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This thesis presents an analysis of the implementation feasibility of

RAM authentication and encryption. Past research has used simulations to

establish that it is possible to authenticate and encrypt the contents of RAM

with reasonable performance penalties by using clever implementations of tree

data structures over the contents of RAM. However, previous work has largely

bypassed implementation issues such as power consumption and silicon area

required to implement the proposed schemes, leaving implementation details

unspecified. This thesis studies the implementation cost of AES-GCM hard-

ware and software solutions for memory authentication and encryption and

shows that software solutions are infeasible because they are too costly in

terms of performance and power, whereas hardware solutions are more feasi-

ble.
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Chapter 1

Introduction

With the advent of nearly ubiquitous, portable, and cheap computing,

sensitive data is increasingly put on mobile devices and remote servers. Ex-

amples of such data include health records, privileged discussions with lawyers

or caretakers, Social Security numbers and other identifying information, and

various forms of cryptographic keys. Users concerned about security typically

employ several protective methods to ensure the security of their data such

as passwords, disk encryption, and hardened software systems that have been

tested against attacks. However, for a motivated or ambitious attacker with

physical access to the system in question, these protections are frequently not

enough. An integral part of most modern computer systems is left largely

unprotected: Random Access Memory (RAM).

The “cold boot” attack has been shown to present serious troubles to

the security of data that is stored in the Dynamic RAM (DRAM) chips of

a modern computer[1]. In short, a cold boot attack exploits DRAM rema-

nence by first obtaining physical control of a computer while it is powered on,

then briefly interrupting power, rebooting with a custom operating system,

and dumping the still-remnant contents of DRAM out to permanent storage.
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Because power is only interrupted for a short period of time, the contents of

the DRAM chips are largely intact and can be mined offline for exploitative

material such as encryption keys. Variations on this attack include chilling

the DRAM modules before performing the attack (thereby slowing decay) and

physically transplanting the DRAM modules into an attacker-controlled sys-

tem, bypassing the need to reboot the attacked system into a new OS.

It should be noted that most cold boot attacks take place offline. Data

is read out of memory once and then post-processed for valuable information,

such as cipher keys.

Elbaz et al. [2], in a survey covering various hardware mechanisms for

memory authentication, also succinctly define active attacks based on spoofing,

splicing, and replay. These attacks are illustrated in Figure 1.1, adapted from

the same paper. In short, spoofing effectively replaces the contents of memory

at a specific address, splicing transposes memory contents from one address to

another, and replay changes the contents of an address to contents that were

previously observed at the same address. These attacks can be done online

and can enable attackers to influence program execution or reveal data, even

if the bus traffic is encrypted [3].

Other data leaks are possible, such as passive bus snooping, and can

be done while the system under attack is running. The original Microsoft

XboxTMwas compromised by the use of a cheap bus snooper that read a cipher

key sent in the clear between the processor and a peripheral, with no cold

boot attack needed [4]. Once this key was known, it was straightforward to
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Figure 1.1: Spoofing (a), Splicing (b), Replay (c) Attacks on Memory (Adapted
from Elbaz et al. [2])
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repurpose the system to run almost anything that could be compiled for it,

from new operating systems to cracked, stolen, or pirated games.

A solution to both of these types of attacks is to 1) encrypt and tag

all data that is sent to RAM and 2) authenticate and decrypt all data that is

read from RAM. Several methods for doing this are described in the survey

paper by Elbaz et al. [2]. These methods typically involve using a symmetric

key cipher to encrypt data and also building a tree structure over the contents

of RAM such that any alterations to the contents of RAM will be detected

upon reading the data back into the processor. More details will be discussed

in Chapter 2.

The objective of this thesis to provide an analysis of the feasibility

of implementation of memory encryption and authentication. This will be

accomplished by describing previous work within the field in conjunction with

a characterization of the implementation of necessary primitive operations to

provide the functionality of encryption and authentication, specifically using

the Advanced Encryption Standard (AES) cipher operated in Galois Counter

Mode. We will describe multiple software, FPGA, and ASIC implementations

of the necessary primitives with a comparison between the different methods

in terms of implementation cost, power consumption, area cost, and feasibility

of design. This thesis does not provide a new method or process for solving the

memory encryption and authentication problem, but instead seeks to provide

more perspective on the implementation concerns of previous work.

This thesis is organized as follows. Chapter 2 discusses previous work
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that has been done to prevent data compromise in the realms of both soft-

ware and hardware solutions. Chapter 3 covers the basics of the AES cipher

and modes of operation, specifically Galois Counter Mode. Chapter 4 covers

a software implementation and performance analysis of the necessary pieces

for encryption, decryption, and authentication based on a modified MiBench

Rijndael codebase. Chapter 5 details the operations of an open-source hard-

ware module capable of performing the necessary encryption, decryption, and

authentication procedures. In Chapter 6, a comprehensive analysis of the per-

formance, power consumption, and area consumption of all of the discussed

methods is presented. Chapter 7 lists several ways in which this work could

be extended and Chapter 8 summarizes the findings of this work.
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Chapter 2

Related Work

Various research groups have performed detailed analysis of the perfor-

mance impact of memory authentication and encryption and have devoted a

large amount of effort to reducing the performance penalty that is traded off

for security.

2.1 Tree-based Schemes for Memory Protection

One of the early models for protecting the contents of memory was to

build a Merkle Tree over the contents of RAM [5]. A Merkle Tree for memory

authentication uses a hash function applied to blocks of memory (typically

cache lines) to verify that the contents of a piece of RAM have not been

modified. Hashes of leaf nodes (cache lines) are then combined into blocks and

hashed again, with the process repeated until one final root hash is produced.

This root hash is kept on-chip at all times, while other levels of the tree are

able to be sent out to RAM and stored, with the assumption that any changes

to either data or hash values will produce a root hash that will not match the

one stored on the chip. The Merkle Tree can authenticate blocks in parallel

because all levels of the tree are available at authentication time but must
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update the levels of the tree sequentially whenever a leaf node is changed

because of the nature of the hashing function.

To address the problems of the Merkle Tree with sequential updates,

the Parallelizable Authentication Tree (PAT) was introduced by Hall et al.

[6]. This authentication tree functions similarly to the Merkle Tree but is

designed in such a way that both authentications and updates may be done

on all levels of the tree in parallel. Nonces are used as part of generating a

Message Authentication Code (MAC) and then those nonce values form the

next level of the tree. This procedure is repeated up to the root. Because these

nonce values may be generated at any time, this scheme allows for parallel

authentication and updates, offering a significant performance improvement

over the Merkle Tree. In the best case, an authentication or update may be

performed with a latency of one operation, whereas a Merkle Tree would have

n sequential operations where n is the number of levels in the tree.

The Tamper-Evident Counter Tree (TEC-Tree) uses a primitive known

as Block-level AREA which combines both encryption and authentication into

one operation [7]. A nonce is generated and concatenated onto every data

block (cache line) and the resulting block is then encrypted with a symmetric

key cipher operating in Electronic Code Book Mode (ECB). The nonces are

then combined into new data blocks and the procedure is repeated up to the

root, forming a tree structure. The final nonce value is held on chip in secure

storage. This tree is also able to process authentication and updates in parallel,

similarly to the PAT. An added advantage of the TEC-Tree implementation is
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that the encryption scheme used provides confidentiality for all traffic to and

from memory by encrypting it before sending to external memory, something

not provided in the Merkle Tree or PAT.

Other schemes have been devised that meld facets of multiple of the

previously described schemes. The Bonsai Merkle Tree uses a MAC function

over data blocks and then stores counter values separately in memory. Those

counter values are then put together into new blocks and the same MAC is

applied, with this process repeated until a tree structure over all of the counter

values is formed [8]. Because the counter values are smaller than the data, the

tree is smaller and therefore higher-performing. Yan et al. describe using the

AES cipher in Galois Counter Mode (GCM) to both encrypt and authenticate

memory and use a novel split counter as the seed for GCM [9]. AES oper-

ated in GCM has been a NIST standard since 2007 and has become widely

regarded as having very high performance relative to the resources needed

for implementation [10] [11]. This has the advantage of both encrypting and

authenticating, similarly to TEC-Tree, and claims a low performance penalty

due to the use of a split counter and a counter cache. The hardware and

software implementations described later in this work are very similar to the

implementation assumptions detailed in Yan et al [9].

2.2 Software Protection Against Cold Boot Attacks

Previous work has addressed cold boot and physical access attacks in

software, with no hardware modifications proposed, primarily by making sure
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that sensitive data (cipher keys) never leave the boundary of the processor.

That is, software routines are handcoded into assembly as part of the operating

system such that it is provable that operations using those routines will not

let a cipher key be stored in RAM and will, instead, keep the cipher key and

all intermediate computed data in registers [12] [13]. An extension of this is to

store one “master” cipher key in registers and then to use that key to encrypt

a section of RAM or nonvolatile storage that is used in turn to store a number

of other keys for various uses, largely bypassing the problem of limited register

space. Slowdowns in cipher performance on the order of 2-7x [12] and 2-4x

[13] are reported compared against software implementations that do not rely

on keeping keys in registers.

The protections provided by these methods largely protect small keys

that are then in turn relied upon to be used to protect the contents of non-

volatile storage via disk encryption. These methods do not provide confi-

dentiality, integrity, or authentication for arbitrary contents of RAM. While

included here for completeness, these methods are not evaluated in this thesis

as they do not provide a sufficient level of protection for the problem being

considered.

2.3 Hardware Assumptions for Memory Authentication
and Encryption

Whereas software methods have the distinct advantage of not requiring

hardware or ISA modifications, they also do not provide all of the protections
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that hardware-based solutions provide.

Kgil et al. [14] propose an architecture under the name of ChipLock.

ChipLock is based on AES for encryption and decryption and the Secure Hash

Algorithm (SHA) for verification of data. The properties of the assumed AES

unit are a latency of 32 cycles on the target system clock and a 5.3 mm2 area

in a 180nm process. The properties of the SHA unit are a latency of 160 cycles

and an area of 1.0 mm2. All cache lines are stated to be 64B in size.

Lee et al. [15] propose a secure architecture processor which selectively

encrypts and authenticates specific regions of memory based on whether or

not they are tagged to contain sensitive data. The proposed architecture

uses AES in the Cipher Block Chaining mode with a Message Authentication

Code for authentication (AES-CBC-MAC). The AES modules associated with

decryption, encryption, and MAC generation are estimated at 20, 80, and 100

processor cycles respectively. It should be noted that decryption in AES-CBC-

MAC mode may process multiple blocks in parallel, whereas encryption must

process blocks sequentially; the encryption and decryption operations are in

fact at the same speed. Therefore, there must be at least 4 separate units

employed in parallel (4 blocks of 16B each for a 64B cache line) in order to

account for the difference between encryption and decryption speeds in this

work. Overall, the overhead latencies for secure data loads, secure data stores,

and secure instruction loads are 100, 120, and 80 cycles.

Yan et al. [9] simulate a 5GHz out-of-order processor coupled with a

set of 12 AES engines operated in Galois Counter Mode (AES-GCM) that,
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together with supporting logic and a small counter cache, implements a tree-

based memory protection scheme very similar to the TEC-Tree. Each of these

engines has a 128-bit, 16-stage pipeline with a total latency of 80 processor

cycles (effectively a 1GHz AES-GCM engine). The authors state that this is

an ambitious estimate in order to account for “future technological improve-

ments.” If each of these engines were fully occupied and produced a block of

data on every 1GHz clock, each engine would then be capable of producing

128Gb of output per second. A counter cache of 32KB is coupled with the

AES-GCM engines with a block size of 64B.

Some important common characteristics to note about all of these

schemes are that they fundamentally rely upon a symmetric key block ci-

pher and some kind of hashing or MAC function to provide confidentiality,

integrity, and authentication. The best performing simulation published used

AES operated in GCM [9]. For these reasons, AES operated in GCM is used

for the remainder of this study. More specifically, this thesis studies the ci-

phering and authentication primitives and their implementation. We do not

simulate the effects of the tree-traversal algorithm or the effects of a counter

or hash cache.

These schemes also all assume that the processor is the trusted security

boundary. Anything outside of the processor is assumed fallible or insecure,

whereas the processor is assumed infallible and unable to be tampered with.
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Chapter 3

The AES Cipher and Galois Counter Mode of

Operation

The Advanced Encryption Standard (AES) was standardized in 2001

by the United States National Institute of Standards and Technology (NIST)

and is considered to be the modern standard for symmetric-key encryption and

decryption [10]. However, the description of AES by itself does not constitute

a secure way in which to use the cipher. To this end, the NIST also defines

various modes of operation in which to operate AES.

This Chapter will provide a high level description of the AES cipher,

including each of the four primitive operations that are part of the cipher. This

Chapter will also describe one particular mode of operation, Galois Counter

Mode, in a similar amount of detail. GCM is frequently used for its high

performance and minimal implementation cost in both hardware and software.

This was the reasoning used by several of the previous works described in

Chapter 2 for choosing a cipher and mode of operation and is why this thesis

uses AES and GCM for study.
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3.1 Advanced Encryption Standard

AES is a block cipher, meaning that it operates on a fixed size block

of data. In the case of AES, this block size is restricted to 128 bits. During

operation, the 128 bit data block is referred to as the “state” of the cipher

and is frequently considered to be a 4x4, column-major matrix of bytes. AES

operates on the state with four primitive operations: byte substitution, row

shifting, column mixing, and an XOR operation with a round key. Decryption

defines inverse operations for each of these primitives. These operations are

composed into either 10, 12, or 14 rounds, depending on the key size. Keys for

AES are either 128, 192, or 256 bits in size (corresponding to the 10, 12, and

14 round variants) and are expanded into the appropriate number of round

keys.

AES operates on the state in a defined sequence specified by the stan-

dard. First, the key is expanded according to the AES key schedule, which

uses operations similar to those defined below. This expands the 128, 192, or

256 bit key into 1280, 1536, or 1792 bits corresponding to the 10, 12, and 14

round variants, respectively. Each round consumes 128 bits of the expanded

key in the AddRoundKey step. After key expansion, the rounds are applied

to the data. The first 9, 11, or 13 rounds consist of applying AddRoundKey,

SubBytes, ShiftRows, and MixColumns in sequence. The last round differs

slightly, omitting the MixColumns step. After the last round has been applied,

the state of the cipher is output as an encrypted block. A similar process is

defined for decryption, except using the inverses defined for each step and in

13



Figure 3.1: AddRoundKey Operation of AES (Image NIST [10])

reverse order.

3.1.1 XOR With Round Key (AddRoundKey)

The AddRoundKey operation is a simple XOR operation, modulo 2,

that XORs the state of the cipher with the current round key, as defined by

the key schedule. The AddRoundKey operation is illustrated in Figure 3.1.

3.1.2 Byte Substitution (SubBytes)

The SubBytes operation is a non-linear, independent, invertible trans-

formation of each byte of the state. The substitution is constant or hardcoded

and specifications for the substitution table may be found in the NIST specifi-

cation for AES. This primitive is frequently implemented with a look-up-table,

either in hardware or software. The SubBytes operation in illustrated in Fig-

ure 3.2.
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Figure 3.2: SubBytes Operation of AES (Image NIST [10])

Figure 3.3: ShiftRows Operation of AES (Image NIST [10])

3.1.3 Row Shifting (ShiftRows)

The ShiftRows operation cyclically rotates the rows of the state. The

first row is not shifted, but the second, third, and fourth rows are shifted by

one, two, and three bytes, respectively. In hardware, this operation can be

implemented with simple wiring or shift registers. In software, this operation

can be implemented with memory moves, register rotation, or can be inte-

grated with other the operations of other rounds. The ShiftRows operation is

illustrated in Figure 3.3.
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Figure 3.4: MixColumns Operation of AES (Single Column) (Image NIST
[10])

Figure 3.5: MixColumns Operation of AES (State Transformation) (Image
NIST [10])

3.1.4 Column Mixing (MixColumns)

The MixColumns operation is, conceptually, a matrix multiplication

that multiplies each column of the state by a fixed polynomial defined in a

Galois Field. This can be implemented directly as a multiplication over a

Galois Field in either hardware or software or, as is frequently done, accel-

erated by pre-calculating look-up-tables for the multiplication results. The

MixColumns operation is illustrated in Figures 3.4 and 3.5.
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3.2 Galois Counter Mode of Operation

The Galois Counter Mode (GCM) of operation is standardized by the

NIST [11] and is an extension of the Counter Mode (CTR) of operation. The

Counter Mode of operation is also standardized by the NIST [16] and is shortly

described below.

3.2.1 Counter Mode

CTR mode takes a block cipher, such as AES, and generates unique

input strings that are used as the input state of the cipher. Inputs are gener-

ated by incrementing a counter, leading to the name Counter Mode. After the

block cipher has generated an output, corresponding to the encrypted version

of the counter value, the output is XORed with the actual data needing to be

encrypted. Security for this mode depends on the uniqueness of the counter

values, so a sufficiently large counter must be used to avoid reuse of a value.

output = block cipher(counter) ⊕ data block (3.1)

3.2.2 Galois Counter Mode

GCM is a variant of CTR that adds assurance or authentication in ad-

dition to the confidentiality provided by CTR, when used with an appropriate

block cipher, such as AES. By using GCM, an authentication tag is generated

in addition to the encrypted data. This tag depends upon the encrypted data.

Conversely, upon decryption, the tag is supplied in addition to the encrypted

data and is used to verify the encrypted data. If the encrypted data is changed

17



or is generated with a key that doesn’t match the expected key, it is expected

that the tag will not match and the corruption will be detected. GCM also

allows for the authentication of data that is not encrypted, referred to as “Ad-

ditional Authenticated Data.” This capability was not used for the work in

this thesis.

In the operation of GCM, encrypted data blocks are generated almost

identically to CTR mode, with the initial counter value generated from an

Initialization Vector (IV) and the incrementing function restricted to 32 bits.

A special block of all zeros is also encrypted using the block cipher and the

encrypted zero block is used to define the hash subkey for the following steps.

The hashing function of GCM that actually produces the tag takes

as input the special block described previously and all of the encrypted data

blocks. It iteratively calculates the following algorithm, where ⊕ indicates

XOR and • indicates multiplication over the binary Galois Field of 2128. The

particulars of this multiplication are beyond the scope of this thesis but may

be obtained by a number of books and papers on the subject [17]. A similar

algorithm is defined for authentication of an already-generated set of blocks

with an associated tag.

1. H = encrypt(zero block)

2. Y0 = zero block

3. for i = 1 to m, Yi = (Yi−1 ⊕ encrypted blocki) •H

18



Figure 3.6: GCM Hashing Function (Image NIST [11])

4. tag = Ym

An illustration of this same algorithm is included in Figure 3.6.
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Chapter 4

Software AES-GCM Operation

To implement AES-GCM operations in software, the Rijndael bench-

mark from the Security suite of MiBench [18] was adapted to AES-GCM op-

eration. This benchmark originally implements AES in Cipher Block Chain-

ing (CBC) mode to encrypt or decrypt files stored on disk and is written in

portable C with no inline assembly code optimizations. It is a reasonably fast

implementation of AES intended for processors that do not necessarily have

specific architectural support for cryptography operations. The first major

change was to modify the benchmark to operate on blocks strictly in memory

and not through file input/output. This was done because it is a more realistic

approximation of the way in which an integrated memory authentication and

encryption processor may operate. The second major change was to replace

the CBC mode of operation with GCM. The original MiBench code does not

include libraries that implement GCM, and specifically the Galois Field Multi-

plication operation of GCM. To address this, open source code was taken from

the public domain [19] (also the original author of the code that was adapted to

make the Rijndael benchmark in MiBench) and added to the already modified

MiBench code. After all modifications, the software implemented AES-GCM

in portable C and performed all operations in-memory by repeatedly encrypt-
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ing or decrypting a variably-sized buffer for a specified number of iterations.

Because the software was implemented this way, we believe this is a reasonable

approximation of the expected performance if a generic processing core were

embedded into the memory system of a processor and applied to the task of

memory encryption and authentication. This software assumes no specialized

hardware for cryptographic primitives.

Note that the simulations and measurements in this Chapter also in-

tentionally ignore several security concerns in the interest of making a very

forgiving test setup that gives every advantage to speed to provide a reason-

able comparison point. The processors and setups described in this Chapter

require the use of main memory themselves for both instructions and data, for

example, and these concerns would have to be dealt with appropriately.

4.1 x86 C Implementation

To profile the speed of the resulting AES-GCM code, the software was

compiled with GCC v4.7.2 with -O3 optimization enabled and evaluated on

a system running Fedora 17 GNU/Linux on an Intel Core i7-2620M proces-

sor (2.7 GHz). Other optimizations specific to x86, such as -march=native,

-maes, -mpclmul, -funroll-loops, -fomit-frame-pointer and others were enabled

and tested but did not provide any noticeable speedup for the processors eval-

uated. In order to obtain reliable measurements, power throttling was disabled

through the operating system, pinning the processor to its nominal speed of

2.7 GHz. Measurements were collected by inlining the rdtsc (read timestamp
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Table 4.1: x86 Cycles per Byte Measurements for Pure C Implementation of
AES-GCM

Buffer Size Encrypt Decrypt

32B 52.2 74.2

64B 37.8 50.4

128B 35.6 39.8

256B 28.3 35.8

512B 25.4 33.0

counter) instruction before and after the AES-GCM operation, accumulating

the number of cycles, and then by following Equation (4.1).

cycles

byte
=

accumulated cycles

num iterations ∗ buf size
(4.1)

The headers controlling various optimizations internal to the code were

configured for maximum performance, enabling loop unrolling and four fixed

tables (64 KB total) in memory for encryption, decryption, and key scheduling.

Being restricted to implementation in pure C code, the speed of the software

is restricted as well. Operations on 64B buffers with a 16B tag average on the

order of 38 cycles per byte for encryption and 50 cycles per byte for decryption.

These speeds allow a throughput of 568 Mbps and 432 Mbps, respectively, per

core. Additional speeds for a sampling of buffers sized to be on the order of

cache lines are reported in Table 4.1.
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4.2 x86 Assembly Implementation

This section will describe implementations of the same AES-GCM al-

gorithms that have been enhanced with assembly-level optimizations for the

x86 ISA.Several of these results are reported from other works and not reim-

plemented for this work.

Gladman’s software, the same codebase as used in Section 4.1, also has

x86 assembly implementations of key algorithms which reduce processing costs

to approximately 22 [20] and 30 [19] cycles per byte, a significant improvement

over the results of Section 4.1.

OpenSSL v1.0.0k [21] implements several modes of operation for AES

(though not GCM for the platforms tested) and is widely used. Speed tests us-

ing the openssl speed command report a throughput of 841 Mbps (25 cycles per

byte) and 790 Mbps (27 cycles per byte) for CBC [11] and IGE [22] modes,

respectively. OpenSSL uses x86 assembly optimizations, hence the compa-

rable but improved performance over a pure C implementation described in

Section 4.1.

An Intel whitepaper [20] describes a very high-performance implemen-

tation of AES-GCM that reaches approximately 3.5 cycles per byte for per-

forming a full encryption and tag generation, albeit for a large buffer size of

16KB and processing 4 blocks in parallel. This analysis was performed on

an Intel “Westmere” server-class processor. The Westmere series of proces-

sors have a Thermal Design Power ranging from 35-130 watts. This high-
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performance implementation takes advantage of the AES and PCLMULQDQ

instruction set extensions in modern x86 processors. The AES extensions en-

able a full round of AES encryption or decryption to be issued with a single

instruction and the PCLMULQDQ extension allows for efficient multiplication

over a Galois Field, which is critical for GCM operation.

Of notable importance is that good assembly implementations of AES-

GCM operations reduce the cycles per byte processing requirement of informa-

tion by potentially an order magnitude (2-10x) compared to portable C code,

but still require the use of a high-performance architecture and potentially

dedicated instruction set extensions to extract the most performance.

4.3 Alpha/SimpleScalar/Wattch Implementation

The same codebase detailed in Section 4.1 was also compiled for the

Alpha architecture and targeted for SimpleScalar v3.0 and, specifically, Wattch

v1.02 [23] [24]. Analysis with Wattch indicates that a software implementation

of this type of encryption and authentication process is very expensive in terms

of power. Configured similarly to a modern Intel Core i7 processor, Wattch

reports an average power consumption of more than 94 watts for a single

core running nothing but either encryption + tag generation or decryption +

authentication at 900 MHz. SimpleScalar also reports high levels of instruction

level parallelism for the AES-GCM software. A 4-wide simulated machine

averages 2.7 instructions per cycle for both encryption and decryption.

While consuming this large amount of power, the simulated processor
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is only able to sustain a throughput of 170 Mb per second with a processing

requirement of 41 cycles per byte. This is less than any of the x86 processors

measured or described previously and confirms the notion that software solu-

tions both consume large amounts of power and have restricted performance.

4.4 ARM Implementation

The previously described C code without assembly optimizations was

also ported to the ARM7 architecture and was run on the gem5 simulator (v.

stable 2012 06 28) using the detailed ARM processor model [25]. This model

approximates a modern out-of-order ARM core and was configured with 32KB

L1 instruction and data caches and a 1MB L2 cache, running at a 1GHz clock

speed. Performance statistics for a full run of the encryption and decryption

code report an average of 1.5 instructions per cycle committed. Encryption

and tag generation performed on 64B blocks comes at a processing cost of 63.1

cycles per byte while decryption and tag verification are measured to be 63.8

cycles per byte. This leads to a peak throughput of 126 Mbps.

Modern ARM cores that are similar in microarchitecture to the gem5

model, such as those offered by Samsung or Qualcomm, are designed with a

Thermal Design Power (TDP) of approximately 2 Watts per core [26] [27].
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Chapter 5

Hardware AES-GCM Operation

An open-source AES-GCM module from OpenCores was modified to

behave in a similar manner to other papers that have assumed the existence of

an authentication and encryption module [28]. The module used is intended to

be used in the 128b key mode of AES and has an integrated Galois Field Mul-

tiplier that implements the required multiplication operations for GCM. The

field multiplier is a 16b multiplier capable of processing an AES state block in

8 cycles. This strikes a reasonable tradeoff between high-width operations and

speed of processing. The AES-GCM module also has a mutable key, meaning

that the key is capable of being changed in between any major operations,

but not during an operation. This capability is important as previous works,

such as those discussed in Chapter 2, have stipulated that keys used for these

operations need the ability to be changed after certain events such as a counter

overflow or an operating system directive to flush or change keys.

The referenced open-source module used for these studies was not orig-

inally perfectly suited for comparison and a number of modifications were

made in order to make it more suitable. An additional top level module was

written to route traffic to and from a parameterizable number of the original
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AES-GCM modules. This allowed for relatively easy comparisons and mea-

surements with varying module counts without the requirement of changing

the top level interface. Several minor modifications were also made to the

original code. Some of the original state machines were modified. The GCM

specification includes the ability to authenticate additional data (AAD) that

is not encrypted. The original code faithfully includes this part of the speci-

fication, but is not needed for this study as the intention of almost all of the

referenced previous work is to encrypt all data to and from external memory.

Therefore, this capability was removed and state machines were made to more

closely adhere to only the needed capabilities.

Table 5.1 compares the modified open-source module, implemented on

a Kintex 7 FPGA, against the advertised specifications of a AES-GCM module

available through Xilinx [29]. The open-source module compares well against

the advertised specifications of the commercial module and is of slightly lower

performance with slightly lower resource usage to compensate.

The modified AES-GCM module was taken through the toolflow of

both Xilinx ISE (v. 14.3) and Synopsys Design Vision (v. E-2010.12) [30]

[31]. In both cases, up to 16 AES-GCM modules were synthesized, because it

was determined that numbers greater than 16 were increasingly prohibitively

long to synthesize and evaluate.

27



Table 5.1: Open-Source vs. Commercial AES-GCM RTL Module on Kintex 7

Metric Open Source Commercial

Startup 19 clocks 0 clocks

16B Enc/Dec 22 clocks 12 clocks

16B Tag(Hash) 17 clocks 12 clocks

64B Cache Line + Tag 123 clocks 60 clocks

Freq. Max 212 MHz 256 MHz

Logic Slices ˜800 ˜1000

Block RAMs 8 12

5.1 FPGA Implementation

Power estimates of a single AES-GCM module for the Xilinx Kintex

7 FPGA target are reported in Table 5.2. Xilinx XPower Analyzer was used

to estimate power for a single AES-GCM module with the clock speed set

to 200 MHz, slightly slower than the maximum reported attainable speed

of 212 MHz. Other settings besides clock speed were left at default for these

estimates and both the “typical” and “worst-case” power usage estimates were

collected. The typical and worst-case usage estimates seem to mainly differ in

static power dissipation, with dynamic dissipation minimally affected. Some

other settings, such as flip-flop toggle rate, were increased or decreased and

showed little variation. Changing the flip-flop toggle rate from 12.5 to 100

increased the estimated power consumption by less than 10% whereas other

settings had even lesser effects.
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Table 5.2: Power Estimates for Single AES-GCM Module

Target Clock Speed Dynamic Static Total

FPGA (typical) 200 MHz 228 mW 123 mW 351 mW

FPGA (worst) 200 MHz 230 mW 371 mW 601 mW

ASIC (typical) 225 MHz 11.956 mW 0.428 mW 12.384 mW

5.2 ASIC Implementation

Power estimates for a single AES-GCM module synthesized with Syn-

opsys Design Vision [31] and targeting the FreePDK45 library [32] are reported

in Table 5.2. FreePDK is an open-source 45nm cell library commonly used in

academic settings. The same code that was used in Section 5.1 was used for

this synthesis, with all of the modifications intact. The maximum attainable

clock speed reported by the synthesis tools was 250 MHz for a single mod-

ule and slightly lower for multiple modules; therefore the target clock speed

was set at a conservative 225 MHz for all synthesized designs. The power esti-

mates for all Design Vision designs are “typical” use case power estimates. The

FreePDK library that was used does not provide “worst case” power estimates.

5.3 Hardware Power Dissipation

Figure 5.1 provides more detailed information on the estimated power

consumption of a set of AES-GCM modules synthesized for the Kintex 7. In

order to more accurately characterize the incremental power consumption of

adding more modules, a linear regression was applied to the data, resulting in
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the following equations.

powertypical FPGA(modules) = 192.9 ∗modules+ 216.3(mW ) (5.1)

powerworst FPGA(modules) = 199.4 ∗modules+ 462.7(mW ) (5.2)

Unsurprisingly, a simple linear regression fits the power estimates very well,

indicating that adding bandwidth (modules) to a proposed system for memory

authentication and encryption should scale linearly.

Figure 5.2 shows the power usage estimates for an ASIC implementation

of the AES-GCM module(s) at a 45nm technology node. A linear fit trend was

applied to the data resulting from synthesis of 1, 2, 4, 8, and 16 AES-GCM

modules and indicates a linear increase in power consumption along with the

number of modules, resulting in the following equation.

powertypical ASIC(modules) = 11.05 ∗modules+ 2.12(mW ) (5.3)

5.4 Hardware Resource Consumption

Figures 5.3 and 5.4 provide measurements of the resource consumption

of the synthesized AES-GCM modules. In the case of Figure 5.3 the measure-

ments are of Look-Up Tables (LUTs) and Flip-Flops (FFs). Block RAMs are

not pictured because exactly 8 RAMs are required per module. In the case of

Figure 5.4 the measurements are in terms of the native unit of measurement

of the FreePDK library, which is square micrometers (µm2).
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Figure 5.1: FPGA Power Consumption Estimates for AES-GCM Modules
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Figure 5.2: ASIC Power Consumption Estimates for AES-GCM Modules
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In both the FPGA and ASIC implementations, the resource consump-

tion scales linearly with the number of instances of the module, as shown by the

following linear trend fits applied to the data for FPGA resource consumption

and synthesized ASIC area.

resourcesFPGA(modules) = 1509.7 ∗modules− 222.5(FFs)

+ 2356.2 ∗modules− 81.4(LUTs)

+ 8 ∗modules(BRAMs)

(5.4)

areaASIC(modules) = 74125 ∗modules+ 34762(µm2) (5.5)

The FPGA implementation consumes approximately 1500 FFs and 2400 LUTs

per module, which fits well with the preliminary estimate of approximately 800

logic slices per module. Each logic slice encompasses multiple FFs and LUTs in

the Kintex 7 architecture. The ASIC implementation includes all synthesized

logic, FFs, and RAMs.

Combining the results in Section 5.3 and Section 5.4, we are able to

calculate an estimate of the power
area

dissipation. These results are presented

in Table 5.3. The calculation show a relatively constant power density of

approximately 0.15 watts
mm2 .
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Figure 5.3: FPGA Resource Consumption for AES-GCM Modules

Table 5.3: ASIC Power / Area for AES-GCM Modules

Modules Area(µm2) Power(mW ) Density( W
mm2 )

1 89k 12.383 0.139

2 176k 24.732 0.140

4 343k 48.724 0.142

8 657k 95.277 0.145

16 1204k 183.162 0.152
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Figure 5.4: ASIC Area for AES-GCM Modules
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Chapter 6

Comparative Evaluation

Table 6.1 summarizes all of the relevant metrics for the various im-

plementation methods discussed in this work. The clock rates reported are

the speeds at which the modules were tested, which, in the case of the ASIC

and FPGA implementations, was slightly lower than the maximum attainable

clock speed reported by synthesis tools. The clock rates for x86 were forced to

one speed by disabling power management and the Alpha clock was fixed in

SimpleScalar. The throughput rates reported here are for 64B of data (cache

line sized) with tag generation or authentication. Encryption and decryption

speeds were averaged for each implementation for the purposes of calculating

throughput.
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Table 6.1: Summary of Different Implementation Methods

ASIC FPGA x86 x86 x86 Alpha ARM

C Assembly ISA Ext.

Clock (Hz) 225 M 200 M 2.7 G 2.7 G 2.7 G 900 M 1 G
Cycles
Byte

1.9 1.9 44 22 3.5 41 63.5

Throughput 936.6Mbps
instance

882.5Mbps
instance

490.9Mbps
instance

981.8Mbps
instance

6.17Gbps
instance

175.6Mbps
instance

126.1Mbps
instance

Typ. Power 11.05 mW 192.9 mW 35 W 35 W 35 W 94 W 2 W

(TDP) (TDP) (TDP) (TDP)

Typ. Area 74.1kµm2 - - - - - -

Mbps/mW 84.7 4.57 0.0140 0.0281 0.176 0.00186 0.063
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Table 6.2: Memory Bandwidth of Several Modern Mobile Systems

Nexus 7 Nexus 10 iPhone 5 iPad 3

Peak DRAM BW (GB
s

) 5.3 12.8 8.5 12.8

Throughput for the software implementations was calculated as follows:

throughputSW =
clock speed

num clocks/B
(6.1)

Throughput for the ASIC and FPGA implementations was calculated

as follows:

throughputHW =
clock speed

num clocks/64B
∗ 64 (6.2)

Power estimates are restated here from Figures 5.1 and 5.2, Intel doc-

umentation [33], and Chapter 4.

Once a final metric of throughput
power

has been computed, it is easier to com-

pare these different implementation methods for the task of memory encryption

and authentication. The various software solutions can be seen to be inferior

due to their high power consumption at several magnitudes lower efficiency

compared to both FPGA and ASIC implementations. ISA extensions allow

modern software solutions to eclipse the studied hardware solutions in terms of

pure performance per instance by a significant margin, but at the cost of high

power. Although not directly compared here, the area dedicated to obtaining

this functionality is also significantly smaller for an ASIC solution.
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6.1 Evaluating Feasibility of Implementation

Modern PC systems have peak memory bandwidths up to 25.6 and 21

GB
s

(204 to 168 Gb
s

) for the highest-performing desktop Intel [34] and AMD

[35] processors currently available. Modern mobile systems such as tablets

and phones are increasingly powerful as well; several representative systems

are presented in Table 6.2 [36] [37] [38] [39]. It can be seen that peak band-

width for mobile systems has almost reached parity with traditional comput-

ing systems, in packages that are more power-constrained, making feasibility

of implementation for any memory protection system even more important.

Though memory bandwidth is not saturated during typical operation,

it is easy to conclude that the capabilities provided for memory encryption and

authentication must at least meet the peak bandwidth in order to maintain

an acceptable level of performance. For example, in Yan et al. [9], discussed

previously, the bandwidth provided by the 12 AES-GCM hardware modules

would account for a peak theoretical processing rate of 1.5 Tb
s

, significantly

more than any modern system.

Using only the data for the Intel system mentioned above, we can make

an assessment of feasibility for the different methods of implementation.

6.1.1 Embedded Software Implementation

For the methods evaluated in Chapter 4, implementation of enough

x86 instances to satisfy peak bandwidth requirements of 25.6 GB
s

would take

approximately 590, 210, and 34 instances for C, assembly, and assembly with
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ISA extension methods, respectively. Implementation of enough ARM cores

to satisfy peak bandwidth requirements would take just over 1600 instances.

Implementation of Alpha cores was not considered due to extremely low effi-

ciency. The power budget and silicon area that would have to be dedicated to

any of these implementations would be tremendous and would make a design

based on these methods ultimately untenable.

6.1.2 FPGA Implementation

For the FPGA method evaluated in Section 5.1, implementation of

enough instances to satisfy the same peak bandwidth requirements would take

approximately 230 AES-GCM modules, as described in Chapter 5. This would

come at a power cost of approximately 44.7 W, following the regression curve

described previously in Chapter 5. Additionally, this number of modules would

not be able to be synthesized into the particular FPGA that was used for this

work; a larger, more expensive, and likely more power-hungry chip would have

to be used instead.

An interesting line of thought is that a much less aggressive processing

core, implemented in an FPGA, may be able to be modified with an appro-

priate number of memory encryption and authentication modules to provide

security and reasonable performance, all on the same chip. A smaller number

of modules would easily fit in the FPGA with room to spare and would not

consume a large amount of power. This warrants further research into imple-

mentation and feasibility of this specific idea, though this is out of the bounds
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of this work.

6.1.3 ASIC Implementation

For the ASIC method evaluated in Section 5.2, implementation of

enough instances to satisfy the same peak bandwidth requirements would take

approximately 220 modules as described in Chapter 5. This would consume

power at approximately 2.4 W, following the regression curve previously de-

scribed in Chapter 5. Additionally, an implementation following this method

would require approximately 16.3 mm2 of silicon area at a 45 nm process,

again following the regressions described previously.

These costs are much more reasonable than any of the software-based

or the FPGA-based solutions described in this work. In short, it seems that

implementation of memory encryption and authentication through an ASIC

solution is reasonable while software and FPGA-based solutions are simply

too power- and space-inefficient to be feasible.
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Chapter 7

Future Work

There are a number of ways in which this work can be extended. This

will be briefly discussed in this Chapter.

First, information about cache area and power should be integrated

with the AES-GCM modules. Almost all of the previous work on hardware

memory authentication and encryption designs include a cache dedicated for

use with the tags for memory blocks. These caches are an integral part of

the system and are considered to be the best way to reduce the performance

penalty of memory encryption and authentication. This was not modeled in

this work and would serve to make a more complete power and area estimation

for such a system.

Second, modeling the effect of tree-traversal for the described tree of

counter, hash, or tag values would more accurately characterize performance

and power penalties.

Third, additional data points at different process nodes for ASIC im-

plementations of AES-GCM modules would serve to better characterize this

work, especially in terms of the embedded market where process technologies

typically lag behind high-performance processes.
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Fourth, analyzing more RTL implementations of AES-GCM modules

or even other modes of AES implemented in hardware would serve to more

closely parallel previous work. Not all of the previous work in this area used

AES-GCM, and other modes of operation may have differing hardware costs.

Fifth, power annotation into a performance simulator would serve to

combine both power and performance information regarding memory encryp-

tion and authentication.
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Chapter 8

Conclusion

The work described in this thesis demonstrates that implementation

costs should be a significant factor in the evaluation of both past and future

work on topics in the field of memory encryption and authentication.

Chapter 4 covered implementation and analysis concerning software so-

lutions. Solutions ranging from a pure, portable C implementation to augmen-

tation with hand-coded assembly to full-on ISA extensions with hand-coded

assembly were considered. The conclusion was that software implementations

of the required primitives to enable AES-GCM operations and to process data

are very expensive in terms of power and do not provide a suitable amount

of performance to justify their power budget or implementation complexity.

Portable software solutions that may be considered as a “drop-in” solution

have been demonstrated to have less than acceptable performance considering

the amount of hardware and power that would have to be dedicated to run

these algorithms. Architectures with ISA extensions, such as modern versions

of x86, can perform on par with dedicated hardware, but come at the cost

of very high power dissipation. Overall, the approach of assuming a software

solution to the memory encryption and authentication problem is infeasible.
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Chapter 5 covered implementation and analysis of an open-source hard-

ware module capable of performing all of the required operations to enable a

solution to the memory encryption and authentication problem in both FPGA

and ASIC formats.

The FPGA implementation of the module shows promise as a poten-

tial solution to be added onto an existing or new design that already targets

an FPGA. The resources consumed on an FPGA are considerable for each

module and a large number of modules would quickly consume a majority

of the FPGA resources, having the effect of restricting the usefulness of the

FPGA and potentially slowing clock speeds with routing-induced delay. The

power dissipation for the FPGA implementation is non-trivial but remains well

within the capabilities of the FPGA to dissipate, as confirmed by the Xilinx

tools. However, a significant increase in dynamic power consumption can be

expected if hardware modules enabling memory encryption and authentication

functionality are added to a design previously lacking them.

Implementation of the hardware module as an ASIC at a 45 nm pro-

cess node shows promise as a reasonable, though non-trivial, solution. Power

dissipation on the order of ˜10 mW per module indicate that solutions of a

similar nature may be feasible to implement as part of a larger system. The

analysis conducted in Chapter 6 also shows that it is possible to meet the

peak memory bandwidth requirements of modern systems using modules of

this type.

The analysis of Figures 5.1 and 5.2 show a linear relationship between
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the number of AES-GCM modules and power dissipation for a design. Al-

though not unexpected, this result indicates that a design needing anything

more than minimum memory performance would need to carefully consider the

implications of power dedicated to hardware memory encryption and authen-

tication as a first-order design constraint. The works discussed in Chapter 2

assume the existence of at least one, but typically many more, engines capa-

ble of performing the low-level work necessary to encrypt and authenticate

memory traffic. This work has shown that, as more modules are assumed to

be required, area and power can become significant concerns, especially for

modern processors that have a large amount of memory bandwidth.

For systems that may not require a large number of hardware modules,

the picture is more optimistic. A small number of modules may be integrated

into a design without too much of a power or area requirement. For small num-

bers, power dissipation would only increase a maximum of a few dozens of mW

and area would increase by approximately 1 mm2, assuming a 45 nm process.

The integration of these modules, along with some additional hardware such

as a dedicated counter cache and appropriate control logic would contribute

significantly to enabling secure memory encryption and authentication.

This work contributes an analysis of the feasibility of memory encryp-

tion and authentication for the implementation methods included in previous

Chapters. We have expanded the work done by previous researchers by tak-

ing an in-depth look at the characteristics of several implementations of the

necessary primitives to enable memory encryption and authentication, leading
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to the conclusion that additional power dissipation and area usage will have

to be a first-order design constraint and that the only feasible implementation

method is with ASICs integrated directly into the design of a system.
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