MAximum Multicore POwer (MAMPO) - An Automatic
Multithreaded Synthetic Power Virus Generation
Framework for Multicore Systems

Karthik Ganesan and Lizy K John
ECE Department, University of Texas at Austin, TX, USA

karthik @mail.utexas.edu and ljohn @ece.utexas.edu

ABSTRACT

The practically attainable worst case power consumption for a com-
puter system is a significant design parameter and it is a very te-
dious process to determine it by manually writing high power con-
suming code snippets called power viruses. Previous research ef-
forts towards automating the power virus generation process are
all limited to the single core processors and are not effective when
applied to multicore parallel systems as the components like the
interconnection network, shared caches, DRAM and coherence di-
rectory also contribute significantly to the power consumption of
a multicore parallel system. In this paper we propose MAximum
Multicore POwer (MAMPO), which is the pioneer attempt towards
a framework to automatically generate a multithreaded power virus
for a given multicore parallel system configuration. We show that
the the power viruses generated by MAMPO consume 40% to 89%

more power than running multiple copies of single-core power viruses

like MPrime torture test and the most recent published previous
work called SYMPO on 3 different parallel multicore system con-
figurations. The superiority of the MAMPO viruses are also shown
by comparing the power consumption of the MAMPO viruses with
that of the workloads in the PARSEC benchmark suite and that of
the commercial Java benchmark SPECjbb. The MAMPO viruses
consume 45% to 98% more power than that of the average power
consumption of the workloads in the PARSEC suite and 41% to
56% more power than that of the commercial benchmark SPECjbb.

1. INTRODUCTION

Due to power delivery, thermal and cooling issues along with a
world-wide initiative towards green computing, power consump-
tion is a first class design parameter in high end server systems and
it has always been a significant constraint in low end embedded sys-
tem design. More specifically, the maximum power consumption
for which computer systems are designed, called the Thermal De-
sign Power (TDP) is one of the most important of the different de-
sign parameters and is something that is very carefully determined
by the computer architects. The cooling systems of these modern
processors/memories are designed in such a way, that these systems
are deemed to safely operate only within this power cap and are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC11, November 12-18, 2011, Seattle, Washington, USA

Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

equipped with the capability to automatically throttle down the op-
erating frequency when the system is driven to reach this maximum
power. This maximum power consumption for which a system is
designed cannot just be fixed as the sum of the power consump-
tion of the various components in the system, but rather it has to
be the maximum attainable power consumption that a user work-
load could practically achieve in the system under design. This is
due to the fact that this maximum attainable power consumption is
quite low compared to the sum of the power consumption of var-
ious micro-architectural components as it is almost impossible to
keep all these components of a system simultaneously active by
any workload. The process of determining the maximum power
for a design is very complicated due to it’s dependence on multiple
factors like the workload that could be executed, the configuration
of the system, the power saving features implemented in hardware
and the way some of these features are exercised by the operating
system.

If the maximum power of a design is fixed too high, a designer
will end up wasting a lot of resources by over-provisioning the heat
sinks, cooling system, power delivery system and various other sys-
tem level power management utilities. A related example will be
the design of external power supplies to server systems. Due to
incognizance of the precise maximum attainable power of a sys-
tem, a power supply could be designed to handle a high load and
when the typical usage scenario is far below that load, the effi-
ciency of the power supply is known to drop many folds [1]. It is
to be noted that over provisioning of these power related utilities
could result in substantial increase in maintenance costs of servers
as it is estimated that for every watt of power used by the comput-
ing infrastructure in a data center, another 0.33 to 0.5 watt of power
is required by the cooling system [2] [3] due to the ongoing rack-
level compaction [4]. On the other hand, if this maximum power
consumption is underestimated, it results in affecting the overall
system reliability and availability due to overheating. When the
ambient temperature increases beyond the safe operating limits, it
could result in early failure of the micro-architectural components
resulting in sporadic system freezes and crashes.

In an effort towards fixing the maximum power consumption of
systems at the most optimal point, architects are used to hand-
crafting possible code snippets called power viruses [5] [6]. But,
this process of trying to manually write such maximum power con-
suming code snippets is very tedious [7]. This tedium is due to the
fact that there are so many components that interact when a work-
load executes on a processor/system making it intractable to model
all these complex interactions and requires a profound knowledge
about these interactions to be able to write a code snippet that
will exactly exercise a given execution behavior. Adding to this
complexity are the various power saving features implemented in

OCPU_power

B12_power
B ICN_power

HDir_power

(a)

ODRAM_power

OCPU_power
ODRAM_power
BL2_power

B ICN_power

M Dir_power

(b)

Figure 1: Breakdown of power consumption of the PARSEC benchmark fluidanimate in (a) System with eight 4-wide out-of-order
cores, 4MB L2, 8GB DRAM and (b) System with sixteen 2-wide out-of-order cores, S8MB L2, 16GB DRAM

the hardware like clock gating, demand based switching, enhanced
speed step technology and the various power states of the CPUs ex-
ercised by the operating system. Lastly, one cannot be sure that the
manually written power virus is the practically possible maximum
case to be able to safely design the processor for this particular
maximum power. As a result of this, designers tend to end up in
the aforementioned wasteful over-provisioning.

Cognizant of the significance of this problem, there has been
some recent efforts by Ganesan et. al [8] and Joshi et. al [9] to-
wards automating the generation of power viruses using machine
learning. But both of the previous work are limited to the power
consumption of single-cores and do not address the complexities
involved in generating a power virus for a modern multicore paral-
lel system. It is to be noted that there are many components like the
interconnection network, shared caches, memory subsystem and
cache coherence directory other than the CPU that significantly
contribute to the overall power consumption of a multicore par-
allel system. Figures 1(a) and 1(b) show the breakdown of power
consumption of a randomly chosen PARSEC [10] benchmark flu-
idanimate on two typical modern multicore systems with eight and
sixteen cores respectively. The eight core system has eight 4-wide
out-of-order cores with 4MB L2 and 8GB DRAM and the sixteen
core system has sixteen 2-wide out-of-order cores with SMB L2
and 16GB DRAM. One can see that the total power consumption
of all the cores sum up to only 41% and 21% of the whole system
power for the oct-core and sixteen-core systems. It is found that
running multiple copies of these single-core power viruses (as in
previous work [8] or MPrime [11]) on multiple CPUs of a multi-
core parallel processor is not even close to the power consumption
of a power virus generated specifically for a given multicore paral-
lel system. This is due to fact that such a single-core power virus
like MPrime is very compute-bound lacking in data movement re-
sulting in a reduced activity in the shared caches and the intercon-
nection network. Due to upcoming memory hungry technologies
like virtualization, the continuously more memory-seeking nature
of today’s search and similar Internet based applications along with
a shift in paradigm from multicore to many-core, we see that only
the power levels of processors being controlled and capped, while
we do not see any signs of slow down in the increase in power con-
sumption of memory and interconnects making it more important
to be aware of their worst-case power characteristics.

In this paper we propose MAximum Multicore POwer (MAMPO),
which consists of a multithreaded synthetic workload generator
driven by machine learning aimed at automatically finding the best
power virus for a given multicore parallel system configuration in
the pre-silicon design stage of a system. This is the first attempt
towards answering many questions about how to efficiently search

for a power virus for multicores viz., i) which are the most im-
portant dimensions of the abstract workload space that should be
modeled for a multicore system, ii) what is the required amount of
granularity in each dimension and especially the detail at which the
core level out-of-order execution related workload characteristics
should be modeled iii) if it is worthwhile to make the threads het-
erogeneous and deal with state space explosion problem or should
the threads be homogeneous iv) what are the data sharing patterns
(producer-consumer, migratory etc) that should be exercised to stress
the interconnection network, shared caches and DRAM effectively,
and many other similar questions, each of which are further elabo-
rated later in this paper. The major contributions of this paper are,

e Proposal of MAximum Multicore POwer (MAMPO), which
is the pioneer attempt towards a multithreaded synthetic power
virus generation framework targeting multicore systems.

e Validation of MAMPO by comparing the power consump-
tion of the generated multithreaded virus with that of running
multiple copies of the industry grade power virus MPrime
torture test [11] and SYMPO [8] on multiple cores for three
different parallel system configurations. We also compare
the power consumption of the MAMPO viruses with that
of the commercial Java benchmark SPECjbb. The MAMPO
virus consumes 40% to 89% more power than the parallel run
of single-core viruses and 41% to 56% more power than that
of SPECjbb for three parallel system configurations studied.

o Further validation of MAMPO by comparing the power con-
sumption of the generated power viruses with that of the
workloads in the PARSEC benchmark suite. We show that
MAMPO virus consumes 45%, 52% and 98% more power
than the maximum power consuming benchmark in the PAR-
SEC [10] suite for the 3 parallel system configurations stud-
ied.

The rest of the paper is organized as follows: In Section 2, we in-
troduce MAMPO, our multithreaded power virus generation frame-
work targeting multicore parallel system and Section 3 elaborates
on the three different parallel system configurations used to vali-
date MAMPO along with the results showing the efficacy of the
generated power viruses. We provide related work in Section 4 and
conclude in Section 5.

2. MAMPO

A power virus for a muticore system has to stress different parts
of the system in such a way that the overall power consumption is
maximized. As we mentioned already, keeping all the components

BEST POWER VIRUS

1\ ,+"|Thread 1: spec 1 ... specm
. |Thread 2....
Yes -2 .
Fitness Multithreaded Synthetic1 .
Valuesfor all] GA No JCreate next - Multithreaced Synthetic 2 . |Threadn:
D synthetics converged ? generation :
in this N
generation Multithreaded Synthetic D
GENETIC ALGORITHM ABSTRACT WORKLOAD PARAMETERS
Post processed
FULL SYSTEM ASM POST
SIMULATOR ASSEMBLER Assembly for D' PROCESSOR CODE
n-threaded synthetics GENERATOR
T N
L 1 |
* Assembly for D | | C-Codefor D
_n-thr .. | n-thr n-threaded synthetics n-threaded synthetics
binary 1 binary D

Figure 2: Multithreaded power virus generation framework

of a system simultaneously active is not possible. For example, to
be able to stress the DRAM of a system, the processor may have to
stall for many cycles for those long-latency loads to complete. Any
program that is completely memory-bound cannot consume much
power in the cores and a program that is completely compute-bound
cannot consume much power in the memory, caches or the inter-
connection network. Thus, the power virus has to strike the right
balance between stressing different power consuming components
in the system to be able to maximize the overall power. There are
many latency hiding mechanisms implemented throughout a mod-
ern computer system starting from the out-of-order execution cir-
cuitry in the cores, various buffers, the miss status handling reg-
isters in the caches, pipelining in the interconnection network to
various optimizations implemented in the DRAM controller and all
of these numerous features should be exploited to the right extent
by this power virus to achieve maximum overall power. Mainly to
avoid the need to model all these complex interactions, we use a
black-box approach that employs a machine learning based search
technique along with a multithreaded workload generator to auto-
matically search for a power virus given a multicore system config-
uration.

The main components of the MAMPO framework are, i) the ab-
stract workload model used ii) the code generator, compiler and the
assembly post processor iii) the full system simulator with detailed
power models used to evaluate the power consumption of the mul-
tithreaded synthetics and iv) the machine learning technique em-
ployed in the framework, Genetic Algorithm (GA). Figure 2 shows
the flowchart of the power virus generation framework. The Ge-
netic Algorithm (GA) [12] generates the parameter values for the
potential candidates for the synthetic power virus case as it itera-
tively searches through the abstract workload space. These gen-
erated abstract workload characteristics are fed to the code gener-
ator that generates a multi-threaded synthetic C program contain-
ing embedded assembly instructions for each thread based on these
specified characteristics. This multi-threaded C code is then trans-
lated to direct assembly code with the help of a compiler. At times,

the compiler introduces some spurious stack operations amidst the
set of instructions that we incorporate as embedded assembly and
this assembly code has to be post processed to remove such unnec-
essary instructions and then it is further compiled into a SPARC
binary. This multi-threaded SPARC binary is then executed on a
full system simulator with cycle accurate power models for vari-
ous system components to evaluate the power consumption of the
generated synthetic on the system configuration under study. These
power consumption numbers are fed back to the Genetic Algorithm
to intelligently choose the next set of potential candidates for the
power virus and this process iteratively continues until the search
converges to find the best power virus for a given system configura-
tion. Each of the components of this framework will be explained
in detail further in this Section.

2.1 Genetic Algorithm

The machine learning approach we use in our framework is pop-
ularly called the Genetic Algorithm (GA) [12]. GA is a search tech-
nique inspired by evolutionary biology where problem solutions are
encoded as chromosomes and these chromosomes are mutated and
recombined to form newer chromosomes. A population in the ge-
netic space is defined as a set of chromosomes or possible outcomes
of the problem under investigation. The algorithm proceeds by first
choosing a set of D random chromosomes as the initial population,
where D is the deme size or the population size used in the algo-
rithm. For our power virus search, a chromosome will refer to the
set of parameters in the abstract workload space for a candidate
multithreaded synthetic workload. These D random chromosomes
(multithreaded synthetics) form the first generation of individuals
for the algorithm to get started. These synthetics of the first gen-
eration are evaluated for their fitness, which is their overall system
level power consumption in our problem on the system configura-
tion under study. The fitness values represent the quality of these
individuals in the population and are fed back to the GA. Based on
the fitness values of these synthetics, there are different operators
that are applied on them like mutation, crossover and elite repro-

duction to produce the chromosomes of the individuals of the next
generation, which are again evaluated for their fitness and fed back
to the GA. This evolutionary process continues until the Genetic
Algorithm converges with the same value for each of the different
dimensions and is repeated by seeding the GA with different ran-
dom seeds to make sure that the results are robust. Though one
may argue that this process of GA does not necessarily guarantee
to achieve the best theoretically maximum power virus as it is still
a heuristic based global optimization technique, by seeding the GA
with different starting points and running it until convergence does
guarantee a tight upper-bound for the maximum power for practical
purposes.

The most significant operators used in GA are mutation and crossover.

Mutation operator probabilistically chooses parts of the chromo-
some and modifies them to form new chromosomes. In our case,
the specifications of the multithreaded synthetics in terms of ab-
stract workload parameters are modified randomly to form new
multithreaded synthetics. The crossover operator recombines parts
of two chosen chromosomes in some way to form a new chromo-
some for the offspring. The specifications of two chosen multi-
threaded synthetics are combined in a meaningful way to form the
specifications of the new multithreaded synthetic offspring. We
will further explain the values used for these GA parameters like the
mutation rate, crossover rate and reproduction rate for our power
virus search problem in Section 3.

In this Subsection, we further explain why we chose GA over
other search techniques. Firstly, as a general rule of thumb, a di-
rected search technique like Genetic Algorithm (GA) is more effi-
cient than a random search technique or a brute force methodology.
Through various experiments, we have found that the crossover op-
erator employed in GA is very effective when searching through the
workload space for a power virus. This is because when we cross
over two good solutions in our space, the characteristics of the par-
ents can be very meaningfully merged and hence the offspring is
also usually good, when compared to a random sample in the same
space. In the rest of this Section, we elaborate on the abstract work-
load model that is employed and the process of code generation for
the multithreaded synthetic workload.

2.2 Abstract Workload Model

The effectiveness of this kind of power virus generation frame-
work lies mainly in the efficacy of the abstract workload space that
is being searched through by machine learning. Firstly, the dimen-
sions of this abstract workload space should be as much microarchi-
tecture independent as possible to enable this framework to be able
to generate the best power virus for different types of microarchi-
tectures. It is the job of the machine learning algorithm to take care
of tailoring the parameters of the abstract workload model to max-
imize the power consumption for a given microarchitecture based
on power estimates provided by the simulator for this microarchi-
tecture under study. But, it is also important that these dimensions
of the abstract workload space be robust enough to be able to vary
the execution behavior of the generated workload in every part of
the multicore system. It is to be noted that the dimensions should
also not be too many as it could also result in a situation where the
search would never converge due to a state space explosion. The
characteristics of real-world programs that affect performance and
in turn the power consumption are carefully studied and is used
as a guide to design these dimensions as it is important that the
generated power virus should still be a realistic workload depicting
the practically attainable maximum power. In earlier approaches
for synthetic benchmark generation for uniprocessors, researchers
came up with metrics to characterize the execution behavior of pro-

grams on single core processors [13] [14] [15] [16] [17]. In this
paper, we come up with similar metrics for the generation of mul-
tithreaded synthetics for multicore systems.

In the abstract workload model, we have the choice of searching
for a multithreaded power virus with homogeneous thread char-
acteristics or provide the GA with the flexibility to configure the
threads to be heterogeneous. It is to be noted that, when the threads
are made heterogeneous, almost we multiply the number of dimen-
sions in the abstract workload space for every thread by the number
of threads. This could possibly result in a state space explosion and
the GA may never converge. But, on the other hand, most of the
real world parallel applications have heterogeneous thread charac-
teristics [10] at least in their data access pattern. For example, one
of the most commonly used data access pattern is the producer-
consumer relationship between simultaneously executing threads,
where one or more producer threads write data, which is read by
one or more consumer threads. To be able to exercise such a behav-
ior in the synthetic, there should be some amount of heterogeneity
in the threads to be able to act as a producer and a consumer thread.
At a minimum, there should be some heterogeneity in the instruc-
tion mix in terms of the number of loads or stores. But, due to
this heterogeneity in the instruction mix, the other core-level di-
mensions may also need be adjusted heterogeneously to be able to
consume maximum power. For example, the producer threads may
need to have a different register dependency distance or branch pre-
dictability than the consumer thread to be able maximize the power
consumption of the core, in turn to keep the system at its maximum
attainable power. Figure 3 shows the different dimensions of our
abstract workload model and their granularity. Further in this Sec-
tion, we explain each of these dimensions or what we call as the
’knobs’ of our workload generator. We first begin by explaining
the intuition behind the design of this abstract workload space.

In our abstract workload model, we have a controlled amount of
heterogeneity, where only a few heterogeneous classes of threads
can be configured and all the threads in the system have to belong
to one of these few heterogeneous classes. The threads within a
class are homogeneous. This controls the state space explosion
and we will also be able to mimic the communication character-
istics of the real parallel applications. We have found that a rea-
sonable number for heterogeneous classes is four, up to which the
state space is tractable and also allows to control power for the
major power consuming components. Investigation in previous re-
search [18][19][20][21][22] about the communication characteris-
tics of the parallel applications has showed that there are four sig-
nificant data sharing patterns that happen in real parallel applica-
tions, namely,

1. Producer-consumer sharing pattern: One or more pro-
ducer threads write to a shared data item and one or more
consumers read it. This kind of sharing pattern can be ob-
served in the SPLASH-2 benchmark ocean.

2. Read-only sharing pattern: This pattern occurs when the

shared data is constantly being read and is not updated. SPLASH-

2 benchmark raytrace is a good example exhibiting this kind
of a behavior.

3. Migratory sharing pattern: This pattern occurs when a pro-
cessor reads and writes to a shared data item within a short
period of time and this behavior is repeated by many pro-
cessors. A good example of this behavior will be a global
counter that is incremented by many processors.

4. Irregular sharing pattern: There is not any regular pattern
into which this access behavior can be classified into. A good

| Knob name Knob range # Thrd Category
classes

1 Number of threads 1,4,8,16,32 4 Parallelism

2 Thread class & processor assignment 1,2,..12 - Shared data access

3 | Percent memory accesses to shared data 10, 30, 50, 60, 70,90 4 pattern and

4 Shared memory access strides in two buckets | 0,4, 8,12, 16, 32, 64 4 communication

5 | Coupled load-stores True/false 1 characteristics

6 | Private memory access strides in two buckets 0,4,8,12,16, 32, 64 in each 4 Private data access

bucket pattern

7 Working set size (# loop iterations before 1,10, 20, 40, 100, 200 4 Memory footprint
array ptr. reset)

8 Memory Level Parallelism (MLP) 1,2,3,4,6 4 Memory level

9 | MLP frequency High, low 1 parallelism

10 | Average basic block size 10, 20, 30,50, 100 1 Control flow

11 | Average branch predictability 0.8, 0.86,0.92,0.96,0.98,0.99,1.0 | 4 predictability

12 | INT ALU proportion 0-4 4

13 | INT MUL proportion 0-4 4

14 | INT DIV proportion 0-4 4

15 | FP ADD proportion 0-4 4 Instruction mix

16 | FP MUL proportion 0-4 4

17 | FP DIV proportion 0-4 4

18 | FP MOV proportion 0-4 4

19 | FP SQRT proportion 0-4 4

20 | LOAD proportion 0-4 4 Instruction mix,

data access pattern
21 | STORE proportion 0-4 4 and communication
characteristics

22 -Register‘ dependency distance (number of 12,48 16,32, 64 4 Instruct.ion level
instructions) parallelism

23 | Random seed 1,2,3 1 Code alignment

Figure 3: Abstract workload model

example will be a global task queue, which can be enqueued
or dequeued by any processor which does not follow a par-
ticular order.

Though the above said patterns are the most commonly occur-
ring sharing patterns, subtle variations of each one or more than
one sharing pattern may be occurring in a multicore system. In our
framework, we use a generic memory access model, which when
parameterized accordingly, can yield any combination of the above
said sharing patterns. In our abstract workload model, we do not
include some characteristics of parallel applications like locks and
barriers, because the presence of locks and barriers always result
in slowing down the execution of applications resulting in a lower
overall power consumption. Next in this Section, we provide a brief
overview of our generic memory access model and then elaborate
on each of the different dimensions of the abstract workload space
or what we call as the "knobs’ of our workload generator.

Our memory access model is mainly based on a ’stride’ based
access pattern [13] in terms of static loads and stores in the code.
When profiling a modern workload, one can observe that each of
the static loads/stores access the memory like in an arithmetic pro-
gression, where the difference between the addresses of two suc-
cessive accesses is called the stride. It is known that the mem-
ory access pattern of most of the SPEC CPU2000 and the SPEC
CPU2006 workloads can be safely approximated to be following
a few dominant stride values [15] [14]. In our abstract workload
model, we handle the stride values of the memory accesses to the
private and shared data separately. For both of the shared and the
private memory accesses, the stride values are grouped into two
bins and the stride value assigned to a memory access instruction
is chosen with equal probability from each of the bins. Along with
the stride access patterns, the proportion of loads and stores in each

thread also affect the data sharing pattern of the synthetic workload.
For example, to achieve the producer-consumer sharing pattern be-
tween two threads, one will have to configure the instruction mix
in such a way that the loads to shared data in the consumer and the
stores to shared data in producer are in the right proportion and also
configure the remaining knobs like the percent memory accesses to
shared data, strides to shared data, thread assignment to processors
and working set size to enable these threads to communicate the
right amount of data between each other in a given pattern. Though
our model is robust enough to model parallel applications and their
behavior, it can also be configured to model loosely related threads
of commercial applications by making the ‘percent shared‘ knob to
be very low.

The branch predictability of the benchmark can be captured inde-
pendent of the microarchitecture by using the branch transition rate
[23]. The branch transition rate captures the information about how
quickly a branch transitions between taken and not-taken paths. A
branch with a lower transition rate is easier to predict as it sides
towards taken or not-taken for a given period of time and rather
a branch with a higher transition rate is harder to predict. First,
the branches that have very low transition rates, can be generated
as always taken or always not taken as they are easily predictable.
The rest of the branches in the synthetic need to match the speci-
fied distribution of transition rate, which is further explained in the
next Subsection. We provide a brief description about each of the
different knobs of our workload generator:

1. Number of threads: The number of threads knob controls
the amount of thread level parallelism of the synthetic work-
load. This varies from only one thread up to 32 threads exe-
cuting in parallel.

2. Thread class and processor assignment: This knob con-

10.

trols the thread classes to which each thread gets assigned.
Up to 12 patterns are used to model the combinations of these
assignments. These combinations also include various per-
mutations in terms of how far/near the threads of same/different
classes are placed based on the assignment to the processors
on which they are bound to execute.

. Percent memory accesses to shared data: This knob con-

trols what proportion of memory accesses are to the shared
data and the rest of the memory accesses are directed to pri-
vate data. This knob can be configured separately for each
thread class to allow the sharing percentage to be heteroge-
neous across thread classes. This heterogeneity may help the
threads to be configured to differently stress the private and
shared caches.

. Shared memory access stride values: As mentioned earlier,

two bins of stride values are specified for the shared memory
accesses and every such memory access can be configured
to have any one of the two bins with equal probability. This
knob can also be configured separately for each of the differ-
ent threads, to be able to allow each one of them to uniquely
stress differ levels in the memory hierarchy.

. Coupled load-stores: When this knob is set to true, an effort

is made to couple a load with a following store to be able
to mimic a migratory sharing pattern of access. This migra-
tory sharing pattern can create huge amounts of traffic when
coherence protocols like MESI is used where there is not a
specific state for a thread to own the data.

. Private memory access stride values: Similar to the stride

values to the shared memory, two bins of stride values are
specified for the private memory accesses and every such
memory access can be configured to have the stride from any
one of the two bins with equal probability. This knob can
also be configured separately for each thread class to be able
to stress different levels of the memory hierarchy separately.

Working set size: This knob controls the working set size
of the synthetic. The correspondence of this knob to the real
implementation in terms of number of iterations of one of
the nested loops in the synthetic will be explained in detail
in the next Subsection. This knob can be configured sepa-
rately for different thread classes to be able to allow various
cache resource sharing patterns in terms of varying working
set sizes.

Memory Level Parallelism (MLP): This knob controls the
amount of Memory Level Parallelism (MLP) in the work-
load, which is defined as the number of memory operations
that can happen in parallel and is typically used to refer to
the number of outstanding cache misses at the last level of
the cache. The number of memory operations that can occur
in parallel is controlled by introducing dependency between
memory operations. This knob can also be configured sep-
arately for every thread class to enable the threads to have
various access patterns to the DRAM.

MLP frequency: Though the MLP knob controls the bursti-
ness of the memory accesses, we need one more knob to con-
trol how frequently these bursty behaviors happen.

Average basic block size: This refers to the average number
of instructions in a basic block in the generated embedded
assembly based synthetic code. This knob is specified to be
homogeneous across different thread classes.

11. Branch predictability: The branch predictability of a work-
load is an important characteristic that also affects the overall
throughput of the pipeline. When a branch is mispredicted,
the pipeline has to be flushed and this results in a reduced
activity in the pipeline.

12. Instruction mix: The Instruction mix is decided based on
the proportions of each of the instruction types INT ALU,
INT MUL, INT DIV, FP ADD, FP MUL, FP DIV, FP MOV
and FP SQRT. The GA can configure each of these weights
associated with the instruction types to be anything between
zero to four, controlling the proportion of each instruction
type. Some restrictions are placed on the instruction mix by
writing rules in the GA like a minimum number of INT ALU
instructions should be present if there are any memory opera-
tions in the code to be able to perform the address calculation
for these memory operations.

13. Register dependency distance: This knob refers to the av-
erage number of instructions between the producer and con-
sumer instruction for a register data. If the register depen-
dency distance is high, the Instruction Level Parallelism (ILP)
in the synthetic is high resulting in a high activity factor in
the pipeline of the core. But, if the register dependency dis-
tance is low, the out-of-order circuitry like the ROB and other
buffers may have higher occupancy resulting in a higher ac-
tivity factor in these parts of the core. This knob is required to
be configured separately for different thread classes, as dif-
ferent threads having different memory latencies may need
to have different amounts of ILP to maximize the power con-
sumption in the cores.

14. Random seed: This knob controls the random seed that is
used as an input to the statistical code generator, which will
generate different code for the same values for all the other
knobs. It mostly affects the alignment of the code or the order
in which the instructions are arranged. This order of instruc-
tions does have some impact on maximizing the power and
we include this knob also to be explored by the GA in the
search for a power virus.

2.3 Code Generation

In this Section we explain how the final code generation happens
based on the knob settings given in terms of the abstract work-
load parameters. Figure 4 shows an overview of code generation.
The generated code consists of the main function and a function
for each thread that is spawned from the main function using the
pthread_create() system call. The required amount of shared data
is declared and allocated in the main function as a set of inte-
ger/floating point arrays and the pointers to these arrays are avail-
able to each of the threads. The private data that is supposed to be
used by every thread is declared and allocated within the function
for each thread. Each of the threads also bind themselves with the
processor number specified when the code was generated based on
the thread class and processor assignment knob. We use a barrier
synchronization to synchronize all the threads after they finish their
respective system calls for allocating their private data arrays and
binding themselves to the assigned processor.

The body of each thread consists of two inner loops filled with
embedded assembly and one outer loop encompassing these inner
loops. As previously mentioned, our memory model is a stride
based access model, where the loads and stores in the generated
synthetic access the elements of the private/shared arrays, each
static load/store with a constant stride. The address calculation for

pthread_barrier_t barr;
voi d** shared_array_ptrs;

mai n_function()

shared_array_ptrs =
al | ocate_arrays(sizes[]);

//Barrier synchronization
init_barrier(barr,
nunber _of _t hr eads) ;

for every thread i in N do _ _
create_pthread(thr_function_i);
done I

\

join_pthreads (numthreads);

/ / afamm,a,ldst,Br
/ void thr_function_i() / afm,am,m,ld|d|d ,aaaBr c
; ¥m,amm,ldldld, Br o
private_array_ptrs =] / [/ \(\ z:,n mid Bra,a,a N
al l ocate_arrays(sizes[]); / Inner 1 mid.a.a, :3
/ Loop 1 ax/dldld ssBr
i T
processor _bi nd(My_t h:):a:glr Dﬁun‘oer)) //Outer \ /‘m'afm’m’ld'lli‘d ':a,a’Br C|)
- ' Loop afaaaaldst,Br N
. . —HA
pt hread_barrier_wait(&barr); , < afm,amm,ldldld aaa Br L
\{/\lm I e(out _cntr <= | oop_count) S afammalds.Br E
out_cntr++ :_”"‘3'2 E afmamm,ldidid aaaBr A
oop E /a\,(m,a,m,m,ld,ld,ld ,3,8,3,Br g
/*....EVBEDDED. . . N f \ m.mld aaBr N
....ASSEMBLY. .. E
.. INNER LOOPS. . */ 0 ||| axididld ssBr 5
N \ ,}/m,a,m,m,ld,ld,ld ,8,8,3,Br
Reset _array_pointers(); c afaaaa,ldst,Br
} e T ~ <~ \ v{ afmamm,dldid aaaBr —H
\ -

\

Figure 4: Multithreaded synthetic workload generation

the next access of each load/store is done by using other ALU in-
structions in the generated code for each of the array pointers by
using the assigned stride value. When the specified working set
size is covered, the pointers that are used are reset to the begin-
ning of the array. This pointer reset is done outside the inner loops
and inside the encompassing outer loop enabling us to control the
working set size with the number of iterations of the inner loop and
the number of dynamic instructions with the number of iterations

number of basic blocks and the average basic block size knob.

5. For each of the basic block in the first inner loop, config-
ure the instruction type of each instruction by stochastically
choosing from the instruction mix information. If the cou-
pled load-stores is true, the instructions are swapped based
on a bubble sort fashion in such a way that a store is made to
follow a load and they are made to access the same address.

of the outer loop. The embedded assembly contents of the two in- 6. The number of branch groups and the modulo operation are

ner loops are the same if the MLP frequency knob is set to high.
If the MLP frequency knob is set to low, the memory operations
in the second loop are removed so that the bursty memory access
behavior happening in the first loop occurs at a lower frequency.
The required branch predictability or the control flow behavior in
the synthetic is achieved by grouping branches into pools with each
pool assigned to a condition register. The branches are taken/not
taken based on whether this assigned condition register is set or not.
This condition register is set/unset by using a modulo operation
on the control variable of the loop. The only information that is
required to generate the main function is the biggest shared data
footprint amongst the different threads to be able to allocate the
shared arrays. The following steps are followed to generate the
code for every thread based on the corresponding knob settings for

each:

1. Generate the code to allocate the required amount of space
for private data accesses based on the percent shared ac-
cesses, proportion of memory operations in instruction mix

and the working set size.

2. Generate the processor_bind() system call using the assigned
processor number and then a barrier synchronization system

call is generated.

3. Generate the code for outer-loop based on the dynamic num-
ber of instructions desired taking into account the average

fixed based on the required average branch predictability.
The modulo operation for each of the branch groups are gen-
erated at the beginning of the inner loop based on the loop
count and a register is set/unset to decide if those branches
for this particular group are going to be taken or not taken for
this loop iteration. Branches are generated to fall through or
take the target to another basic block based on their assigned
register value.

7. Using the average dependency distance knob, each of the
operands of every instruction is assigned with a previous pro-
ducer instruction. Some rules are used to check the compat-
ibility between producer and the consumer in terms of the
data that is produced by the producer instruction and that
consumed by the consumer. If two instructions are found to
be not compatible, the dependency distance is incremented
or decremented until a matching producer is found for ev-
ery instruction. The memory level parallelism information is
also used to assign load-load dependencies in this process.

8. Based on the percent shared accesses knob, each of the mem-
ory operations are classified into the ones that access shared
data and the ones that access private data. Based on the stride
value of the corresponding memory operation (shared or pri-
vate and based on the assigned bin), their corresponding ad-
dress calculation instructions are given the stride values as
immediate operands.

basic block size and the number of basic blocks.

4. Fix the code spine for the first inner loop based on a fixed

9. Register assignment happens by first assigning the destina-
tion registers in a round robin fashion. The source register

Parameter System -1 System - II System - III

No. of cores 4 8 16

DRAM 4GB 8 GB 16 GB

L1 cache 64 KB, 4 way, 2 cycles | 32 KB, 4 way, 1 cycle | 16 KB, 2 way, 1 cycle
L2 cache 4 MB, 4 way, 4 banks | 4 MB, 8 way, 8 banks | 8 MB, 16 way, 16 banks
L1, L2 MSHRs | 48 32 24

ROB 128 64 32

Mach-width 8 4 2

Branch pred. | YAGS, 12 bit PHT YAGS, 11 bit PHT YAGS, 10 bit PHT
BTB size 1024 512 256

Int ALUs 4 ALU, 2 Int div 3 ALU, 1 Int div 2 ALU, 1 Int div
Topology Crossbar Hierarchical switch File-specified

FP ALUs 2 ALU, 2 Mul, 2 div 2 ALU, 1 Mul, 1 div 1 ALU, 1 Mul, 1 div

GEMS HIERARCHICAL SWITCH

GEMS CROSSBAR

GEMS FILE-SPECIFIED

Figure 5: (a) Multicore system configurations used to evaluate MAMPO (b) Interconnection networks used in the multicore system

configurations

for each operand of an instruction is assigned as the destina-
tion register of the producer instruction based on the corre-
sponding dependency assignment.

10. The loop counters for the inner loops are set based on the
specified working set size and the compare instructions for
loop termination are generated by choosing an integer ALU
instruction in the code.

11. The second inner loop is also generated, which is a copy of
the first loop without the memory operations if the MLP fre-
quency is low or if it is set to be high, the second loop is
generated just as a copy of the first loop.

3. EXPERIMENTAL SETUP, RESULTS AND
ANALYSIS

To test the efficacy of this power virus generation framework,
we use the Virtutech Simics full system simulator along with Wis-
consin Multifacet GEMS [24] to evaluate the power consumption
of the multithreaded synthetic workloads for the SPARC ISA using
Solaris 10 operating system. The cycle accurate out-of-order pro-
cessor simulator Opal, the detailed memory simulator Ruby and
the network simulator Garnet, all of which are a part of GEMS was
used to model a typical Chip-MultiProcessor (CMP). The power
consumption in the core is evaluated using the power models pro-
vided by Wattch [25] for the most aggressive clock gating *cc3’ in
Wattch. The power consumption of the shared L2 cache and the di-
rectory is modeled with help of the latest power models for caches
using CACTI [26].

The power consumption of the network was evaluated using the
network power model Orion [27]. The power consumption of DRAM
for DDR2 technology was modeled by integrating the DRAMsim
simulator [28] into GEMS. The power models used for all the com-
ponents of the CMP are for a 90nm technology. It is to be noted
that this power virus generation methodology aims to help a system

designer in the pre-silicon design stage of a system, when only the
simulators will be available than real hardware. We have used the
GNU gcc compiler for SPARC ISA with the optimization level of
02 for compiling the synthetics and an optimization level of O3 for
compiling other workloads.

The Figure 5(a) shows the three multicore system configurations
that are used to evaluate the efficacy of MAMPO. Figure 5(b) shows
the various interconnection networks used in these multicore sys-
tems. We use the most popular MOESI cache coherence proto-
col for all our experiments, which has the states Modified, Owned,
Exclusive, Shared and Invalid for every cache block. We use a
multibanked shared L2 cache and a Non-Uniform Memory Access
protocol with a directory size of 1 MB. Our power models were
validated against published power numbers for the Sun Microsys-
tem’s Niagara and the Rock systems by constructing an equivalent
system using our infrastructure. For the machine learning, we use
IBM’s Genetic Algorithm toolset called SNAP [29] [8]. We have
used a mutation rate of 0.05, crossover rate of 0.85 and a reproduc-
tion rate of 0.10. A population size of 48 individuals per generation
was found to be the most optimal deme size for this problem. In-
creasing it beyond 48 does not help as the execution time of each
generation becomes high due to the increased number of chromo-
somes to evaluate and when the deme size is smaller than 48, the
population size is not big enough to search such a large abstract
workload space in the same time.

We compare the power consumption of the generated MAMPO
virus with that of the power consumption of the PARSEC work-
loads. In the multithreaded synthetic, we use a feature called MAGIC
instruction in Simics to be able to perform detailed simulation for
only the core part of the synthetic code. We start the detailed sim-
ulation after all the threads have reached the barrier after the ini-
tial memory allocation and processor bind system calls. The first
thread that reaches the end of it’s execution signals Simics to stop
the simulation and the profiled data is used to calculate the power
consumption using the power models. Typically the number of dy-

w
a
3

w
S
3

~
&
=)

~
S
3

-
G
3

HHHX —%—8-core

Total system power (Watts)

—&—16-core

®
3

~
&

o N
& 3

@
3

«
]

Total system power (Watts)
«
g

100 X7 47
—O—4-core 40
50 1 35
0 +—r+—T—"—"T"T"T T """ T T T T T T T T T
12345678 91011121314151617 1819 20 2122 23 24 252627 28293031 0\&* o & &
B
. N
Generations Workloads and MAMPO virus
(@) (b)
130 325
T 120 — 300
ﬁ % 275
E 110 =
] < 250
2 100 2
3 3 225
2
5 90 £ 200
% s 2 175
2 @
g E 150
= =]
. o1
F & & F IS S F L 100
& & ¢ folgr S >
ST T T & T S FFEFFEFFE T ESFE S F S S
& o < EES & b @ & ¥ SR
) & A RS ﬁ\@?
Workloads and MAMPO virus Workloads and MAMPO virus
© (d)

Figure 6: MAMPO virus generation for various system configurations (a) Power consumption of the best power virus at the end of
each generation (b) Power for final virus for Machine configuration - I (c) Power for final virus for Machine configuration - II (d)

Power for final virus for Machine configuration - III

namic instructions in the multithreaded synthetic is around a few
million instructions per thread. For PARSEC workloads, we use
the input set provided for detailed microarchitectural simulations
called ’simsmall’.

Figure 6(a) shows the power consumption of the best power virus
at the end of each generation for approximately 30 generations, af-
ter which there is negligible increase in power consumption due
to the convergence of the GA. It is to be noted that there are not
any known power viruses targeting multicores and so we compare
our generated viruses against running multiple copies of single-
core power viruses. MPrime [11], which is popularly called the
torture test is one of the system-level industry grade power viruses
for single-core systems. SYMPO [8] is the most recent previous
work by Ganesan et. al to generate a max-power virus for a given
single-core system. We have implemented the SYMPO framework
to enable us to generate SYMPO viruses for each of our config-
urations and compare the overall power consumption of running
multiple copies of SYMPO viruses, one on each core, with that
of MAMPO viruses. Other than these power viruses, we also com-
pare out power viruses with that of the commercial Java benchmark
SPECjbb. The number of threads in SPECjbb was set to be equal
to the number of processors in the system configuration. Figures
6(b), 6(c) and 6(d) show the comparison of the power consump-
tion of MAMPO viruses with that of the power consumption of the
workloads in the PARSEC benchmark suite, MPrime, SYMPO and
that of SPECjbb for the three machine configurations as in Figure
5(a). It can be noted that the MAMPO viruses consume 45%, 52%
and 98% more power than the average power consumption of the
workloads in the PARSEC suite. The MAMPO viruses consume
63%, 72% and 89% more power than that of MPrime and 40%,
49% and 69% more power than that of the SYMPO virus for the
three machine configurations respectively, clearly bringing out the
importance of such a multithreaded synthetic power virus gener-
ation framework compared to running multiple single-core power
viruses. The MAMPO viruses consume 41%, 48% and 56% more

power than that of the SPECjbb. From these results, it can be ob-
served that the MAMPO virus outperforms the other workloads as
the number of cores increases due to the reason that MAMPO is
very effective in stressing the interconnection network. It is to be
noted that the energy spent in terms of data transfer through the in-
terconnection network is predicted to increase many folds [30] due
to global wire scaling problems compared to the energy spent in
computation bringing out the significance of their contribution to
the power consumption of future systems.

Since the fitness evaluation of the individuals in a generation is
independent of each other, they can be run in parallel. Thus, when
we use a modern parallel system with many cores, this process of
finding a power virus can be done with a good amount of paral-
lelism resulting in a quicker convergence of the GA. The time taken
for MAMPO to generate these power viruses for the three system
configurations range between 8 to 12 hours on a 3.4 GHz Intel Xeon
system with 16 cores. Though we use a full system simulator with
cycle accurate models to evaluate the power consumption, the to-
tal number of dynamic instructions in the synthetic is restricted to
be less than 16 million instructions, to enable this search happen
within a reasonable time frame. Rather, to find the same virus man-
ually, a system architect will have to typically spend a few weeks
of manpower and can still not be sure if it is a good power virus or
not.

The power viruses generated for each of these configurations are
found to be having exactly the same number of threads as that of
the number of processors. For example, a four-threaded workload
is found to be a more suitable candidate for a quad-core system than
an eight or sixteen threaded workload. This can be attributed to the
fact that the time taken for even a DRAM access in our framework
is not enough to force a context switch in the thread scheduler used
in Solaris 10. But, a knob like number of threads may be utilized
more effectively when a hard disk access is also modeled, where
the access latency could force the scheduler to do a context switch.
‘We do not model the components like the chipset and the disk sub-

Total system power (Watts)
3
Total system power (Watts)

MPrime SPECjbb SYMPO MAMPO

(a) (b)

MPrime SPECjbb SYMPO MAMPO

300 B Dir_power

150
100
50

MPrime SPECjbb SYMPO MAMPO

(©

B ICN_power
B 12_power

O DRAM_power

Total system power (Watts)

O CPU_power

Figure 7: Breakdown of MAMPO virus and comparison to MPrime (a) Machine configuration - I (b) Machine configuration - II (c)

Machine configuration - II1

system in this study due to the reason that they have nearly constant
power consumption over various range of workloads [31].

It would be interesting to see how the characteristics of the fi-
nally generated power viruses vary across the different system con-
figurations. Figures 7(a), 7(b) and 7(c) show the breakdown of the
power consumption of the MAMPO viruses, SYMPO, MPrime and
SPEC;jbb in various parts of the system. It can be noted that the
single-core power viruses SYMPO and MPrime consume maxi-
mum power in the cores, rather the MAMPO viruses stress different
parts of the system in such a way that the total power is maximized.
Some common characteristics of these power viruses are that they
have 10-20% of the memory accesses to shared data and they try
to move as much data as possible through the interconnection net-
work, besides making sure that the slowdown caused to the CPUs
due to this is minimum. The maximum power achieved by our tool
is still ‘realistically attainable‘ as the characteristics of the power
viruses still map to the range for the abstract workload model pa-
rameters of realistic workloads. It is to be noted that the power
viruses for each of these systems configurations have different set-
tings for most of the knobs other than the aforementioned ones and
it is wasteful to analyze this further due to their sensitivity to the mi-
croarchitecture changes and the aim of this whole machine learning
based framework is to make this power virus generation a com-
pletely automated black-box approach to avoid the need to model
the complex interactions involved in the execution of a workload
within a multicore system.

4. RELATED WORK

Synthetic benchmark generation: Synthesizing workloads/traces

[32] [33] [34] [35] for performance evaluation has always been an
area that has been constantly under investigation. Usage of syn-
thetic benchmarks as miniaturized proxies [15] [17] [16] for long
running applications has been proven to be a viable solution to use
with very slow cycle accurate and Register Transfer Level (RTL)
simulators in pre-silicon design validation. Joshi et al [14] [13] in-
troduced the idea of using synthetic benchmarks for cloning propri-
etary applications that cannot be shared with the processor vendors.
Though there has been quite some work targeting the characteriza-
tion of parallel applications [36], this is the first attempt towards
synthesizing multithreaded workloads.

State of the art power viruses: There have been a lot of in-
dustry efforts [37] [38] [39] [40] [41] towards hand crafting code
snippets to serve as power viruses for the single core processors.
Stability testing tools written for overclockers like CPUBurnin [5]
and CPUBurn [6] are also popular power viruses. The program
MPrime [11], which searches for mersenne prime number is popu-
larly called the torture test and is a well known power virus used in

the industry. Joshi et. al [9] and Ganesan et al [8] automated power
virus generation for single cores.

5. CONCLUSION

In this paper, we proposed the usage of MAMPO, which is a
multithreaded synthetic power virus generation framework target-
ing multicore processors. We validate the efficacy of MAMPO by
comparing the power consumption of the generated virus with that
of the workloads in PARSEC for three different multicore system
configurations and show that the MAMPO virus consumes 45%,
52% and 98% more power than the average power consumption of
the PARSEC workloads. We also show that the single core power
viruses, when run on muticore systems do not serve the purpose as
a multicore system virus by comparing the power consumption of
the MAMPO virus with that of the previously proposed SYMPO
viruses and the well known power virus MPrime. The MAMPO
virus consumes 40% to 89% more power than running multiple
copies of single-core viruses in parallel. We also provide a com-
parison of the power consumption of the MAMPO virus with that
of SPECjbb and show that the MAMPO virus consumes 41%, 48%
and 56% more power than that of SPECjbb. Though the power
viruses generated by MAMPO cannot theoretically guarantee to be
the absolute worst-case, based on the convergence of the Genetic
Algorithm run with multiple seeds, we can be sure that the gener-
ated power viruses will serve as a tight upper-bound for the max-
imum power for all practical purposes and such a framework will
be a very useful tool for the system designers.

6. ACKNOWLEDGMENTS

This work has been supported and partially funded by SRC under
Task ID 1797.001, National Science Foundation under grant num-
bers 0702694, 0751112, 0750847, 0750851, 0750852, 0750860,
0750868, 0750884 and 0751091, Lockheed Martin, Sun Microsys-
tems and IBM. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation
or other sponsors.

7. REFERENCES

[1] Stuart Berke, David Moss, and Randy Randall.
Understanding the challenges of delivering cost-effective,
high- efficiency power supplies.
http://www.dell.com/downloads/global/
power/ps2q07-20070270-PowerTCO. pdf, May
2007.

(2]

13

—

[4

—_

(]

(6]
(7]

(8]

(9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

Xiao Ping Wu, Masataka Mochizuki, Koichi Mashiko,
Thang Nguyen, Vijit Wuttijumnong, Gerald Cabsao, and
Aliakbar Akbarzadeh Randeep Singh. Energy conservation
approach for data center cooling using heat pipe based cold
energy storage system. 26th Annual IEEE Semiconductor
Thermal Measurement and Management Symposium, 2010.
SEMI-THERM 2010 Page(s): 115 - 122, March 2010.
Michael K Patterson. The Effect of Data Center Temperature
on Energy Efficiency. 11th Intersociety Conference on
Thermal and Thermomechanical Phenomena in Electronic
Systems, 2008. ITHERM 2008 Page(s): 1167 - 1174, May
2008.

Amip Shah, Chandrakant Patel, Cullen Bash, Ratnesh
Sharma, and Rocky Shih. Impact of rack-level compaction
on the data center cooling ensemble. //th Intersociety
Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems, 2008. ITHERM 2008 Page(s): 1175 -
1182, May 2008.
http://www.softpedia.com/get/System/
Benchmarks/CPU-Burnin.shtml.
http://pages.sbcglobal.net/redelm.

Private Communication with Advanced Micro Devices
(AMD) Design Engineer.

Karthik Ganesan, Jungho Jo, W. Lloyd Bircher, Dimitris
Kaseridis, Zhibin Yu, and Lizy K. John. System-level Max
Power (SYMPO) - A systematic approach for escalating
system-level power consumption using synthetic
benchmarks. In the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT),
Vienna, Austria, September 2010.

Ajay Joshi, Lieven Eeckhout, Lizy K. John, and Ciji Isen.
Automated microprocessor stressmark generation. The [4th
International Symposium on High Performance Computer
Architecture (HPCA), February 2008.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The PARSEC Benchmark Suite: Characterization
and Architectural Implications. Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, October 2008.
http://www.mersenne.org/freesoft.

L D Davis and Melanie Mitchel. Handbook of genetic
algorithms. Van Nostrand Reinhold, 1991.

Ajay Joshi, Lieven Eeckhout, Robert H. Bell Jr., and Lizy K.
John. Performance Cloning: A Technique for Disseminating
Proprietary Applications as Benchmarks. International
Symposium on Workload Characterization, October 2006.
Ajay Joshi, Lieven Eeckhout, Jr. Robert H. Bell, and Lizy K.
John. Distilling the essence of proprietary workloads into
miniature benchmarks. ACM Transactions on Architecture
and Code Optimization (TACO 2008), August 2008.
Karthik Ganesan, Jungho Jo, and Lizy K John. Synthesizing
Memory-Level Parallelism Aware Miniature Clones for
SPEC CPU2006 and ImplantBench Workloads. International
Symposium on Performance Analysis of Systems and
Software (ISPASS), March 2010.

Robert H Bell and Lizy K John. Improved Automatic Test
Case Synthesis For Performance Model Validation.
Proceedings of the International Conference on
Supercomputing 111-120, 2005.

Jr Robert H. Bell, Rajiv R. Bhatia, Lizy K. John, Jeff
Stuecheli, John Griswell, Paul Tu, Louis Capps, Anton
Blanchard, and Ravel Thai. Automatic Testcase Synthesis

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

and Performance Model Validation for High Performance
PowerPC Processors. IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS
2006), March 2006.

Nick Barrow-Williams, Christian Fensch, and Simon Moore.
A communication Characterization of Splash-2 and Parsec.
IEEE International Symposium on Workload
Characterization, October 2009.

Michael C. Huang Hemayet Hossain, Sandhya Dwarkadas.
Improving support for Locality and fine-grain sharing in chip
multiprocessors. Proceedings of the 17th international
conference on Parallel architectures and compilation
techniques, October 2008.

Liqun Cheng, John B. Carter, and Donglai Dai. An Adaptive
Cache Coherence Protocol Optimized for
Producer-Consumer Sharing. IEEE 13th International
Symposium on High Performance Computer Architecture,
2007. HPCA 2007, February 2007.

Umakishore Ramachandran, Gautam Shah, Anand
Sivasubramaniam, Aman Singla, and Ivan Yanasak.
Architectural Mechanisms for Explicit Communication in
Shared Memory Multiprocessors. Proceedings of the
IEEE/ACM Supercomputing Conference, 1995.

Guhan Viswanathan and James R. Larus. Compiler-directed
Shared-Memory Communication for Iterative Parallel
Applications. Proceedings of the ACM/IEEE Conference on
Supercomputing, 1996.

Haungs M, Sallee P, and Farrens M. Branch transition rate: a
new metric for improved branchclassification analysis. Sixth
International Symposium on High-Performance Computer
Architecture (HPCA 2000), Volume , Issue , 2000
Page(s):241 - 25, January 2000.

Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E.
Moore, Mark D. Hill, , and David A. Wood. Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News (CAN),, September
2005.

Margaret Martonosi, Vivek Tiwari, and David Brooks.
Wattch: A Framework for Architectural-Level Power
Analysis and Optimizations. isca, pp.83, 27th Annual
International Symposium on Computer Architecture (ISCA
2000).

Naveen Muralimanohar, Rajeev Balasubramonian, and
Norman P. Jouppi. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches With CACTI 6.0. Proc.
40th Annual IEEE/ACM IntaAZI Symp. on Microarchitecture
(MICRO 07), IEEE CS Press pp. 3-14., December 2007.
Hangsheng Wang, Xinping Zhu, Li-Shiuan Peh, and Sharad
Malik. Orion: A Power-Performance Simulator for
Interconnection Networks. In Proceedings of MICRO 35,
Istanbul, Turkey, November 2002.

David Wang, Brinda Ganesh, Nuengwong Tuaycharoen,
Katie Baynes, Aamer Jaleel, and Bruce Jacob. DRAMsim: A
memory-system simulator. Computer Arch. News, vol. 33,
no. 4, pp. 100-107, Sep 2005.

Sameh Sharkawi, Don Desota, Raj P, Rajeev Indukuru,
Stephen Stevens, and Valerie Taylor. Performance Projection
of HPC Applications Using SPEC CFP2006 Benchmarks.
IEEE International Parallel & Distributed Processing Symp.,
May 2009.

Michele Petracca, Benjamin G. Lee, Keren Bergman, and

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Luca P. Carloni. Design Exploration of Optical
Interconnection Networks for Chip Multiprocessors. 16th
IEEE Symposium on High Performance Interconnects pages:
31 - 40, September 2008.

W. Lloyd Bircher and Lizy K.John. Complete System Power
Estimation: A Trickle-Down Approach Based on
Performance Events. International Symposium on
Performance Analysis of Systems and Software, April 2007.
Cheng-Ta Hsieh and M. Pedram. Microprocessor power
estimation using profile-driven program synthesis. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, November 1998.

Wing Shing Wong and Robert J. T. Morris. Benchmark
Synthesis Using the LRU Cache Hit Function. I[EEE
Transactions on Computers, 1988.

E.S. Sorenson and J.K. Flanagan. Evaluating synthetic trace
models using locality surfaces. 2002. WWC-5. 2002 IEEE
International Workshop on Workload Characterization,
November 2002.

Lizy John, Jungho Jo, and Karthik Ganesan. Workload
Synthesis for a Communications SoC. In Workshop on SoC
Architecture, Accelerators and Workloads, held in
conjunction with HPCA-17, San Antonio, Texas, Feb 2011.
Karthik Ganesan, Lizy K John, James Sexton, and Valentina
Salapura. A Performance Counter Based Workload
Characterization on BlueGene/P. In 37th International
Conference on Parallel Processing (ICPP), Portland,
Oregon, September 2008.

W. Felter and T. Keller. Power measurement on the apple
power mac g5. IBM Tech Report RC23276, 2004.

M. Gowan, L. Biro, and D. Jackson. Power considerations in
the design of the alpha 21264 microprocessor. Design
Automation Conference, 1998.

R. Vishwanath, V. Wakharkar, A. Watwe, and V.Lebonheur.
Thermal performance challenges from silicon to systems.
Intel Technology Journal, 2000.

R. Joseph, D. Brooks, and M. Martonosi. Control techniques
to eliminate voltage emergencies in high performance
processors. High Performance Computer Architectures,
2003.

F. Najm, S. Goel, and 1. Hajj. Power estimation in sequential
circuits. Design Automation Conference, 1995.

