
Technical Report : LCA-TR-020315

Implications of Programmable General Purpose
Processors for Compression/Encryption Applications �

BYEONG KIL LEE AND LIZY KURIAN JOHN

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas at Austin
fblee, ljohng@ece.utexas.edu

Abstract

With the growth of the Internet and mobile communication industry, multimedia applications for-
m a dominant computer workload. Media workloads are typically executed on Application Specific
Integrated Circuits (ASICs), application specific processors (ASPs) or general purpose processors
(GPPs). GPPs are flexible and allow changes in the applications and algorithms better than ASICs
and ASPs. However, executing these applications on GPPs is done at a high cost. In this pa-
per, we analyze media compression/decompression algorithms from the perspective of the overhead
of executing them on a programmable general purpose processor versus ASPs. We choose nine
encode/decode programs from audio, image/video and encryption applications. The instruction
mix, memory access and parallelism aspects during the execution of these programs are analyzed.
Memory access latency is observed to be the main factor influencing the execution time on general
purpose processors. Most of these compression/decompression algorithms involve processing the
data through execution phases (e.g. quantization, encoding, etc) and temporary results are stored
and retrieved between these phases. A metric called overhead memory-access bandwidth per in-
put/output byte is defined to characterize the temporary memory activity of each application. We
observe that more than 90% of the memory accesses made by these programs are temporary data
stores and loads arising from the general purpose nature of the execution platform. We also study
the data parallelism in these applications, indicating the ability of instruction level and data level
parallel processors to exploit the parallelism in these applications. The parallelism ranges from 6
to 529 in encode processes and 18 to 558 in decode processes.

�This work is supported by the Defense Advanced Research Projects Agency under contract F33615-01-C-1892,
NSF grants EIA 9807112 and ECS 0113105, a State of Texas Advanced Technology Program grant, and by Tivoli, IBM,
Motorola, Intel and Microsoft Corporations.

1

1. Introduction

Multimedia applications are increasingly becoming a dominant workload in modern computing

as the Internet and mobile communication technologies are growing. These multimedia workloads

are characterized by structured and regular computations on large data sets with small element-

widths [1]. Current industry support for multimedia application appears in multiple forms: ASICs,

application-specific processors (ASPs), multimedia extensions to general-purpose processors, and

multimedia co-processors [2]. ASICs while highly efficient for particular tasks, are not flexible

enough to support the frequent changes and evolutions in the media marketplace. Application-

specific processors offer low-cost alternatives for specific applications, however, again there is a

tradeoff involved with flexibility. General purpose processors are flexible, however, necessitates use

of software for the entire media application functionality, requiring a large number of instructions.

They can however obtain considerable performance improvement with architectural extensions such

as Intel’s MMX/SSE, Sun Microsystems’ VIS, AMD’s 3DNow!, Motolora’s AltiVec, DEC’s MVI,

HP’s MAX2, and MIPS’ MDMX [3][4].

There have been analysis of media workloads on general purpose processors to identify their

major features [1][2][5][6][7][8][9][10]. It has been identified that these workloads have signifi-

cant fine/coarse-grained data parallelism, high instruction-reference locality, high memory/network

bandwidth, continuous-media data types, and extensive data reorganization. Many of the applica-

tions also need real-time response. In contrast to traditional applications characterized by the scalar

processing of 32-bit integer data types, multimedia applications deal with vectors of packed 8-, 16-,

and 32-bit integer and floating-point numbers.

While characteristics of these applications on general purpose processors have been studied, no

previous research analyzes these workloads from the perspective of execution efficiency on general

purpose processors versus application specific environments. There have been research on special

purpose chips such as those in [11][12]. In spite of the flexibility offered by software paradigms we

realize that there is a significant overhead when these applications are executed on programmable

processors. Quantitative characterization of this overhead will provide quantitative indication on the

importance of ASPs and ASICs for these workloads. It will also be interesting for understanding

the tradeoffs involved, for optimizing the implementations, and for helping hardware software co-

2

design.

The rest of the paper is organized as follows. Section 2 provides overview of encode/decode ap-

plications and the experiment methodology. Section 3 presents encode/decode application’s char-

acteristics, especially focused on the amount of memory accesses for processing these applications

and the parallelism in them. An important contribution is the concept of overhead memory access-

es, which denote the temporary memory accesses required while processing these applications, in

addition to the real memory accesses for accessing actual inputs and outputs. Section 4 is devoted

to evaluate the robustness of overhead memory-access factor as a metric. We conclude the paper in

section 5.

2. Experimental Methodology

2.1. Benchmarks/Applications

The commonly used benchmarks for DSP (Digital Signal Processing) and multimedia applica-

tions can be classified into kernel-type benchmarks and full application benchmarks. Kernel-type

benchmarks (FIR, IIR, Dot product, FFT, etc.) are small programs extracted from real programs and

often represent a significant portion of the execution time of the original application. Application

benchmarks are full applications performing a particular task with real input data sets. Full appli-

cation benchmarks are normally preferred to kernel benchmarks because they perform the actual

task of interest in the same manner as the real workload [10]. Even if several kernels are used in a

full application, the characteristics of each of those kernels cannot accurately tell the features of the

entire application.

Previously proposed media benchmarks [9][10] consist mainly of encode/decode applications of

audio(sound) and video(image) signals. Many security applications such as fingerprint recognition

and speech recognition are also based on encode/decode techniques. Similar to overall multime-

dia application’s features, these encode/decode applications require real-time processing, and they

also have the characteristics of large I/O bandwidth, inherent data parallelism and processing reg-

ularity. We can say that these encode/decode applications are an important component of modern

multimedia applications.

3

In this paper, we consider a suite of applications from the audio, video and encryption domains.

Table 1 shows the selected multimedia encode/decode applications, which we name as the MediaZip

suite. This suite is composed of 9 full applications including 3 audio applications (ADPCM, G.721,

GSM), 3 video/image applications(JPEG, MPEG, EPIC) and 3 encryption applications(PEGWIT,

Blowfish, Rijndael). The first 7 applications come from the MediaBench suite [9] and the last 2

applications come from the MiBench suite [13]. They all involve encode/decode operations.

Table 1: MediaZip benchmarks.

 Adaptive Differential Pulse Code Modulation is well-known 16 bit PCM
 to 4 bit ADPCM encoder and decoder

 Voice compression encoder and decoder based on the CCITT(International
 Telegraph and Telephone Consulative Committee) G.711, G.721, and G.723

 Global Standard Mobile communications is full-rate speech transcoding encoder
 and decoder based on European 06.10 provisional standard.

 A standardized compression method for full-color and gray-scale images.
 JPEG is lossy image compression encoder(cjpeg) and decoder(djpeg)

 MPEG-2 is video compression encoder and decoder for high-quality
 video transmission. The main kernel is Discrete Cosine Transform.

 An image compression utility based on wavelet decomposition including
 run-length / Huffman entropy coding. EPIC is designed to allow fast decoding
 without floating point hardware

 A program for public key encryption and authentication. It uses an elliptic
 curve and secure hash algorithms.

 A symmetric block cipher with a variable length key.

 A block cipher with the option of 128-, 192-, and 256-bit keys and blocks.
 Rijndael is selected as the National Institute of Standards and Technologies
 Advanced Encryption Standard.

MPEG-2

Encryption

PEGWIT

Blowfish

Rijndael

Classification MediaZip Description

EPIC

Audio

ADPCM

G.721

GSM

Image/Video

JPEG

The chosen multimedia encode/decode applications have been the main workload for personal

appliances (computer, mobile communication, etc.) and embedded systems. A few years ago, static

media applications related to image and sound were the main workload and only one-way (unilat-

eral) media applications were generally used on the personal and industry computing. As modern

technology gives high speed processing ability to personal appliances (PC, cellular phone, PDA,

DVD, etc.), current trend of media applications is towards dynamic media application and two-way

(interactive) application such as video conference, interactive TV and interactive game/movie.

The reason why we focus on multimedia encode/decode application is that these applications

will still be a dominant workload of computers for years to come. Compression and encryption will

4

continue to be important components of media workloads. Uncompressed multimedia data requires

large storage space and it takes long time to send the data through limited transmission bandwidth.

With the growth of multimedia-centric Internet applications, efficient encoding technology is re-

quired for storage and transmission.

In summary, the nine applications in the MediaZip suite are widely used in each area and form

a representative component of multimedia applications. Especially, encryption also involves en-

code/decode process and will be one of the important workloads in the future as IT technology and

e-business grows.

2.2. Simulation Environment and Methodology

We used the SUN Shade binary instrumentation tool [14] to obtain dynamic traces while exe-

cuting MediaZip applications with 2 sets of data(small and large size of data) and different types

of data having different statistical properties. To accurately extract microarchitecture independent

characteristics of MediaZip applications, we use only classical optimization option in the compiler

which can eliminate redundancies only in the assembly level code (common sub-expression elim-

ination, constant propagation, etc). More aggressive optimizations such as unrolling, inlining or

global scheduling optimizations are excluded since they can add or remove non-redundant opera-

tions and can change the characteristics of the workload [2].

2.3. Metrics

There are two primary characteristics that we investigate (i) memory accesses behavior and (ii)

instruction level parallelism.

In general, most media applications are obtained by cascading a few stages consisting of a few

kernels. Data that gets entered to each stage gets transformed by a kernel. In order to transfer the

result of each stage to the next, temporary storage will be used. This results in several temporary

memory accesses. In processors with specialized architectures such as the systolic array architecture

[11][12], these temporary memory accesses will be avoided by directly forwarding data output from

one stage to the next. Application specific processors can employ special techniques such as data

forwarding between functional units without any real memory accesses. However, general purpose

5

processors offer nothing more than the general purpose register file or caches in order to forward

the data to the following stage. Registers are inadequate due to the large number of data elements

that need to be forwarded. Forwarding through caches still necessitate accessing caches and the

involved cache ports, etc.

In order to understand the significance of such temporary loads and stores, we define a metric

called overhead memory access. During dynamic execution of programs, the load operation is used

for actual input data fetch, coefficient data fetch for computational process, loop index fetch and

the fetch of temporarily stored data. Similarly, the store operation is used for storing actual output

data, updating next index in the loop and storing temporary data between computational stages.

Therefore memory-accessing operations can be divided into essential load and store for input and

output data, and intermediate (temporary) load and store for the process with coefficients, loop

index and temporary data. Anything that we have classified as temporary represents something

that could be avoided from being stored/loaded explicitly, if a non-programmable or application

specific architectural solution is used. We define the overhead memory access instructions as all

load and store instructions other than those that are true input and true output access instructions.

The overhead memory access instructions per input/output access instruction is then computed as a

ratio. We also quantify the overhead data transported to the central processor unit. Overhead data

transported is the ratio of the number of bytes transported during temporary storage and retrieval of

temporary data to the total number of bytes transported. This approach is similar to that in [15].

In addition, we attempt to quantitatively characterize the Instruction Level Parallelism (ILP)

of the MediaZip application suite. To extract the critical path length and available parallelism

information, the tool Tetra was used [16]. Tetra extracts a canonical form of the program from a

serial execution trace to produce an execution graph. It is essentially the data flow graph of the

program. In our simulation, we allow infinite resources to find the upper bound on the inherent ILP

of each application.

6

3. Characteristics of MediaZip Applications

3.1. General Characteristics

The encoding process of MediaZip applications normally consists of transformation, quantiza-

tion and entropy encoding as shown in Figure 1. Decoding is the inverse process of the encoding,

because the coefficients of the encoding process used for quantization and entropy coding, have

to be applied in decoding process to recover the original data. Most of the MediaZip applications

consist of several stages of DSP kernels and other regular / irregular processes, and use them iter-

atively. For example, JPEG has four stages: color conversion, DCT (Discrete Cosine Transform),

quantization and entropy encoding. Some stages have regular properties, which are related to reg-

ular memory accessing workload to fetch data and store the results of computation. Some stages

have irregular operations, such as entropy encoding in which memory accessing depends on the

statistical properties of the input data.

Input Transformation Quantization Entropy encoding Output

Figure 1: Encoding process.

To give a general idea of the benchmarks, first we present some basic properties of the bench-

marks such as instruction mix, operand size mix, etc. Figure 2 (a) shows the dynamic instruction

distribution during execution. This workload distribution provides the balance information of func-

tional units in the design of superscalar processor. From this graph we can observe that there are

overall similarities between the applications. For example, ALU operations consume a gigantic

share of the overall instruction mix (65% on the average) which means that these applications are

ALU-centric applications.

If multimedia extensions such as MMX, SSE-2 or AltiVec are used, 4 or 8 operations get done in

one SIMD instruction, changing the computation intensive instruction mix to a memory intensive

mix [4] [17]. Instruction mix information with SSE and AltiVec are available in [6][18]. In this pa-

per, we leave them as the basic uniprocessor operations, to indicate the basic operation mix without

heavy influence of the instruction set architecture (ISA). Another noticeable fact that emerges later

on in this section is that, irrespective of the dominance of the computation instructions, the overall

7

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

ADPCM G721 GSM JPEG MPEG EPIC PEGWITBlowfish Rijndael

Others

Branch

Store

Load

ALU

(a) Instruction distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

ADPCM G721 GSM JPEG MPEG EPIC PEGWITBlowfish Rijndael

8 bytes

4 bytes

2 bytes

1 byte

(b) Data type of load operation

Figure 2: Instruction distribution and data type of load operations in MediaZip.

execution time is strongly correlated with the amount of memory access operations.

From Figure 2 (a), it can be seen that the distribution of loads and stores is different between one

dimensional applications (e.g. audio) and two dimensional applications (e.g. image). Even though

2-D applications can be separated into two 1-D processes for computational simplicity, they have to

consider spatial correlations around pixel data which causes the application to consume more loads

for fetching input, intermediate data and coefficients repeatedly. Encryption applications also use

load and store operations as much as the 2-D applications.

Actual data size of load and store instructions are distributed between several types (1, 2, 4 and

8 bytes) as presented in Figure 2 (b). Most applications have used 1 byte, 2 byte and 4 byte data.

8 bytes data were used in ADPCM, JPEG, MPEG and EPIC, but only MPEG encode/decode and

EPIC encode process have used 8 bytes data significantly. ADPCM, Blowfish, Rijndael and image

applications heavily use 4 byte data, and G721, GSM and PEGWIT use mainly 2 byte data.

3.2. Overhead Memory-accesses per input/output element access

We quantified the number of temporary memory accesses per inevitable memory access. As

shown in Table 2, overhead memory load frequency of load operation can be computed as (L-I)/I,

where L is the number of load operations and I is input data size. In the same way, overhead

memory store frequency can be (S-O)/O, where S is the number of overall store operations and O

is actual output data size. Since the input and output access information is available in bytes and

8

not as instructions or accesses, the ratio that can be meaningfully computed is with respect to the

temporary/overhead memory access bandwidth. The first column in Table 2 indicates the ratio of

temporary bytes loaded to the number of actual input bytes. The second column indicates similar

information for stores. The third column in Table 2 represents overall memory-access overhead per

input byte, which is represented by (L+S-I-O)/I. The fourth column indicates overhead memory-

access bandwidth(OMB), the number of memory access instructions per useful input/output byte

that is handled by the application. MPEG encoder has the biggest overhead and ADPCM has the

smallest. The rightmost column in Table 2 presents overhead memory-access instruction frequen-

cy(OMIF), which indicates the number of load/store instructions required to load/store the overhead

(temporary) data. The gap between overhead memory-access instruction frequency and overhead

memory bandwidth tells data type used in whole process of each application. If all data accesses

are byte accesses, the last two columns of data will be identical.

Table 2: Overhead memory-access bandwidth.

L,S,I,O : # of bytes, L#,S# : the number of instructions

OMIF

(L-I)/I (S-O)/O (L+S-I-O)/I (L+S-I-O)/(I+O) (L#+S#-I-O)/(I+O)

Encode 4.6 0.8 6.0 3.8 0.6

Decode 18.3 0.2 24.1 3.8 0.6

Encode 240.8 218.4 296.7 236.3 102.6

Decode 942.7 52.6 1,158.1 230.6 99.6

Encode 229.3 376.6 269.2 243.1 112.2

Decode 341.1 18.8 534.1 48.9 23.5

Encode 30.6 217.2 44.0 40.7 12.6

Decode 355.2 6.6 492.6 25.0 9.8

Encode 990.2 23,457.2 1,131.4 1,123.7 636.6

Decode 58,375.8 81.5 72,181.9 427.8 86.1

Encode 411.7 401.1 458.3 410.6 103.5

Decode 397.5 37.5 738.5 74.2 20.6

Encode 160.7 455.7 209.3 188.5 76.1

Decode 960.8 29.4 1,253.7 117.3 46.7

Encode 64.8 22.4 43.6 43.6 14.3

Decode 64.8 22.4 43.6 43.6 14.3

Encode 86.5 19.5 53.0 53.0 16.6

Decode 86.6 19.5 53.0 53.0 16.7
Rijndael

Applications

G721

PEGWIT

EPIC

ADPCM

JPEG

MPEG

GSM

Overhead Memory-access Bandwidth (OMB)

Blowfish

MediaZip applications exhibit some symmetry in execution characteristics between the encode

and decode processes. Applications ADPCM, G721, Blowfish and Rijndael exhibit good symmetry

in overhead memory accesses, whereas the other applications do not. It is important to note that all

3 video applications are asymmetric with respect to the overhead access metric. Perhaps this points

to opportunities that exist for dynamic resource partitioning between encode and decode phases of

video applications.

9

3.3. Overhead accesses as a fraction of all accesses

Figures 3 shows the amount of temporary load (L0=L-I) and store (S0=S-O) operations for each

application. Figure 3 (a) represents the temporary load/stores as a fraction of all load and store

operations, and Figure 3 (b) represents the ratio split for loads and stores separately.

As shown in Figure 3 (a) and Figure 3 (b), an overwhelming fraction of the data transported

between memory subsystem and the processor registers is temporary data. Considering loads and

stores together, there is very good similarity between behavior of the encode process and decode

process. The average value for the entire application suite is 96% in Figure 3 (a). A large part of

these could have been avoided in an application specific processor specifically tailored to perform

this task. A systolic array architecture to perform compression or encoding is a prime example of

such a system [11][12].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

ADPCM G721 GSM JPEG MPEG EPIC PEGWIT Blowfish Rijndael

(L'+S')/(L+S)

(a) (L0+S0)/(L+S)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

E
nc

od
e

D
ec

od
e

ADPCM G721 GSM JPEG MPEG EPIC PEGWIT Blowfish Rijndael

L'/L S'/S

(b) L0/L and S0/S

Figure 3: Temporary data transport in MediaZip applications.

3.4. Available Parallelism

Media applications are perceived to contain a lot of data parallelism, however, quantitative stud-

ies on the parallelism have been few. We characterize the intrinsic ILP(Instruction Level Paral-

lelism) of MediaZip applications as a function of the inherent data dependencies and data flow

constraints in the application. Essentially, a data flow graph of the application is constructed and

relaxing all resource constraints, the maximum number of instructions that can be scheduled in

each cycle is computed. To perform data dependency analysis, we used the tool Tetra [16] which

is capable of evaluating program parallelism under specified resource and control constraints of the

10

0

100

200

300

400

500

600

Encode 7.94 142.81 91.57 107.4 529.7 381.44 38.59 6.06 13.54

Decode 41.58 127.65 18.95 50.81 234 104.92 44.68 57.22 558.4

ADPCM G.721 GSM JPEG MPEG2 EPIC PEGWIT Blowfish Rijndael

Figure 4: Available parallelism of MediaZip application.

hardware. In this study, we relax the hardware availability to infinite resources to extract micro-

architecture independent (intrinsic) ILP. Most multimedia applications, including MediaZip appli-

cation, have many loop iterations in the program. As the number of iterations are increased, the ILP

can go up since each iteration of the loop can be scheduled in parallel. Figure 4 shows the available

parallelism for the programs in the MediaZip application suite. The parallelism ranges from 6 to

529 in encode processes and 18 to 558 in decode processes. As shown in Figure 4, ADPCM has a

small value of available parallelism. ADPCM quantizes the difference between the speech signals

and a prediction signal, instead of quantizing current signal directly, imposing some serialization.

The value of each sample is computed using previous sample values making it to contain very little

parallelism.

Audio and image applications except for ADPCM have larger available parallelism in encoding

than in decoding. On the other hand, encryption application and ADPCM shows large available

parallelism in decoding, but extremely small available parallelism in encoding.

11

4. Evaluating the Robustness of OMB

4.1. The Effects of Data Properties on Overhead Memory Workload

In this section, we investigate the generality of overhead memory factor metric using several

types of input data. The characteristics of the MediaZip applications are partially dependent of

the statistical property of the input data. Normally, MediaZip applications consist of regular DSP

algorithms (e.g. DCT) and irregular algorithms (e.g. entropy coding) as follows :

MediaZip Application = α �R + β �IR

where R represents regular kernel and α is its effect to the whole workload, on the other hand,

IR represents irregular algorithm and β is its effect to the whole application. We examined the

effect with variation of data size and statistical property of the input data. Some applications like

JPEG have an option for control of the quality of the compressed image. The option influences

the compression ratio. We use JPEG application for comparing the results from different statistical

environments.

Table 3: The effect of input data size.

Input data Compression
[byte] ratio OMIF OMB

JPEG encode 5,596,351 101,484 17.63 12.6 40.7

(small input) decode 3,763,092 5,645 17.98 9.8 25.0

JPEG encode 39,023,627 786,490 26.58 11.7 37.8

(large input) decode 22,717,867 29,587 26.58 8.7 21.6

GSM encode 185,109,936 295,040 0.10 112.2 243.1

(small input) decode 74,062,478 30,426 9.70 23.5 48.9

GSM encode 734,034,831 1,159,040 0.10 113.6 245.8

(large input) decode 290,727,421 119,526 9.70 23.5 48.9

Blowfish Encode 32,604,294 311,824 1.00 14.3 43.6

(small input) Decode 32,596,554 311,825 1.00 14.3 43.6

Blowfish Encode 337,690,865 3,247,552 1.00 14.2 43.4

(large input) Decode 337,609,732 3,247,553 1.00 14.2 43.4

(L+S-I-O)/(I+O)
Total icountApplications

� The effect of input data size

We choose one application from each of the audio, image and encryption application groups to

12

study the impact of input data size. Table 3 shows total instruction count, the size of input data,

compression ratio and overhead memory factors in each application. We found that the overhead

memory access values are largely independent of input sizes. In the case of GSM and Blowfish, the

values are constant irrespective of input size. It is clear that these applications have large influence

from regular algorithms. On the other hand, the results of JPEG are different suggesting greater

influence of irregular algorithms than that of GSM and Blowfish.

� The effect of quality factor on JPEG

Table 4: The effect of quality factor on JPEG input data.

Input data Output data Compression
[byte] [byte] ratio OMIF OMB

JPEG encode 37,538,681 786,490 14,733 53.38 11.5 37.2

(quality: 30) decode 22,052,906 14,733 786,447 53.38 8.5 20.9

JPEG encode 39,023,627 786,490 29,587 26.58 11.7 37.8

(quality: 75) decode 22,717,867 29,587 786,447 26.58 8.7 21.6

JPEG encode 42,842,506 786,490 69,053 11.39 11.9 39.0

(quality: 95) decode 28,083,790 69,053 786,447 11.39 9.0 23.1

(L+S-I-O)/(I+O)
Total icountJPEG Application

JPEG permits quality control by varying number of quantization levels that result in varying

compression ratios. Varying this factor, we investigate the sensitivity of overhead memory access

ratio on compression ratio of MediaZip application. The JPEG application used in this paper has

100 levels for its quality switch (0 is worst case, 100 is best case, and default level is 75). We

used 30, 75 and 95 as quality factors. Low value for the quality factor means that the quantization

step is sparse, leading to more redundancy for entropy coding and higher compression ratio. But

the decoded image quality is very poor because significant information is lost in the quantization

process. Higher quality value means dense quantization steps, leading to lower compression ratios

and high quality of decoded result. As shown in Table 4, total number of instructions increases

as quality factor increases, and compression ratios show significant difference between the three

cases. However, overhead memory bandwidth values are almost the same indicating that the effect

of irregular algorithms is not significant when considering the effect of quality factor on JPEG.

� The effect of statistical property on JPEG

13

To measure the effect of irregular algorithms in another viewpoint, we use several inputs for

JPEG with different statistical properties. To get different statistical properties for the data, we

used the Gaussian blur filter as LPF (Low Pass Filter) and sharpening filter as HPF (High Pass

Filter). The standard deviation values from each mean value in the luminosity channel of the input

data are 45.20 (LPF), 50.03 (normal), and 54.37 (HPF) for three types of input data. In the rest of

the study, we used default quality factor (75) in all cases. Basically, the input image with lower

standard deviation shows higher spatial redundancy and it can get higher compression ratio as

shown in Table 5. Even though compression ratios are very different, overhead memory instruction

frequency (bandwidth) values are almost the same for the three cases. And they are also same with

the values of Table 4.

Table 5: The effect of statistical property on JPEG input data.

Input data Output data Compression
[byte] [byte] ratio OMIF OMB

JPEG encode 37,178,783 786,477 12,425 63.30 11.5 37.0

(LPF) decode 21,909,667 12,425 786,447 63.30 8.5 20.9

JPEG encode 39,023,627 786,490 29,587 26.58 11.7 37.8

(Normal) decode 22,717,867 29,587 786,447 26.58 8.7 21.6

JPEG encode 40,883,141 786,477 44,978 17.49 11.9 38.6

(HPF) decode 25,880,963 44,978 786,447 17.49 8.9 22.4

Total icount
(L+S-I-O)/(I+O)

JPEG Application

4.2. Correlation between Memory Access Overhead and Execution Time

Figure 5 shows overhead memory workload for each application’s encoding and decoding pro-

cess. In most applications, encoding process requires more overhead memory. Particularly, MPEG

needs extremely high amount of overhead/temporary memory accesses. Figure 5 also shows ex-

ecution time of each application. Although memory accesses are less than a third of the overall

instruction mix, the amount of memory accesses and overhead memory accesses are well correlat-

ed with the overall execution time as shown in Figure 5, indicating memory access is a serious issue

when media applications are implemented on GPPs.

14

0

200

400

600

800

1,000

1,200

A
D

PC
M

G
72

1

G
SM

JP
E

G

M
PE

G

E
PI

C

PE
G

W
IT

B
lo

w
fi

sh

R
ij

nd
ae

l

O
M

IF
 (

O
M

B
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

E
xe

cu
ti

on
 ti

m
e

[s
ec

]

OMIF

OMB

Execution Time

(a) Encode application

0

200

400

600

800

1,000

1,200

A
D

PC
M

G
72

2

G
SM

JP
E

G

M
PE

G

E
PI

C

PE
G

W
IT

B
lo

w
fi

sh

R
ij

nd
ae

l

O
M

IF
 (

O
M

B
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

E
xe

cu
ti

on
 ti

m
e

[s
ec

]

OMIF

OMB

Execution Time

(b) Decode application

Figure 5: Overhead memory accesses and execution time of MediaZip.

5 Conclusion and Future work

Media applications are typically executed on either ASPs, ASICs or GPPs. GPPs are flexible

and allow changes to media algorithms and standards, however, utilize a large number of soft-

ware instructions to accomplish the task. While it is intuitively clear that software implementations

have execution overhead, previous research efforts have not quantified the impact of performing

these applications in software. In this paper, we analyze the implications of using GPPs for media

compression and encryption applications. We found that 4 to 1100 bytes of temporary data are

transported to the CPU for every byte of actual input/output data fed into or out of the applica-

tion. In order to accomplish this data transport, 1 to 630 memory access instructions are used per

input/output byte, in addition to the memory accesses required to load actual input data or store ac-

tual output data. Special purpose architectures, especially those allowing direct forwarding of data

from processing element to processing element (such as systolic array architectures) are extremely

relevant in this context, because they can avoid a significant part of this overhead.

We also evaluated the parallelism of media applications. As expected media applications do

contain large amounts of parallelism. Hence ASICs, ASPs and GPPs to execute media applications

should be designed with features to extract this parallelism.

Future research can focus on fine-grain parallel architectures that explicitly support direct for-

warding of temporary results between stages of computations in media applications. Media appli-

15

cations keep evolving. Future studies should also focus on new and emerging applications.

References

[1] D. Talla and L. K. John, “Cost-effective hardware acceleration of multimedia applications,” In Pro-
ceedings of the IEEE International Conference on Computer Design ’01, pp. 415-424, 2001.

[2] J. Fritts, W. Wolf and B. Liu, “Understanding multimedia application characteristics for designing
programmable media processors” Proceedings of SPIE, vol. 3655, pp. 2-13, Jan. 1999.

[3] R. B. Lee, “Multimedia extensions for general-purpose processors,” Proc. IEEE Workshop on Signal
Processing Systems, pp. 9-23, Nov. 1997.

[4] P. Ranganathan, S. Adve and N. Jouppi, “Performance of image and video processing with general-
purpose processors and media ISA extensions,” Proc. 26th IEEE/ACM Symposium on Computer Ar-
chitecture, pp. 124-135, May 1999.

[5] K. Diefendorff and P. K. Dubey, “How multimedia workloads will change processor design” Computer,
vol. 30, pp. 43-45, Sep. 1997.

[6] D. Talla, L. K. John, V. Lapinskii and B. L. Evans, “Evaluating Signal Processing and Multimedia Ap-
plications on SIMD, VLIW and Superscalar Architectures,” In Proceedings of the IEEE International
Conference on Computer Design, 2000.

[7] D. Talla, L. K. John, “Execution Characteristics of Multimedia Applications on a Pentium II Processor,”
In Proceedings of the IEEE International Performance, Computing and Communications Conference,
2000.

[8] D. Talla, L. K. John, “Performance Evaluation and Benchmarking of Native Signal Processing,” Euro-
Par ’99, pp. 266-270, 1999.

[9] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for evaluating and syn-
thesizing multimedia and communication systems,” in Proceedings of the 30th Annual International
Symposium on Microarchitecture, pp. 330-335, Dec. 1997.

[10] N. T. Slingerland and A. J. Smith, “Cache performance for multimedia applications” In Proceedings of
the 15th IEEE International Conference on Supercomputing, pp. 204-217, Jun. 2001.

[11] N. Ranganathan and S. Henriques, “A Systolic VLSI Chip for Data Compression,” Proc. of IEEE
International Symposium on VLSI Design, Jan. 1991.

[12] M. Kovac, N. Ranganathan, “JAGUAR: a fully pipelined VLSI architecture for JPEG image compres-
sion standard,” Proceedings of the IEEE, Vol. 83 pp. 247-258 Feb. 1995.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown, “MiBench: A
free, commercially representative embedded benchmark suite,” In proceedings of the 4th annual IEEE
International Workshop on Workload Characterization, pp. 3-14, Dec. 2001.

[14] R. F. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for execution profiling,” SUN
Microsystems Inc., Technical Report SMLI TR-93-12, 1993.

[15] D. Hammerstrom and E. Davidson, “Information content of CPU memory referencing behavior,” In
Proceedings of the 4th International Symposium on Computer Architecture, pp. 184-192, 1977.

[16] T. M. Austin and G. S. Sohi, “TETRA: Evaluation of serial program performance on fine-grain parallel
processors,” University of Wisconsin Technical Report #1162, July 1993.

[17] R. Bhargava, L. K. John, B. L. Evans, R. Radhakrishnan, “Evaluating MMX Technology Using DSP
and Multimedia Applications,” In Proceedings of the IEEE Symposium on Microarchitecture, pp. 37-
46, 1998.

[18] H. Nguyen, L. K. John, “Exploiting SIMD Parallelism in DSP and Multimedia Algorithms using the
AltiVec Technology,” In Proceedings of ACM International Conference on Supercomputing, pp. 11-20,
1999.

16

