need of trial-runs or training required for

conventional dynamic resource management schemes. This framework is also

able to efficiently translate system performance specification to the resource

usages, hence it allows the enforcement of QoS performance objectives when

multiple interacting resources are reconfigured.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 gives back-

ground and the related work in this area. Chapter 3 presents the details of the ana-

lytical performance model. Chapter 4 describes the experiment platforms, workloads

as well as the metrics employed in this dissertation. Chapter 5 shows the mechanism

for estimating program resource demands using the proposed performance model.

Chapter 6 demonstrates the framework of off-line program-core mapping in static

SHMP. Chapter 7 presents the framework for dynamic and predictive application

7

scheduling in static SHMP. Chapter 8 shows the mechanism for predictive coordina-

tion of multiple interacting resources in dynamic SHMP. Chapter 9 summarizes of

the key results and insights presented in the dissertation, and proposes the directions

for future research.

8

Chapter 2

Background and Related Work

2.1 Related Research on Creating SHMP

Single-ISA heterogeneous multi-core architecture was initially proposed by

Kumar, et al. [2] as an attractive option for power-efficient computing. Their pro-

posed heterogeneous multicore processor is composed of legacy Alpha cores with

different complexities, effectively amortizing the design and verification effort. IBM

CELL processor is another variant of heterogeneous multicore processor, which com-

bines a PowerPC Core with eight Synergistic Processing Elements (SPE) [14]. Al-

though the core and SPE uses different instruction sets, the CELL processor does

underscore the importance of using heterogeneity or hardware specialization to boost

system efficiency.

Besides the intentionally introduced hardware heterogeneity, single-ISA het-

erogeneity can also be unintentionally introduced by process variation and manu-

facturing defects. Process variation is defined as a divergence in the parameters of

the fabricated transistors from their nominal values, both within dies (WID) and

die-to-die (D2D) [15]. It occurs due to random dopant fluctuations and shortcom-

ings of lithographic processes, and could significantly affect the threshold voltage of

transistors. ITRS [16] reports that the 3σ intra-die variation of a transistor’s thresh-

old voltage and effective channel length can be as large as 42% and 12% in 45nm

technology, and is expected to be worsen as the technology scales down further. The

9

variation on these parameters directly impacts the switching speed of the transistors,

which further causes the maximum operating frequency of the processor to deviate

from its nominal value. In a multi-core processor, this implies that different cores

may need to operate at different maximum frequencies.

Besides process variation, hard faults are another important issue in manufac-

turing process. They are caused by imprecise calibration of equipment, contaminants

in materials, as well as particle impurities in the air [17], and could incur functional

failures in parts of the processors, resulting in expensive yield loss. It is expected that

the yield loss will be exacerbated as the transistor density and die size increase, and

needs to be carefully controlled. To mitigate yield loss, industry typically leverages

the redundancy in processor components such as SRAM arrays, functional units

and queues, and recovers faulty processors by disabling some of the defective yet

non-critical units [17]. These rescued processors are fully functional, albeit with re-

duced performance due to the reduction in certain hardware resources. That said,

not all faulty units are suitable for this yield-enhancing technique: faults in critical

units, such as control units, could cause complete failure of the processor, and faults

in Reorder Buffer (ROB) or load/store queue, may require complex and expensive

hardware to recover the functionality. Hence, this dissertation focuses on two types

of representative resources that can be protected by this yield-enhancing technique,

namely, available functional units and L2 cache size. Functional units have their nat-

ural redundancy in microprocessors, especially in wide-issue superscalar processors,

and have been explored to improve the yield [17]. L2 cache occupies a large amount

of chip real estate, and is susceptible to hard faults. While it is typically equipped

with redundancy to improve the yield, the occurrence of hard faults may exceed the

protection capability. Should this happen, the defective ways in L2 cache can be

10

discovered and disabled during manufacturing test, which results in a smaller, but

functional cache.

While the above heterogeneous CMP are static, the singe-ISA heterogeneity

in CMP can also be formulated dynamically. Kim, et al. proposed the Tflex ar-

chitecture [4], which allows simple and low-power cores to be aggregated together

dynamically, creating larger, more powerful processors without changing the appli-

cation binary. Ipek, et al. also present a flexible chip multiprocessor substrate that

can dynamically morph multiple cores into a larger processing unit [5] to meet the

runtime requirements of the applications.

2.2 Related Research on Application Scheduling in Static
SHMP

Along the proposal of SHMP, Kumar, et al. [2] also propose a dynamic pro-

gram scheduling approach based on the sampled EDP during tentative runs. This

method tentatively runs the program on different cores, each for a short period of

time, and then schedules the program to the optimum core according to the sam-

pled EDP during the tentative runs. The downside of this method is the expensive

context switching cost of the tentative runs, which may significantly degrade the

overall efficiency of the multi-core system. Becchi, et al. extends Kumar’s work

by measuring IPC ratios between two different cores to migrate applications [6].

Essentially, this method uses pair-wise program swapping to reduce the number of

trial executions. Nevertheless, this method still relies on tentative runs to identify

the matching program-core pair, hence suffers from the same limitation as Kumar’s

method. Beside the extra power overhead, such trial-and-error approaches also incur

scalability issues as the number of cores increases. In future many-core chips, sam-

11

pling a large amount of cores before scheduling the program would be impractical

because the extra cost of sampling will exceed the potential gain of core switching.

In contrast to dynamic scheduling, Chen and John [18] present an off-line

technique that leverages the inherent program characteristics for the static program

mapping. They employ fuzzy logic to calculate the program-core suitability, and

use that to guide program scheduling. However, their method is not scalable since

the complexity of fuzzy logic increases exponentially as the number of characteris-

tics increases. Recently, the idea of using program characteristics to guide program

scheduling was also employed by Shelepov, et al. in their heterogeneity-aware sched-

uler [3]. Their proposal utilizes reuse distance signatures constructed from off-line

profiling to schedule applications to cores with different cache sizes. These off-line

approaches can only schedule the application statically, missing opportunities for

exploiting changes in program phase. Moreover, the need for off-line profiling and

encoding/decoding of the profiled information in the program binary could result in

dramatic modification in the interface between OS, compiler and architecture, which

limits the applicability of the off-line approach in practice.

2.3 Related Research on Dynamic Resource Management

The dynamic SHMP relies on dynamic resource management techniques to

detect the resource demand changes and manage the hardware resource accordingly.

These techniques usually leverage hardware performance counters to monitor the

performance variations on the fly [19] and reactively tune the hardware resources

until it meets the demand of the workload [20]. Choi and Yeung [21] improve the

SMT resource distribution by directly using the performance feedback to partition

12

the resources for a specific performance goal. Their method requires a number of

trial resource partitions before it learns the appropriate resource distribution, fun-

damentally limiting its potential for performance improvement. The trial-and-error

nature of the process may require many tuning iterations, and could incur significant

performance degradation and energy overhead.

Recently, there are some proactive schemes proposed. Cazorla , et al. [22] pro-

posed a DCRA mechanism to dynamically allocate shared resources to each thread

in an SMT processor. Their method uses a resource sharing model to estimate the

thread’s anticipated resource needs, and allocate resources to the thread that utilizes

the resource most efficiently. Like other SMT resource sharing policies [23][24], this

method improves the SMT performance only indirectly, not only potentially missing

opportunities for further performance improvement but also unable to control the

end performance. Qureshi, et al. proposed cache utility monitor (UMON) to esti-

mate the utility of assigning additional cache ways to an application [25]. Kaseridis,

et al. extended this on-line cache monitor for system-level memory bandwidth man-

agement [26]. While these works address single resource management, Bitirgen, et

al. attempted to manage multiple resources by using on-line machine learning tech-

niques [27]. However, the on-line machine learning model requires periodic training

and is hard to implement and validate. In contrast, our proposed model does not

require any training and could be applied on-line for both single or multiple resource

management.

13

2.4 Related Research on Performance Modeling

Whether it is application scheduling in static SHMP or resource management

in dynamic SHMP, accurate and efficient performance modeling is the key step to

identify the program resource demand changes and thereby make adjustments to

achieve efficient heterogeneous computing. The performance modeling usually em-

ploys analytical models, regression models, or predictive models.

The analytical model is typically based on interval analysis, which was used

by Karkhanis and Smith for their first-order superscalar processor model [12]. They

further leveraged this model to automatically explore the design space for the Pareto-

optimal design parameters [28]. Recently, this model was improved by Eyerman, et

al. for a higher accuracy in performance modeling [13]. However, all of these models

rely on detailed simulation of some components, such as caches and branch pre-

dictors, to obtain key statistics of the program-microarchitecture interaction. The

requirement for partial simulation not only costs time in off-line performance mod-

eling, but also implies that it has to follow the trial-and-error scheme when applying

this model for on-line resource management. However, our approach focuses on mod-

eling the performance trend rather than the absolute performance value, and avoids

any detailed simulation of any resource component. The decoupling from detailed

simulations not only ensures fast off-line resource demand estimation, but also allows

this model to be applied in proactive on-line resource management.

Both regression models and predictive models are essentially empirical mod-

els, which hide the details of program-hardware interactions by fitting high-level

equations with the simulated results. The regression model has been applied in esti-

mating the significance of the design parameters and their interactions [8], exploring

14

the design space [9] as well as analyzing the microarchitectural adaptivity [29]. An

artificial neural network (ANN) based predictive model was also proposed by Ipek,

et al. for performance prediction [10]. While these empirical models are relatively

simple, they require time consuming training on a per-application basis before they

can model the performance with reasonable accuracy. The requirement for training

fundamentally limits these models from being applied on-line.

15

Chapter 3

Analytical Performance Modeling

Efficient resource demand identification requires fast feedback of the perfor-

mance under different resource allocations. To meet this requirement, this disserta-

tion employs an analytical model to estimate the application’s performance in the

searching process of resource demands. Compared with regression models or machine

learning models, the analytical model is simple and does not require any training,

hence it is a good candidate for resource demand identification. This chapter explains

the details of the basic and the extended analytical performance model that will be

used in the following chapters for resource demand analysis, heterogeneity-aware

application scheduling, and dynamic resource management.

3.1 Basic Analytical Model

The analytical performance model is based on the previously proposed interval

analysis [12][19], which treats the exhibited Cycle-Per-Instruction (CPI) rate as a

sustained steady state execution rate intermittently disrupted by long-latency miss

events, such as, L2 cache misses and branch misprediction, etc. With the interval

analysis, the total CPI of an application can be treated as the sum of three CPI

components [30]: CPItotal = CPIexe + CPImem + CPIother.

CPIexe represents the steady-state execution rate when the execution is free

from any miss events. It is fundamentally constrained by the Instruction Level Par-

16

allelism (ILP) of the application and the issue width of the processor. The ILP of the

application is typically characterized by the critical dependency chain of the instruc-

tions in the instruction window (equivalent to reorder buffer in this dissertation).

Assume an instruction window size w, and average critical dependency chain length

lw. On an idealized machine with unit execution latency, lw indicates the average

number of cycles required to execute the instructions in the instruction window,

hence the average throughput is w/lw. For a more realistic machine with non-unit

execution latency, this number should be further divided by the average execution

latency latavg according to Little’s law [12]. Therefore, the average ILP, αavg, can

be obtained by w/(latavg · lw), which also represents the steady-state execution rate

if the instruction issue width is unlimited. However, for a realistic processor with

limited issue width β, the steady-state execution rate would be saturated at either

the average ILP or the issue width, whichever is smaller. As a result, CPIexe can be

obtained by 1/min(αavg, β).

CPImem represents the penalty caused by the load misses in the last level

cache (L2 cache in this paper). It can be calculated by the multiplication between

the number of L2 load misses NL2, and the average memory access latency latmem,

assuming there are no multiple L2 cache misses outstanding. In practice, in order

to hide the load miss latency, L2 caches are usually non-blocking and multiple L2

cache load misses could be outstanding. Under these circumstances, it has been

proven that the average load miss latency is reduced to latmem/movp [12], where

movp is the average number of outstanding load misses. Therefore, CPImem can be

calculated by latmem ·NL2/(movp ·Ninst), where Ninst is the total number of retired

instructions. Note that the term NL2/movp could also be treated as the number of

L2 load misses that are not overlapping with each other, and hence is referred to as

17

the non-overlapped L2 load misses Nnovp.

CPItotal =
1

min(αavg, β)
+

latmem ·Nnovp

Ninst

+ CPIother

CPIother is the CPI component caused by other miss events, such as in-

struction cache misses, branch mispredictions, etc. This dissertation assumes that

the resources related with these miss events remain unchanged for different cores.

Therefore, this CPI component can be treated as a constant parameter when an

application is migrated from one core to anther as long as the application is in stable

execution phase. The value of this CPI component can be obtained by transforming

equation (1) to CPIother = CPItotal − CPIexe − CPImem, where CPItotal can be

obtained from the performance counter, CPIideal and CPImem can be derived from

the observed program characteristics. The deduced CPIother can then be plugged

into the analytical model to estimate the performance of other cores. Therefore, the

basic performance model can be written as follows:

3.2 Extended Performance Model

The basic performance model itself is unable to predict the performance of

processor cores with different resource configurations. Specifically, it assumes that

each core has a sufficient number of functional units (FUs), the same operating fre-

quency, the same L2 cache sizes, and is executing in single-thread mode. However,

when the number of functional units is limited, instructions may be stalled for ad-

ditional cycles, resulting in lower performance. Similarly, different L2 cache sizes

could also influence the number of non-overlapped L2 load misses, and if the core

supports Simultaneous Multi-threading (SMT), the co-executing thread(s) could also

18

influence a thread’s performance. Therefore, in order to estimate the performance

of different resource allocations, the basic analytical model has to be augmented

to capture the performance impact of limited functional units, different operating

frequencies, different L2 cache sizes, and the interaction of co-executing threads.

3.2.1 Impact of Limited Functional Units

The limited functional units may stall the instructions for additional cycles,

which impacts the performance from two aspects. First, the additional stalled cycles

increase the average execution latency, which in turn reduces the observed average

ILP. Second, the limited number of functional units may also constrain the number

of the instructions that can be issued in one cycle, causing the effective issue width

βeff smaller than the nominal one.

To capture these performance impacts, this dissertation presents the ready set

size histogram for any given type of FU. The ready set is the set of instructions in the

instruction window that are ready for execution on a certain type of functional units,

and the ready set size (RSS) is the number of instructions in the ready set, used as

an index to the ready set size histogram. Each time a new ready set is encountered,

the histogram entry indexed with the corresponding RSS is incremented by one. As

shown in Figure 3.1(a), when instruction a finishes execution, instructions b and c

are ready to execute. Since both b and c will execute on an Integer ALU (I-ALU),

the RSS for I-ALU is 2 and the corresponding entry in the I-ALU RSS histogram is

incremented. When instruction b finishes execution, instructions d, e and f are free.

Instruction d will execute on load unit; both e and f will execute on the I-ALU,

though they have different opcodes. Hence, the new RSS for I-ALU is also 2. Note

that even if at this point c is still in ready state, it should not be counted in the new

19

Figure 3.1: The instruction ready set and the RSS histogram.(a) Example of an instruction
dependency graph. (b) I-ALU RSS histogram for SPEC CPU2006 program h264ref.

ready set. Therefore, RSS histogram reflects the inherent property of the workload,

and is microarchitecture-independent.

The RSS histogram opens the door to estimate the number of stalled cycles

and the effective issue width for any number of FUs. As shown in Figure 3.1(b),

the number of I-ALU splits the histogram into two regions. Region A contains

instructions with RSS no larger than the I-ALU number, hence instructions in this

region would not experience additional stalled cycles caused by I-ALU. While in

region B, the I-ALU number is smaller than RSS, causing additional waiting cycles on

the ready instructions. Assuming n fully pipelined I-ALU and a ready set with RSS of

m, it takes bm/nc additional cycles to finish issuing the instructions in this ready set,

contributing an additional cycle-instruction product
∑bm/nc

i=1 (m−i·n) to the equation

of calculating the average instruction latency. Therefore, by considering all the

additional stalled cycles caused by a limited number of FUs, the average instruction

20

latency may be changed significantly, resulting in a modified observed average ILP,

which is referred to as α′avg in this dissertation. On the other hand, instructions in

region A and instructions in region B have different observed issue width. While

the observed issue width for the instructions in region A equals the physical issue

width, the observed issue width for those in region B is limited by the FU number

n. Therefore, on average, the effective issue width βeff = pn + (1− p)β, where p is

the percentage of instructions in region B among the total instructions executed. As

a result, with the limited functional units, CPIexe becomes 1/min(α′avg, βeff).

3.2.2 Impact of Operating Frequency

Besides modeling the impact of limited FU numbers, the basic performance

model also needs to be augmented to capture the performance impact of different

clock frequencies. This could be achieved by converting the CPI to the delay in

terms of absolute execution time. Consequently, the extended performance model

that considers both operating frequency and limited number of FUs can be written

as follows:

Delay = CPItotal ∗Ninst/f

=
Ninst

min(α′avg, βeff) · f + tmem ·Nnovp + Cother/f

where Ninst is the total number of instructions, f is the operating frequency, tmem

represents the absolute memory access time, and Cother refers to the product of

CPIother and Ninst.

21

3.2.3 Impact of L2 Cache Size

The L2 cache size has direct impact on the number of L2 load misses, which

in turn influences the non-overlapped L2 load misses. To estimate the number of

L2 load misses, this dissertation employs Mattson’s stack distance model [31]. This

model exploits the inclusion property of Least Recently Used (LRU) replacement

policy (i.e., the content of an N sized cache is a subset of the content of any cache

larger than N) and allows us to accurately estimate the number of misses in any

fully associative cache. Specifically, this model treats the cache as a large stack

organized from Most Recently Used (MRU) position to the LRU position, and each

time when a data block is reused, the distance between the position of the block and

the MRU position is referred as the stack distance of the block. When a load/store

accesses a data block with the stack distance larger than the given cache size, that

load/store triggers a cache miss event in a fully associative cache. When it comes to

set-associative caches, however, the accuracy of this model slightly decreases mainly

because it is unable to capture the conflict misses.

While the block-level stack distance can be profiled off-line, the on-line stack

distance profiler is implemented at the cache way level since way partition is more

feasible and efficient in terms of implementation cost [25]. As an example, Figure 3.2

shows the stack distance histogram of program xalancbmk on an 8-way associative

cache, organized from MRU position to LRU position. For caches with its associa-

tivity reduced to 6-ways (dash line in the figure), the data with stack distance larger

than 6 cannot be hold in the cache, generating cache misses. Therefore, with the

stack distance histogram, one can estimate the cache miss rate for any cache ways

less than the profiled ways and consequently derive the number of L2 misses.

22

Figure 3.2: Stack Distance Histogram of SPEC CPU2006 program xalancbmk.

3.2.4 Impact of Memory-Level Parallelism

While the stack distance model is able to estimate the number of misses for a

given cache size, it is unaware of Memory-Level Parallelism (MLP), i.e., multiple L2

load misses overlapping with each other. In the basic performance model, the MLP

is modeled by using the average number of outstanding load misses movp. However,

for a given application, this number can be affected by two factors: the L2 cache

size, which determines the total number of L2 load misses; the ROB size, which

imposes a ”window” on the dynamic instruction stream and controls the amount of

exposed MLP. Therefore, to estimate the number of non-overlapped L2 load misses

for different ROB sizes and L2 cache sizes, the compounded effect of these two has

to be carefully modeled.

Prior research obtains the program’s MLP information by simulating caches

in detail [12][13]. This dissertation, on the contrary, attempts to decouple MLP mod-

eling from detailed cache simulation, which allows the technique to be applied not

23

only in off-line resource demand analysis but also in on-line proactive performance

prediction. To do so, the profiler generates the maximum number of loads LDmax in

a dependency chain and the total number of loads LDtotal in an instruction window.

Then, LDtotal/LDmax indicates the average number of loads that could be overlapped

with each other in the instruction window. Assuming that the loads in a dependency

chain have the same probability of missing L2 cache with other loads, LDtotal/LDmax

becomes the average number of the overlapped L2 load misses, or the MLP of the

program. Meanwhile, the profiler also generates a load trace that contains the stack

distance of a load and the dynamic instruction ID of the corresponding load, as

shown in Figure 3.3(a). The MLP analyzer then walks through the trace, counts the

number of L2 load misses that could happen in the instruction window for the given

L2 cache size, and calculates the number of non-overlapped L2 misses by dividing

the miss number with MLP. The total number of the non-overlapped L2 misses of

the program is the sum of the non-overlapped misses in each instruction window:

Nnovp(W,C) =
∑

i

⌈
miss num(W,C)

MLP

⌉

i

(3.1)

where ”d e” is the ceiling function, miss num(W,C) is the number of L2 misses for

the instruction window W and L2 cache size C. Figure 3.3(b) shows the accuracy

of this model in estimating the number of non-overlapped L2 misses. The average

error between the modeled number of non-overlapped misses and the simulated one

is 9.3%, which is reasonably accurate for performance trend modeling.

3.2.5 Impact of Co-executing Threads

The basic performance model only captures the performance of a thread when

it is executed alone on the processor core and is free to access all available intra-

24

(a)

10
3

10
4

10
5

10
6

10
7

10
3

10
4

10
5

10
6

10
7

Estimated Number of Non−overlapped L2 Misses

O
bs

er
ve

d
N

um
be

r
of

 N
on

−o
ve

rla
pp

ed
 L

2
M

is
se

s

Comparison of Critical Dependency Length

(b)

Figure 3.3: MLP modeling. (a) The estimation of non-overlapped L2 misses in the
presence of MLP. (b) The accuracy of the estimated non-overlapped L2 misses. The
results are based on the simulation of the 22 benchmark programs.

core resources. However, when multiple threads simultaneously execute on a core,

these threads will compete each other for the shared intra-core resources, causing

interference on the performance of each co-executing thread. In practice, to achieve

controllable performance for each thread, the shared intra-core resources are dynam-

ically partitioned among the threads [21] except for the issue/dispatch width, which

often remains as shared such that one thread can exploit the full execution band-

width when the other thread is waiting for its miss events to be served [32]. Under

this circumstance, the effective issue width of each thread would be significantly dif-

ferent from the physical issue width, and the basic performance model needs to be

augmented accordingly.

Assuming a processor with 2-way SMT and per-thread retirement capability,

the effective execution rate of the thread can be estimated by analyzing the ILP of

the co-executing threads. For example, if the ILP of thread T0 (referred to as αT0)

25

and the ILP of thread T1 (referred to as αT1) are both larger than the issue width

β of the processor core, on average each thread can execute at a rate equal to half

of the issue width. If we could further obtain the fraction of the time that T0 is

serving a long-latency miss event, the effective execution rate of T1 can be derived

by considering the additional execution bandwidth T1 has during that fraction of

time. Similarly, if αT0 and αT1 are both smaller than β but the sum of these two is

larger than β, on average the effective issue width of a thread is determined by the

occupancy of its ready instructions: αT0 ·β/(αT0+αT1) for T0 and αT1 ·β/(αT0+αT1)

for T1. By considering the fraction of the time in serving the long-latency miss events,

the effective execution rate can be also derived. Table 3.1 summarizes the calculation

of the effective execution rate under different scenarios. These values are used as the

background steady-state execution rates of the performance model in the presence

of SMT. Note that these estimations are based on the assumption that IQ uses the

oldest-first policy to dispatch ready instructions.

Table 3.1: Estimation of Effective Average Execution Rate for 2-Way SMT

Cases:
Effective Average Execution Rate

Thread 0 (T0) Thread 1 (T1)
αT0 < β, αT1 < β,

αT0 αT1αT0 + αT1 < β
αT0 < β, αT1 < β, αT0∗β

αT0+αT1
∗ (1− fT1) + αT0 ∗ fT1

αT1∗β
αT0+αT1

∗ (1− fT0) + αT1 ∗ fT0αT0 + αT1 > β
αT0 > β, αT1 < β, αT0∗β

αT0+αT1
∗ (1− fT1) + β ∗ fT1

αT1∗β
αT0+αT1

∗ (1− fT0) + αT1 ∗ fT0αT0 + αT1 < 2β
αT0 > β, αT1 < β, 2∗β−αT1

2.0 ∗ (1− fT1) + β ∗ fT1
αT1
2.0 ∗ (1− fT0) + αT1 ∗ fT0αT0 + αT1 > 2β

αT0 < β, αT1 > β, αT0∗β
αT0+αT1

∗ (1− fT1) + αT0 ∗ fT1
αT1∗β

αT0+αT1
∗ (1− fT0) + β ∗ fT0αT0 + αT1 < 2β

αT0 < β, αT1 > β, αT0
2.0 ∗ (1− fT1) + β ∗ fT1

2∗β−αT0
2.0 ∗ (1− fT0) + β ∗ fT0αT0 + αT1 > 2β

αT0 > β, αT1 > β β
2.0 ∗ (1− fT1) + β ∗ fT1

β
2.0 ∗ (1− fT0) + β ∗ fT0

26

3.3 Summary

This chapter presents the details of the proposed analytical performance

model that will be used in the following chapters. Compared with the existing perfor-

mance models, the proposed model is decoupled from detailed cache simulations, yet

is still able to capture the performance impact of different L2 cache sizes, a key capa-

bility that allows this model to be applied in efficient resource demand analysis and

performance prediction. The proposed performance model is also able to capture the

performance under different functional unit numbers, paving the way for proactive

application scheduling in heterogeneous multi-cores with faulty FUs. Overall, the

proposed performance model serves as the foundation for resource demand analysis,

heterogeneity-aware application scheduling as well as dynamic resource management

in SHMPs.

27

Chapter 4

Experiment Methodology

The previous chapter described the analytical performance model which is

used as the common foundation of resource demand analysis, program-core mapping,

application scheduling in static SHMP, and resource management in dynamic SHMP.

Before going to the details of each of these techniques, this chapter summaries the

simulation platforms, workloads, and metrics that are employed to evaluate the

effectiveness and quality of these techniques.

4.1 Simulation Platform

4.1.1 Simulation Platform for Resource Demand Analysis

The simulation platform for resource demand analysis is built on top of Sim-

Profile from Simplescalar tool set [33]. SimProfile is extensively modified to support

the profiling of the statistics of the program characteristics needed by the perfor-

mance model. The framework of resource demand analysis is evaluated on an out-

of-order superscalar processor with two-level cache subsystem. The configuration

ranges of relevant resources are listed in Table 4.1. Note that the associativity and

the cache block size are kept constant across all possible L2 cache sizes as these as-

pects are not explored in this dissertation. The number of execution units is chosen

such that the overall configuration is balanced. In total, the listed configurations

cover over 100K design nodes. When evaluating the estimation of single-resource

28

demand, it is required that other resource configurations are fixed. However, due to

the large design space, it is impossible for us to evaluate our framework exhaustively

across all configurations. Therefore, this work uses three representative configuration

sets: config-S(mall), config-M(edium), and config-L(arge), as the base configurations

to evaluate our resource estimation model. The details of these configuration sets

are also shown in Table 4.1.

Table 4.1: Configuration Options
Items Configuration Options config-S config-M config-L
Issue Width 1 :: 2x :: 8 1 4 8
ROB size 16 :: 2x :: 512 16 128 512

L2 D-Cache
64KB::2x::2048KB 64KB 512KB 2048KB
8-way associative 8-way 8-way 8-way
64B 64B 64B 64B

L1 I-cache
32KB 32KB 32KB 32KB
2-way 2-way 2-way 2-way
64B 64B 64B 64B

L1 D-cache
32KB 32KB 32KB 32KB
4-way 4-way 4-way 4-way
64B 64B 64B 64B

Branch 1st-level: 8::2x::1K 1024 1024 1024
Predictor(PAg) 2nd-level: 128::2x::4K 4096 4096 4096
Clock Freq. 0.5::0.1::2 (GHz) 0.5 GHz 1 GHz 2 GHz

For the evaluation of the resource demand analysis framework, this disser-

tation assumes the memory access latency to be 200ns, or 200 cycles at a clock

frequency of 1 GHz. This latency number in terms of cycles scales proportionally

with the operating frequency. The hit latencies of L1 and L2 caches are calibrated

against Cacti 5.0 [34] under 90nm technology. The latencies of other execution units

are also scaled to 90nm technology. The branch misprediction penalty is set to 20 cy-

cles at 1 GHz. The power data of the interested processor configurations is collected

using Wattch [35].

29

4.1.2 Simulation Platform for Program-core Mapping

The proposed framework for program-core mapping is evaluated on a hypo-

thetical single-ISA heterogeneous quad-core processor. The detailed configurations

of these cores are listed in Table 4.2. Each core is an out-of-order processor, and has

a private 512K L2 cache with a hit latency of 12 cycles, and a miss latency of 200

cycles. Other parameters not shown in the table are chosen in a way that the design

of the core is balanced. Since this work focuses on establishing the mapping relation-

ship between programs and cores, the workloads are chosen to be independent with

each other and the core-level communication is not considered in the evaluation of

this part of the work. Note that the core-level communication (e.g., cache snooping)

are symmetrical and tend to impose similar impact on the independent workloads,

therefore, this simplifying assumption would not affect the validity of the evaluation.

Table 4.2: Configurations of Each Core
ITEMS Configuration

Core 1
Out-of-order, single-issue, 1K Gshare, 32KB 4-way
L1 d-cache 64byte, 4k 2-way i-cache 64byte, 512k L2
cache, L2 access latency 12 cycles

Core 2
Out-of-order, 2-issue, 2K Gshare, 64KB 4-way
L1 d-cache 64byte, 8k 2-way i-cache 64byte, 512k L2
cache, L2 access latency 12 cycles

Core 3
Out-of-order, 4-issue, 4K Ghsare, 64 KB 4-way
L1 d-cache 64byte, 16k 2-way i-cache 64byte, 512k L2
cache, L2 access latency 12 cycles

Core 4
Out-of-order, 8-issue, 8K Gshare, 128 KB 4-way
L1 d-cache 64byte, 16k 2-way i-cache 64byte, 512k L2
cache, L2 access latency 12 cycles

Similar with the evaluation of resource demand analysis, the program-core

mapping framework also uses SimProfile from Simplescalar tool set [33] to profile

programs and collect the needed program characteristics, including instruction de-

30

pendence distance distribution, stack distance distribution. Again, Wattch [35] is

employed to obtain the performance and power data for each benchmark program.

4.1.3 Simulation Platform for Application Scheduling in Static SHMP

The application scheduling in static SHMP is evaluated on a quad-core SPARCv9

OpenSolaris system modeled by a full system simulator Simics [36], extended with

the GEMS toolset [37]. Each core in the CMP is 4-issue out-of-order processor mod-

eled by Opal [37]. The simulated CMP system also contains a detailed memory

subsystem model, which includes an inter-core last-level cache network and a de-

tailed memory controller. In addition, the simulated system supports software data

prefetching. Table 4.3 lists the nominal configurations of the CMP system in detail.

The dynamic power of the processor cores is estimated by Wattch [35], and the leak-

age power on caches and other SRAM structures in the core is estimated by Cacti 5

[34]. The simulator also uses Orion [38] to estimate the power on the interconnection

network of the last-level cache. Therefore, the performance and power overhead of

application migration is fully modeled.

This work focuses on the core-level heterogeneity on frequency, Integer ALU

(I-ALU) number and L2 cache size, yet it is infeasible to evaluate every possible

configuration. Therefore, this dissertation evaluates three sets of heterogeneous con-

figurations created by varying these resources over their nominal values, as shown in

Table 4.4. These configuration sets are organized as low heterogeneity (LH) where

only frequency varies, medium heterogeneity (MH) where both frequency and I-ALU

number vary, and high heterogeneity (HH) where all three resources vary. While

there are other heterogeneous configurations, these three configuration sets cover

the representative degrees of heterogeneity caused by manufacturing imperfection.

31

Table 4.3: Nominal Configurations of the CMP system
Parameter Configurations

Core

Clock Frequency 4GHz
Fetch/Issue/Commit Width 4/4/4
Ld/St Units 2/2
I-ALU/FP Units/FP Multipliers 4/2/2 (fused multiply/add for I-ALU)
ROB size 128
Load/Store Queue Size 32/32
Branch Predictor YAGS, 16 PHT bits, 10 Tag bits

Cache

L1 I-Cache/D-Cache 32KB, 2-way, 64Byte, LRU, 1-cycle
L2 Cache 2MB per core, 8-way, 64Byte, LRU, 12-cycle
L2 MSHR Entry 32
Coherence Protocol Directory-based MOESI

Memory
Size/Model 4GB/DDR2-800
Controller FR-FCFS policy [39]
Organization 8 banks per rank, 2 ranks per DIMM

Table 4.4: Configurations of the CMP system

Parameter
Configurations

Low Heter. Medium Heter. High Heter.
C-0 C-1 C-2 C-3 C-0 C-1 C-2 C-3 C-0 C-1 C-2 C-3

Freq.(GHz) 4 3.6 3.2 2.8 4 3.6 3.2 2.8 4 3.6 3.2 2.8
I-ALU 4 4 4 4 4 2 3 1 4 2 3 1
L2 Cache 2, 2, 2, 2, 2, 2, 2, 2, 2, 1.5, 1, 0.5,
(MB,Ways) 8 8 8 8 8 8 8 8 8 6 4 2

4.1.4 Simulation Platform for Resource Management in Dynamic SHMP

The resource management in dynamic SHMP is also evaluated on a quad-

core SPARCv9 OpenSolaris system modeled by a full system simulator Simics [36],

extended with the GEMS toolset [37]. Each core in the CMP is a 4-issue out-of-order

processor and supports 2-way SMT with ICOUNT [23] fetch policy. The simulated

CMP system also contains a detailed memory subsystem model, which includes an

inter-core last-level cache network and a detailed memory controller. Table 4.5 lists

the configurations of the CMP system in detail. Again, the dynamic power of the

processor cores is estimated by Wattch [35], and the leakage power on caches and

other SRAM structures in the core is estimated by Cacti 5 [34]. Orion [38] is used

32

to estimate the power on the interconnection network of last level caches.

The ROB size is partitioned at the granularity of 32 entries. Other intra-core

resources such as issue queue size and physical register number are partitioned in

proportion to the ROB size. Each thread is guaranteed to have at least 32 entries

of ROB size. The L2 cache is shared among the threads, and its size is partitioned

at the granularity of cache ways, with each thread allocated with at least one cache

way. The CMP system supports per-core DVFS, with the frequency of each core

ranging from 2GHz to 4GHz at the step of 0.1GHz. This dissertation assumes that

the CMP system reaches the power budget when it is fully loaded and each core is

running at 3GHz.

Table 4.5: Configurations of the CMP system
Parameter Configurations

Core

Maximum Clock Frequency 4GHz
Fetch/Issue/Commit Width 4/4/4
Ld/St Units 2/2
I-ALU/FP Units/FP Multipliers 4/4/2 (fused multiply/add for I-ALU)
ROB size/Issue Queue 256/160
Load/Store Queue Size 64/64
Branch Predictor YAGS, 16 PHT bits, 10 Tag bits
Physical Register Number 380

Cache

L1 I-Cache/D-Cache 32KB, 2-way, 64Byte, LRU, 1-cycle
L2 Cache 16MB, 32-way, 64Byte, LRU, 12-cycle
L2 MSHR Entry 32
Coherence Protocol Directory-based MOESI

Memory

Size/Model 4GB/DDR2-800
Controller PAR-BS policy [40]
Organization 8 banks per rank, 2 ranks per DIMM

33

4.2 Workloads

4.2.1 Workloads for Program Resource Demand Analysis

The workload to evaluate the framework of resource demand analysis is com-

posed of 22 SPEC CPU2006 programs [41] (gamess, dealII, calculix, povray, tonto,

lbm,wrf are not included in the workload as they fail to compile to Alpha ISA). Each

of the 22 programs is compiled to Alpha-ISA with peak configurations. To speedup

the evaluation, the single Simpoint interval with 100 million instructions [42] is used

to represent each program.

4.2.2 Workloads for Program-core Mapping

The workload of program-core mapping is composed of programs from SPEC

CPU2000, SPEC CPU2006 and MediaBench. Each program is compiled to Alpha-

ISA configurations. This work uses the single Simpoint interval with 100 million

instructions [42] for each SPEC CPU program. Programs from the MediaBench

suite are chosen in such a way that the program’s dynamic instruction count is

comparable with those Simpoint intervals for the SPEC CPU2000 suite.

4.2.3 Workloads for Application Scheduling in Static SHMP

To stress the application scheduling in heterogeneous CMPs, the workload

also needs to be heterogeneous because homogeneous workloads, such as the threads

from the same multi-threaded program, benefit little from swapping tasks in hetero-

geneous CMPs [3]. Therefore, this dissertation uses multi-programmed workloads

composed of the programs from the SPEC CPU2006 benchmark suite [41], with

each compiled to SPARC ISA. Specifically, this dissertation constructs 9 heteroge-

neous workloads, each containing 2 integer programs and 2 FP programs, as shown

34

in Table 4.6. The program mix is based on the similarity analysis by Phansalkar et

al. [43], and is created such that: a) the workloads cover all representative bench-

mark; b) programs in each workload are from clusters with large linkage distance

[43]. Each workload would be running on the aforementioned three heterogeneous

CMP systems. Due to the limitation of the simulator, it is extremely difficult to

synchronize the programs in the workload at their own simulation points. Therefore,

in this work, each workload is fast-forwarded for 3 billion instructions to reach its

steady state execution, and then uses the next 100 million instructions to warmup

the cache subsystem. Each work runs on the simulated system for a time span

equivalent to 0.2 seconds on a real 4GHz CMP system, which covers up to 1 billion

instructions for a program. The scheduling interval is set to 10ms, which is standard

in OpenSolaris. Therefore, each simulation provides 20 scheduling epochs.

Table 4.6: Workloads and Their Characteristics
Program Mix Symbol Category (Memory/CPU)
mcf,bwaves,povray,gcc mbpg Mem-Mem-CPU-CPU
xalancbmk,namd,lbm,omnetpp xnlo CPU-CPU-Mem-Mem
libquantum,xalancbmk,wrf, soplex lxws Mem-CPU-Mem-Mem
milc, soplex, omnetpp, sjeng msos Mem-Mem-CPU-CPU
leslie3d,sphinx3,hmmer,astar lsha Mem-CPU-CPU-CPU
zeusmp, libquantum, omnetpp, tonto zlot Mem-Mem-CPU-CPU
calculix, dealII, perlbench, bzip2 cdpb CPU-CPU-CPU-CPU
povray, mcf, cactusADM, astar pmca CPU-Mem-Mem-CPU
milc, gobmk, lbm, gcc mglg Mem-CPU-Mem-CPU

4.2.4 Workloads for Resource Management in Dynamic SHMP

The workload to evaluate the resource management in dynamic SHMP is

composed of the programs from the SPEC CPU2006 benchmark suite [41], with each

compiled to SPARC ISA. This dissertation uses 12 heterogeneous multiprogrammed

35

workloads, each containing 8 programs, as shown in Table 4.7. These workloads are

grouped into three categories: CPU-intensive (high-ILP), memory-intensive, and the

mixture of both. Each workload will be running on the aforementioned CMP systems.

Again, due to the limitation of the simulator, simulation point is not employed.

Instead, for each run, each workload is fast-forwarded for 4 billion instructions to

reach its steady state execution, and then uses the next 100 million instructions to

warmup the cache subsystem. Then, each workload runs on the simulated system for

200M instructions to evaluate the performance of various resource allocation policies.

Table 4.7: Workloads and Their Characteristics
Workload Mix Symbol Category

povray, calculix, sjeng, hmmer
pcshpwdt

ILP

perlbench, wrf, dealII, tonto
gcc, povray, astar, calculix

gpacghbd
gobmk, hmmer, bzip2, dealII
astar, bzip2, gobmk, povray

abgpspdg
sjeng, perlbench, dealII, gamess
namd, gcc, gromacs, perlbench

nggphtss
h264ref, tonto, sphinx3, sjeng
mcf,omnetpp,bwaves,lbm

moblpngx

MIX

povray, namd, gcc, xalancbmk
dealII, sjeng, libquantum, omnetpp

dslopspm
povray, soplex, perlbench, milc
libquantum, cactusADM, xalancbmk

lcxcwmso
calculix,wrf,mcf, soplex, omnetpp
leslie3d,tonto,sphinx3, omnetpp

ltsohlaz
hmmer, libquanutm, astar, zeusmp
soplex, xalancbmk, milc, lbm

sxmlmczl

MEM

mcf, cactusADM, zeusmp, leslie3d
leslie3d,soplex, zeusmp, bwaves

lszbwcxl
wrf, cactusADM, xalancbmk, lbm
lbm, milc, xalancbmk, leslie3d

lmxlzwms
zeusmp, wrf, mcf, soplex
milc, xalancbmk, mcf, cactusADM

mxmcslbw
soplex, leslie3d, bwaves, wrf

36

4.3 Metrics

The metrics to evaluate program-core mapping are Energy-Delay-Product

(EDP) and Makespan. Makespan is the time between the start and finish of a

group of programs, and is considered to the appropriate metric for throughput of

a batch of programs [44]. For the application scheduling and resource manage-

ment, this dissertation uses the aggregated throughput, defined as the sum of each

application’s million-instructions per second (MIPS) to evaluate the system perfor-

mance. To enforce fairness, this dissertation also evaluates the performance using

the weighted speedup [45], which is defined as
∑

i IPCscheduled
i /IPCref

i . To measure

the system efficiency, this dissertation uses the metric mips3/W , which is inverse

to energy-delay-square (ED2) and has been accepted as the efficiency metric for

high-performance systems [46].

37

Chapter 5

Program Resource Demand Analysis

This chapter presents the framework for Program REsource Demand Analysis

(PREDA), which uses the performance model described in Chapter 3 as the key

component to evaluate the performance under a specific resource allocation. The

evaluation of the estimated resource demands is also presented in this chapter.

5.1 Resource Demand Definition

Before proceeding to the details, it is important to make a clear definition

of resource demand. The meaning of resource demand contains two elements: the

target performance and the energy efficiency. On one hand, different target perfor-

mance levels may lead to different resource requirements. Specifically, as the target

performance level increases, the amount of resource required may also increase in

order to meet the performance target. On the other hand, for a given performance

target, there may be a set of different amounts of resources being able to meet that

target. Among them, only the one that is energy efficient is chosen. Therefore, this

dissertation introduces the following resource demand definition:

Definition: Resource Demand D(p) is the amount of resource a thread re-

quires to efficiently achieve no less than p% of the maximum performance achieved

with the entire resources allocated to the thread.

This definition assumes performance monotonicity, which means the perfor-

38

mance of a thread increases monotonically as the amount of resource allocated to

the thread increases [47]. Note also that this definition uses relative performance

instead of absolute performance as the performance target. This is because the ab-

solute performance targets, such as the Instruction-Per-Cycle (IPC) rate, may lead to

ill-defined cases where the target cannot be satisfied no matter how many resources

are allocated. The relative performance target avoids this problem, and more im-

portantly it is inline with the satisfiability of the QoS target proposed by Guo, et

al. [7]. In fact, with this definition, our framework can be treated as a conversion

layer that converts the performance targets into the resource demands, which could

be used as the Resource Usage Metrics for QoS enforcement [7].

5.2 Overview of the Framework

The proposed PREDA framework consists of two parts: the program char-

acteristics profiler and the PREDA kernel. As shown in Figure 5.1, the program

profiler walks through the dynamic instruction stream and extracts a set of pro-

gram characteristics, which contain instruction dependency chain distribution, stack

distance distribution, instruction mix, and branch transition rate and its access fre-

quency. These characteristics are then fed to the PREDA kernel, which consists of

an ILP model, an MLP model, a performance model and a resource analyzer. The

models for ILP and MLP are responsible for translating the program characteristics

into the ILP and MLP information that can be directly used by the performance

model. Hence, these models serve as the key layer to decouple the performance

evaluation from detailed simulations. The performance model takes the ILP and

MLP information along with the branch predictability characteristics and estimates

the program execution time on an out-of-order processor. The resource analyzer

39

converts the estimated performance into the relative performance, and searches the

configuration space for the amount of resources required to meet the performance

targets. The estimated resource demands include processor issue width, processor

reorder buffer (ROB) size, L2 (or last level) cache sizes, operating frequency, mem-

ory bandwidth and branch predictor size. These resource demands are estimated

either in single-resource mode (other resources are fixed) or in multi-resource mode

(combinations of changing resources). Note that the proposed performance model

could also be applied online by using a set of on-line profilers such as stack histogram

profiler [25][26] and critical path predictor [48]. However, this dissertation focuses

on evaluating the accuracy and the complexity of off-line demand estimation.

Figure 5.1: The PREDA framework.

5.3 Performance Modeling

The performance model used in this framework is described in Chapter 3.

Note that since this framework addresses the resource demand estimation for single-

threaded execution, the performance model does not need to model the impact of

co-executing threads.

40

5.4 Demand on Multiple Resources

In this dissertation, the estimation of multi-resource demands is built on top of

the single-resource demand estimation, which uses the marginal utility to determine

the demand on the corresponding resource. The marginal utility originates from

economic theory, and is defined as the ratio between the incremental utility over the

amount of incremental resource. It has been successfully used as the metric for last-

level cache partitioning [25][26]. This dissertation further extends the application of

marginal utility to different hardware resources, and defines the marginal utility as

follows:

MarginalUtility(Dβ) =
Perf(RESβ + Dβ)− Perf(RESβ)

Dβ

(5.1)

where RESβ is the amount of resource β, and Dβ is the amount of increment in

resource β. Note that the maximum marginal utility represents the best (or most

efficient) use of a resource increment. Therefore, with marginal utility, the problem

of resource demand estimation is transferred to the problem of finding the amount of

resource that meets the performance target meanwhile has the maximum marginal

utility. Thus, the estimation of the single resource demand becomes straightforward:

sweeping the interested resource from its minimum to its maximum while keeping

other resources fixed, and searching for the amount of resource that satisfies the

performance target and has the largest marginal utility. However, there is an excep-

tion: when the performance with the minimum resource allocation is larger than the

target performance, the resource demand is set to the minimum value.

While the single-resource demand estimation is straightforward, the estima-

tion of multi-resource demands is non-trivial because the marginal utility is only

comparable among the resources with the same type. To address this problem,

41

Pseudocode 1 Demand on Multiple Resources

#define N
/*the number of resources that could change simultaneously*/
#define max resource array[N]
/*the array of maximum available resources*/
#define eval perf(resource array)
/*Evaluate the execution time with the resource configuration array resource array*/
#define est demand(resource array , i , target perf)
/*Estimate the demand of resource i under the performance target target perf */

for (i=0; i < N ; i++)
base demand [i] = est demand(max resource array ,i ,target perf);
/* estimate the demand for resource i when other resources are set to maximum*/

end for
while(TRUE)

perf = eval perf(base demand);
if(perf > target perf)

set the final demands as the base demand estimates;
break;

else
for (i=0; i < N ; i++)

temp demand [0 ..N] = base demand [0 ..N];
/* copy the base resource demand to temp demand array */
new demand [i] = est demand(base demand ,i ,target perf);
temp demand [i] = new demand [i];
perf gain[i] = perf - eval perf(temp demand);
/* calculate the performance gain with the newly */
/* estimated resource demand */

end for
find the index max index of the maximum value in array perf gain[N];
base demand [max index] = new demand [max index];

end while

this dissertation proposes an algorithm based on the gradient performance gain, as

shown in Pseudocode 1. The first step of this algorithm is to estimate the demand

on each resource individually when other resources are configured to be the max-

imum. The estimated single-resource demands are then combined together as the

42

initial multi-resource configuration, which serves as the starting point of the itera-

tive searching process. Each iteration estimates the single-resource demand based

on the previously estimated multi-resource configuration, and calculates the corre-

sponding performance gain over the performance of the multi-resource configuration

estimated in the previous iteration. The resource with the maximum performance

gain is selected to update the multi-resource configuration, and the process continues

until the performance meets the target. The complexity of this algorithm is O(n ·k),

where k is the number of iterations, and n is the number of the changing resources.

This algorithm can estimate the multi-resource demands on four types of resources,

including ROB size, issue width, L2 cache size, and frequency.

5.5 Demand on Memory Bandwidth

The program’s memory bandwidth requirement is important for CMP sys-

tems, where multiple programs share the limited memory bandwidth resource. It

is composed of the requirements for memory read bandwidth and memory write

bandwidth. Assuming a write-back L2 cache, a read request to the main memory

can be triggered by a load/store miss, and a write request can only occur when a

dirty cache block is evicted (i.e., cache write-back). While the conventional stack

distance model can capture the read traffic to the memory, it is unable to estimate

the write-back traffic. To solve this problem, the conventional stack distance model

needs to be augmented to capture both reads and write-backs to the main memory.

To do so, during stack distance profiling, each cache block is associated with

a dirty bit and mark the dirty bit whenever the block has been written to. Then, a

Dirty Stack Histogram is used to record the largest stack distance of a dirty cache

43

Pseudocode 2 Update of the Dirty Stack Histogram

if(dirty == 1)
if(the block was most recently accessed by a read
&& stack distance > dirty stack distance)

dirty histogram[dirty stack distance]- -;
dirty histogram[stack distance]++;
dirty stack distance = stack distance;

else if(the block was most recently accessed by a write)
dirty histogram[stack distance]++;
dirty stack distance = stack distance; end if

end if
if(the current access is a write)

dirty = 1;
dirty stack distance = 0;

end if

block. The reason for only considering the largest stack distance is to avoid multiple

write-back counts for one store. The details of updating the dirty stack histogram

are described in Pseudocode 2. Note that once the dirty bit is set, it will never

be reset during profiling. Therefore, the dirty bit is unaware of multiple writes to

the same block at different stack distances, which may lead to multiple write-backs

under certain cache sizes. To handle this situation, the dirty block needs to be

differentiated according to whether the block was most recently accessed by a read

or a write. Specifically, if the dirty block was most recently accessed by a write,

the corresponding counter in the dirty histogram will be incremented regardless of

the stack distance. With the dirty histogram, one is able to estimate the number

of dirty evictions by using the property of the conventional stack distance model.

Specifically, a dirty eviction happens whenever the dirty stack distance of a block is

larger than the given cache size.

44

5.6 Demand on Branch Predictor Size

The purpose of estimating the program’s demand on branch predictor size is

to prevent unnecessary resource over-provisioning for the branch predictor. However,

due to the lack of analytical models that translate the predictor size to the prediction

accuracy, the demand of branch predictor size may have to be estimated directly

based on the program’s branch characteristics. Moreover, since different types of

predictors may yield different prediction accuracy levels, the demand on branch

predictor size has to be estimated in an ad hoc way. The current implementation of

PREDA only supports estimating the demand on the two-level PAg predictor size

[49].

PREDA estimates the demand on predictor size based on two branch char-

acteristics: the branch transition rate, and the branch access frequency. As men-

tioned previously, branch transition rate has an implication on branch history length.

Branches with very high or very low transition rate are easy to predict and only re-

quire short history registers; whereas branches with near 50% transition rate are

hard to predict and require long history registers. However, branch transition alone

could not tell how often a branch is executed in the dynamic instruction stream.

For those branch instructions with very few accesses, they have negligible effect on

the overall IPC whether they are predicted correctly or incorrectly. Therefore, these

branches should be filtered when determining the demand of branch predictor size.

Note that these two branch characteristics are in correspondence with the two-level

PAg branch predictor, where the first level table (Per-Address History Table) is

essentially a cache holding the frequently accessed branches, and the second level

is indexed with a history register reflecting the predictability of the branches. As

45

an example, Figure 5.2(a) shows the branch transition rate distribution as well as

branch access frequency distribution of the SPEC CPU program leslie3d. The total

static branch count is 1132, which seems to indicate that the first-level table should

contain 1K entries. However, if the branch instructions with small access frequen-

cies (less than 5 in this case) are filtered out, the static branch count becomes 204,

(a)

7
8

9
10

11
12

0
8

16
32

64
128

256
512

1024
99.08%

99.10%

99.12%

99.14%

99.16%

99.18%

99.20%

history length

Leslie3d Prediction Rate v.s. two−level Branch Predictor Sizes

Level−1 entry number

pr
ed

ic
tio

n
ra

te

(b)

Figure 5.2: Branch predictor size demand estimation

46

indicating that 256 entries in the first-level table would be sufficient. This is proved

by Figure 5.2(b), which shows that the prediction accuracy does not degrade until

the first-level entry is smaller than 256.

Pseudocode 3 Demand on Branch Predictor Size

#define access threshold 16
while(TRUE)

foreach static branches
if (branch access frequency < access threshold)

filtered static branch ++;
filtered dynamic branch=filtered dynamic branch+branch access frequency ;
end if

end foreach
if (filtered dynamic branch < 0.001∗total dynamic branch) break;
else access threshold - -; end if

end while
first level entry = total static branch - filtered static branch;
foreach remaining branches

if ∃transition rate∈ [0.4, 0.6]
history length= max history ;
/* max history is the maximum history length
specified in the design space */

else if ∃transition rate∈ [0.25, 0.4)
⋃

(0.6, 0.75]
history length=(max history-1)>min history ? max history-1:min history ;
/* min history is the minimum history length
specified in the design space */

else if ∃transition rate∈ [0.15, 0.25)
⋃

(0.75, 0.85]
history length=(max history-2)>min history ? max history-2:min history ;

else if ∃transition rate∈ [0.1, 0.15)
⋃

(0.85, 0.9]
history length=(max history-3)>min history ? max history-3:min history ;

else if ∃transition rate∈ [0.05, 0.1)
⋃

(0.9, 0.95]
history length=(max history-4)>min history ? max history-4:min history ;

else if ∃transition rate∈ [0, 0.05)
⋃

(0.95, 1.0]
history length=(max history-5)>min history ? max history-5:min history ;

end if
end foreach

Based on this observation, this dissertation proposes the heuristics shown in

47

Pseudocode 3 to estimate the demand on the first level table size and the branch

history length. Note that in order to prevent branch filtering from aggressively

impacting the prediction accuracy, this heuristic ensures that the total number of

filtered dynamic branches is less than 0.1% of the total dynamic branches. Note also

that the transition rate buckets used for determining the history length are consistent

with those used in branch classification by Haungs, et al. [50].

5.7 Evaluation

The evaluation of the proposed framework covers three major aspects: the

accuracy of the models, the accuracy of resource demand estimation and the com-

putation complexity of the framework. The details of the experiment platform is

shown in Chapter 4.

5.7.1 Model Accuracy

Since the resource demand estimation is based on the relative performance

as opposed to the absolute one, it is necessary to validate whether the performance

model could accurately capture the performance trend as the resource allocation

changes. To do so, we sweep the resource allocations and calculate the correspond-

ing throughput with the performance model, and then normalize them with respect

to the largest throughput. The normalized throughput curve is compared against the

one obtained from detailed simulation. Figure 5.3 shows an example of such com-

parison for bzip2. Ideally, these two curves should be overlapped with each other.

However, due to the imperfection of the performance model, the estimated perfor-

mance curve deviates from the simulated one. To measure the difference between

these two curves, the absolute difference of the normalized throughput is calculated

48

1 2 4 8
0

0.2

0.4

0.6

0.8

1
bzip2 Normalized Throughput :: Issue Width

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Issue Width

estimated
simulated

(a)

16 32 64 128 256 512
0

0.2

0.4

0.6

0.8

1
bzip2 Normalized Throughput::ROB Size

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

ROB Size

estimated
simulated

(b)

64K 128K 256K 512K 1M 2M
0

0.2

0.4

0.6

0.8

1

DL2 Cache Size

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

bzip2 Normalized Throughput::L2 Cache Size

estimated
simulated

(c)

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
0

0.2

0.4

0.6

0.8

1

Frequency(GHz)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

bzip2 Normalized Throughput :: Frequency

estimated
simulated

(d)

Figure 5.3: The comparison of normalized throughput for bzip2 as one of the resources
changes. The configurations of other unchanged resources follow config-M.

on each node of the curves, and then the average difference for each curve is also

calculated to evaluate the accuracy of this model. Figure 5.4 summarizes these dif-

ferences for each program. Note that most of the programs have a relatively large

error in Config-L. This is mainly because some of the second-order effects, such as

49

the branch misprediction caused by speculative path information, becomes more sig-

nificant in very wide machines; whereas our model only captures first-order effects.

However, even in the worst case, the modeled performance trend is only on average

0.107 off the simulated one, which is still reasonable for resource demand estimation.

(a) (b)

(c) (d)

Figure 5.4: Average error of the normalized throughput for issue width, ROB size, L2
cache size, and frequency. Each resource estimation was evaluated on three configurations:
config-S, config-M, and config-L

50

(a) (b)

(c) (d)

Figure 5.5: Comparison of the combined error and the intrinsic error in normalized
throughput.The intrinsic error is obtained by using the simulated values of the non-
overlapped L2 misses and the branch mispredictions in the performance model. The errors
are averaged across three configurations: config-S, config-M, config-L.

The error of the performance model consist of two parts: the intrinsic error,

which is the inherent modeling error caused by some simplifying assumptions of the

model, and the parameter error, which is the error introduced by the estimation of

51

model parameters using program characteristics. Figure 5.5 shows the comparison

between these two errors. As expected, most programs have much smaller intrinsic

error than the combined one, especially for gcc and namd. However, some programs

see a slightly higher intrinsic error than the combined error. This is because the

parameter error and the intrinsic error may be canceling each other, leading to a

smaller combined error. In worst case, the average intrinsic error is 7.6% in terms

of the normalized throughput (mcf in Figure 5.5(a)), which shows the potential of

applying the performance model on-line.

5.7.2 Accuracy of Resource Demand Estimation

5.7.2.1 Single-Resource Demand Estimation

This section evaluates the estimation of single-resource demand on issue

width, ROB size, L2 cache size, and frequency at 20 different performance target

levels, ranging from 0 to 95% with a step of 5%. Figure 5.6 shows the comparison

between the demand estimated with our performance model and the one obtained

from detailed simulation for program bzip2. Because of the imperfection in per-

formance modeling, there are differences between the estimated and the simulated

demands at certain performance targets. The average amount of these differences

across the entire 20 performance target levels reflects the accuracy of the demand

estimation, as shown in Figure 5.7. It can be observed that the demand difference at

any performance target level is no larger than 4 configuration units. The largest de-

mand difference happens in estimating the frequency demand, and this difference is

still reasonable considering there are 16 different configuration options for frequency

demand.

To evaluate the estimation of memory bandwidth demand, this dissertation

52

0 10% 20% 30% 40% 50% 60% 70% 80% 90%
1

2

4

8

Performance Target

Is
su

e
W

id
th

bzip2 Resource Demand :: Issue Width

simulated
estimated

(a)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
16

32

64

128

256

512

Performance Target

bzip2 Resource Demand :: ROB Size

R
O

B
 S

iz
e

simulated
estimated

(b)

0 10% 20% 30% 40% 50% 60% 70% 80% 90%
64K

128K

256K

512K

1M

2M

4M

Performance Target

L2
 C

ac
he

 S
iz

e

bzip2 Resource Demand :: L2 Cache Size

simulated
estimated

(c)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Performance Target

F
re

qu
en

cy
 (

G
H

z)

bzip2 Resource Demand :: Frequency

simulated
estimated

(d)

Figure 5.6: The accuracy of single-resource demand estimation for bzip2. The results are
based on config-M.

compares estimated memory bandwidth with the simulated one at each 100K instruc-

tion interval, and accumulate the absolute difference between these two to obtain the

overall memory bandwidth estimation error. Figure 5.8 shows the error rates of band-

width demand estimation for both memory read and memory write traffics at three

different configurations. On average, the total memory bandwidth estimation error

53

(a) (b)

(c) (d)

Figure 5.7: The error of resource estimation. Config unit refers to the quantization of each
resource shown in Table 1. The error bar represents the largest error in demand estimation
for the corresponding program.

increases from 4.76% to 6.26% as the L2 cache size changes from 64KB to 2MB. This

is mainly because as the cache size increases, memory traffic becomes smaller and

hence the bandwidth caused by conflict L2 misses, which are not captured in our

stack distance model, becomes more outstanding.

54

(a) (b)

(c)

Figure 5.8: The memory bandwidth estimation error

To evaluate the demand estimation for branch predictor size, the size and the

prediction accuracy of the estimated branch predictor configuration are compared

with that of the largest predictor in the configuration range. The results are listed in

Table 5.1. On average, by using the estimated predictor size, one could achieve 40.3%

reduction in area with only 0.12% accuracy loss over the largest branch predictor.

55

Overall, the proposed heuristic captures the demand on branch predictor size very

well.

Table 5.1: Evaluation of The Demand Estimation for Branch Predictor Size

Benchmarks
Size Demand Size Accuracy

L1 entry History bit Reduction Loss
perlbench 1024 12 0 0
bzip2 128 12 52.5% 0.26%
gcc 1024 12 0 0
gobmk 1024 12 0 0
xalancbmk 1024 12 0 0
mcf 512 12 30% 0.06%
libquantum 8 12 59.5% 0.03%
hmmer 128 12 52.5% 0.09%
sjeng 1024 12 0 0
h264ref 1024 12 0 0
omnetpp 1024 12 0 0
astar 64 12 56.3% 0
bwaves 32 12 58.1% 2.1%
zeusmp 64 9 92.2% 0.05%
gromacs 8 7 98.5% 0
cactusADM 16 7 98.2% 0
milc 32 11 78.3% 0
leslie3d 256 12 45.0% 0
namd 128 12 52.5% 0.1%
soplex 256 12 45.0% 0.01%
GemsFDTD 16 7 98.2% 0.01%
sphinx3 1024 12 0 0
avg - 40.3% 0.12%

5.7.2.2 Multi-Resource Demand Estimation

The quality of multi-resource demand estimation includes two aspects: the

accuracy in satisfying the performance target and the energy efficiency of the esti-

mated resources.

To evaluate the accuracy, this dissertation performed detailed simulation with

the resource configurations estimated at each performance target ranging from 50%

to 95%. The obtained relative performance (normalized to the largest performance

56

in the design space) is compared against the corresponding performance target. The

differences are summarized in Figure 5.9(a). The observed error is up to 12.7%

(on soplex), and the maximum average error is 8.6% (on xlanacbmk). Note that

this dissertation only reports the results with performance target larger than 50% to

avoid the ill-suited cases that some program may have a small performance variation

range and its smallest relative performance may be much larger than the performance

target.

(a) (b)

Figure 5.9: Evaluation of Multi-resource Demand Estimation. The results are based on
estimating 4 different resource demands.

To evaluate the energy efficiency, this dissertation also compares the energy

consumption of the estimated multi-resource demand with the energy consumption

of other resource combinations that satisfy the given performance target. Due to

the large design space, it is prohibitively expensive to exhaustively compare the

estimated resource configurations with every eligible design node. Therefore, this

dissertation uses Monte Carlo simulations to simulate 300 random samples in the

design space, and group them into the buckets of (0,0.05],(0.05,0.1],..,(0.95,1] ac-

57

cording to their performance relative to the highest one in the design space. Within

each bucket, the energy of the estimated multi-resource configuration is divided with

the maximum energy of the design nodes in that bucket. These ratios indicate the

energy efficiency of the estimated resource demands, and are summarized in Figure

5.9(b). On average, the ratio is no larger than 86.5%, and can be as low as 44.4%,

which means the estimated multi-resources are reasonably energy efficient.

5.7.3 Complexity Analysis

The complexity of the PREDA framework involves the complexity of multi-

resource demand searching algorithm and the time cost in evaluating the perfor-

mance model. As explained previously, the complexity of the algorithm depends on

the number of iterations required to reach the target performance. To reduce the

number of iterations, the algorithm hoists the starting point of the searching process

as the target performance increases. This feature allows the algorithm to avoid un-

necessary search iterations and significantly speeds up the searching process. In this

experiment, the algorithm converges in no larger than 12 iterations. This dissertation

also compares the CPU time required to finish one searching iteration by using our

performance model with the time required by using the state-of-the-art analytical

model developed by Eyerman, et al. [13]. Compared with Eyerman’s model, the pro-

posed model achieves up to 40X speedup. This is mainly because every time cache

size changes, Eyerman’s model requires detailed cache simulation to collect cache

miss and MLP information for different window sizes, whereas our model only needs

to walk through the stack distance trace. Depending on the data footprint of the

programs, the profiling time cost of PREDA may be larger than Eyerman’s model

because of the stack distance profiling. However, this is a one-time profiling cost,

58

and could be easily amortized by the speedup in the demand estimation process.

5.8 Summary

This chapter presents an integrated framework for program resource demand

analysis (PREDA), which leverages the synergy between the performance trend mod-

eling and marginal utility to identify the resource demand of a workload without any

detailed simulation. The proposed framework is able to estimate both single-resource

and multi-resource demand on an array of processor resources, ranging from the is-

sue width, the operating frequency to the memory bandwidth. Experimental results

show that the proposed framework on average provides no larger than 8.6% error to

any given performance target for multi-resource demand estimation. By using the

proposed performance model, the framework achieves up to 40X speedup in multi-

resource demand estimation compared with that by using state-of-the-art analytical

model. This proposed framework can be applied in workload capacity planning in

large CMP systems as well as early stage designs space exploration. With help of

on-line profiling, it can also be applied in coordinated multiple resource management

for Quality-of-Service in CMP systems as well as proactive resource adaptation in

reconfigurable computing.

59

Chapter 6

Program-core Mapping in Static SHMP

While the resource demand analysis framework is able to identify fine-grain

resource demand of the application, it is not able to establish the mapping relation-

ship between programs and cores in static SHMP because the estimated program

resource demands may not completely match the core configurations. On the other

hand, blindly mapping the programs to the cores leads to poor execution efficiency

in static SHMP. Therefore, there is a need for an intelligent program-core mapping

technique to assign the programs to the appropriate cores such that the overall exe-

cution efficiency in static SHMP is improved. To address this problem, this chapter

presents a multi-dimensional matching framework that is able to identify the appro-

priate program-core mapping pairs by analyzing the resource demands and the core

configurations in a unified space.

6.1 Framework

The idea of multi-dimensional program-core matching stems from the ob-

servation that both programs and cores can be described with a set of orthog-

onal characteristics. For example, the program’s ILP can be described with its

instruction dependency distance [51]; whereas the processor core’s capability to ex-

ploit ILP can be captured with its issue width. By projecting these characteristics

from both program side and core side to a unified multi-dimensional space, this

60

dissertation is able to visualize the correlation between the program and the core,

and simplify the program-core matching. Figure 6.1 shows the proposed frame-

Figure 6.1: Framework for multidimensional program-core matching.

work for multidimensional program-core matching. The programs are first compiled

and profiled to obtain K sets of inherent program characteristic: X1,X2, ..,XK,

where Xi = (xi0, xi1, xi2, .., xin) is the vector that describes program characteris-

tic i(i = 1..K) (Vectors are used here since program characteristics may require

more than one number to represent). These vectors are then transformed by a set

of projection functions gi(i = 1..K), which transform the characteristic Xi to the

program’s resource demand Rdi(i = 1..K), as shown in Figure 6.1(b). Specifically,

Rdi = gi(Xi) = gi(xi0, xi1, xi2, .., xin). Therefore, the program’s Resource Demand

Vector (RDV) is: RD = (Rd1, Rd2, .., RdK) = (g1(X1), g2(X2), .., gK(XK)). This vec-

61

tor points to the program’s desired configuration node in the K-dimensional space,

as shown in Figure 6.1(c). On the other hand, the configurations of each processor

core can be described with a vector(y1, y2, .., yK), where each element yi is in cor-

respondence with the program characteristic Xi (i = 1..K). Similarly, this vector

can also be transformed by a set of projection functions to a scaled configuration

vector RP =(Rp1, Rp2, .., Rpk) in the K-dimensional space. Once both the resource

demand vector RD and the configuration vector Rp have been projected to the same

space, the distance between these two becomes the natural measurement for the de-

gree of match between the program and the core. Specifically, larger distance leads

to less compatibility between the program and the core, and hence less execution

efficiency. Note that not every dimension of the vector contributes equally to the

degree of match, some of them are more important whereas others are less outstand-

ing. Therefore, this dissertation uses the Weighted Euclidean Distance (WED) in

the K-dimensional space as the metric for the match between the program and the

core, as shown in Equation 6.1:

WED2 =
k∑

i=1

wi(Rdi −Rpi)
2 (6.1)

where wi is the weight coefficient for the i−th dimension (i = 1..K). Given that, the

program scheduler can identify the matching program-core pairs by simply comparing

the WEDs from the program to different cores.

6.2 Projection Function

Given this framework, the projection functions become the key component,

as they map the core configurations and the program characteristics to the unified

K-dimensional space for the given objectives. Two sets of projection functions are

62

employed for this purpose. One set of them is used to scale the raw hardware

configurations in accordance with the diminishing return effect. The other set of them

is to interpret and quantify the implications of program’s inherent characteristics on

its hardware resource demand.

Generally speaking, hardware resources suffer from the diminishing return

effect, that is, the increase in hardware resource yields less than proportional increase

in the marginal benefit. For example, issue width usually has 4 possible values:

1, 2, 4 and 8; and the diminishing return effect states that the benefit gain by

increasing the issue width from 1 to 2 is the largest, followed by that from 2 to

4, and that from 4 to 8. This diminishing return effect has its implication on the

program-core distance: the difference in the distance decreases as the value of core

configuration increases. To capture this effect, the reciprocal function is used to scale

the inter-configuration distance such that the space between adjacent configurations

decreases as the configuration value increases. Therefore, the projection function for

the configuration y of core i could be formulated as follows:

Ry,i = c(
1

ymin

− 1

yi

) (6.2)

where ymin is the minimum value of the configuration y among the cores, and yi is

the value of configuration y of core i (i = 1..n). The parameter c in the equation is a

normalizing factor, and is used to set the value of Ry,i in the range of [0,1]. Note that

there are many other functions one could use to capture the diminishing return effect.

This dissertation employs this reciprocal function because it is simple and it yields

reasonably good results. While the proposed framework supports the projection

of K (K ≥ 4) different hardware configurations, this dissertation only examines

four types of configurations, i.e., issue width, L1 data cache size, L1 instruction

63

cache, and branch predictor size. Each configuration occupies one dimension of the

space and has four possible values positioned on the axis according to the projection

function. Note that each dimension could have more than four possible values. This

dissertation only uses four values to demonstrate the concept.

In accordance with the hardware configurations, this dissertation investigates

four important program characteristics: instruction level parallelism, data locality,

instruction locality and branch predictability. The projection functions for these

characteristics are used to identify the program’s demands on issue width, L1 data

cache size, L1 instruction cache size, and branch predictor size, which are summarized

in Table 6.1.

Table 6.1: Projection Functions

Resource Demands Projection Functions

Issue Width Rissue =
∑4

i=1 PIW,i ∗RW,i

Data Cache Size RDcache =
∑4

i=1 PDstk,iRDC,i

Instruction Cache Size RIcache =
∑4

i=1 PIstk,iRIC,i

Branch Predictor Size Rbranch =
P3

i=1 RB,i∗(Pbr,i+1+Pbr,10−i)+RB,4∗w∗(Pbr,5+Pbr,6)P4
i=2 Pbr,i+

P9
i=7 Pbr,i+w∗P6

i=5 Pbr,i

The issue width demand is obtained by clustering the instructions into four

groups according to their register dependency distances [51]. Specifically, group 1

with distance of 1, group 2 with distance of 2-3, group 3 with distance of 4-7, and

group 4 with distance of 8 and larger. Each group has its most suitable issue width

to exploit its parallelism, that is, issue width of 1 for group 1, issue width of 2 for

group 2, issue width of 4 for group 3, and issue width of 8 for group 4. Then the

mass center (or the weighted average) of the distribution on average indicates the

issue width demand of the program. In Table 6.1, PIW,i (i = 1..4) is the percentage

64

of instructions falling in each group, and RW,i (i = 1..4) is the projected coordinates

in the issue width dimension of the space representing the issue width from 1 to 8.

The program’s demand on branch predictor size is calculated based on the

branch transition rate [50], which captures the branch predictability of the program.

Generally speaking, the branch instructions with extremely low or extremely high

transition rate can be predicted with short history registers; and as transition rate

approaches 50%, branches become harder to predict and requires longer history

register to hold their patterns. Based on this observation, the transition rates are

evenly divide into 10 buckets: [0, 0.1], [0.1, 0.2], .., [0.9, 1.0]. Then, the branches in

the buckets [0.4, 0.5] and [0.5, 0.6] are associated with the largest branch predictor,

those in the buckets [0.3, 0.4] and [0.6, 0.7] are associated with a smaller branch

predictor, and so on (assuming performance monotonicity [47]). The mass center of

the transition rate distribution indicates on average the program’s demand on branch

predictor size. In Table 6.1, RB,i(i = 1..4) is the coordinates in the branch predictor

dimension of the space, with RB,1 the smallest and RB,4 the largest. The parameter

w is employed to keep track of the fact that as the issue width gets wider the branch

misprediction penalty also increases, and hence a larger branch predictor with higher

prediction accuracy is required to compensate the increased misprediction penalty.

The demands on L1 data cache is derived based on Mattson’s stack distance

distribution [31]. It exploits the inclusion property of Least Recently Used (LRU)

replacement policy, which states that, during any sequence of memory accesses,

the contents of a cache with size k should be a subset of the contents of a cache

with size k + 1 or larger. Let CD(i)(i = 1..4) be the possible L1 data cache sizes

with CD(1) < CD(2) < CD(3) < CD(4), and let PDstk,i(i = 1..4) be the percentage

65

of the accesses whose stack distance is within the range of [0, CD(1)], (CD(1), CD(2)],

(CD(2), CD(3)], (CD(3), CD(4)] respectively. According to the inclusion property, PDstk,1

can be most efficiently hold by the cache with size CD(1), and PDstk,2 can be most

efficiently hold by the cache with size CD(2), and so on. Therefore, the mass center

of the stack distance distribution indicates the program’s average demand on L1

data cache size. The same is true for the demand on L1 instruction cache. In

Table 6.1, RDC,i and RIC,i represent the scaled coordinate for the data cache size

CD(i)(i = 1..4) and the instruction cache size CI(i)(i = 1..4) respectively. PIstk,i(i =

1..4) is the percentage of the accesses whose stack distance is within the range of

[0, CI(1)], (CI(1), CI(2)], (CI(2), CI(3)], (CI(3), CI(4)] respectively.

6.3 Weight Assignment

Now that the program’s resource demands on issue width, L1 data cache size,

L1 instruction cache size, and branch predictor size are available, the program can be

projected to the 4D space with the RDV (Rissue, Rdcache, Ricache, Rbrach). Therefore,

WED between the program and core i in the 4D space becomes: WED2
i = w1 ∗

(Rissue − RW,i)
2 + w2 ∗ (Rdcache − RDC,i)

2 + w3 ∗ (Ricache − RIC,i)
2 + w4 ∗ (Rbranch −

RB,i)
2, (i = 1..4). The weights in this equation reflect the amount of contribution

each dimension has on the degree of match between the program and the core.

To determine these weights, the EDPs of a representative program on 4 different

configurations are obtained through detailed simulations. These data are then used

as the training examples to find the appropriate weights such that the following error

function is minimized:

J(W) =
1

4
∗

4∑

k=1

(
E(k) −

4∑
j=1

wj ∗ (R
(k)
dj −R

(k)
pj)2

)2

(6.3)

66

E(k) in this function stands for the normalized (EDP)2 of the k-th training example,

R
(k)
dj stands for the projected resource demand of the k-th training example on j-

th dimension, and R
(k)
pj stands for the projected hardware configuration of the k-th

training example on j-th dimension. By minimizing this error function, the weights

are assigned in such a way that WED is pulled toward the normalized EDP as close

as possible, which ensures WED to be the proxy of the normalized EDP. To minimize

this error function, for any wi, (i = 1..4),

∂J(W)

∂wi

= 0

or
4∑

k=1

(
E(k) −

4∑
j=1

wj ∗ (R
(k)
pj −R

(k)
cj)2

)
(R

(k)
pi −R

(k)
ci)2 = 0

Let θ
(k)
i = (R

(k)
pi −R

(k)
ci)2, then,

w1 ∗
4∑

k=1

θ
(k)
1 θ

(k)
i + w2 ∗

4∑

k=1

θ
(k)
2 θ

(k)
i + w3 ∗

4∑

k=1

θ
(k)
3 θ

(k)
i + w4 ∗

4∑

k=1

θ
(k)
4 θ

(k)
i =

4∑

k=1

E(k)θ
(k)
i

Expand this equation by using the four training examples:

A




w1

w2

w3

w4


 =




∑4
k=1 E(k)θ

(k)
1∑4

k=1 E(k)θ
(k)
2∑4

k=1 E(k)θ
(k)
3∑4

k=1 E(k)θ
(k)
4




where,

A =




∑4
k=1 θ

(k)
1 θ

(k)
1

∑4
i=1 θ

(k)
2 θ

(k)
1

∑4
i=1 θ

(k)
3 θ

(k)
1

∑4
i=1 θ

(k)
4 θ

(k)
1∑4

k=1 θ
(k)
1 θ

(k)
2

∑4
i=1 θ

(k)
2 θ

(k)
2

∑4
i=1 θ

(k)
3 θ

(k)
2

∑4
i=1 θ

(k)
4 θ

(k)
2∑4

k=1 θ
(k)
1 θ

(k)
3

∑4
i=1 θ

(k)
2 θ

(k)
3

∑4
i=1 θ

(k)
3 θ

(k)
3

∑4
i=1 θ

(k)
4 θ

(k)
3∑4

k=1 θ
(k)
1 θ

(k)
4

∑4
i=1 θ

(k)
2 θ

(k)
4

∑4
i=1 θ

(k)
3 θ

(k)
4

∑4
i=1 θ

(k)
4 θ

(k)
4




67

As a result, the weights can be derived by the following formula:




w1

w2

w3

w4


 = A−1




∑4
k=1 E(k)θ

(k)
1∑4

k=1 E(k)θ
(k)
2∑4

k=1 E(k)θ
(k)
3∑4

k=1 E(k)θ
(k)
4


 (6.4)

Note that the weights exhibit a universal pattern, that is, the ratios between

w1,w2,w3 and w4 are approximately the same for the weights from different pro-

grams. This is because the relative importance of the four hardware aspects is

typically the same across different programs as far as the energy efficiency is con-

cerned. Since the purpose of WED is only to preserve the trend of EDP as the

configuration changes, the wegiths could be assigned with the scaled value, rather

than the exact value obtained from the gradient descent algorithm. Specifically, this

dissertation finds that the weights for the dimension of issue width, L1 data cache

size, L1 instruction cache size, and branch predictor size, can be assigned with 0.9,

0.15, 0.10 and 0.05 respectively.

6.4 Mapping Heuristic

WED indicates the degree of match between the program’s resource demand

and the core’s hardware resource. The smaller the distance is, the better the match

is, and hence the higher the execution efficiency would be. Therefore, the distance

can be treated as a proxy of the program’s execution efficiency on a certain core.

Given that, the optimum scheduler shall minimize the total distance of the sched-

uled program-core pairs. However, such scheme is NP-complete (O(n!) with a naive

implementation), and becomes impractical for large number of programs. This sec-

tion presents a scalable scheduling heuristic based on the program-core distance. As

68

Pseudocode 4 Distance Based Program Scheduling

#define P [M] /*programs in the program queue*/
#define C[N] /*processor cores*/
#define WED[M][N] /*weighted Euclidean distance array*/
if (M ≤ N) /* the number of programs is no larger than the number of cores*/

for j (1 .. M)
for i (1.. N)

if (C[i] is available && min dist > WED[j][i])
min dist = WED[j][i];
core id = i;

end if
end for
MAP [j] = core id;
mark C[core id] as unavailable, and reset min dist;

end for
else /* the number of programs is larger than the number of cores*/

for i (1 .. N)
for j (1 .. M)

if (P [j] has not been scheduled && min dist > WED[j][i])
min dist = WED[j][i];
prog id = j;

end if
end for
MAP [prog id] = i;
mark P [prog id] as scheduled, and reset min dist;

end for
if any core becomes available, schedule the program with
min WED to that core from the remaining programs.

end if

shown in Pseudocode 4, when the number of programs in the queue is less than or

equal to the number of available cores, the heuristic attempts to assign best avail-

able core to the given program. Specifically, the scheduler selects a program from

the program queue on a first-come, first-served (FCFS) basis and allocates the avail-

able core with the minimum WED to that program. However, when the number of

programs in the queue is larger than the available cores, the heuristic takes the op-

posite way: allocating the program with the minimum WED to the given core. The

computational complexity of this algorithm is O(n), where n is the number of the

69

programs to be scheduled. Note that this scheduling heuristic assumes that programs

would be executing on the cores un-interruptively from start to finish; whereas in

practice, programs are scheduled and executed based on time slices. However, from

the perspective of finding the matching program-core pairs, these two are essentially

the same. Therefore, the same idea could also be applied in the time-sliced based

scheduling.

To make comparisons, this dissertation also examines the following scheduling

algorithms:

Hardware Oblivious Mapping (H OB): This scheduling scheme is unaware of

the hardware substrate, and schedules the program on a FCFS basis. Specifically,

the first in program queue is schedule to core 1, the second to core 2, and so on.

This scheduling method is referred to as the baseline method in this study.

Min EDP Scheduling (MIN EDP): This scheduling method attempts to sched-

ule the programs such that the overall EDP is minimized. It assumes that the EDP

of each program-core pair is known a priori, and hence sets the best case scenario

of the overall EDP.

Max EDP Mapping (MAX EDP): This scheduling method attempts to schedule

the programs such that the overall EDP is maximized. It also assumes that the EDP

of each program-core pair is known a priori, and provides the worst case scenario

in the overall EDP.

70

6.5 Evaluation

This section presents the evaluation of the proposed program-core mapping

framework. The simulation platform, workloads, and metrics used in this evaluation

are described in Chapter 4.

To demonstrate that the WED is an appropriate proxy for the program’s

execution efficiency on a certain core, it is necessary to show that the WED has

strong correlation with the EDP. To do so, this dissertation measures the EDP of

each program on each possible processor core in the configuration space, and calculate

the WED of every program-core pair. Table 6.2 shows the Pearson’s correlation

coefficient between WED and EDP for each benchmark program. The closer the

coefficient is to 1, the stronger the correlation is. The average correlation coefficient

of these programs is 0.8719, indicating strong correlation between EDP and WED.

Note that for each program, this dissertation uses the input data specified along

the program for EDP measurement, and use the training input dataset for WED

calculation. Therefore, the coefficients in Table 6.2 not only demonstrate that WED

is strongly correlated with EDP, but also show that the input dataset has insignificant

influence on the WED model.

Table 6.2: Correlation Coefficient between EDP and WED
Benchmarks Coeff. Benchmarks Coeff.

gcc-166 0.8408 apsi-ref 0.9470
bzip2-source 0.8394 SPEC equake-ref 0.8674
vortex-1 0.8944 CPU2000FP applu-ref 0.9540
mcf-ref 0.8758 lucas-ref 0.8371
vpr-route 0.8292 mesa-ref 0.8291
crafty-ref 0.7559 ammp-ref 0.9496

SPEC twolf-ref 0.8513 mpeg2dec-tek6 0.9538
CPU2000INT eon-rushmeier 0.9053 cjpeg-monalisa 0.9423

gzip-source 0.7946 MediaBench ghostscript-titanic2 0.8659
swim-ref 0.9299 epic-titanic3 0.9393
mgrid-ref 0.9511 encode-clinton 0.8929

71

Note that SHMPs are designed to improve the efficiency of diverse workloads,

as opposed to the homogeneous ones. Therefore, in order to evaluate the proposed

scheduling heuristics, 200 diverse workloads are composed from the benchmark,

each with four heterogeneous programs. Then the workloads are scheduled with

the scheduling heuristics and the scheduling results for each program mixes are col-

lected. Figure 6.2 shows the boxplots of the scheduling results for the workloads with

four programs. According to these boxplots, the proposed distance based scheduling

achieves on average 35.7% reduction in EDP, 26.5% reduction in makespan with slight

reduction in energy (1.2%) when compared with the traditional hardware oblivious

scheduling. Compared with MIN EDP scheduling, the distance-based scheduling

achieves less average reduction in EDP (35.7% vs 41.4%) and in makespan (26.5%

vs 37.3%), but approximately similar reduction in energy (1.2% vs 2.4%) (The dif-

ference in energy reduction rate is of no statistical significance since the notches of

the two boxes overlap, as shown in Figure 6.2(d)). Note that the reduction in energy

and makespan is the by-product of the heuristics targeting at EDP minimization.

Since the metric EDP is skewed towards clock cycles (or delays), minimizing EDP

leads to higher reduction in makespan (or throughput) than in energy.

In addition, this section also evaluates the performance of the proposed map-

ping heuristic as the number of programs in the workload varies from one to seven.

Figure 6.3 shows the normalized average EDP for all the scheduling schemes. The

upper and lower bounds of the achievable EDP are set by the MAX EDP scheduling

and MIN EDP scheduling respectively. In between are the EDPs achieved by the

hardware oblivious scheduling and the distance based scheduling. The performance

of the distance based scheduling is slightly off the optimum due to the imperfection

of the WED model and the suboptimal nature of the heuristic. Nevertheless, it still

72

H_ob D_base MIN_EDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 E
D

P

Scheduling Policies

Comparison :: Normalized EDP

(a)

H_ob D_base MIN_EDP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 E
n

er
g

y
Scheduling Policies

Comparison :: Normalized Energy

(b)

H_ob D_base MIN_EDP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 M
ak

es
p

an

Scheduling Policies

Comparison :: Normalized Makespan

(c)

D_base MIN_EDP D_base MIN_EDP D_base MIN_EDP

−100%

−80%

−60%

−40%

−20%

0

20%

40%

60%

80%

R
ed

u
ct

io
n

 R
at

e

EDP

Reduction over Baseline :: EDP, Energy, Makespan

MakespanEnergy

(d)

Figure 6.2: EDP, energy and makespan comparison between different scheduling heuris-
tics. Makespan is the time between the start and finish of a group of programs, and is
used as the metric for throughput [44]. The asterisk stands for the sample average.

achieves near optimum EDP on average, and its performance is consistent for all the

program numbers examined in this study.

73

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Program Numbers

N
o

rm
al

iz
ed

 A
ve

ra
g

e
E

D
P

H−ob

D−base

MIN−EDP

MAX−EDP

Figure 6.3: Scheduling results for different number of programs

6.6 Summary

This chapter presents a scalable framework to leverage the inherent charac-

teristics of a program for scheduling decisions in heterogeneous multicore processors.

The proposed method first transforms the program’s inherent characteristics to the

program’s resource demand. It then projects the program’s resource demands and

the core’s configurations to a unified multi-dimensional space, and uses weighted

Euclidean distance between these two to guide the program scheduling. The ex-

perimental results show that, with four programs, our proposed scheduling heuris-

tic achieves an average of 35.7% reduction in EDP, 26.5% reduction in makespan

and 1.2% reduction in energy when compared with traditional hardware oblivious

scheduling algorithm. This technique, combined with the resource demand analysis

framework, provides a complete solution to the off-line heterogeneity-aware program

scheduling in static SHMPs.

74

Chapter 7

Predictive Scheduling in Static SHMP

The program-core mapping technique presented in the previous chapter is

static, and cannot adapt to program phase changes. This chapter presents a dy-

namic scheduling technique that is aware of the hardware heterogeneity and can

adapt to the program phase changes. Unlike the existing trail-and-error schedul-

ing, the proposed scheduling technique leverages the analytical performance model

to dynamic predict the anticipated performance of the application, fundamentally

eliminating the need of trial runs.

7.1 Scheduling Framework

The proposed scheduling framework, named as Predictive Heterogeneity-Aware

Scheduler (PHASE), consists of three components: the on-line profiler, the perfor-

mance predictor and the scheduling heuristic, as shown in Figure 7.1. The on-line

profiler non-invasively profiles the application running on each core, and extracts the

application’s inherent characteristics required for the performance prediction. The

performance predictor collects the profiled application characteristics at the end of

each scheduling interval, and predicts the application’s performance on other cores

using the collected application statistics and the configurations of the corresponding

cores. The predicted performance values are organized as a performance matrix and

passed to the OS scheduler, where the scheduling algorithm identifies and enforces

75

Figure 7.1: The overview of the PHASE framework.

the appropriate assignment of the applications for the next interval. As a result,

the PHASE framework completely eliminates the need of trial runs, while also being

able to dynamically and efficiently adapt to program phase changes.

Note that the proposed scheduling algorithm is not intended to replace, but

rather complement the existing criteria for application scheduling. Specifically, the

heterogeneity-aware scheduling is enforced only after the scheduler has chosen the

applications from its application pool based on existing criteria including priority,

fairness, and starvation-avoidance. Note also that although this framework can be

applied in single-ISA heterogeneous CMP caused by design, this dissertation fo-

cuses its application on heterogeneous processors resulting from process variations

and manufacturing defects. The following sections explain each component of the

scheduling framework in detail.

76

7.2 Performance Modeling

The performance model used in this scheduling framework is described in

Chapter 3. Note that this work focuses on the scheduling issue for single-threaded

execution, therefore, the performance model does not need to model the impact of

co-executing threads. However, in this work, the functional units in each core may

not be sufficient due to manufacturing defects, the performance model does need

to capture the impact of limited functional units. Refer to Chapter 3 for detailed

discussions of this model.

7.3 Online Profilers

The proposed performance model requires a set of program characteristics

from which the key parameters used in the performance model can be derived. These

characteristics include: a) the critical dependency chain, for deriving the average

ILP; b) the instruction ready set size histogram, for calculating the effective issue

width with different FU number; c) the stack distance histogram [31], for estimating

the number of L2 load misses with different L2 cache sizes. This section presents

a set of non-invasive and cost-effective online profilers to dynamically extract these

characteristics during the application’s execution.

7.3.1 Critical Dependency Chain Profiler

The critical dependency chain refers to the longest instruction dependency

chain in the instruction window. To capture the length of the critical dependency

chain, this dissertation proposes a token-passing technique inspired by Fields, et

al.’s work [48]. A token is a field in each reservation station entry that keeps track

77

of the dependency chain length, as shown in Figure 7.2(a). When an instruction

enters the reservation station, its token field is set to zero; when an instruction

leaves the reservation station for execution, its token field is incremented by one.

The incremented token is propagated along with the result tag of the instruction.

When the instruction finishes execution and its result tag matches the source tag

of the waiting instruction in the reservation station, the propagated token compares

the token of the waiting instruction. The larger one between these two is stored in

the token field of the waiting instruction. As a result, by the time an instruction is

ready for execution, its token holds the length of the longest dependency chain for

this instruction.

The critical dependency chain profiler compares the token of every issued

instruction, and keeps track of the maximum observed token, which is then used as

an index to the max dependency chain histogram. The histogram is controlled by

an instruction counter that monitors the number of issued instructions. When this

number reaches the size of instruction window, the histogram entry indexed with the

maximum observed token is incremented by 1. Meanwhile the register that holds

the maximum token is reset to zero. Consequently, the maximum dependency chain

histogram holds the information of the longest dependency chain length for each

instruction window. At the end of each scheduling interval, this histogram is used

to calculated the average length of the critical dependency chains, and then reset to

zeros for the next scheduling interval.

7.3.2 Ready Set Size Profiler

The ready set size profiler takes advantage of the standard instruction selec-

tion logic [52], where the information about the number of ready instructions on

78

Figure 7.2: The structure of the online profilers.

a certain type of functional units is readily available. This information is steered

to the RSS register in the ready set size profiler for the corresponding FU type, as

shown in Figure 7.2(c). Besides the RSS register, the ready set size profiler also

contains a utilization counter that is incremented each time an instruction is issued

to the corresponding FU for execution. When the utilization of the FU equals the

previously stored RSS value, the RSS register is loaded with a new RSS value, and

the utilization counter is reset to zero. Meanwhile, the RSS histogram entry indexed

by the new RSS value is incremented by one. At the end of scheduling interval, RSS

histogram is used to update the average instruction latency, and reset to zero.

Such profiling mechanism can precisely capture the ready set size information

assuming that instructions are issued in the oldest-first order. However, for a different

instruction selection policy, the profiled RSS histogram may not exactly reflect the

application’s RSS statistics. Nevertheless, the expected discrepancy is small and its

79

impact on the accuracy of performance prediction is negligible.

7.3.3 Stack Distance Profiler

The stack distance profiler is used to keep track of the program memory

accesses, and obtain the stack distance distribution/histogram of the program. As

mentioned in Chapter 3, stack distance refers to the distance between the Most

Recently Used (MRU) position and the position of a data block when it gets reused.

This information allows us to estimate the number of misses at any cache sizes

without any trial runs [31].

The profiling for the stack distance histogram requires an Auxiliary Tag Di-

rectory (ATD) and an array of hit counters, one for each cache way [25]. The ATD

has the same associativity as the largest L2 cache in the chip and keeps track of LRU

data replacement. Each time when there is a hit in the ATD, the stack distance of

the hit data block is used to index into the array of hit counters, and the corre-

sponding counter is incremented by one. Therefore, the stack distance histogram is

simply composed of these hit counters organized from MRU to LRU positions. To re-

duce the hardware overhead caused by ATD, this dissertation employs the Dynamic

Set Sampling (DSS) technique, which essentially uses a few sets to approximate the

entire cache behavior [53][25]. This dissertation uses 1-to-32 set sampling ratio.

7.3.4 Profiling for Other Parameters

Other parameters required by the performance model can be obtained from

the standard performance counters. For example, the performance counters in Intelr

CoreTM architecture [54] are able to provide the instruction mix and cache hit/miss

statistics. With these statistics, the average latency latavg can be derived by weight-

80

averaging the percentage of each instruction type with the corresponding execution

latency. Note that the load that misses L1 cache but hits in L2 cache is treated as

an instruction with long execution latency. This average latency is further adjusted

with the RSS histogram to count in the effect of limited functional units.

Similarly, the factor for average memory level parallelism movp can be obtained

by monitoring the Miss Status Holding Register (MSHR) in L2 cache. Specifically,

every time an L2 load miss happens, MSHR is queried for outstanding load misses.

movp is the average number of these outstanding misses across all L2 load misses.

7.3.5 Hardware Cost Analysis

The hardware cost of the profilers depends on the instruction window size as

well as the L2 cache size. Assuming 128 instruction window size, 96-entry reservation

station, 32-bit physical address space, and 2MB 8-way L2 cache with 64B block size,

the total hardware cost amounts to 3.5KB, as shown in Table 7.1. The hardware

cost may be further reduced by using a smaller number of histogram counters based

on the observation that most of the ready set size or the critical dependency chain

length is far smaller than the instruction window size. However, even without such

optimization, the online profilers incur no larger than 0.2% hardware overhead on a

core with 2MB L2 cache. Note that these profilers are not in the critical path, and

do not affect the application’s maximum performance.

The computation cost of the performance prediction is mainly caused by

converting the profiled histograms to the parameters used in the performance model,

which would require about 300 multiply and accumulate operations. In addition,

the performance model itself needs 2 add, 1 comparison, 2 multiply and 3 divide

81

Table 7.1: Hardware Cost of the Online Profilers
Profiler Components Costs
Critical Dependency token fields 7*128 bits
Chain Profiler multiplexors, comparators (7*2+7)*96 bits

histogram counters 32*128 bits

RSS Profiler RSS Reg & Utilization Reg. 7*2 bits
histogram counters 32*128 bits

Stack Distance Profiler

LRU bits per ATD entry 3 bits
valid bits per ATD entry 1 bits
address bits per ATD entry 12 bits
total ATD cost (with 128 sampled sets) (3+1+12)*8*128 bits
Hit Counters 32*(8+1) bits

Cost of Profilers Per Core 27790 bits

operations. Therefore, predicting an application’s performance on four cores involves

approximately 350 arithmetic operations. Since the prediction is made only once

every scheduling interval, these operations can be performed on the functional units

already on the chip by stealing their idle slots. By starting computing the estimated

performance several thousands of cycles before the end of the scheduling interval,

the computation can be completely hidden and will not incur performance penalties.

7.4 Scheduling Heuristics

To identify the optimum application-core allocation from the performance

matrix, a näıve approach requires exhaustive search, which has the complexity of

O(n!) and is not scalable. In contrast, our PHASE scheduler uses a greedy algo-

rithm with polynomial computation complexity, as shown in Pseudocode 5. The

algorithm first searches the estimated performance matrix1 for the largest entry, and

the corresponding program and core indices are stored in the application-core al-

1Depending on the optimization target, the performance in the matrix could be in the form of
IPC or IPC speedup.

82

location array and then removed from the index arrays. This process repeats for

the remaining matrix until all indices of applications or cores have been visited.

The newly obtained application-core allocation is enforced in the next scheduling

interval only when the predicted performance gain is larger than the given migra-

tion threshold. This threshold serves as a migration throttling agent, which prevents

applications from migrating when there is insufficient performance improvement to

compensate the migration cost. The impact of the threshold value is evaluated in

Section 7.5.2.

Pseudocode 5 Algorithm for Predictive Heterogeneous-Aware Scheduling

#define Nc /*the number of cores in the CMP*/
#define Np /*the number of programs to be scheduled*/
#define Pth /*the performance threshold*/
#define perf [Np][Nc] /*the array of predicted performance*/
#define prog[Np] /*the program index array*/
#define core[Nc] /*the core index array*/
#define core alloc[Nc] /*the core allocation array*/

for (i=0; i < Nc; i++)
foreach nc in core[Nc]

foreach np in prog[Np]
if (perf [np][nc] > max perf)

Npmax = np; Ncmax = nc;
max perf = perf [np][nc];

end if
end foreach;

end foreach;
core alloc[Ncmax] = Npmax;
total perf = total perf + max perf ;
remove Npmax from prog[Np];
remove Ncmax from core[Nc];

end for
if ((total perf − total monitored perf)/total monitored perf > Pth)

enforce schedule based on core alloc[Nc];
end if

The complexity of this algorithm is O(n2 ·m), where n is the number of cores

83

and m is the number of programs to schedule (m ≤ n). Note that if the number

of programs is larger than the number of cores, the scheduler will first choose the

programs from the program pool using the criteria such as priority and fairness, and

then the performance matrix associated with these programs will be searched for

the optimum allocation. This dissertation focuses on the case that the number of

programs is no larger than the number of cores.

Besides this proposed algorithm, this dissertation also evaluates a set of other

scheduling algorithms for comparison. These algorithms include:

OpenSolaris: This is the default OpenSolaris scheduler, which is unaware of the

core-level heterogeneity and treats each core as symmetric. It has the property

of natural binding, that is, when an application gets scheduled to one core, this

application is unlikely to be migrated to a different core in the next scheduling

interval to avoid migration overhead [55]. Therefore, it can be treated as random

static mapping, and used as the baseline scheduler in this work.

Becchi+: This algorithm is based on the one proposed by Becchi, et al. [6]. While

the original proposal only applies to two types of cores, this dissertation extends it

to support four or more different cores. Specifically, the algorithm allows the ap-

plications run for one interval, and then it randomly selects two cores, swaps the

applications running on the cores, and makes them run for another interval. The

allocation that gives the higher aggregated throughput between these two intervals is

enforced in the next scheduling interval. The procedure repeats in the next schedul-

ing interval.

Oracle: This algorithm assumes the application’s performance on different cores in

the next scheduling interval is known a priori. It uses these future performance data

84

to find the application-core allocation that gives highest throughput (or speedup),

and enforce the allocation in the next scheduling interval. While it is unrealistic in

practice, it sets an upper bound of the potential performance improvement.

Worst Static Scheduling (WSS): This is the static application-core mapping

that gives the lowest aggregated throughput (or speedup). It is only used as a refer-

ence point to highlight the worst situation that an heterogeneity-unaware scheduling

scheme could possibly end up with.

7.5 Evaluation

This section presents the evaluation of the proposed application scheduling

framework. It consists of the evaluation of the model accuracy, the choice of migra-

tion threshold, and the performance improvements over other scheduling schemes.

The simulation platform, workloads, and metrics used in this evaluation are described

in Chapter 4.

7.5.1 Model Accuracy

The accuracy of the performance model could largely impact the effectiveness

of the proposed scheduling framework. To evaluate the model accuracy, every SPEC

CPU2006 program is run on a simulated processor for one scheduling interval, and

then the performance model is used to estimate the program’s CPI on target proces-

sors with different configurations. Meanwhile, these programs are also simulated on

those target processors for one scheduling interval and the observed CPI is compared

with the estimated one. As shown in Figure 7.3(a)-(c), the average error between

the estimated CPI and the observed one is no larger than 8.17%, indicating the per-

85

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Estimated CPI

O
bs

er
ve

d
C

P
I

Model Accuracy :: ALU Number

Avg. Error : 8.17%

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Estimated CPI
O

bs
er

ve
d

C
P

I

Model Accuracy :: L2 Cache Size

Avg. Error : 5.26%

(b)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
Model Accuracy :: Frequency

Estimated CPI

O
bs

er
ve

d
C

P
I

Avg. Error : 5.88%

(c)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Estimated CPI

O
bs

er
ve

d
C

P
I

Model Accuracy::Combined

Avg. Error : 7.66%

(d)

Figure 7.3: Model Accuracy. (a) The number of IALU varies from 1 to 4. (b) The L2
cache size varies from 512KB to 2MB at the step of 256KB. (c) Frequency varies from 2GHz
to 4GHz at the step of 0.1GHz. (a)-(c) only one resource changes with others in nominal
configurations. (d) 300 random configurations when three sources vary simultaneously.

formance model keeps track of the observed performance very well when only one

resource varies its configuration. Figure 7.3(d) shows the Monte Carlo simulation of

300 random configurations when all three resources vary simultaneously. The aver-

86

age error between the estimated CPI and the observed one is 6.71%, and the largest

error is 22.7%. It is also observed that the relative error follows normal distribution,

indicating the analytical model contains little systematic error.

7.5.2 Migration Threshold

As explained in the previous section, migration threshold is used in the pro-

posed scheduling algorithm as an important parameter to control the performance

gain and throttle non-beneficial program migration. Figure 7.4 shows the perfor-

mance and migration frequency of workload lxws at different migration thresholds.

As the migration threshold increases from 0, the number of migration goes down

while the overall throughput improves. This is because the increase of the migration

threshold filters out the detrimental application migrations whose migration over-

head is larger than the potential performance improvement. On the other hand, a

large threshold could also cause performance degradation. As shown in the figure, the

performance drops sharply when the threshold increases beyond 7%. This is because

a high threshold conservatively prevents the application from migrating, filtering out

the opportunities for performance improvement. Therefore, a good threshold should

prevent most of the detrimental application migrations yet still allow most beneficial

application migrations. This work uses 5% as the threshold value for all workloads.

One can further improve the performance by using an adaptive threshold, but it is

beyond the scope of this dissertation.

7.5.3 Performance

Throughput Improvement: Figure 7.5(a) shows the comparison of the

aggregated throughput for different scheduling policies. One can observe that the

87

0 0.02 0.04 0.06 0.08 0.1
1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

N
or

m
ai

lz
ed

 T
hr

ou
gh

pu
t

Migration Threshold

Threshold Sensitivity::LXWS

0 0.02 0.04 0.06 0.08 0.1
0

2

4

6

8

10

12

14

M
ig

ra
tio

n
F

re
qu

en
cy

Performance Migration

Figure 7.4: Migration Threshold. The dark dash line highlights the threshold used in this
dissertation.

performance of the OpenSolaris scheduler can be very close to (e.g., workload mbpg)

or significantly higher (e.g., workload xnlo) than that of the WSS scheduler. This

is because the OpenSolaris scheduler does not consider the underlying hardware

heterogeneity, and the random nature of application-core assignment may end up

with a reasonable good static assignment or the worst static assignment. This also

means that a scheduler that is unaware of the core-level heterogeneity may lead to

non-deterministic performance, which further underscores the importance of hetero-

geneity awareness in application schedulers. This figure also shows that Becchi+

scheduler has a significant improvement over the baseline OpenSolaris scheduler, yet

its performance is still far from that of the Oracle scheduling. It is mainly because of

the inability to quickly identify the optimum application-core assignment with explo-

rative trial runs. In contrast, the proposed predictive scheduling scheme eliminates

the trial runs and can achieve near optimum performance improvement. On average,

88

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0.4

0.6

0.8

1

1.2

1.4

1.6

Workloads

N
or

m
al

iz
ed

 M
IP

S

Aggregated Throughput::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(a)

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0

0.005

0.01

0.015

0.02

Workload

N
or

m
al

iz
ed

 M
IP

S
 L

os
s

Migration Overhead in Throughput::HH

Becchi+
PHASE
Oracle

(b)

LH MH HH
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 M
IP

S

Heterogeneity Degree

Comparison of Average Throughput

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(c)

Figure 7.5: Comparison of Throughput. The data are normalized to the throughput of
the OpenSolaris scheduler.

it achieves 20.6% improvement over the baseline, 11.2% improvement over Becchi+,

and is only 1.7% less than the oracle scheduling. The small sub-optimality mainly

comes from two sources: a) PHASE uses the history information to estimate future

performance, hence cannot capture the sudden phase change in the next scheduling

interval; whereas the Oracle scheduler knows the future events, and can adjust the

scheduling decisions accordingly; b) due to the greedy nature of the searching algo-

89

rithm, PHASE may be trapped in finding the application assignment that is only

locally optimum whereas the Oracle scheduler always enforces the global optimum

assignment. Figure 7.5(b) illustrates the impact of migration overhead on the system

throughput. It is obtained by comparing the realistic throughput with the through-

put achieved when the data working sets are ideally moved along with the migrating

application. It can be observed that the migration overhead of Becchi+ is consis-

tently the largest for each workload. This is mainly because Becchi+ requires trial

runs to determine the application assignment, causeing many unnecessary movement

of data sets and slowing down the overall execution. Figure 7.5(c) shows the aver-

age throughput (geometric mean) improvement as the heterogeneity degree changes.

One can also observe that the potential of the throughput improvement drops as the

heterogeneity degree decreases. This intuitively makes sense because with reduced

heterogeneity, the performance difference of scheduling an application to different

cores is also reduced.

Efficiency Improvement: Figure 7.6(a) shows the comparison of the effi-

ciency in terms of mips3/W for different scheduling algorithms. It is observed that

PHASE achieves 3.2X efficiency improvement on workload mbpg compared with the

baseline scheduling. This improvement is because OpenSolaris scheduler blindly as-

signs the memory-bound mcf to the fastest core (C-0) and the computing-bound gcc

to the slowest core (C-3), whereas PHASE schedules the programs in the opposite

way, resulting high efficiency improvement. On average, PHASE improves the effi-

ciency by 71.6% over the OpenSolaris scheduler and 36.2% over Becchi+ scheduler.

Note that for some workloads, e.g., mbpg, WSS scheduling yields higher efficiency

than the baseline scheduling, indicating that baseline scheduling may consume more

energy than WSS scheduling. Figure 7.6(b) shows the efficiency loss caused by mi-

90

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0

0.5

1

1.5

2

2.5

3

3.5

Workload

N
or

m
al

iz
ed

 M
IP

S
3 /W

Efficiency Comparison::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(a)

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0

0.05

0.1

0.15

0.2

0.25

Workload

N
or

m
al

iz
ed

 M
IP

S
3 /W

 L
os

s

Migration Overhead on Efficiency::HH

Becchi+
PHASE
Oracle

(b)

LH MH HH
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 M
IP

S
3 /W

Comparison of Average Efficiency

Heterogeneity Degree

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(c)

Figure 7.6: Comparison of Efficiency. The data are normalized to the efficiency of the
OpenSolaris scheduler.

gration overhead. Again, Becchi+ has the highest efficiency loss because the trial

runs not only slow down the execution but also incur extra power consumption on the

interconnection network between caches. Figure 7.6(c) further shows the efficiency

improvement as the heterogeneity level changes. Similar to the throughput, the

potential of efficiency improvement decreases as the heterogeneity degree decreases.

91

Weighted Speedup Improvement: Figure 7.7 shows the performance and

efficiency of different schedulers when using the weighted speedup as the optimization

target. The results are similar with those of the aggregated throughput, yet with

smaller improvements. On average, PHASE improves the weighted speedup by 11.3%

and the mips3/W efficiency by 58.6% over OpenSolaris scheduler, and compared with

Becchi+ scheduler, the improvements are 6.8% and 25.9% respectively.

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0.4

0.6

0.8

1

1.2

1.4

Workload

W
ei

gh
te

d
S

pe
ed

up

Weighted Speedup::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(a)

mbpg xnlo lxws msos lsha zlot cdpb pmca mglg GM
0

0.5

1

1.5

2

2.5

3

3.5

Workload

N
or

m
al

iz
ed

 M
IP

S
3 /W

Efficiency Comparison::HH−Weighted Speedup

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(b)

Figure 7.7: Comparison of weighted speedup and efficiency.

Impact of Program Number: This dissertation also evaluates the impact

of program number on the performance of the schedulers. To do so, for each of the

4-programmed workloads, all possible combinations of 1, 2 and 3 programs are eval-

uated. The geometric means of the throughput results are shown in Figure 7.8(a).

It can be observed that compared with the baseline scheduling, the performance of

Becchi+ decreases as the program number drops from 4 to 1. It is mainly because

the scheduler unaware of the heterogeneity is more likely to reach a good static ap-

plication assignment as the program number gets smaller. However, the performance

of our predictive scheduling is still near optimum, and can reach up to 14.5% im-

92

1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Programs

W
ei

gh
te

d
S

pe
ed

up

Average Weighted Speedup::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(a)

1 2 3 4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Programs

N
or

m
al

iz
ed

 M
IP

S
3 /W

Average Efficiency Comparison::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(b)

1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Programs

W
ei

gh
te

d
S

pe
ed

up

Average Weighted Speedup::HH

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(c)

1 2 3 4

0.6

0.8

1

1.2

1.4

1.6

1.8
Average Efficiency Comparison::HH−Weighted Speedup

Number of Programs

N
or

m
al

iz
ed

 M
IP

S
3 /W

OpenSolaris
WSS
Becchi+
PHASE
Oracle

(d)

Figure 7.8: Average performance and efficiency improvement vs program number.

provement over Becchi+. Figure 7.8(b) further shows the efficiency improvement as

the program number changes. Overall, the potential of efficiency improvement de-

creases as the number of program decreases. Figure 7.8(c) and (d) show the results

of the same experiment as Figure 7.8(a) and (b), but with weighted speedup as the

optimization target.

93

7.6 Summary

This chapter presents PHASE, a heterogeneity-aware scheduling framework

that can dynamically and pro-actively schedule applications in single-ISA heteroge-

neous CMPs. This framework uses a set of hardware-efficient online profilers and

a performance model to simultaneously predict the application’s performance on

different cores. Based on the predicted performance, the scheduler identifies and en-

forces near-optimal application assignment for each scheduling interval, eliminating

the need of trial runs or off-line profiling. Experimental results show that the pro-

posed heterogeneous-aware scheduler improves the commodity OpenSolaris scheduler

by an average of 20.6% in terms of overall throughput and an average of 71.6% in

terms of efficiency. Compared with the state-of-the-art research scheduler, the pro-

posed scheduler improves the throughput by an average of 11.2% and the efficiency

by an average of 36.2%. All of these performance gains are achieved with only a

few kilobyte of additional hardware. This predictive scheduling scheme fundamen-

tally avoids the inefficiencies and shortcomings of the existing heterogeneity-aware

scheduling schemes, hence is an attractive solution to the scheduling problem in

static SHMPs.

94

Chapter 8

Predictive Resource Coordination in Dynamic

SHMP

The previous chapter addresses the issues of efficient application scheduling

in static SHMP. However, when it comes to dynamic SHMP, multiple hardware

resources can be dynamically allocated to the executing programs. Therefore, the

problem becomes how to manage multiple interacting resources to achieve energy

efficient computing and enforce Quality-of-Service (QoS) performance objectives.

This problem becomes even more challenging when each core support Simultaneous

Multi-threading (SMT). Under such circumstance, the resource sharing in a Chip-

Multiprocessor (CMP) is compounded with both inter-core and intra-core resources,

and any resource management scheme without coordinating between these two types

of resources could lead to suboptimal system performance and inability to enforce

system performance objectives.

As an example, Figure 8.1 shows the comparison of the weighted speedups

for different combination of inter-core and intra-core resource management schemes

in a quad-core 2-way SMT CMP system. Inter-core resource here is represented by

L2 cache, and intra-core resources include issue queue (IQ), reorder buffer (ROB),

and physical registers, all partitioned in proportion to each other [21]. As one can

see, although separate management of L2 cache or intra-core resources improves

the performance over the scheme of equal partition, it still misses a large amount

95

Figure 8.1: Comparison of weighted speedup for different resource management policies.
Results are based on a quad-core CMP with per-core 2-way SMT (Detailed configurations
in Table 4.3).

of potential for improving system performance compared with the one that coor-

dinates the distribution of L2 cache and intra-core resources. This is because the

application’s demands on different resources are correlated, and the change of the

application’s intra-core resource allocation could affect the its demands on inter-core

resources. For example, the increase of ROB size may expose more memory level

parallelism (MLP) and increase the number of outstanding load misses. Since mul-

tiple load misses could hide the latency with each other, the average cache miss

penalty is reduced, hence the requirement of L2 cache size is smaller in order to

maintain the same performance. Therefore, coordinating between intra-core and

inter-core resources is necessary to achieve high utilization and system performance

in CMP+SMT environment.

However, existing management schemes for multiple interacting resources fo-

cus on either intra-core resource partitioning for a single-core SMT processor or

96

inter-core resource allocation for a chip-multiprocessor. Moreover, existing schemes

for multiple resource management often rely on trial runs, which is inefficient in terms

of performance and energy. To address these limitations, this chapter presents a com-

prehensive yet cost-effective resource management framework that can coordinate

both intra-core and inter-core shared resources meanwhile simultaneously enforce

QoS performance objectives. Unlike the existing resource management schemes, the

proposed framework leverages an analytical performance model to predict the per-

formance, and enforces resource allocations without any trial resource partitioning

or training. By using the application characteristics dynamically collected during

the application’s execution, the performance model can update the performance

prediction at each resource adaptation epoch, allowing the resource allocation to

dynamically adapt to program phase changes.

8.1 Resource Coordination Framework

The proposed framework for multiple resource management mainly consists

of three different components: the on-line profilers, the performance predictor, and

the resource allocator, as shown in Figure 8.2. The on-line profiler non-invasively

profiles each thread running on each core, and extracts the inherent characteristics

of the thread for the performance prediction. The performance predictor collects the

profiled characteristics of the thread at the end of each resource allocation epoch,

and estimates the performance of the thread for different resource allocations. The

resource allocator uses a built-in search engine to identify the appropriate resource

allocations under the constraint of the given QoS targets, and enforces the resource

partition for each thread through a set of partition knobs.

97

Figure 8.2: The overview of the multiple resource management framework.

The intra-core partition knobs regulate the allocation of the intra-core re-

sources, which include Instruction Queue (IQ), ROB, and physical registers. These

resources are interdependent, and are allocated in proportion to each other, similar

with the way employed in the work by Choi, et al. [21]. On the other hand, the

inter-core partition knobs control the distribution of Last Level Cache (LLC) size

and the power consumption of each core. This dissertation assumes that the CMP

uses L2 cache as LLC and supports per-core Dynamic Voltage and Frequency Scal-

ing (DVFS). In DVFS, the voltage and frequency are correlated, hence the power

management can be achieved by controlling the operating frequency of each core

meanwhile keeping the total power within the budget. This framework does not ex-

plicitly manage the memory bandwidth. Instead, it uses PAR-BS memory scheduling

policy [40] to ensure the fairness and QoS of bandwidth usage.

While this framework addresses the resource allocation issues in the CMP+SMT

98

scenario, it could also be applied in the cases where each core only supports single

thread but can be dynamically reconfigured. Nevertheless, this dissertation focuses

on the CMP platform with each core supporting 2-way SMT to demonstrate the

effectiveness of the framework. The following sections explain each component of

the proposed framework in detail.

8.2 Performance Prediction

The performance predictor predicts the performance of an application under

different resource allocations by using the analytical performance model described

in Chapter 3. Since this work assumes the functional units in the core are suffi-

cient, the performance model in this work does not consider the impact of limited

functional units. However, the impact of memory level parallelism (MLP) and co-

executing threads have to be carefully modeled for accurate performance prediction.

Specifically, for a given application, the number of non-overlapped L2 load misses

is affected by two factors: the L2 cache size, which determines the total number

of L2 load misses, and the ROB size, which controls the amount of exposed MLP.

Therefore, when both ROB size and L2 cache size can be reconfigured, their com-

pounded effect has to be modeled in order to estimate the number of non-overlapped

L2 load misses. While Chapter 3 describes an off-line technique to estimate the

non-overlapped L2 load misses under such scenario, this chapter presents a slightly

different technique which is based on the same idea but more suitable for on-line

implementation.

This technique uses the load histogram to hold the statistics of the number of

loads occurred within a certain ROB size. Specifically, each time when the number of

99

Pseudocode 6 Non-overlapped L2 Load Miss Estimation

#def Nl //maximum number of loads in the ROB size i
#def Nnovp //number of non-overlapped L2 load misses
#def MLPi //average load MLP rate in ROB size i
#def ld miss rate //L2 load miss rate
#def ld histi[Nl] //load histogram for ROB size i

for (j=0; j < Nl; j++)
if (j ∗ ld miss rate < 1)

temp = ld histi[j] ∗ j ∗ ld miss rate;
else

if (j ∗ ld miss rate/MLPi < 1)
temp = ld histi[j];

else
temp = ld histi[j] ∗ j ∗ ld miss rate/MLPi;

end if
end if
temp novp = temp novp + temp;

end for
Nnovp = ceiling(temp novp);

retired instructions equals the given ROB size, the number of loads observed in those

retired instructions is used as an index to the load histogram, and corresponding

entry in the load histogram is incremented by one. With the load histogram, one

is able to model the ”window” effect the ROB has on the non-overlapped L2 load

misses by estimating the outstanding misses only with the loads occurred in the

ROB. The details of the technique is illustrated in Pseduocode 6. By using a set of

load histograms with each dedicated to a certain ROB size, the ”window” effect of

different ROB sizes has been taken care of for the estimation of the non-overlapped

L2 load misses. On the other hand, the L2 load miss rates for different L2 cache

sizes can be estimated with the stack distance model, which is explained in Chapter

100

3, section 3.2.3.

Figure 8.3 shows the accuracy of the estimation technique for program libquan-

tum under different ROB and L2 cache sizes. There is a close match between the

measured and the estimated non-overlapped L2 load misses when both ROB size and

L2 cache size vary. This dissertation also validates this technique using other SPEC

CPU2006 programs, and it is observed that the average error rate of the estimation

is 12.2%. Most of the errors are caused by the artifact that a small number of L2

load misses leads to a large relative error even though the absolute difference between

the measured and the estimated is small. However, since a small number of L2 load

misses means a small impact on the overall CPI, the influence of the estimation error

passed down to the estimated CPI is also insignificant.

Figure 8.3: The comparison of estimated and measured non-overlapped L2 load misses for
SPECCPU2006 program libquantum. Data are collected at an interval of 2M instructions.

101

8.3 On-line Profiling Support

The proposed performance model requires a set of program characteristics

from which the key parameters for the model can be derived. These characteristics

include: a). the critical dependency chain, for deriving the average ILP; b). the de-

pendent load miss statistics, for estimating the MLP under different ROB sizes; c).

the stack distance statistics [31], for estimating the number of L2 load misses with

different L2 cache sizes. This section presents a set of non-invasive and cost-effective

online profilers to dynamically extract these characteristics during the application’s

execution. Note that the stack distance profiler used to get the stack distance statis-

tics is same as the one described in previous chapter, hence will not be discussed

again in this chapter.

8.3.1 Critical Dependency Chain Profiler

As shown in Figure 8.4, the critical dependency chain profiler is similar with

the one proposed in the previous chapter. However, in order to obtain the de-

pendency chain length for different ROB sizes, a set of critical dependency chain

histograms are required, with one histogram dedicated to one specific ROB size. All

histograms share one instruction counter to count the number of issued instructions.

When the number equals one of the interested ROB sizes, the corresponding his-

togram is updated, and the counter continues counting until it equals the largest

ROB size. Then, the counter is reset and starts counting from zero again. In this

way, the token fields designed to profile for the largest ROB size can be reused by

multiple histograms for different ROB sizes.

102

Figure 8.4: The structure of the online profilers.

8.3.2 MLP Profiler

The MLP profiler is to capture the L2 load miss parallelism for different

ROB sizes. As shown Figure 8.4(b), this profiler contains a L2 Load Miss Event Table

(LMET), which has a Dependent Load Miss Counter (DLMC) and a Output Register

Bit Vector (ORBV) in each table entry, similar with the one proposed by Eyerman

and Eeckhout [32]. Each time a load that missed L2 cache is retired, a new entry in

the table is created and the corresponding DLMC is updated with the number of L2

load misses that this load is dependent on in the current window. Meanwhile, the

ORBV is initialized by setting ’1’ to the bit indexed by the output register ID of this

load, and setting ’0’ to the remaining bits. Each retired instruction thereafter needs

to check its dependency on this long-latency load by looking up the ORBV bit at

the position corresponding to the input register ID of the retired instruction. A ’1’

in this bit position indicates this instruction depends on the previous long-latency

103

load, and hence the bit indexed by the output register ID of the retired instruction is

also set to ’1’; whereas a ’0’ means this instruction is independent with the previous

long-latency loads, and no further actions is needed. This process continues until

the number of analyzed instructions reaches the largest ROB size of interest, in this

dissertation, 256, and then the table is reset.

Besides the table, the profiler also has a set of Dependent Load Miss Ac-

cumulators (DLMA) and Window Load Miss Accumulators (WLMA), one for each

possible ROB allocation. Each time when the analyzed instruction number equals

an interested ROB size R, the associated DLMA is accumulated with largest DLMC

in the table. Meanwhile, WLMA is also accumulated with the number of L2 load

misses occurred among the analyzed instructions. Therefore, at the end of each

epoch, the average load MLP rate of ROB size R can be obtained by dividing the

values between the corresponding WLMA and DLMA pair.

In addition, the profiler has a load histogram for each possible ROB size. The

histogram collects the number of loads occurred in each ROB window, and is used

to estimate the non-overlapped L2 load misses.

8.4 Resource Coordination Algorithm

With the online profilers and the performance predictor, the performance

of the application under different resource allocations can be estimated by simply

evaluating an equation, which fundamentally eliminates the need of trial runs and

can significantly improve the quality and efficiency of multiple resource management.

To efficiently manage multiple resources, this chapter presents a predictive

and coordinated resource management algorithm that leverages the performance

104

Pseudocode 7 Coordinated Predictive Hill-Climbing(CPHC)

#def Ntt //total number of threads
#def Nres //the number of resources independently partitioned
#def delta //resource partition granularity
#def Pth //convergence threshold
#def part[0 : Ntt][0 : Nres] //the resource partition array
#def max id(A, n) //get the index of the largest value in A[0:n]
#def max(A, n) //get the largest value in A[0:n]
#def perf eval(part)
//estimate the overall performance for resource array part
#def perf(part, i)
//estimate the performance of thread i for resource array part

old part perf = perf eval(part);
copy part[0 : Ntt][0 : [Nres] to temp part[0 : Ntt][0 : Nres];
while(TRUE)

for(i = 0; i < Nres; i++)
for(j = 0; j < Ntt; j++)

temp part[i][j] = part[i][j] + delta;
pos perf [j] = perf(temp part, j);
temp part[i][j] = part[i][j]− delta;
neg perf [j] = perf(temp part, j);

end for
pos tid[i] = max id(pos perf, Ntt);
neg tid[i] = max id(neg perf, Ntt);
if(max(pos perf, Ntt) > max(neg perf, Ntt))

part[pos tid[i]][i] = part[pos tid[i]][i] + delta;
part[neg tid[i]][i] = part[neg tid[i]][i]− delta;

end if
end for
new part perf = perf eval(part);
if (abs(new part perf − old part perf) < Pth) break;
else old part perf = new part perf ;

end while

predictor to identify the optimum resource distribution for the workload. As shown in

Pseudocode 7, the proposed algorithm uses hill-climbing to search for the appropriate

105

resource distribution. Specifically, it first uses the performance model to evaluate the

performance of each thread as one of the resources is incremented or decremented by

a certain amount delta. It then moves delta amount of the resource from the thread

that has the lowest performance degradation to the thread that benefits most from

the additional resource, provided that the overall performance gain is positive. This

process iterates through different resources, and repeats itself until the estimated

performance reaches the given target or no noticeable performance gain is attainable.

In this way, this algorithm explores the resource allocation in the positive-gradient

direction, and hence achieves fast convergence.

In this algorithm, power as a resource is indirectly managed by controlling the

operating frequency of each core in a CMP. Specifically, for a quad-core CMP, the

total power consumption can be written as a1v
2
1f1+a2v

2
2f2+a3v

2
3f3+a4v

2
4f4, where vi

and fi(i = 1..4) are the voltage and frequency of core i respectively, and ai(i = 1..4)

is the product of the activity factor and the effective capacitance for core i. In a

fully-loaded CMP system, the power is usually consumed as close to the given power

budget as possible to maximize performance, and a1, .., a4 are generally very close

to each other. Therefore, the problem of power management can be transformed to

the problem of allocating frequencies such that v2
1f1 + v2

2f2 + v2
3f3 + v2

4f4 remains

constant. Note that the frequency and voltage are dependent under DVFS, and for

a given frequency, the corresponding voltage can be found by looking up a table.

Therefore, by controlling the frequencies, the power can be allocated the same way

as other resources.

Besides this proposed algorithm, this dissertation also evaluate a set of other

resource allocation algorithms for comparison, which include:

106

Equal Partition: This algorithm distributes all shared resources equally among the

threads. Specifically, the inter-core resources are equally partitioned for all active

threads in the CMP, and the intra-core resources are equally partitioned for the

simultaneously executed threads in the core. This algorithm is used as the baseline

management scheme in this dissertation.

Coordinated Reactive Hill-Climbing (CRHC): Like the proposed predictive

scheme, this algorithm also attempts to manage both intra-core and inter-core re-

sources, but without a performance prediction model. Therefore, it has to rely on

trial runs to explore the gradient direction for resource allocation. Specifically,the

algorithm randomly selects two threads (for inter-core resource) or a pair of co-

executing threads (for intra-core resource), tentatively moves delta amount of re-

source from one thread to the other, and runs the workload for one epoch. It then

moves the resource in opposite direction for the two threads, and runs the workload

for another epoch. The resource allocation that gives the higher performance during

these two trial runs is enforced in the next epoch. The process keeps on repeating

itself for different resources and different threads.

Intra-core Reactive Hill-Climbing (Intra-RHC): This algorithm is similar with

the one proposed by Choi, et al. [21]. The resource adaptation only happens on the

intra-core level, and the inter-core resources are equally partition for all threads.

Inter-core Reactive Hill-Climbing (Inter-RHC): This algorithm is similar with

CRHC except that the resource adaptation only happens on the inter-core level, and

the intra-core resources are equally partition for the co-executing threads in the core.

Oracle: This algorithm assumes the application’s performance under different re-

source allocation in the next epoch is known a priori. It uses these future performance

107

data to enforce the resource allocation that gives highest performance in the next

epoch. While it is unrealistic in practice, it sets an upper bound of the potential

performance improvement.

8.5 Implementation Cost Analysis

Both the on-line profilers and the resource allocator are implemented in hard-

ware, and they are the major sources of the implementation cost in the proposed

framework. The cost of the profilers depends on the ROB size, the L2 cache size, the

number of SMT threads, as well as the partition granularity. Assuming a 256-entry

ROB with 32-entry partition granularity, 160 issue queue size, 32-bit physical ad-

dress space, 16MB 32-way shared L2 cache, and 2-way SMT, the total hardware cost

amounts to approximately 22KB, as shown in Table 8.1. The hardware cost may be

further reduced by using a smaller number of histogram counters based on the ob-

servation that the critical dependency chain length is far smaller than the ROB size.

However, even without such optimization, the hardware overhead incurred by the

online profilers only amounts to 0.14% of the 16MB L2 cache size. Note that these

profilers are not in the critical path, and does not affect the application’s execution.

On the other hand, the cost of the resource allocator is mainly caused by

converting the profiled histograms to the parameters for the performance model and

searching for the appropriate resource allocation with the performance model. For

example, to obtain the average critical dependency chain length from the dependency

chain histogram, approximately 300 multiply-add operations are required. To further

quantify the hardware cost, the resource allocator is also implemented in Verilog

HDL, and synthesized into a netlist. The design employs pipelining so that arithmetic

108

Table 8.1: Hardware Cost of the Online Profilers
Profiler Components Costs
Critical token fields 8*256 bits
Dependency multiplexors, comparator (8*2+8)*160bits
Chain Profiler histogram counters 16*256*8*2bits

MLP Profiler

LMET (4+32)*16*2bits
DLMA 16*8*2 bits
WLMA 16*8*2 bits
comparators 8*8*2 bits
load histogram 16*256*8*2 bits
valid bits per ATD entry 1 bits
addr. bits per ATD entry 12 bits

Stack Distance total ATD cost (32 (3+1+12)*
Profiler sampled sets, 2 threads) 32*32*2 bits

Hit Counters 16*32*2 bits
Total Cost of Profilers per core 21568 Bytes

units can be reused. Overall, it has two adders, two multipliers and one divider,

all in 32-bit fixed-point. The total area of the resource allocator is estimated to

be 0.632 mm2 under 65nm technology. Each performance estimation requires 20

cycles to complete, and the search process takes less than 30000 cycles before it

converges (convergence is enforced if the iterations is larger than 20). Since the

resource allocation is made only once every epoch, the latency can be completely

hidden by starting resource exploration procedure several thousands of instructions

before the end of the epoch.

8.6 Evaluation

This section presents the evaluation of the proposed resource management

framework. It consists of the evaluation of the model accuracy, the performance of

the proposed resource management scheme, and the effectiveness of QoS enforcement.

109

The simulation platform, workloads, and metrics used in this evaluation are described

in Chapter 4.

8.6.1 Model Accuracy

The accuracy of the performance model could largely impact the effectiveness

of the proposed resource management framework. To evaluate the model accuracy,

every SPEC CPU2006 program is run on a simulated processor for an interval of 2

million instructions, and use the performance model to estimate the program’s CPI

on target processors with different resource configurations. Meanwhile, the program

is also simulated on those target processors for the same interval and the observed

CPI is compared with the estimated one. As shown in Figure 8.5(a)-(c), the relative

error between the estimated CPI and the observed one follows normal distribution.

The average errors (using absolute values) are 8.7% for different ROB sizes, 5.3% for

different L2 cache sizes, and 6.7% for different frequencies, indicating the performance

model keeps a good track of the observed performance when only one resource varies

its configuration. Figure 8.5(d) further shows the relative estimation error for 500

random configurations when all three resources vary simultaneously. The average

CPI estimation error in this scenario is 8.1%, and the largest one is 26.7%. It is also

observed that the relative error follows normal distribution.

8.6.2 Epoch Size Sensitivity

The epoch size determines the frequency of resource adaptation during the

execution of the workload, and can indirectly influence the overall performance of

our resource management framework. Figure 8.6 shows the performance trend of

three workloads as the epoch size increases from 500 kilo to 5 million instructions.

110

−40% −20% 0 20% 40%
0

2%

4%

6%

8%

10%

12%

Relative Error

P
er

ce
nt

ag
e

of
 S

am
pl

es

Model Accuracy:: ROB Size

(a)

−20% −10% 0 10% 20% 30%
0

3%

6%

9%

12%

15%

18%
Model Accuracy:: L2 Cache Size

Relative Error
P

er
ce

nt
ag

e
of

 S
am

pl
es

(b)

−20% −10% 0 10% 20% 30%
0

3.0%

6.0%

9.0%

12.0%

15.0%

Relative Error

P
er

ce
nt

ag
e

of
 S

am
pl

es

Model Accuracy:: Frequency

(c)

−40% −20% 0 20% 40%
0

1.25%

2.5%

3.75%

5.0%

6.25%

7.5%

8.75%

10.0%

11.25%

Relative Error

Model Accuracy:: Combined

P
er

ce
nt

ag
e

of
 S

am
pl

es

(d)

Figure 8.5: Performance Model Accuracy. (a)The ROB size varies from 32 to 256. (b)The
L2 cache size varies from 512KB to 4MB at the step of 512KB. (c) Frequency varies from
2GHz to 4GHz at the step of 0.1GHz. (d) 500 random configurations when all three
resources vary simultaneously.

It is observed that as the epoch size increases, the weighted speedup first increases,

then reaches a plateau, and then gradually decreases. This is because with a rela-

tively small epoch size, the on-line profilers may not be fully warmed up to capture

111

the corresponding program characteristics, which could affect the accuracy of the

performance predictor, and in turn pulls down the performance of the resource man-

agement. This is particularly true for the stack distance profiler since this profiler

employs set sampling technique, which provides a good accuracy only when it has

be exercised with sufficient amount of L2 accesses. On the other hand, a large epoch

size would miss the opportunity for adapting resource distribution to some finer grain

program phases, which also degrades the end performance. In this work, 2 million

instruction is considered to be a reasonable epoch size that balances the accuracy of

the performance predictor and the responsiveness of the resource allocation.

Figure 8.6: Performance impact of epoch size. The workloads ltsohlaz,sxmlmczl,pcshpwdt
are described in Section 4.2.4.

Note that such choice of epoch size is based on the assumption that different

voltage and frequency pairs can be enforced instantaneously. In practice, this is not

true because it may take the voltage regulator hundreds of micro-seconds to stabilize

112

voltage. Under such circumstance, the epoch size need to incorporate this additional

time for voltage regulation.

8.6.3 Performance & Efficiency

Figure 8.7(a) shows the comparison of the weighted speedups between differ-

ent resource allocation policies. As expected, equal partition policy usually yields

lowest weighted speedup among all the policies investigated in this dissertation.

Inter-RHC and Intra-RHC improves the performance over equal partition policy as

it dynamically adapts allocations for either inter-core or intra-core resources. CRHC

further improves the weighted speedup, as it attempts to adjust the resource allo-

cation on both inter-core and intra-core level. However, for some workloads, these

reactive allocation policies may leads to inferior performance compared with equal

partition. This is because they rely on the trial runs to explore the appropriate

resource allocation, which means workloads may spend some trial runs in an inap-

propriate resource allocation. That also explains why these dynamic policies only

have a small improvement over the equal partition policy. Our proposed predictive

hill-climbing scheme avoids trial runs, and achieves an average of 11.6% over the

baseline scheme and 9.3% over the CRHC scheme. In general, CPHC yields higher

speedup in MIX workloads because in such workloads, the resource requirements of

the programs are more diversified, resulting in higher potential for resource man-

agement. Compared with the Oracle scheme, the CPHC has approximately 3% less

speedup. This is contributed by: (a) the imperfection of the performance model;(b)

the lack of future knowledge; (c) hill-climbing being trapped in local optima.

Figure 8.7(b) further shows the efficiency improvements for different resource

allocation policies. It is observed that CPHC has an average efficiency improvement

113

(a) Improvement in Weighted Speedup

(b) Efficiency Improvement

Figure 8.7: Performance and efficiency comparison for different resource management
policies. GMEAN refers to Geometric Mean.

of 57.4% over the baseline, and 36.5% over CRHC.

114

8.6.4 QoS Enforcement

The QoS target is defined as the target IPC relative to the alone-execution

IPC, expressed in the form of percentages [7][56]. The proposed resource manage-

ment framework can convert this QoS target into resource usage requirements [7],

thereby enforce QoS for an application by regulating the amount of allocated re-

sources. The quality of such QoS enforcement is demonstrated in Figure 8.8, where

for each workload, only one program is enforced with the QoS targets and the re-

maining programs do not have QoS objectives. As one can see, the relative IPCs

of the programs keep a good track of the QoS targets. For some programs, such as

povray, gcc, and astar, the relative IPC at the 20% QoS target is significantly off

the target. This is because even with the minimum allocation on each resource, the

Figure 8.8: QoS targets enforcement.

115

relative performance of these programs are still much larger than 20%. Hence, such

QoS target is ill-suited for these programs. Overall, it is observed that the proposed

framework could enforce QoS within 6.1% for 80% target, 6.7% for 60% target, and

5.9% for 40% target. Hence, this framework is suitable for the enforcement of elastic

QoS objective [7].

8.7 Summary

This chapter demonstrates that for a Chip Multiprocessors (CMP) support-

ing per-core Simultaneous Multithreading (SMT), both intra-core and inter-core re-

sources need to be managed simultaneously in order to achieve high resource utiliza-

tion and deliver controllable performance. Therefore, this chapter presents a predic-

tive resource management framework that coordinates both inter-core and intra-core

resources for throughput and QoS. This framework uses a set of hardware-efficient

online profilers and an analytical performance model to predict the application’s

performance with different intra-core and/or inter-core resource allocations. Based

on the predicted performance, the resource allocator identifies and enforces near

optimum resource partitions for each epoch without any trial runs. The experi-

mental results show that the proposed framework improves weighted speedup by an

average of 11.6% compared with equal partition scheme, and 9.3% compared with

the learning-based resource manager. This experiment also shows this framework

enforces QoS targets within 6.7%. This predictive resource management frame-

work offers a promising way to coordinate both inter-core and intra-core resources

in CMPs.

116

Chapter 9

Conclusions and Future Research Directions

9.1 Conclusions

Power-efficient computing through core specialization has become increas-

ingly important for Chip-Multiprocessors to alleviate the power density constraints.

Single-ISA Heterogeneous Multi-core Processor (SHMP) emerges as an important

and attractive form of core specialization as it avoids painful ramification of mod-

ifying the compilers and applications, yet still provides the core-level heterogeneity

to meet the diverse requirements of the workloads. However, to unleash the full

potential of SHMP, the workload heterogeneity has to be efficiently and accurately

translated to the hardware heterogeneity, which is challenging and remains an open

problem.

This dissertation proposes and evaluates a comprehensive solution to this

problem by leveraging an analytical performance model as the basis to bridge the

gap between workload heterogeneity and hardware heterogeneity. The proposed

solution covers the off-line program resource demand analysis and off-line program-

core mapping, and the on-line heterogeneity-aware application scheduling and dy-

namic multiple resource management. In each of these aspects, the proposed solution

shows significant improvement over the state-of-the-art in terms of energy efficiency,

throughput, and scalability.

Chapter 5 presents an off-line framework to analyze the program resource

117

demand by using program inherent characteristics and an augmented analytical per-

formance model. This chapter proposes an off-line modeling technique for memory

level parallelism, which decouples the analytical performance model from partial

cache simulations, accelerating the speed and efficiency of the resource demand es-

timation. This proposed framework, as a stand alone technique, is useful in early

stage design space exploration and workload capacity planning. It also lays the

foundation for the techniques that rely on resource demands to further close the gap

between workload diversity and core-level heterogeneity. Chapter 6 demonstrates

such a framework that matches the estimated resource demands with the appropri-

ate cores in static SHMPs. The combination of these two techniques gives a complete

solution for off-line program scheduling in static SHMPs.

Chapter 7 shows the analytical performance model could also be applied on-

line to predict the performance of an application on different cores, and guide the

application scheduling in static SHMPs. With only a few kilobytes of hardware cost

for the on-line profilers, the proposed predictive scheduler completely eliminates the

trial runs needed by existing heterogeneity-aware scheduler, and improves the system

throughput by an average of 11.2% and efficiency by an average of 36.2% compared

with the state-of-the-art research scheduler.

Finally, this dissertation proposes to leverage the analytical performance

model for managing multiple interacting resources online in dynamic SHMPs. With

a set of hardware-efficient online profilers, the proposed management framework is

able to predict the application’s performance with different intra-core and/or inter-

core resource allocations, and thereby pro-actively enforce the resource allocations

to meet system performance objectives.

118

Overall, the proposed off-line and on-line techniques as a whole constitutes

a comprehensive, efficient, cost-effective solution to unleash the full potential of

efficient heterogeneous computing.

9.2 Future Research Directions

The proposed techniques for efficient heterogeneous computing in this disser-

tation can be further extended in the following directions:

9.2.1 Improving the Efficiency of On-line Profilers

While the hardware cost of the on-line profilers proposed in this dissertation

is much less hardware than that of the machine learning model based on Artificial

Neural Networks (ANN), it is not negligible and is expected to increase as the recon-

figurable resource becomes more fine-grain. Therefore, more cost-effective on-line

profiling mechanism is needed. The search of hardware saving techniques can be

steered in two directions. One of them is to reduce the size of histograms by taking

advantage of the locality of inherent program characteristics. For example, in most

cases, the instruction dependency chain length does not exceed half of the ROB size;

hence, the critical dependency chain histogram only need to have half of the ROB

entries without losing modeling accuracy. The other direction is to use empirical

knowledge to derive the some of the the statistics rather than use profilers to extract

them during the execution of the application. For example, the ROB size and the

amount of exposed ILP has been empirically demonstrated to follow the power law

relationship [12], which means n times the size of ROB can lead to approximately
√

n times the amount of exposed ILP. Therefore, it is possible to profile the critical

dependence chain length for one specific ROB size, and use the power law relation-

119

ship to derive the amount ILP for different ROB sizes. In this way, only one critical

dependence chain histogram is required for ILP profiling. However, the empirical

estimation could inevitably compromise the accuracy of the performance modeling,

which in turn may undermine the end performance of the resource management

scheme. Hence, one has to carefully balance the trade-offs between the hardware

cost and the model accuracy.

9.2.2 Expanding the Types of Heterogeneous Resources

The MLP modeling technique presented in the dissertation only captures the

demand L2 misses, and does not consider the impact of memory prefetchers. For a

CMP system with aggressive hardware prefetching, the default off-line stack distance

model is insufficient to accurately estimate the number of L2 load misses. Therefore,

the model needs to be augmented with the capability to recognize the prefetching

patterns and replay them off-line. The on-line implementation of the stack distance

model also needs to be modified so that the prefetching requests can also update the

LRU stack.

In addition, the analytical model used in this dissertation assumes that the

processor core, no matter how simple it is, is an out-of-order superscalar processor.

In practice, the single-ISA heterogeneous multicore may contain a mixture of in-order

cores and out-of-order cores. While the interval analysis theory still holds for in-order

cores, dramatic changes in the ILP modeling is required to estimate the performance

of in-order cores. Therefore, in the presence of both in-order and out-of-order cores,

two separate performance models are needed so that the performances on these two

execution styles can be predicted.

120

Bibliography

[1] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture optimization for

heterogeneous chip multiprocessors,” in Proceedings of the 15th International

Conference on Parallel Architectures and Compilation Techniques, pp. 23–32,

2006.

[2] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,

“Single-ISA heterogeneous multi-core architectures: The potential for proces-

sor power reduction,” in Proceedings of the 36th International Symposium on

Microarchitecture, pp. 81–92, 2003.

[3] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F. Huang,

S. Blagodurov, and V. Kumar, “HASS: a scheduler for heterogeneous multicore

systems,” SIGOPS Oper. Syst. Rev., vol. 43, no. 2, pp. 66–75, 2009.

[4] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,

D. Burger, and S. W. Keckler, “Composable lightweight processors,” in Proceed-

ings of 40th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 381–394, Dec. 2007.

[5] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez, “Core fusion: Accommo-

dating software diversity in chip multiprocessors,” in Proceedings of the 34th

International Symposium on Computer Architectures, pp. 186–197, June 2007.

[6] M. Becchi and P. Crowley, “Dynamic thread assignment on heterogeneous mul-

tiprocessor architectures,” in Proceedings of the 3rd Conference on Computing

Frontiers, pp. 29–40, 2006.

[7] F. Guo, Y. Solihin, L. Zhao, and R. Iyer, “A framework for providing quality

of service in chip multi-processors,” in Proceedings of the 40th International

Symposium on Microarchitecture, pp. 343–355, 2007.

[8] P. Joseph, K. Vaswani, and M. Thazhuthaveetil, “Construction and use of linear

regression models for processor performance analysis,” in Proceedings of the 12th

International Symposium on High-Performance Computer Architecture, pp. 99–

108, 2006.

121

[9] B. Lee and D. Brooks, “Illustrative design space studies with microarchitectural

regression models,” in Proceedings of the 13th International Symposium on High-

Performance Computer Architecture, pp. 340 –351, 2007.

[10] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz, “Efficiently

exploring architectural design spaces via predictive modeling,” in Proceedings

of the 12th Interational Conference on Architectural Support of Programming

Languages and Operating Systems, pp. 195–206, 2006.

[11] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous multi-

core processors,” in Proceedings of the 46th Design Automation Conference,

pp. 927–930, 2009.

[12] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,”

in Proceedings of the 31st International Symposium on Computer Architecture,

pp. 338–349, June 2004.

[13] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic per-

formance model for superscalar out-of-order processors,” ACM Trans. Comput.

Syst., vol. 27, no. 2, pp. 1–37, 2009.

[14] H. Hofstee, “Power efficient processor architecture and the CELL processor,” in

Proceedings of the 11th High Performance Computer Architecture, pp. 258–262,

Feb. 2005.

[15] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Pa-

rameter variations and impact on circuits and microarchitecture,” in Proceedings

of the 40th Design Automation Conference, pp. 338–342, 2003.

[16] “International technology roadmap for semiconductors,” in http://public.itrs.net,

2006.

[17] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger, “Exploiting mi-

croarchitectural redundancy for defect tolerance,” in Proceedings of the 21st

International Conference on Computer Design, pp. 481–488, 2003.

[18] J. Chen and L. K. John, “Energy aware program scheduling in a heterogeneous

multi-core system,” in Proceedings of 2008 IEEE International Symposium on

Workload Characterization, pp. 1–9, 2008.

122

[19] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance

counter architecture for computing accurate CPI components,” in Proceeddings

of the 11th Interational Conference on Architectural Support of Programming

Languages and Operating Systems, pp. 175–184, 2006.

[20] A. S. Dhodapkar and J. E. Smith, “Managing multi-configuration hardware via

dynamic working set analysis,” in Proceedings of the 29th Annual International

Symposium on Computer Architecture, pp. 233–244, 2002.

[21] S. Choi and D. Yeung, “Learning-based SMT processor resource distribution via

hill-climbing,” in Proceedings of the 33rd International Symposium on Computer

Architecture, pp. 239–251, 2006.

[22] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez, “Dynamically con-

trolled resource allocation in SMT processors,” in Proceedings of the 37th In-

ternational Symposium on Microarchitecture, pp. 171–182, 2004.

[23] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L.

Stamm, “Exploiting choice: instruction fetch and issue on an implementable

simultaneous multithreading processor,” in Proceedings of the 23rd International

Symposium on Computer Architecture, pp. 191–202, 1996.

[24] D. M. Tullsen and J. A. Brown, “Handling long-latency loads in a simultane-

ous multithreading processor,” in Proceedings of the 34th Annual ACM/IEEE

International Symposium on Microarchitecture, pp. 318–327, 2001.

[25] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,” in Proceed-

ings of the 39th International Symposium on Microarchitecture, pp. 423–432,

2006.

[26] D. Kaseridis, J. Stuecheli, J. Chen, and L. John, “A bandwidth-aware memory-

subsystem resource management using non-invasive resource profilers for large

cmp systems,” in Proceedings of the 16th International Symposium on High-

Performance Computer Architecture, pp. 1–11, 2010.

[27] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of multiple

interacting resources in chip multiprocessors: A machine learning approach,” in

Proceedings of the 41st International Symposium on Microarchitecture, pp. 318–

329, 2008.

123

[28] T. S. Karkhanis and J. E. Smith, “Automated design of application specific su-

perscalar processors: an analytical approach,” in Proceedings of the 34th Annual

International Symposium on Computer Architecture, pp. 402–411, 2007.

[29] B. C. Lee and D. Brooks, “Efficiency trends and limits from comprehensive mi-

croarchitectural adaptivity,” in Proceedings of the 13th Interational Conference

on Architectural Support of Programming Languages and Operating Systems,

pp. 36–47, 2008.

[30] P. Bose and T. M. Conte, “Performance analysis and its impact on design,”

Computer, vol. 31, pp. 41–49, May 1998.

[31] R. L. Mattson, D. R. Slutz, and I. L. Traiger, “Evaluation techniques for storage

hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–117, 1970.

[32] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT processors,”

in Proceeding of the 14th Interational Conference on Architectural Support of

Programming Languages and Operating Systems, pp. 133–144, 2009.

[33] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for com-

puter system modeling,” Computer, vol. 35, pp. 59–67, Feb. 2002.

[34] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1,” HP

Technical Reports, 2008.

[35] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-

level power analysis and optimizations,” in Proceedings of the 27th International

Symposium on Computer Architecture, pp. 83–94, 2000.

[36] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-

berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation

platform,” IEEE Computer, vol. 35, pp. 50–58, 2 2002.

[37] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s general

execution-driven multiprocessor simulator (GEMS) toolset,” SIGARCH Com-

put. Archit. News, vol. 33, no. 4, pp. 92–99, 2005.

[38] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: a power-performance

simulator for interconnection networks,” in Proceedings of the 35th International

Symposium on Microarchitecture, pp. 294–305, 2002.

124

[39] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory ac-

cess scheduling,” Proceedings of the 27th International Symposium on Computer

Architecture, pp. 128–138, 2000.

[40] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems,” in Proceedings of the

35th International Symposium on Computer Architecture, pp. 63–74, 2008.

[41] “Spec cpu2006 benchmark suit,” in http://www.spec.org.

[42] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and

more flexible program analysis,” in Journal of Instruction Level Parallelism,

vol. 7, pp. 1–28, 2005.

[43] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and appli-

cation balance in the SPEC CPU2006 benchmark suite,” in Proceedings of the

34th International Symposium on Computer Architecture, pp. 338–349, 2007.

[44] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger, “Mul-

titasking workload scheduling on flexible core chip multiprocessors,” in Proceed-

ings of the 17th International Conference on Parallel Architectures and Compi-

lation Techniques, pp. 187–196, Oct. 2008.

[45] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous mul-

tithreaded processor,” in Proceedings of the 9th Interational Conference on Ar-

chitectural Support of Programming Languages and Operating Systems, pp. 234–

244, 2000.

[46] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-

sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook, “Power-aware

microarchitecture: Design and modeling challenges for next-generation micro-

processors,” IEEE Micro, vol. 20, no. 6, pp. 26–44, 2000.

[47] K. J. Nesbit, J. Laudon, and J. E. Smith, “Virtual private caches,” in Proceed-

ings of the 34th International Symposium on Computer Architecture, pp. 57–68,

2007.

[48] B. Fields, S. Rubin, and R. Bodık, “Focusing processor policies via critical-path

prediction,” in Proceedings of the 28th International Symposium on Computer

Architecture, pp. 74–85, 2001.

125

[49] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use

two levels of branch history,” in Proceedings of the 20th Annual International

Symposium on Computer Architecture, pp. 257–266, 1993.

[50] M. Haungs, P. Sallee, and M. Farrens, “Branch transition rate: a new metric for

improved branch classification analysis,” in Proceedings of the 6th International

Symposium on High-Performance Computer Architecture, pp. 241 –250, 2000.

[51] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring program simi-

larity: Experiments with SPEC CPU benchmark suites,” in IEEE International

Symposium on Performance Analysis of Systems and Software, pp. 10–20, 2005.

[52] M. D. Brown, J. Stark, and Y. N. Patt, “Select-free instruction scheduling

logic,” in Proceedings of the 34th International Symposium on Microarchitecture,

pp. 204–213, 2001.

[53] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for MLP-aware

cache replacement,” in Proceedings of the 33rd Annual International Symposium

on Computer Architecture, pp. 167–178, 2006.

[54] Intelr 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:

System Programming Guide.

[55] P. B. Daniel and M. Cesati, Understanding the Linux Kernel, Third Edition,

ch. 7. O’Reilly Media, 2005.

[56] F. J. Cazorla, P. M. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramirez,

and M. Valero, “Predictable performance in SMT processors,” in Proceedings of

the 1st Conference on Computing Frontiers, pp. 433–443, 2004.

[57] M. Gerndt, Automatic Parallelization for Distributed-Memory Multiprocessing

Systems. PhD thesis, University of Bonn, Bonn, Germany, Dec. 1989.

[58] D. E. Knuth, The TEXbook. Reading, Mass.: Addison-Wesley, 1984.

[59] F. A. Bower, D. J. Sorin, and L. P. Cox, “The impact of dynamically het-

erogeneous multicore processors on thread scheduling,” IEEE Micro, vol. 28,

pp. 17–25, May 2008.

[60] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous chip

multiprocessors,” IEEE Computer, vol. 38, pp. 32–38, Nov. 2005.

126

[61] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Quantifying the im-

pact of input data sets on program behavior and its applications,” Journal of

Instruction Level Parallelism, vol. 5, pp. 1–33, Nov. 2003.

[62] M. Maheswaran and H. J. Siegel, “A dynamic matching and scheduling algo-

rithm for heterogeneous computing systems,” in Proceedings of the Heteroge-

neous Computing Workshop, pp. 57–69, June 1998.

[63] C. S. Ballapuram, A. Sharif, and H.-H. S. Lee, “Exploiting access semantics and

program behavior to reduce snoop power in chip multiprocessors,” in Proceedings

of the 31th Interational Conference on Architectural Support of Programming

Languages and Operating Systems, pp. 60–69, Mar. 2008.

[64] J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware scheduling

under timing constraints for mission-critical embedded systems,” in Proceedings

of the 38th Conference on Design Automation, pp. 29–40, 2001.

[65] D. Burger and T. M. Austin, “The simplescalar tool set version 3.02,” in

http://www.simplescalar.com.

[66] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling and

power management for chip multiprocessors,” in Proceedings of the 35th Inter-

national Symposium on Computer Architecture, pp. 363–374, 2008.

[67] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural core

salvaging in a multi-core processor for hard-error tolerance,” in Proceedings of

the 36th International Symposium on Computer Architecture, pp. 93–104, 2009.

[68] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,

“Single-ISA heterogeneous multi-core architectures for multithreaded workload

performance,” Proceedings of 31st Annual International Symposium on Com-

puter Architecture, pp. 64 – 75, 2004.

[69] D. Williams, A. Sanyal, D. Upton, J. Mars, S. Ghosh, and K. Hazelwood, “A

cross-layer approach to heterogeneity and reliability,” in Proceedings of the 7th

International Conference on Formal Methods and Models for Codesign, pp. 88–

97, 2009.

[70] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained power

management for multi-core systems,” in Proceedings of 36th Annual Interna-

tional Symposium on Computer Architecture, pp. 302–313, 2009.

127

[71] G. Yan, X. Liang, Y. Han, and X. Li, “Leveraging the core-level complementary

effects of PVT variations to reduce timing emergencies in multi-core processors,”

in Proceedings of the 37th International Symposium on Computer architecture,

pp. 485–496, 2010.

[72] K. A. Bowman, A. R. Alameldeen, S. T. Srinivasan, and C. B. Wilkerson,

“Impact of die-to-die and within-die parameter variations on the clock frequency

and throughput of multi-core processors,” IEEE Trans. Very Large Scale Integr.

Syst., vol. 17, no. 12, pp. 1679–1690, 2009.

[73] S. Borkar, “Designing reliable systems from unreliable components: The chal-

lenges of transistor variability and degradation,” IEEE Micro, vol. 25, no. 6,

pp. 10–16, 2005.

[74] E. O. Brigham, The Fast Fourier Transform, ch. 13. Prentice-Hall, 1974.

[75] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “Exploiting structural

duplication for lifetime reliability enhancement,” SIGARCH Comput. Archit.

News, vol. 33, no. 2, pp. 520–531, 2005.

[76] H. Wang, M. Miranda, W. Dehaene, F. Catthoor, and K. Maex, “Systematic

analysis of energy and delay impact of very deep submicron process variabil-

ity effects in embedded SRAM modules,” in Proceedings of the Conference on

Design, Automation and Test in Europe, pp. 914–919, 2005.

[77] S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heterogeneous processors in

server systems,” in Proceedings of the 2nd Conference on Computing Frontiers,

pp. 199–210, 2005.

[78] D. A. Jimenez, “Piecewise linear branch prediction,” in Proceedings of the 32nd

annual International Symposium on Computer Architecture, pp. 382–393, 2005.

[79] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark, “Improving branch pre-

diction by dynamic dataflow-based identification of correlated branches from a

large global history,” in Proceedings of the 30th Annual International Sympo-

sium on Computer Architecture, pp. 314–323, 2003.

[80] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,” in

Proceedings of the 24th Annual International Symposium on Microarchitecture,

pp. 51–61, 1991.

128

[81] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “Branch classification: a new

mechanism for improving branch predictor performance,” in Proceedings of the

27th Annual International Symposium on Microarchitecture, pp. 22–31, 1994.

[82] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt, “An analysis of correlation

and predictability: what makes two-level branch predictors work,” in Proceed-

ings of the 25th Annual International Symposium on Computer Architecture,

pp. 52–61, 1998.

[83] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: building customized program analysis tools

with dynamic instrumentation,” in Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 190–

200, 2005.

 [84] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi, “Pin-

pointing representative portions of large Intel Itanium programs with dynamic

instrumentation,” in Proceedings of the 37th annual IEEE/ACM International

Symposium on Microarchitecture, pp. 81–92, 2004.

[85] L. Porter and D. M. Tullsen, “Creating artificial global history to improve

branch prediction accuracy,” in Proceedings of the 23rd International Conference

on Supercomputing, pp. 266–275, 2009.

[86] S. Mantripragada and A. Nicolau, “Using profiling to reduce branch mispre-

diction costs on a dynamically scheduled processor,” in Proceedings of the 14th

International Conference on Supercomputing, pp. 206–214, 2000.

[87] R. H. Bell, Jr. and L. K. John, “Improved automatic testcase synthesis for

performance model validation,” in Proceedings of the 19th Annual International

Conference on Supercomputing, pp. 111–120, 2005.

[88] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai, “The impact of if-conversion and

branch prediction on program execution on the intel® itanium processor,” in

Proceedings of the 34th Annual ACM/IEEE International Symposium on Mi-

croarchitecture, pp. 182–191, 2001.

[89] H. Kim, M. A. Suleman, O. Mutlu, and Y. N. Patt, “2D-profiling: Detect-

ing input-dependent branches with a single input data set,” Proceedings of

IEEE/ACM International Symposium on Code Generation and Optimization,

vol. 0, pp. 159–172, 2006.

129

[90] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt, “Wish branches: Combining condi-

tional branching and predication for adaptive predicated execution,” IEEE/ACM

International Symposium on Microarchitecture, vol. 0, pp. 43–54, 2005.

[91] S. P. Kim and G. S. Tyson, “Analyzing the working set characteristics of branch

execution,” in Proceedings of the 31st ACM/IEEE international symposium on

Microarchitecture, pp. 49–58, 1998.

[92] A. Joshi, L. Eeckhout, L. John, and C. Isen, “Automated microprocessor stress-

mark generation,” in Proceedings of the 14th International Symposium on High-

Performance Computer Architecture, pp. 229 –239, 2008.

[93] Y. Sazeides, A. Moustakas, K. Constantinides, and M. Kleanthous, “The sig-

nificance of affectors and affectees correlations for branch prediction,” in Pro-

ceedings of the 3rd International Conference on High Performance Embedded

Architectures and Compilers, HiPEAC’08, pp. 243–257, 2008.

[94] M. U. Farooq, L. John, and J. M. F., “Compiler controlled speculation for

power aware ILP extraction in dataflow architectures,” in Proceedings of the

4th International Conference on High Performance Embedded Architectures and

Compilers, HiPEAC ’09, pp. 324–338, 2009.

[95] B. Simon, B. Calder, and J. Ferrante, “Incorporating predicate information

into branch predictors,” in Proceedings of the 9th International Symposium on

High-Performance Computer Architecture, pp. 53–64, 2003.

[96] D. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons,” in Pro-

ceedings of the Seventh International Symposium on High-Performance Com-

puter Architecture, pp. 197–206, 2001.

[97] J. Casazza, “White paper first tick, now tock: Intel microarchitecture (Ne-

halem),” 2009.

[98] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, “An anal-

ysis of efficient multi-core global power management policies: Maximizing per-

formance for a given power budget,” in Proceedings of the 39th International

Symposium on Microarchitecture, pp. 347–358, 2006.

130

