
PIMSAB: A Processing-In-Memory System with Spatially-Aware Communication
and Bit-Serial-Aware Computation

SIYUAN MA, University of Texas at Austin, USA

KAUSTUBH MHATRE, Arizona State University, USA

JIAN WENG, King Abdullah University of Science and Technology, Saudi Arabia

BAGUS HANINDHITO, University of Texas at Austin, USA

ZHENGRONG WANG, University of California, Los Angeles, USA

TONY NOWATZKI, University of California, Los Angeles, USA

LIZY JOHN, University of Texas at Austin, USA

AMAN ARORA, Arizona State University, USA

Bit-serial Processing-In-Memory (PIM) is an attractive paradigm for accelerator architectures, for parallel workloads such as Deep

Learning (DL), because of its capability to achieve massive data parallelism at a low area overhead and provide orders-of-magnitude

data movement savings by moving computational resources closer to the data. While many PIM architectures have been proposed,

improvements are needed in communicating intermediate results to consumer kernels, for communication between tiles at scale, for

reduction operations, and for efficiently performing bit-serial operations with constants. We present PIMSAB, a scalable architecture that

provides a spatially aware communication network for efficient intra-tile and inter-tile data movement and provides efficient computation

support for generally inefficient bit-serial compute patterns. Our architecture consists of a massive hierarchical array of compute-enabled

SRAMs (CRAMs), which is codesigned with a compiler to achieve high utilization. The key novelties of our architecture are (1) in

providing efficient support for spatially-aware communication by providing local H-tree network for reductions, by adding explicit

hardware for shuffling operands, and by deploying systolic broadcasting, as well as (2) by taking advantage of the divisible nature of

bit-serial computations through adaptive precision and efficient handling of constant operations. These innovations are integrated into a

tensor expressions-based programming framework (including a compiler for easy programmability) that enables simple programmer

control of optimizations for mapping programs into massively parallel binaries for millions of PIM processing elements. When compared

against a similarly provisioned modern Tensor Core GPU (NVIDIA A100), across common DL kernels and end-to-end DL networks

(Resnet18 and BERT), PIMSAB outperforms the GPU by 4.80×, and reduces energy by 3.76×. We compare PIMSAB with similarly

provisioned state-of-the-art SRAM PIM (Duality Cache) and DRAM PIM (SIMDRAM), and observe a speedup of 3.7× and 3.88×
respectively.

CCS Concepts: • Hardware → Memory and dense storage; • Computer systems organization → Other architectures.

Additional Key Words and Phrases: Processing-in-Memory, Bit-Serial Computing, Accelerators, Compilers, Machine Learning

Authors’ addresses: Siyuan Ma, siyuan.ma@utexas.edu, University of Texas at Austin, Austin, TX, USA; Kaustubh Mhatre, kmhatre@asu.edu, Arizona
State University, Tempe, AZ, USA; Jian Weng, jian.weng@kaust.edu.sa, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia;
Bagus Hanindhito, hanindhito@bagus.my.id, University of Texas at Austin, Austin, TX, USA; Zhengrong Wang, seanzw@ucla.edu, University of California,
Los Angeles, Los Angeles, CA, USA; Tony Nowatzki, tjn@cs.ucla.edu, University of California, Los Angeles, Los Angeles, CA, USA; Lizy John,
ljohn@ece.utexas.edu, University of Texas at Austin, Austin, TX, USA; Aman Arora, aman.kbm@asu.edu, Arizona State University, Tempe, AZ, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

2 Ma et. al

ACM Reference Format:
Siyuan Ma, Kaustubh Mhatre, Jian Weng, Bagus Hanindhito, Zhengrong Wang, Tony Nowatzki, Lizy John, and Aman Arora. 2025.

PIMSAB: A Processing-In-Memory System with Spatially-Aware Communication and Bit-Serial-Aware Computation. 1, 1 (Janu-

ary 2025), 25 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Bit-serial Processing-In-Memory (PIM) is a promising accelerator paradigm [10, 12, 19, 20, 27] with both high compute

density and abundant on-chip memory capacity, especially considering the recent surge in demands on computing power

and memory bandwidth in multiple application domains, including but not limited to deep learning, image processing,

and signal processing. The essential principle of this paradigm is to integrate a single-bit processing element (PE) at the

output of the sense amplifier under each bitline of a memory array so that massive data parallelism can be exploited over

a transposed data layout.

This technology provides compute density that is competitive with the state-of-the-art GPUs. The theoretical throughput

of a PIM system based on prior technologies [5, 10] is in the range of 310-340 GOPS/mm2 for int8 precision, for the

same area and DRAM bandwidth as that of an NVIDIA A100 GPU. The GPU has a much lower vector throughput

of 24 GOPS/mm2, but has a higher throughput of 755 GOPS/mm2 for Tensor Cores. However, Tensor Cores can only

achieve high utilization for specific kernels and parameters. In addition, bit-serial PIM supports arbitrary precision, which

can be extremely beneficial for saving memory bandwidth and increasing compute throughput. The paradigm keeps

data near compute units to avoid data movement overhead and thwart the memory wall [41]. Overall, bit-serial PIM is a

promising paradigm that has competitive compute density without needing specialized units like Tensor Cores and can be

a path-forward for DL workloads.

State-of-the-art PIM systems [12, 16] have showcased improved performance compared to previous generation GPUs.

To make PIM systems outperform the state-of-the-art GPUs, we need to fully unlock the potential of the PIM paradigm

by taking a system-level approach - co-optimizing hardware and software. Hardware should be carefully architected,

given the area budget, to optimize computation and communication. Prior works [10, 16] ignore the overhead in on-chip

data communication, which is significant without hardware specialization for common data access behaviors. Similarly,

the software can be tuned to make better use of the underlying hardware. Prior works [12, 16, 31] do not enable the

software to take advantage of the hardware’s bit-serial nature to perform optimized data allocation and computation.

Also, though some prior works claim to have a full-stack implementation [12], their programming interfaces are rather

low-level. These low-level interfaces limit the productivity of both application development and performance tuning.

Furthermore, other PIM systems are either cache-based or DRAM-based requiring new system-level execution models.

Such limitations of existing PIM systems motivate us to build a PIM accelerator with easy programmability that can

outperform state-of-the-art GPUs and contemporary PIM systems by incorporating multiple novel features that optimize

both computation and communication.

Our goal is to build a Processing-In-Memory (PIM) system - ISA, microarchitecture and compiler - that can exceed the

performance and energy efficiency of similarly-provisioned GPUs and prior PIM systems, with a focus on DL workloads.

There are two key principles that form the basis of our proposed design: 1. We optimize on-chip communications to
be spatially-aware: H-tree interconnect topology for faster reductions at lower level of hierarchy & dynamic routing

at higher level of hierarchy for scalability, explicit hardware for shuffling (multicasting and broadcasting) operands for

common data patterns in DL workloads, and systolic broadcasting. 2. We optimize bit-serial computations that are

common in PIM architectures: memory allocation and cycles required can expand/shrink dynamically based on precision
Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

PIMSAB 3

requirements (adaptive precision) and bit level sparsity can be exploited using constant operations saving space & time.

Operations such as reductions, constant multiplication, multicasting, broadcasting are common in workloads like DL.

Our overall system is a hierarchical and spatial PIM accelerator, abbreviated as PIMSAB. PIMSAB uses a hierarchical

structure, where each tile is composed of many SRAM arrays capable of bit-serial PIM, along with an instruction controller

that broadcasts commands to SRAM arrays in its tile. The ISA enables efficient expression of mixed scalar/vector program

regions. The intra-tile network is simple and static for low overhead, and uses an H-tree topology [6] to facilitate

high-bandwidth reduction. At the inter-tile level, tiles communicate explicitly, and routing is done over a dynamically

routed network to enable flexible parallelization strategies. Further, a mesh-based topology enables scalability to arbitrary

sizes. PIMSAB’s programming interface is based on the TVM tensor DSL [8], which can be used to express a wide

range of applications, including linear algebra, neural networks, and stencil processing. With moderate hints from the

developers, the compiler can easily generate portable and high-performance code, by partitioning work across millions of

PEs and balancing buffer occupancy and data parallelism.

Our evaluation shows that with sufficient co-design, PIMSAB can rival and surpass state-of-the-art GPUs as well as

prior PIM systems. Specifically, we achieve 4.80× speedup over NVIDIA A100, while having 3.76× energy improvement

for the same area and the same memory bandwidth. We also observe a speedup of 3.7× with similarly provisioned

state-of-the-art SRAM PIM (Duality Cache), and a speedup of 3.88× with similarly provisioned state-of-the-art DRAM

PIM (SIMDRAM). To sum up, the contributions are:

• A hierarchical and spatial PIM system with an ISA, a microarchitecture, a compiler and a programming interface.

– A microarchitecture that deploys dual-ported SRAM arrays with configurable PEs for PIM, without any

modifications to the internal SRAM array as opposed to some of the prior works [10, 12].

– An ISA that exposes PIM-specific features of the hardware that can be utilized by the compiler.

– A compiler that can automatically tune the parallelism and on-chip buffer allocation, with moderate hints from

the application developer.

– A user-friendly programming interface using TVM Tensor DSL.

• Employing techniques for spatially-aware communication (shuffle hardware, H-tree for efficient reduction, systolic

broadcasting) and bit-serial-aware computation (constant operations, adaptive precision) for high performance.

• Demonstration of GPU-outperforming performance and energy efficiency across both DL microbenchmarks and

end-to-end Deep Neural Networks (DNNs).

• Comparison with SOTA SRAM and DRAM PIM systems, showing improved performance for realistic benchmarks.

2 BACKGROUND

2.1 Bit-serial Processing-In-Memory in SRAMs

Bit-serial computing paradigm performs operations on data bit-by-bit instead of element-by-element. This makes each

operation take many cycles, but massive parallelism can be achieved by utilizing simple 1-bit processing elements,

enabling high throughput. Bit-serial Processing-In-Memory combines bit-serial computing with Processing-In-Memory.

Analog approaches to bit-serial PIM [22?] require analog-to-digital and digital-to-analog converters, have high power

consumption, and are therefore, not considered in this work. In digital approaches, 1-bit processing elements (PE) are

added to an SRAM block. To provide operands to the PEs, two methods are used: (1) activating multiple wordlines at

the same time on one port [1, 3, 10, 12], (2) using dual ported RAMs to read two wordlines at the same time [5]. Table

1 compares various properties of the compute capable SRAM blocks that use these two methods. We use the second
Manuscript submitted to ACM

4 Ma et. al

Table 1. Single-port based vs. dual-port based SRAM PIM

Feature Single Port Based Dual Port Based
Activate two wordlines at the same time on one port Yes No
Requires extra voltage source Yes No
Requires extra row decoder Yes No
Requires modification to sense amps Yes No
Compute uses dual-port behavior No Yes
Generic/Flexible PE No Yes
Cross-RAM shift No Yes
Examples [1, 3, 10, 12] [5]

Wordlines

A[0]
A[1]
A[2]
A[3]
B[0]
B[1]
B[2]
B[3]

A i
i+1
i+2
i+3
j
j+1
j+2
j+3

B

C[0] k
C[1] k+1

k+2
k+3

C[2]
C[3]

C

Bitlines

❶Read

❷Compute

❶Read

❸Write

Processing
Elements

Fig. 1. Basics of bit-serial Processing-In-Memory

1 # Vecadd Implementation in Tensor DSL
2 n = 120*256*256
3 a,b = tensor((n,),i32),tensor((n,),i32)
4 i = loop(n); a[i] = b[i] + c[i]

1 # Parallelism distributed
2 tile x in 0..120
3 array y in 0..256
4 bitline z in 0..256 {
5 i = x*65536+y*256+z
6 a[i] = b[i]+c[i] }

1 # Code Organization API
2 io,ii = split(i, 256)
3 ioo,ioi = split(io, 256)
4 parallel.bitline(ii);
5 parallel.array(ioi);
6 parallel.tile(ioo)

Tiles x=0..120

...

...

Arrays y=0..256

B/l z=0..256
...

Fig. 2. Programming PIMSAB in tensor DSL.

Ctrl Ctrl Ctrl Ctrl

Ctrl Ctrl Ctrl Ctrl

Ctrl Ctrl Ctrl Ctrl

Ctrl Ctrl Ctrl Ctrl

…

N

S

E

W

DRAM

N

S

E

W

Ro
w

 D
ec

od
er

Precharge

Write Driver &
Sense Amp.

Precharge

Write Driver &
Sense Amp. O

pe
ra

nd

Po
rt

 B
Ro

w
 D

ec
od

er

O
pe

ra
nd

Po

rt
 A

Compute Logic: A op B
DRAM

Arbiter

Instruction
Controller

(a) Tiled Architecture

(c) CRAM Tile

(b) NoC Router

(d) CRAM Array u-Arch

Register File

H
-Tree Topology

Inst. Que.

From PCIE

Dynamic
Mesh.

Fig. 3. PIMSAB hardware architecture

method in PIMSAB because this method is more robust and does not modify the memory array (e.g. modifications to

sense amplifiers, requiring extra voltage source, adding an extra row decoder).

Figure 1 shows the basic principle of bit-serial In every cycle, two wordlines containing a bit of each operand are

activated, the processing element performs the computation and the result is written into a wordline. Operations such

as addition, multiplication, etc. can be performed by repeating this basic step over multiple cycles. We refer the reader

to Neural Cache [10] for a detailed description of the algorithms for various operations. Note that floating-point and

transcendental operations are also supported [12, 19]. processing in memory.
Manuscript submitted to ACM

PIMSAB 5

The challenges in prior PIM systems include (1) high on-chip communication overhead in moving partial results across

the chip and in organizing the data in the right layout, especially in large systems with thousands of RAMs, even though

the off-chip memory traffic is reduced, and (2) bit-serial compute takes a large number of cycles, especially when the

precision expands because compilers allocate number of bits based on traditional paradigms (e.g. int8 ∗ int8 −> int32) .

2.2 Tensor Domain-Specific Language (DSLs)

DSLs, like Halide [32], TVM [8], and Tensor Comprehensions [38], are developed to productively write high performance

tensor programs. The idea is to decouple the algorithm and the performance tuning controlled by loop re-organization.

Consider the vector addition implementation in Figure 2: Loop variables and tensors are first declared, then a vector

addition is implemented in an expression involving these declared variables. DSL allows us to tune the algorithm at an

abstract level orthogonally with the specific problem tiling and mapping for a specific hardware. By tiling, ordering, and

annotating the loops, the parallelism in the program can be mapped onto our hardware hierarchies.

3 OVERVIEW

3.1 Hardware Organization

Figure 3 provides an overview of the hardware organization of PIMSAB. The PIMSAB hardware deploys a large number

of compute-enabled SRAMs (or CRAMs). Each CRAM is a dual-ported SRAM modified to add multiple single-bit PEs.

We base our CRAM design on CoMeFa [5], because of its more practical design compared to Neural Cache [10]. We use

their basic block to build a large scalable network of CRAMs with several enhancements for both communication and

computation, allowing the PIM to operate efficiently at scale.

To communicate between the CRAMs, a statically scheduled network is chosen, since most communication patterns

are identifiable at compile time. We choose an H-Tree topology for this network, because it is well suited for partial sum

reduction, a common computation pattern in DL and many modern applications. Statically scheduling the entire chip

would put too much burden on the compiler. So, we introduce another level of hierarchy: tiles. Tiles communicate using a

dynamically scheduled packet-switched NoC. We choose a 2D mesh topology for the NoC because this enables scalability.

The NoC is used to send and receive data across tiles and to/from DRAM. Having parallelism at 3 levels of hierarchy -

CRAM, tile, chip - enables PIMSAB to capture different types of parallelism in highly data-parallel applications.

Each CRAM needs to be fed micro-ops to perform computation. An instruction controller decodes the instructions

and provides micro-ops to the CRAMs every cycle. However, connecting an instruction controller to each CRAM would

result in significant overhead. We reduce this overhead by having one instruction controller in a tile, making CRAMs in

each tile operate in a SIMD fashion.

The PIMSAB system defines three memory locations: main memory (DRAM), CRAMs and register file. HBM (High

Bandwidth Memory) DRAM is adopted to sustain the high bandwidth required by massive parallelism. To simplify

physical design, DRAM controllers are connected to the routers at the edges of the NoC. For similar reasons, we connect

all DRAM controllers to the top edge of the mesh NoC. A register file is provided in each tile to store constants or scalars.

We assume a PCIe interface, both for loading instructions and for transferring data (like GPUs).

3.2 System Architecture

Figure 4 shows a system level diagram of PIMSAB interfaced with a host machine. PIMSAB is an accelerator/device

connected to the host via a PCIe interface, similar to a GPU. Instructions and data are communicated over the PCIe link.
Manuscript submitted to ACM

6 Ma et. al

PIMSABHOST

DRAM
CPU

DRAM

PCIE
interface Ctrl

1

2

3

4

5

CtrlCtrl

Ctrl Ctrl Ctrl

Ctrl

Ctrl

InstInstInstInst

Inst Inst Inst Inst

Fig. 4. System Level Architecture

We explain the system-level data flow of a vector addition example as follows. 1 The two input vectors to be added are

moved from host DRAM to PIMSAB DRAM. 2 Instructions of a compiled vector addition program are streamed from

the host to instruction queues in PIMSAB. 3 The instructions are decoded by the instruction controllers and executed

within the tiles - computations happen in CRAMs using the PEs and communication happens via on-chip networks. 4

During instruction execution, the input vectors are loaded into CRAMs from the PIMSAB DRAM and the result vector is

stored into the PIMSAB DRAM after computation. The output vector is then transferred back to the host DRAM 5 .

Any intermediate synchronization between the host CPU and the device also happens via PCIe.

3.3 Enabling Scalable and Performant Processing-In-Memory

In this section, we present the innovations - for spatially-aware communication and for bit-serially-aware computation -

that make PIMSAB a scalable and performant PIM system. We provide a high-level overview of these innovations here;

details are provided in the upcoming sections.

Register File and Constant Operations: A frequent operation in applications such as DL is multiplying a scalar (or a

constant) with an array or vector operand. With the computation paradigm of bit-serial PIM, we would have to replicate

this scalar over multiple bitlines in the CRAM. A more efficient way is to keep scalars outside the CRAM and perform

what we call constant multiplication (explained in Section 4.2). To store these scalar operands, we introduce a register file

(RF) in each tile. Additionally, this approach can enable exploiting bit-level sparsity in the constant operand by skipping

operations for zero-bits, leading to up to 2× speedup in operations like multiplication and 4× speedup in operations like

dot product. This feature is exposed to the compiler through the ISA (mul_const instruction).

Dedicated Shuffle Hardware: When data is loaded from the DRAM, it often needs to be broadcasted or multicasted to

various CRAMs in different patterns to avoid loading data multiple times or to ensure high utilization of CRAMs in a tile.

In addition to just loading data from DRAM, broadcasting or multicasting is useful when data is transferred from one tile

to another, or from one CRAM to another, or from one bitline in a CRAM to other bitlines. We provide explicit hardware

near each CRAM to support this. Several multicast and broadcast patterns are supported, governed by the requirements of

common workloads such as GEMM.

Adaptive Precision: Since PIMSAB uses bit-serial operations, any precision is supported, including floating point (for

algorithms of operations using various precisions, we refer the reader to [10, 12]). In PIMSAB ISA, the precision for

each operand can be specified separately. This capability of specifying a custom precision at operand granularity enables

using just the number of bits that are required and allocating only the required number of wordlines. For example, when
Manuscript submitted to ACM

PIMSAB 7

multiplying numbers of precision 8 and 10, 18 wordlines can be allocated to store the result, instead of 32 bits as in a

normal CPU. Our compiler exploits this feature to pack as many operands as possible in each bitline (enabling high

reuse), even splitting portions of an operand across non-consecutive wordlines, and saving wordlines while performing

accumulations by directly adding to those that already have partial results instead of allocating new wordlines.

Cross-CRAM Shift: Shifts are commonly used in operations like stencils, filters, etc. Vectorization widths in PIM

architectures can get really large (e.g. in PIMSAB, the vectorization width for maximum utilization is 256*256).

Supporting only intra-CRAM shifting (i.e. shifting data from a bitline to the next within a CRAM using connections

between PEs) limits the utility of the shift operation to only a CRAM. To support shifting data from a bitline to the next

across the whole vectorization width, we provide CRAM-to-CRAM shift connections within a tile. This gives PIMSAB

the ability to perform filters and stencils much more efficiently.

Systolic Broadcasting: Chip level communications, such as broadcast, are essential for workloads such as convolutions,

where weights need to be broadcasted to multiple tiles. However, naive broadcast algorithms, like one-to-many transfers,

can cause extreme network congestion and overheads. To optimize this, we support a near-neighbor systolic-like data

transfer supported in hardware and exposed to the compiler through the tile_bcast library function. This efficiently

utilizes the available NoC bandwidth and reduces congestion.

Transposing data: An important feature of bit-serial PIM approaches is the requirement of storing data in a transposed

format in the PIM-enabled memory blocks. Transposing data can be challenging and can become a bottleneck in achieving

high performance. For DL inference, weights can be transposed prior to execution and stored in DRAM. However, this

optimization can not be applied for inputs or activations. We tackle this challenge by adding dedicated transpose hardware

in the DRAM controllers used in PIMSAB. This hardware can be enabled or disabled as needed using instructions.

Hierarchical Interconnect: A two-tiered interconnect is used in PIMSAB. A statically scheduled H-tree interconnect

topology at the lower (intra-tile) level is orchestrated internally by each tile’s controller and a dynamically scheduled

mesh interconnect topology at the higher (inter-tile) level is distributively manipulated by dynamic data packets.

The lower level interconnect enables faster reductions due to H-tree topology and reduces area overhead by simple

switch designs. The higher level mesh interconnect reduces the compiler’s burden to schedule communications and allows

more flexible communication patterns. As a result, combining those two levels increases the scalability of PIMSAB.

4 ARCHITECTURE

4.1 Instruction Set Architecture (ISA)

In this section, we elaborate the PIMSAB ISA, including Compute, Data Transfer and Synchronization instructions.

Compute Instructions: Compute instructions support arithmetic and logical operations (add, mult, or, and, xor, max,

and min), operate on data in the CRAMs, and are vectorized across bitlines. We also support inter-bitline instructions, like

shifting data across bitlines (shift). Instructions to reduce data within a CRAM (reduce_cram) and across the CRAMs

in a tile (reduce_tile) are also provided. We also provide an instruction, set_mask, which copies the data of wordline

into the mask latches in PEs, to enable predicating operations per bitline. Additionally, each instruction has a field to

specify what should be used for predication - the mask latch or the carry latch (Section 4.2 describes the PE architecture

including the latches). Precision of each operand can be expressed in the instruction through the pr* fields. Exposing

precision through the ISA provides more control to the programmer over the benefits of adaptive precision. In most cases,

all compute instructions are executed across all the CRAMs in tile, but we also provide a field (called size) to specify the

number of bitlines involved in the operation across the tile.

Manuscript submitted to ACM

8 Ma et. al

Operations with scalars or constants: For multiplication operation, a special instruction called mul_const is provided

where one operand is from the RF (scalar or constant), instead of being replicated in the CRAM. This instruction skips

zeros in the constant operand in the RF, reducing the execution time.

Data transfer instructions: These instructions are used to move data between the DRAM, CRAMs, the RF. Specifically,

we support bidirectional data transfer between DRAM and CRAMs (load and store), as well as DRAM and the RF

(load_rf and store_rf). We support transferring data between CRAMs within a tile (cram_tx_rx), and transferring

data between tiles (tile_tx and tile_rx). Such communication blocks the receiver until the data arrives. Broadcasting

from one tile to other tiles is supported by a library function called tile_bcast. Two modes of broadcasting are supported

- (1) one_to_many, in which one tile sends data to all receivers, and (2) systolic, in which each tile receives data from one

neighbor and passes it to another neighbor.

Data shuffling instructions: When loading data from DRAM into CRAMs, the shuffling can be enabled by using the

load_shf instruction. The shf argument specifies the shuffling pattern and the bcast bit specifies whether broadcast is

enabled or not (see the Shuffle Logic sub-section of Section 4.2 for details). Furthermore, we provide the capability to

shuffle data that is already stored within a CRAM, using the cram_local_shf instruction.

Synchronization instructions: These instructions coordinate data transfers and computations among tiles. Two syn-

chronization instructions provided are signal and wait. signal sends a message from a source CRAM to a destination

CRAM and is non-blocking. A CRAM can wait for a message (blocking) from a source CRAM using the wait instruction.

Transposing data: In load and store instructions, besides the source address, destination address, size and precision, there

is an additional tr field specifying if the data is transposed or not. This can be used when, e.g., an immediate/constant

operand read from the main memory need not be transposed.

Program example: A simple elementwise vector multiplication is shown in Listing 1. The program generates an

instruction stream for all tiles in the chip (NUM_TILES). Two operand arrays, each with elements of precision int8, are

loaded from the main memory. vec_width is specified to be the full width of a tile. Then a multiplication instruction is

used to generate a result with precision int6. The result is then stored back in the main memory.

Listing 1. Simple program to add two arrays
int vec_width = NUM_CRAMS_IN_TILE * NUM_BITLINES_IN_CRAM;
for (i = 1; i<NUM_TILES; i++) {

load tile_addr1 , dram_addr1 , vec_width , i8
load tile_addr2 , dram_addr2 , vec_width , i8
mult tile_addr3 , i16 , tile_addr2 , i8, tile_addr1 , i8
store dram_addr3 , tile_addr3 , vec_width , i16 }

4.2 Microarchitecture

Here we discuss PIMSAB’s microarchitecture. Table 2 provides a list of hardware parameters.

CRAMs: We employ dual-ported compute-enabled RAMs (called CRAMs) similar to CoMeFa [5]. A CRAM has two

modes: compute and memory. In compute mode, a data word written into the memory is treated as a micro-op. Each

micro-op takes 1 cycle during which two wordlines are read (one on each port), computation is performed in the PE, and

the result is written into a wordline. In memory mode, the CRAM behaves like normal RAM. CRAMs are grouped into

tiles; all CRAMs in a tile execute in lock-step in a SIMD fashion (except when executing CRAM-to-CRAM data transfer

or inter-CRAM intra-tile reduction). CRAMs in a tile are connected using the intra-tile network. In addition, there is a

single wire ring interconnect between all CRAMs in a tile to facilitate shift instructions.

Processing Element (PE): PIMSAB adopts the PE architecture from CoMeFa [5], as shown in Figure 5. Each PE can

perform any logical operation between 2 operands, using the TR mux. The TR mux allows the PE to be more flexible,
Manuscript submitted to ACM

PIMSAB 9

Table 2. Microarchitectural parameters of PIMSAB

Parameter Value
CRAM geometry 256x256
PEs per CRAM 256
CRAM size 8 KB
Mesh dimensions 12x10
DRAM bandwidth 12288 bits/clock
Clock frequency 1.5 GHz
Num tiles 120
Num CRAMs per tile 256
Total CRAMs 30720
RF size 32 32-bit regs
Tile-to-Tile bandwidth 1024 bits/clock
CRAM-to-CRAM bandwidth 256 bits/clock

TR_0

SA1

TR_1

TR_2

TR_3

WD2 WD1
SA2

cout

C
S

mask

m_end_out2d_out1c_en
d_in1d_in2

vdd

wps1
wps2

to
left PE

from
left PE

predicate

write
sel1

write
sel2

from
right PE

BL1
BLB1

BL2
BLB2

A B

TR

P CARRY

C

W1W2

M

X

c_rst m_rst

to
right PE

Fig. 5. Processing element used in CRAMs

Top
Right

Bottom
Right

Bottom
Left

Next
Level

Top
Left

Top
Right

Bottom
Right

Bottom
Left

Next
Level

Switch

Egress

Ingress

Top
Left

Fig. 6. Structure of a switch in the intra-tile H-Tree network

DRAM
Buffer

N

S

W

E

Tile

DRAM

N

S

W

E

Tile

DRAM

Arbiter

Fig. 7. Structure of a router in the inter-
tile mesh network

compared to [10]. With the addition of an XOR gate (X), it can perform a 1-bit full adder operation. A carry latch (C) is

used to store the carry-out, which can be used as carry-in for the next timestep. The output of the TR mux can be stored in

the mask latch (M). Predication based on mask bits and carry bits is supported, through the predication mux (P). There are

as many PEs in a CRAM as many bitlines. The operation performed by the PE is governed by the micro-op received by

the CRAM from the instruction controller. The micro-op bits are decoded in the CRAM’s sequencing logic and generate

the various control signals present in the PE. The write select muxes W1 and W2 select what to write back to the bitlines

using the write drivers - data from left or right PEs, or the sum or carry output calculated by this PE. In each cycle, the PE

receives two bits of operands from the sense amplifiers and performs the operation specified by the micro-op. The result

of the operation is then written back into the CRAM through the write drivers (unless predicated off).

Instruction controller: Instructions are received from the HOST over PCIe. Each tile has an instruction controller

to decode and farm-out execution to corresponding units. For compute instructions (add, multiply, reduction, etc.), it

generates micro-ops for the CRAMs every cycle. For data transfer instructions (CRAM-to-CRAM transfer, tile-to-tile

transfer, DRAM transfers), it reads the CRAM and sends data into the static network’s switches, and also writes data

coming in from the switches into the CRAMs.

Inter-tile dynamic network: The inter-tile network uses a standard wormhole-switched dynamic NoC, with X-Y routing.

Each router, shown in Figure 7, has a crossbar connecting 5 input and output ports - local tile, north, south, west, east.

Routers connected to DRAM have an extra input/output port to receive/send data from/to DRAM. The transferred data is

broken into flits (flow control units). Each input port has multiple circular queues to buffer input flits into multiple virtual
Manuscript submitted to ACM

10 Ma et. al

Top
Right

Bottom
Right

Bottom
Left

To/From
Router

Ingress

Top
Left

[0:255]

[0:255]

Egress

[0:255]

[256:511]

Egress

[0:255]

[512:767]

Egress

[0:255]

[768:1023]

Egress

Broadcast
enable

Broadcast
enable

Broadcast
enable

Broadcast
enable

Fig. 8. Shuffle logic at input of each tile in PIMSAB

channels. Upon sending, header and data flits are pushed into a circular queue of the local tile port one after another. Each

router performs wormhole switching on the incoming flits. Upon decoding the flit header, the router controller performs

minimal routing to route incoming flits towards their destination. Upon receiving, data flits are popped from one of the

input queues selected by the crossbar. Due to simple flow-control and routing strategy, small flit and queue sizes, area and

power overheads of routers are minimized.

We choose a mesh topology to connect the tiles as opposed to a ring topology. A mesh topology helps in scalability and

reduces the burden on the compiler. Section 7.7 shows the advantage of mesh topology compared to the ring topology.

Intra-tile static network: The intra-tile network is a static circuit-switched network using an H-Tree topology. This is

similar to a hierarchical FPGA [2, 36], but with a much smaller configuration overhead because of the coarser granularity

(word-level instead of bit-level). Figure 6 provides the details of the microarchitecture of a switch in the intra-tile network.

Each switch is a buffered crossbar with 5 ingress (input) and egress (output) ports. Each output port can be driven by

the other 4 input ports - three from other directions at the same hierarchical level and the fourth from the next level of

hierarchy (shown using separate colors in the figure). There is one switch at the top of the tile that interfaces with the NoC

router of the inter-tile network. For a tile with 256 CRAMs, there are four levels of switches, for a total of 1+4+16+64=85

switches. The last set of 64 switches are connected to 256 CRAMs. The intra-tile network reconfigures its switches when

a incoming data transfer instruction indicates new communication pattern.

Reductions can be performed on data within a single CRAM, using an algorithm similar to [10]. We refer to this as

intra-CRAM reductions. This method requires iteratively shifting values across bitlines and adding them. Moving bits to

adjacent bitlines takes 1 cycle, but moving bits to a bitlines N-bitlines away takes N cycles, because each bit has to be

shifted cycle-by-cycle, based on the connectivity across PEs provided in the CRAMs. The number of cycles consumed in

the reduction operation is linearly related to distance (in terms of bitlines). Furthermore, the number of bitlines utilized

reduces as the reduction operation progresses, and the result is available in the first bitline of the CRAM.

The H-Tree topology in PIMSAB facilitates pairwise reduction across multiple CRAMs. We refer to this as inter-CRAM

(or intra-tile) reduction. Data to be reduced are transferred across pairs of CRAMs through levels of the H-Tree and added

at each level. Therefore, the reduction time is logarithmically related to the number of CRAMs that the operand occupies.

As a result, inter-CRAM reduction is more efficient than intra-CRAM reduction and is prioritized by our compiler. The

number of utilized CRAMs in a tile reduces as the reduction operation progresses, and the results are available in the first

CRAM of each tile.

Shuffle logic: Operations like GEMM and convolution can greatly benefit from custom data layout patterns. E.g. we may

need a data element to be duplicated in each bitline or repeated every 4 bitlines in a CRAM. These custom layout patterns

can be achieved by data duplication in the CRAM thereby avoiding unnecessary traffic from/to DRAM. We refer to this
Manuscript submitted to ACM

PIMSAB 11

duplication of data in various layouts as shuffling. We implement dedicated hardware in PIMSAB to enable efficient

shuffling of data. This hardware is implemented in two parts. The first part is implemented at the input of each tile, by

employing careful modifications to the structure of the top-level intra-tile switch. This hardware provides the capability to

broadcast data received at the top of the tile to each CRAM in the tile. The second part is implemented at the input of each

CRAM. Additional multiplexing hardware is provided to enable common data patterns observed in the DL benchmarks.

Figure 8 shows the modifications done to the top-level intra-tile switch to support shuffling. The data coming from the

NoC (skyblue circle) goes to all the ports as shown previously in Figure 6, but now an additional red multiplexer is added

on each port. The first input of all the red multiplexers is data bits 255:0. Thus, the lower significant 256 bits from 1024

bits received at the NoC router are broadcasted to all the four ports and flow through the intra-tile network of switches to

CRAMs. The second input of the red multiplexer is the normal path, through which different set of bits received from

the NoC router are sent downstream to the CRAMs through the intra-tile network. The selection between these inputs is

controlled by a broadcast enable bit. If broadcast is enabled, all ports (and hence the CRAMs in the tile) receive the same

256 bits of data. This broadcast enable is exposed to the compiler through a bcast argument in the load_shf instruction.

Figure 9 illustrates the additional hardware designed to shuffle bits at the periphery of each CRAM. This unit enables data

shuffling in four distinct patterns. The source selector multiplexer, shown in green, enables choosing between the data

coming from the leaf level intra-tile switch, or the output of the CRAM itself. The former is used when data originating

from outside (either in DRAM or another tile or another CRAM) is being written into the CRAM. Currently, we only

support shuffling data loaded from DRAM through the load_shf instruction. The latter is used when data already present

in a CRAM needs to be shuffled and written back to the same CRAM. This path is supported through the cram_local_shf

instruction. The shuffle pattern selector multiplexer, shown in blue, allows selecting between four data patterns generated

by shuffling the data bits of the data output by the source selector. For instance, the first pattern duplicates the 0th bit

256 times, while the fourth pattern duplicates bits 7:0 32 times. The functionality of this multiplexer is exposed to the

compiler through the shf argument in the load_shf and cram_local_shf instructions. Eventually, a shuffle enable bit of

orange multiplexer selects whether to enable shuffling or not, and the resulting data is written into the CRAM. Shuffling

is disabled if load_shf or cram_local_shf instructions are not used.

x[255:0]
{256 { x[0] }}

{128 { x[1:0] }}
{64 { x[3:0] }}
{32 { x[7:0] }}

Shuffle pattern
selector

Shuffle enable
Data from leaf level H-tree

switch to CRAM

CRAM o/p

CRAM i/p

Source selector

Fig. 9. Shuffle Logic at input of each CRAM in PIMSAB

Logic to select
ping or pong

buffer

Ping pong
selector Transpose

selectorFrom DRAM channel

32 ... 4 3 2 1

32 ... 4 3 2 1

Pi
ng

-P
on

g
bu

ffe
r

Untransposed word from DRAM

Transposed word to PIMSAB

To
PIMSAB

Fig. 10. Transpose unit
DRAM interface and transpose unit: All tiles in the top-row of the mesh NoC are connected to DRAM controllers. The

data from DRAM must be transposed before storing into CRAMs, so that bit-serial arithmetic can be performed. Results

need to be untransposed when writing back. In PIMSAB, transpose units are integrated within the DRAM controllers. This

unit can be disabled if not needed (through the tr field of the DRAM load/store instructions). Some common situations

where transpose is not required include loading the RF and reading/writing spilled data during operations. Another

example is for deep learning, where we enable this for input activations while we disable it for weights, as weights can be

Manuscript submitted to ACM

12 Ma et. al

stored pre-transposed in DRAM. We use the transpose unit shown in Figure 10 similar to CoMeFa’s [5]. It employs a

ping-pong FIFO. Data enters from one side into the ping part in the non-transposed format. When full, transposed output

is obtained by reading bit slices of the loaded elements, while the pong part is filled with new data. When the pong part is

full, the roles are reversed and the process repeats. The bandwidth for each DRAM channel in PIMSAB is 1024 bits per

cycle. There are 32 transpose units for each DRAM channel. 32 bits can be read from 1 transpose unit in 1 cycle. For the

highest bandwidth achievable, the transpose unit adds a latency of 32 cycles. Data of different precisions can be handled

and transposed using the transpose unit.

Register File and operations with constants or scalars: Many applications, including DL, heavily rely on constant

operations like vector-scalar multiplication. Instead of replicating the constant operand in all bitlines like 11 (a), PIMSAB

holds the constant operand in a register file (RF) present in every tile. Figure 11 (b) shows the operation of the instruction

mul_const. After the instruction is decoded 1 , the instruction controller fetches the scalar operand from the RF 2 ,

and sends micro-ops to the CRAMs according to the bits of the constant that are set. When a bit of the constant is zero,

corresponding computations and micro-ops can be skipped. 3 . Finally, the CRAMs execute the u-ops to perform the

computation 4 . Besides exploiting such bit-level sparsity, constant operations also save CRAM space and reduce data

spilling to DRAM. The RF is flip-flop based and does not have any port restrictions. Any number of registers can be read

and written in each cycle. Instructions load_rf and store_rf are provided to load/store RF from/to DRAM.

Op2

Result

Op1

op2

result

Op2

Result

Op1
Op2

Result

Op2

Result

Result

Op2

Register File

Op1

Instruction
Controller

addr

CRAMs in a Tile

Decode
instruction1

3

for i=1 to N:
 if Op1[i] == 0:
 pass;
 else:
 send u-ops;2 Op1 <= RF[addr]

Instruction
Controller

Decode
instruction1

2 for i=1 to N:
 send u-ops;

(a) Instruction Controller without RF (b) Instruction controller with RF

Op2

Result

Op1

Op2

Result

Op1

CRAMs in a Tile

u-ops u-ops

Op2

Result

Execute
u-ops4Execute

u-ops3

Fig. 11. Flow for constant operations

5 COMPILER

5.1 Overview

Programming Interface: We adopt a tensor DSL as our high-level interface, because of its portability and ease of

performance tuning. As shown in Figure 12(a), a matrix multiplication is implemented in a tensor DSL, by declaring

loops, and tensors, and describing the program behaviors in expressions involving these declared variables. The loop

organizations are the key to the performance tuning in tensor programs, and can be easily explored by invoking several

loop organization primitives (e.g. split and reorder shown in Figure 13). The parallelism is naturally encoded in the

declared loops with different types, either data-parallel or reduction. These different loop types may lead to different

program behaviors when mapping loops to different hardware hierarchies.

Performance Tuning: Different implementations significantly affect the on-chip buffer occupancy, memory traffic,

on-chip network traffic, and parallelism distribution, and lead to different performances. Considering the excessively

large space of code organizations, we decide to leave loop organization and data layout tunings to developers, so that the

compiler can figure out the best parallelism distribution and buffer allocation under such organization and layout.
Manuscript submitted to ACM

PIMSAB 13

(a) Vanilla Matrix Multiply
n,m,p = 12*256*64 , 10*32, 1024
a = tensor ((n, p), i8)
b = tensor ((m, p), i8)
x, y = loop(0, n), loop(0, m)
k = red_loop(0, p)
c[x,y] =

sum(i32(a[x,k])*i32(b[y,k]))

(a') Imperative IR
for x in 0..n
for y in 0..m {
c[x,y] = i32(0)
for k in 0..p
c[x,y] +=

a[x,k]*b[y,k]
}

(b) Relayout Matrix Multiply
a = tensor ((n/256, p, 256), i8)
b = tensor ((m, p), i8)
xo, xi = loop(0, n/256), loop(0, 256)
y = loop(0, m)
k = red_loop(0, p)
c[xo,y,xi] = sum(

i32(a[xo,k,xi])*i32(b[y,k]))

(b') Imperative IR
for xo in 0..n/256
for y in 0..m {
c[xo,y ,0..256] = i32x256 (0)
for k in 0..p
xi "vectorized" 0..256
c[xo,y ,0..256] +=
a[xo,k ,0..256]*b[y,k] }

Fig. 12. Matrix-matrix multiplication implemented in tensor expression language and array packing.

Tiles:

...

...

1 # Tiled imperative IR
2 for xo.o in 0..12 # to tiles
3 for y.o in 0..10
4 for k in 0..1024 # to arrays
5 for xo.i in 0..64 # explored by compiler
6 for y.i in 0..32
7 for xi in 0..256 { # b/l vectorization
8 xo, y = ... # compute tiled indices
9 c[xo,y,xi] += a[xo,y,xi]*b[y,k] }

1 # Code Reorganization API called by user
2 xo.o, xo.i = split(xo,64)
3 y.o, y.i = split(y,32)
4 reorder(xo.o, y.o, k, xo.i, y.i)

CRAM Arrays:

Bitline PEs:
...

Fig. 13. Reorganize the loops for parallelism distribution.

To explain, consider the matrix multiplication example in Figure 12(a). Its imperative version in Figure 12(a’) shows

that the innermost reduction loop is hard to parallelize across bitlines specialized for vector parallelism. Thus, one

important transformation is to place a data-parallel dimension in the inner loop. As shown in Figure 12(b)&(b’), the

outermost dimension of tensor a is tiled by 256, and reordered to the innermost for mapping to bitline PEs. Then, Figure 13

shows that users are required to call the loop organization APIs to determine a code organization for the compiler to

distribute the parallelism and allocate CRAM memory buffers.

Compiler Analysis and Optimizations: After the data layout and loop organization are determined, the compiler

analyzes the program. It distributes parallelism to hardware hierarchies, and performs memory buffer allocation (Section

5.2). Then it performs CRAM data optimizations (Section 5.3) that take advantage of the properties of bit-serial arithmetic

to reduce on-chip memory occupancy. Since the exploration space of parallelism distribution and memory buffer allocation

is small, the compiler exhaustively evaluates each point, and adopts the one with the best objective. As shown in Figure 14,

the parallelism distribution affects the memory buffer allocation. If the required buffer size exceeds the on-chip resources

available, this exploration point is considered invalid. To make more exploration points more likely to succeed, CRAM

data optimizations will squeeze the buffer size requirement.

Code Generation & Feedback Loop: After the favored parallelism distribution and buffer allocation is successfully

determined on the given loop organization, the compiler extracts all the computational instructions to be offloaded to

PIM and rewrites them in hardware intrinsics. Then the transformed IR is ready for code generation. If all the parallelism

distribution fails under the given loop organization, the compiler will throw an error to the developer, and the developer is

required to find another more conservative loop organization.

5.2 Parallelism Distribution & Memory Allocation

Parallelism distribution determines how much of these loops should be tiled and parallelized across hardware hierarchies,

and how much should be executed in serial. Since the parallel degree of each hierarchy is at an order of hundreds, the
Manuscript submitted to ACM

14 Ma et. al

loop tiling space is small enough for the compiler to search exhaustively. Next, we explain how the loops are mapped to

parallelism across and within tiles.

Inter-Tile Parallelism Distribution: Data communication between tiles (which happens using dynamically routed NoC)

is expensive compared to the data communication between CRAMs within a tile (which happens using the static H-tree

interconnect). Considering the overhead of communicating data between tiles, it is often inefficient to reduce the partial

sum across different tiles. Therefore, our compiler only seeks to map data parallel loops to inter-tile parallelism. Assuming

we have 120 tiles, each iteration of xo.o and y.o in Figure 13 are mapped to each tile exactly. If the iterations exceed the

number of tiles, the compiler will seek to tile the loops and execute parts serially.

Intra-Tile Parallelism Distribution: Figure 14 shows that, after the inter-tile parallelism is fixed, the compiler distributes

the intra-tile parallelism by exploring the space of loop tiling. Each tiled outer loop (with .o suffix) will be executed in

serial by each tile’s controller, and each tiled inner loop (with .i suffix) will be mapped to a CRAM array. The total

iterations of these .i-loop should not exceed the number of arrays. This can easily be enforced when tiling the loop by

multiplying the tiling factor. Besides, the CRAM buffer allocation should not exceed the wordlines available in each array.

When there are multiple distributions that fulfill these two constraints (parallelization degree and CRAM buffer), we use

two objectives to determine the best one. The primary objective is more computing resource occupancy, and the second is

less DRAM memory bandwidth. The rationale behind this objective order is that a high computing resource occupancy

often requires high data bandwidth to sustain.

CRAM Buffer Allocation: CRAM buffer allocation is the key to determining the feasibility of a parallel distribution.

Here, we first explain how the compiler greedily exploits data reuse, and compute occupancy, while not exceeding the

CRAM capacity. Some overused CRAM capacity can be false positive and eliminated through adaptive precision. If it

turns out to be a true overuse, feedback will be sent to the developer for a conservative initial loop organization. For the

example shown in Figure 14, the compiler greedily allocates the memory buffer at the highest serialized loop with reuse.

Then, the compiler tries to minimize the CRAM buffer occupancy by analyzing the data access pattern of each operand.

In the case shown in Figure 14, the size of each buffer is proportional to the iterations of serialized loops. For example, the

c.cram buffer size is 1×8×32, where 1 is the serial iteration of xo.i.o, 8 is the serial iteration of y.o.o, and 32 is the

precision of the integers. Parallelizing xo.i is favored, because it saves more buffer occupancy for both a&c, considering

b.cram are all scalars. After fully parallelizing xo.i, y.o is further parallelized to fill the remaining arrays for compute

resource occupancy. Finally, c buffer, 1x8x32=256 wordlines, already occupies each entire CRAM array, with no space

remaining for other operands, intermediate values, which indicates the unfeasibility. In the next section, we will explain

how we squeeze CRAM allocation to optimize this false overuse.

5.3 Optimizing CRAM Data through Adaptive Precision

False overused CRAM allocation can be optimized so that potentially more aggressive parallel distribution can be

feasible. For the example in Figure 14, 32x8=256 wordlines are required for the accumulated results (c.cram), 8x1=8

wordlines for the operand a, 1 wordline for the operand b, and implicit 32 wordlines for the intermediate results. In total,

256+8+32+1=297 wordlines, which exceeds 256 wordlines of each array. Next, we will explain how our optimizations

make them fit. These optimizations mostly take advantage of the divisible nature of bit-serial arithmetic — each bit of

results is independently accessible. We call these optimizations - Adaptive Precision.

The minimum feasible precisions are adopted to override the precision in the original program: Multiplying an a-bit

and a b-bit number is at most a+b bits; accumulating k a-bit numbers requires only a+⌈logk⌉ bits. Specific to the example

shown in Figure 12, though the results are accumulated on i32, only i26 is required. The input operands are both i8,
Manuscript submitted to ACM

PIMSAB 15

1 # Parallel distribution & buffer allocation
2 # within each tiled determined by compiler
3 c.cram = alloc_cram[1*8*256]
4 serial k.o in 0..1024 { # Not parallelized
5 a.cram = alloc_cram[1*1*256]
6 b.cram = alloc_cram[1*8*1]
7 serial xo.i.o in 0..1: # n/12/256/64
8 serial y.o.o in 0..8: # m/10/4
9 array k.i in 0..1:
10 array xo.i.i in 0..64:
11 array y.o.i in 0..4:
12 # tile indices computation omitted...
13 mul = a.cram[xo,k,0..256]*b.cram[y,k]
14 c[xo,y,0..256] += mul }

Constraint 1∏
para deg ≤ #CRAM Array

Constraint 2
Buffer Occupation ≤ #Wordlines

i32 c.cram[8x1x256]

i26 after adaptive precision

i8 a.cram[1x256]

x is fully parallelized

i1 b.cram[1x256]
b are scalars, fit in one w/l

i32 mul

i16 after adaptive precision

i8 after bit-level l/t

Primary Obj.: Array Utilization; Secondary Obj.: Memory B/w

Fig. 14. Distributing the parallelism intra-tile.

Fig. 15. Bit-level lifetime analysis

so the result of multiplication is within i16. We now have p=1024 i16 accumulated, in total log21024+16=26 bits for

each accumulation. Therefore, we in total saved (32-26)x8+16=64 wordlines, so now only 249 wordlines are required. In

addition to saving space in CRAMs, using this technique also improves performance. Without this technique, existing

data in wordlines would have to be spilled to DRAM and read back later, consuming additional cycles. Alternatively, the

compiler would need to use a less aggressive parallelization strategy leading to lower performance.

The divisible nature of bit serial arithmetic makes each bit have its own lifetime. We extend the code scheduling

in CHOPPER [31] to an even broader applicability. For a multiplication that is consumed immediately by an addition,

instead of keeping the whole 16 bits of multiplication, we can add it to the accumulator as soon as a bit is finalized. As

shown in Figure 15, after i cycles of multiplication, the i-th bit is finalized, and it always maintains a half-width active

window when doing a multiplication. Therefore, this saves 16/2=8 wordlines, and now we only occupy 243 wordlines.

5.4 Data Loading & Packing

Once parallelism distribution passed the constraint check after these optimizations, the compiler will then inspect the

memory access pattern to generate code for data loading and packing. If several tiles are using the same data, the common

memory traffic will be converted to on-chip network communication. The compiler uses data transfer instructions such as

tile_tx and tile_rx for such cases. If the data needs to be broadcasted to multiple tiles, the compiler invokes library

function tile_bcast provided for broadcasting data across tiles. This broadcast can be invoked using the systolic mode.

The compiler also analyzes the operands loaded to the CRAM arrays within a tile to determine how they should be

shuffled. For example, xo is not related to reading b.cram[y,k], so loaded b should be broadcast to all the arrays mapped

to different iterations of xo. For such cases, the compiler uses the load_shf or the cram_local_shf instructions with the

shuffle pattern specified through the shf argument. The shuffling pattern can be broadcast or different types of multicast

as described in Section 4.2. When constants or scalars are used for multiplications, the compiler uses the load_rf and

store_rf instructions for loading data to the RF and storing data from the RF respectively, and the instruction mul_const

is subsequently used for the computation operations.

5.5 Implementation

We integrate our compiler analysis and transformations to the TVM compilation flow. TVM provides rich code organization

primitives to tune loop organizations and allocate memory buffers. We start with the initial code organization provided by
Manuscript submitted to ACM

16 Ma et. al

user, and apply our explored parallelism and memory allocation. This is lowered to an IR with all the loops and buffers

instantiated. Then CRAM data optimization is done on this level of IR. If the memory occupancy satisfies the hardware

constraints, all the arithmetic operations are rewritten in bit-serial intrinsics, including arithmetic operations, memory

loading, and data transfer, which are ready for code generation. If not, we invoke a feedback loop to explore a more

conservative code organization for less memory occupancy.

6 EVALUATION METHODOLOGY

6.1 Modeling PIMSAB

We develop a cycle-accurate simulator in C++ to model the PIMSAB hardware. The simulator executes a program

written in the ISA described in Section 4.1. An input configuration file is used to specify various parameters of the

microarchitecture. The values of area and energy for various blocks and instructions (as described below) are incorporated

into the simulator. Various metrics like cycles and energy breakdown by component or instructions are reported by the

simulator. We validated the simulator using simple handwritten kernels first and then with microbenchmarks. Thus, our

model is well calibrated and realistic.

We use a Verilog behavioral model of the CRAM to obtain instruction cycle counts. For the PEs in each SRAM, we

write transistor level code and evaluate area and energy using SPICE with 22nm ASU PTM technology [37]. Area and

power of RAMs is obtained using the OpenRAM memory compiler [15]. We write Verilog RTL for components such as

the static network’s H-tree switch, shuffle logic, instruction controller, transpose unit, and register file. We use Synopsys

VCS for simulation and Synopsys Design Compiler (using FreePDK45[28]) to obtain post-synthesis area and power.

We further assume a 15% area overhead for place and route [18]. For the dynamic NoC, we use PAT-Noxim simulator

[30] and extract area and energy values for the routers and links. For cycles required for packet transmission through the

dynamic NoC, we model the NoC in our simulator. For the on-chip DRAM and PCIe controllers and transceivers, we

obtain areas from A100 die analysis. For DRAM energy, we use a simple analytical model calibrated from memory-only

microbenchmarks on the A100. We scale all values to 22nm using scaling factors for area, power and delay from [35].

6.2 Baselines

GPUs are the most common commercially available accelerators for DL workloads; so we compare PIMSAB against

NVIDIA A100 GPU. Additionally, we compare against state-of-the-art prior SRAM and DRAM based PIMs (Duali-

tyCache and SIMDRAM). To make fair comparisons, we build three different PIMSAB configurations for each of the

comparisons. Table 3 shows these different architectures and compares their type, programming model, and level of

automation with the ability to handle reuse. Table 4 shows the configuration details of these architectures.

NVIDIA A100 GPU: We provision PIMSAB to have the same area (825mm2 in 7nm, i.e. 2950 mm2 in 22nm) and

DRAM bandwidth (12288 bits/cycle, i.e. 1866GB/s @1215 MHz). We also assume the same DRAM size as A100 (40

GB), and all benchmarks fit in this memory. PIMSAB has a memory controller to interface with external HBM DRAM,

similar to A100. GPU performance is measured by running on an A100 using NVIDIA’s profiler NSight Compute.

Each kernel is measured by averaging 500 launches to exclude the device overhead. To compare the dynamic energy

of PIMSAB with A100, the static energy is normalized indirectly to A100 through having the same area footprint and

DRAM bandwidth. The NVIDIA GPU uses CUDA as the programming language. NVIDIA’s CUDA compiler and support

in high-level frameworks such as PyTorch provides high degree of automation, enabling expressing workloads at a high

level of abstraction. With caches on the GPU, the workloads can take advantage of data reuse.

Manuscript submitted to ACM

PIMSAB 17

Duality Cache: Duality Cache (DC) [12] is an in-cache SRAM PIM architecture that builds on Neural Cache [10], and

uses a subset of CUDA as a programming language. It is the state-of-the-art SRAM PIM architecture with a full-stack

implementation, similar to PIMSAB. This makes DC relevant to compare with PIMSAB. DC integrates PIM into on-chip

CPU caches whereas PIMSAB is a dedicated accelerator chip. DC has 1.14 million processing elements and runs at a

frequency of 2.6 GHz. We design a PIMSAB chip (PIMSAB-D) sized to match the compute throughput of DC for a fair

comparison. PIMSAB-D has 30 tiles (organized in a 6x5 mesh). The CRAM size for DC is the same as for PIMSAB (256

bitlines x 256 wordlines). DC provides compiler support, enabling high degree of automation. Since DC is a cache-based

architecture, workloads can take advantage of data reuse.

SIMDRAM: SIMDRAM [16] is a DRAM PIM architecture and was shown by the authors to perform better than DC for

some workloads. We use the 1 bank configuration mentioned in their paper, when comparing SIMDRAM to PIMSAB. We

design a PIMSAB configuration (PIMSAB-S) to match the number of processing elements in SIMDRAM. PIMSAB-S

has 1 tile. We use 3 full Deep Neural Networks (LeNet, VGG-13, and VGG-16) as benchmarks for comparison since they

were used in the SIMDRAM work. SIMDRAM does not have a compiler. The programming is done using intrinsics,

which is tedious and error prone. Since SIMDRAM is a DRAM-based architecture, it cannot exploit the data locality

inherently present in compute-intensive workloads like GEMM.
Table 3. Qualitative attributes of PIMSAB and baselines

Architecture Type of chip Programming model Level of automation Ability to handle reuse
PIMSAB Accelerator Tensor DSL High Yes
Duality Cache Cache CUDA High Yes
SIMDRAM DRAM chip Manual coding using intrinsics Low No
GPU Nvidia A100 Accelerator CUDA High Yes

Table 4. Configuration details PIMSAB, baselines, and PIMSAB variants provisioned for comparison

PIMSAB Nvidia A100 PIMSAB-D Duality Cache PIMSAB-S SIMDRAM
Compute Throughput
(int8)

352 TOPS 624 TOPS (Tensor
Core), 19.5 TOPS

49.5 TOPS 49.5 TOPS 2.93 TOPS 2.97 GOPS

Area (mm2) 825 826 206 (7nm) 471 (22nm) 6.88 (7nm) -
Frequency (GHz) 1.5 1.4 1.5 2.6 1.5 2.4
On-Chip memory (MB) 240 87 60 35 2 1024
DRAM B/W (GB/s) 1866 1866 933 - 155.5 19.2 (external), 4.68

TB/s (internal)
Number of PEs 7864320 - 1966080 1146880 65536 65536

6.3 Benchmarks

Table 5 lists the benchmarks, along with input size and precision, used in our evaluations. When comparing with A100,

we choose a set of microbenchmarks from high-performance libraries, including ArrayFire[42] (fir), and CUTLASS[25]

(gemm, gemv, conv2d). These microbenchmarks represent the fundamental operation in popular applications like deep

learning and signal processing. We run full networks like quantized Resnet18 from MxNet Model Zoo and BERT to

show our support for end-to-end applications. We also support various precisions like FP32, INT8, INT16, making our

system precision agnostic. Our kernels are using mixed precision - the input data, the compute operations, the storage

use different precisions. PIMSAB’s adaptive precision feature is more sophisticated than NVIDIA Tensor Core’s mixed

precision support because it can support arbitrary precisions, e.g. different stages of accumulation can use different

precisions. PIMSAB’s architecture can support other mixed precision modes such multiplying operands of two different

precision, however, this is not used in our benchmarks currently.

To ensure an apple-to-apple comparison with DC and SIMDRAM, we use benchmarks used by those works. DC uses

Rodinia benchmarks for their evaluation. So, we also use Rodinia benchmarks to compare with DC directly. However,
Manuscript submitted to ACM

18 Ma et. al

Table 5. Benchmarks used for evaluation

Benchmark Size Precision Comparison DRAM Usage
vecadd input=15728640 int8 A100 RD=30 MB,WR=15MB
fir input=7833600,

filter=32
int16, acc=int16 A100 RD=15.6MB,WR=15.6MB

gemv m=61440, k=2048, n=1 int8, acc=int32 A100 RD=128MB,WR=262KB
gemm m=61440, n=32, k=2048 int4, acc=int16 A100 RD=62MB,WR=3.9MB
conv2d input=9x9x256x2,

weights=3x3x256x256
int8, acc=int32 A100 RD=815KB ,WR=100KB

resnet18 input=224x224x3x1,
output=1000x1

int8, acc=int32 A100 RD=6.1MB,WR=1.3MB

bert input=384x768,
output=384x768

int8, acc=int32 A100 RD=26 MB,WR=9MB

backprop input=65536x16 fp32 DC RD=8.3MB,WR=4.1MB
dwt2d input=1024x1024 fp32 DC RD=4.1MB,WR=6.2MB
gausselim input=256x256 fp32 DC RD=512KB,WR=262KB
hotspot input=1024x1024 fp32 DC RD=20MB,WR=4.1MB
hotspot3d input=512x512 fp32 DC RD=16.7MB,WR=8.3MB
vgg13 input=224x224x3x1,

output=1000x1
binarized SIMDRAM RD=4.9MB,WR=65KB

vgg16 input=224x224x3x1,
output=1000x1

binarized SIMDRAM RD=5.9MB,WR=65KB

lenet input=32x32,
output=10x1

binarized SIMDRAM RD=139KB,WR=16

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

ge
om

ea
n0

1

2

3

4

Ex
ec

. T
im

e
Sp

ee
du

p

10
0.

52

13
.8

4

4.
80

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

ge
om

ea
n0

1

2

3

4

En
er

gy
 Im

pr
ov

em
en

t

56
.1

5

7.
24

Fig. 16. Comparing PIMSAB
with NVIDIA A100

some benchmarks from the Rodinia suite were excluded from comparison because those benchmarks have irregular

parallelism or indirect memory accesses, which are not supported by PIMSAB. For SIMDRAM comparison, we use three

binary neural networks: VGG-13, LeNet, and VGG-16. We obtained the raw runtimes numbers for the benchmarks they

used by directly reaching out to the authors and used those for comparison.

7 RESULTS

7.1 Comparison with NVIDIA A100 GPU

Figure 16 shows the execution time and energy comparison against NVIDIA A100 GPU. On average, PIMSAB achieves

4.80× improvement in execution time, and 3.76× improvement in energy efficiency. PIMSAB outperforms A100 on

vecadd because of the higher compute throughput. PIMSAB significantly surpasses A100 on fir because of the unaligned

memory access caused by the sliding window. In PIMSAB, this program behavior can easily be handled by shifting bits

across bitlines, while it prevents the GPU from fully utilizing the memory bandwidth. PIMSAB can achieve slightly less

performance as A100 for gemm, even though A100 uses Tensor Cores for GEMM, which provide 2× peak TOPs compared

with PIMSAB. In terms of energy consumption, PIMSAB is better than A100 for gemm. conv2d is sped up by 13.84x

compared to A100 and gemv is sped up by 1.78x. The two main sources of the speedup are the high data parallelism

in PIMSAB leading to reduced instruction overhead, and the larger on-chip buffer (256 MB on PIMSAB vs. 96 MB,

including L2, shared memory and RF, on A100) leading to more data reuse and reduces off-chip memory traffic. These

reasons also lead to significant energy savings. PIMSAB utilizes broadcast operations to avoid excess data read from

DRAM speeding up the conv2d operations. We observe a speedup of 2.8x and 2.3x on resnet18 and bert respectively.

7.2 Comparison with SRAM PIM (Duality Cache)

Fig 17(a) shows PIMSAB-D outperforms Duality Cache by 3.7× on average across several Rodinia benchmarks. PIMSAB-

D shows speedups over Duality Cache on backprop, hotspot2d, and hotspot3d, because the tensor DSL programming

compiler can easily analyze the memory footprint and allocate buffers for memory reuse. In addition, Duality Cache still
Manuscript submitted to ACM

PIMSAB 19

ba
ck

pr
op dw

t

ga
us

sia
n

ho
ts

po
t

ho
ts

po
t3

d0%
20%
40%
60%
80%

100%

Ex
ec

. T
im

e
Br

kd
.

Ours-Compute
DC-Compute

Ours-Memory
DC-Memory

(a) PIMSAB-D vs. Duality Cache
vg

g1
3

vg
g1

6

le
n

et

gm
ea

n

0

1

2

3

4

5

6

S
p

ee
d

u
p

6.15

(b) PIMSAB-S vs. SIM-
DRAM

Fig. 17. Appropriately provisioned PIMSAB compared with
prior in-SRAM and in-DRAM systems.

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt0%

20%
40%
60%
80%

100%

Ex
ec

. T
im

e
Br

kd
.

Comp. Netw. DRAM IDLE

(a) Execution time breakdown

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt0%

20%
40%
60%
80%

100%

En
er

gy
 B

re
ak

do
wn

Compute Network DRAM

(b) Energy breakdown

Fig. 18. Categorized breakdown of each workload.

adopts a GPU-like warp-wise execution, which imposes high overhead to coordinate unaligned data loading. PIMSAB

can simply shift across bitlines, even across CRAMs in a tile, so it outperforms DC on dwt2d. gaussian is bound by

memory packing on DC, but our hardware is well specialized for it because of the H-tree intra-tile interconnect, which

also leads to fewer computational instructions.

7.3 Comparison with DRAM PIM (SIMDRAM)

Fig 17(b) shows our comparison against SIMDRAM. PIMSAB-S outperforms SIMDRAM [16] by 3.88× on average

across real world neural networks, because in-SRAM processing takes advantage of data reuse in on-chip buffers.

SIMDRAM has to pay DRAM read latencies for every computation and is at a disadvantage for workloads with data

reuse. PIMSAB’s speedup is lower on LeNet because the LeNet model is relatively small — SRAM-DRAM transfer

occupies a larger portion of execution, compared to the other networks.

7.4 Time and energy breakdown

Figure 18a shows the breakdown of time spent in each benchmark. Since vecadd has low arithmetic intensity, most of the

time is spent on DRAM loads and stores, as expected. In fir, about 60% of the time is spent on DRAM traffic. gemv is

also DRAM bound because of low reuse. gemm and conv2d are dominated by network traffic, because our optimization

objective is to minimize the estimated DRAM traffic by converting them to network data transfer through broadcasting.

resnet18 is mainly a sequence of convolution layers followed by elementwise operations. The execution time breakdown

for resnet18 is very similar to conv2d. bert is mainly composed of several GEMM layers and a single softmax layer.

As mentioned earlier, our GEMM kernels in PIMSAB are primarily limited by network traffic. However, BERT, due to its

distinct shapes with high compute density, is compute-bound.

Figure 18b shows the breakdown of energy consumed in each benchmark. vecadd, fir and gemv are dominated by

DRAM energy because of the limited reuse. In microbenchmarks like gemm and conv2d, 20-40% of the energy is spent on

computation. In resnet18 and bert, energy is majorly spent on compute and on-chip network traffic.

7.5 Sensitivity to different hardware parameters

As shown in Figure 19, we analyze a set of 7 different hardware configurations, obtained by varying 3 hardware parameters,

with the microbenchmarks. Figure 19(a) studies the sensitivity of the number of compute resources (PEs) by tuning the size
Manuscript submitted to ACM

20 Ma et. al

0.0

1.0
N

or
m

al
iz

ed
P

er
f.

(a) Comp. Intensity
mesh: 12x10
64 crams/tile
(512bl x 512wl)/cram
mesh: 12x10
256 crams/tile
(256bl x 256wl)/cram
mesh: 12x10
1024 crams/tile
(128bl x 128wl)/cram

0.0

1.0

N
or

m
al

iz
ed

P
er

f.

(b) #Tile v.s. #Array
mesh: 12x5
512 crams/tile
(256bl x 256wl)/cram
mesh: 12x10
256 crams/tile
(256bl x 256wl)/cram
mesh: 12x20
128 crams/tile
(256bl x 256wl)/cram

ve
ca

dd fir

gem
v

gem
m

co
nv2

d
0.0

1.0

2.0

N
or

m
al

iz
ed

P
er

f.

(c) DRAM B/w
mesh: 6x20
256 crams/tile
(256bl x 256wl)/cram
mesh: 12x10
256 crams/tile
(256bl x 256wl)/cram
mesh: 24x5
256 crams/tile
(256bl x 256wl)/cram

Fig. 19. Perf. sensitivity to hardware parameters.

ve
ca

dd fir

ge
m

v

ge
m

m

co
nv

2d

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
E

xe
c.

T
im

e
N

or
m

al
iz

ed
to

M
ai

n

(a) Data Size Sens.

half main double

ve
ca

dd fir

ge
m

v

ge
m

m

co
nv

2d

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
el

at
iv

e
E

xe
c.

T
im

e
N

or
m

al
iz

ed
to

i4

(b) Precision Sens.

i4 i5 i6 i7 i8

Fig. 20. Perf. sensitivity to workload parameters

of each CRAM while retaining a constant memory capacity. Assuming each CRAM is a square (#wordlines=#bitlines),

halving the number of bitlines results in 4× more compute intensity (more PEs for the same amount of memory). For

vecadd and gemv, changing computational intensity has an insignificant impact because the benchmarks are memory

bound. In fir, we see an interesting observation. Performance improves as the CRAM size is changed from 512x512

to 256x256 on account of increased compute throughput, but the performance degrades to 57% for a CRAM size of

128x128. This is because the workload is too small to fully utilize the available compute throughput. The gemm workload

exhibits ˜40% increase in performance when compute intensity increases from 512x512 CRAM size to 256x256 CRAM

size. However, when the CRAM size is changed to 128x128, the performance only increases by 11%. This is due to the

time taken by intra-tile inter-CRAM reductions starts to increase significantly; smaller CRAMs means more inter-CRAM

reduction is required. The conv2d workload still exhibits ˜ 20% increase in performance when CRAM size changes to

128x128, because conv2d has less network traffic.

Figure 19(b) studies the tradeoff between the number of tiles and CRAMs per tile, while retaining the same number

of compute resources. Increasing the number of tiles implies a larger inter-tile dynamic network (NoC), but smaller

intra-tile static network, and vice versa. The results of this study suggest that more tiles (darker grey bars in the figure)

hurt performance by 4.3%, and larger tiles (white bars in the figure) provide diminishing returns (~2.6% improvement).

Figure 19(c) shows the tradeoff by changing the memory bandwidth. This is achieved by changing the mesh geometry,

since only the top-row tiles have memory controllers. The massive data parallelism requires massive data to sustain.

Therefore, workloads with poor reuse, like vecadd, and gemv, which are bounded by memory accesses, achieve nearly

linear speedup when doubling the memory bandwidth (i.e number of columns in the mesh is doubled). Although according

to Figure 18a, gemm’s execution time is not dominated by DRAM bandwidth, the performance is significantly improved

when number of columns in the mesh increases. This speedup is attributed to reduced data transfer time because the mesh

height is reduced to half. conv2d is an outlier; the performance is slightly lowered by the memory bandwidth increase.

Because broadcasting dominates the data loading time, memory bandwidth is not fully utilized. Because of the wider

mesh width, loaded data is broadcasted to further tiles, increasing the overall loading time.
Manuscript submitted to ACM

PIMSAB 21

7.6 Sensitivity to different workload parameters

Figure 20(a) shows the sensitivity of PIMSAB’s performance to workload sizes, by studying two additional sizes i.e.

halving and doubling the data. The execution time of workloads with limited data reuse (e.g. vecadd, gemv) is linearly

proportional to the data size. fir shows a higher than 0.5× execution time when the data size is reduced to 0.5×. The

smaller sized benchmark causes underutilization of the hardware. gemm has slightly lower than 2× execution time when

the data size is increased by 2×; larger sizes lead to better hardware utilization because of data reuse. Because of compute

underutilization caused by shapes, conv2d execution time does not vary linearly with change in input. Bigger input

increases input loading and computing time, but does not increase weight loading time which is significant, leading to

only a 1.5x increase in overall time. Figure 20(b) shows the sensitivity of PIMSAB’s performance to the precision of the

inputs. A unique capability of bit-serial systems is to support any arbitrary precision. We vary the input precisions from

4-bits to 8-bits. Since the DRAM representation always aligns to a power of 2, the DRAM traffic remains the same for

int5 to int8. The DRAM bound benchmarks like vecadd and gemv tend to show the effect. vecadd is highly dominated by

DRAM reads; thus, it shows no change in performance for 5-bits to 8-bits. gemv which is also a DRAM bound workload

but has more compute and reuse as compared to vecadd shows slight increase in execution time going from 5-bits to

8-bits. Since computation and on-chip network traffic account for a significant portion of the execution time in conv2d and

gemm operations, the performance of these workloads varies almost linearly with precision. Note that adaptive precision

eliminates the requirement to utilize 8-bit computations for smaller precisions.

7.7 Ablation Studies

In this section, we show the results of ablation studies, where we disable microarchitectural and compiler features

one-at-a-time and observe their impact of the performance of each benchmark. In these experiments, the baseline is the

PIMSAB with all features enabled. Figure 21 shows the performance of each benchmark relative to this baseline, with one

feature disabled. In Figure 21(a), we disable the shuffle units. We observe that the performance of conv, gemm, resnet18

and bert degrades significantly. Performance degradation comes mainly from redundant data loads which are required in

the absence of shuffle units. Other benchmarks do not utilize shuffling and therefore have no performance differences.

Figure 21(b) shows the impact of disabling constant operations. Up to 45% degradation of performance is seen (in the

fir case). Disabling constant operations means duplicating data in the CRAM, which means additional rows will be

used, which can cause data spills to DRAM. The fir benchmark spends relatively more time on constant operations

than gemv, therefore it suffers more performance degradation. Figure 21(c) shows the performance degradation if we

disable the Htree-based interconnect within each tile and replace it with a simplistic bus-based interconnect (similar to

[17]). We see a reduction in performance in conv, gemm, resnet18 and bert. These benchmarks require reductions within

tiles that are not done efficiently with the bus. Other benchmarks do not use the H-tree for reduction and their performances

do not change as much. Figure 21(d) shows that disabling the cross-CRAM shifting feature affects the fir benchmark

significantly, because shifts have to be done external to PIMSAB (e.g. by the transpose unit). The other benchmarks do

not use the cross-CRAM shift feature. Figure 21(e) shows the impact of disabling systolic broadcasting. When systolic

broadcasting is disabled, we use a one-to-all broadcast instead. In conv and resnet18, broadcasting weights or inputs

takes majority of time; therefore, their performance degrades by up to 40%. In other benchmarks, broadcasting only

takes a small portion of the overall time. Therefore, the performances are not significantly impacted. In Figure 21(f), we

show the impact of disabling the mesh topology for the inter-tile dynamic network and replace it with a ring interconnect

instead. The performances of all workloads degrade significantly since they all become interconnect-bound, because the

Manuscript submitted to ACM

22 Ma et. al

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt0%

20%

40%

60%

80%

100%
(a) Shuffle
 disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(b) Const Ops
 disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(c) H-Tree
 disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(d) Cross-CRAM
 Shift disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(e) Systolic Bcast
 disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(f) Mesh disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(g) InterCRAM
 Reduction
 disabled

ve
ca

dd fir
ge

m
v

ge
m

m
co

nv
2d

re
sn

et
18 be
rt

(h) All disabled

Fig. 21. Ablation studies. Y-axis is the performance compared to the baseline.

CRAM - 71.67%
DRAM Control+XCVR - 17.08%
Dynamic Network (NoC) - 5.44%
Static Network (HTree) - 2.60%
Shuffle Logic - 1.66%
PCIe Control+XCVR - 1.06%
Instruction Controller - 0.46%
Register File - 0.02%

Fig. 22. Chip area distribution of PIMSAB

Benchmark Speedup (%)
vecadd 0

fir 0
gemv 0.34
gemm 2.77
conv2d 4
resnet18 3.5

bert 15

Table 6. Speedup obtained by enabling adaptive pre-
cision compiler optimization

average latency of communication is higher in a ring interconnect than a mesh interconnect. Some workloads such as

conv2d and gemm have broadcast operations, which become very expensive in ring interconnect. Also, when multiple

tiles load from DRAM at the same time, the ring topology causes significant resource contention and high latency. A

ring interconnect is commonly used in CPU caches and is used in Duality Cache [12]. Figure 21(g) shows impact of

disabling the inter-CRAM reduction and use intra-CRAM reduction instead. Intra-CRAM reduction is done by shifting

data between bitlines as described in [10]. This results in more cycles compared to inter-CRAM reduction, because

shifting data through N bitlines takes N cycles, but shifting data from one CRAM to another takes log(N) cycles, attributed

to the H-tree. Hence, all workloads that heavily utilize inter-CRAM reduction (conv2d, gemm, resnet18, bert) show

significant performance degradation. We also perform an experiment where all these features are disabled (Figure 21(h)).

We see >90% degradation in all workloads.

We also study the effects of adaptive precision optimization mentioned in Section 5.3. As discussed in that section,

adaptive precision helps performance by using only the number of bits required for a particular operation. This saves

memory as well as cycles. The results of this study are presented in Table 6. No speedups are observed for vecadd and

fir benchmarks. vecadd uses int8 precision and does not have any accumulations. For fir, the accumulation precision

(int16) is the same as multiplication precision (int16), so adaptive precision is not used. gemv is sped up by only 0.34%

because of the small number of accumulation operations in the workload. Speedups of 2.77%, 4%, and 3.5% are observed

in gemm, conv2d, and resnet18 respectively. Speedup of 15% is observed in bert as the matrix multiplications in bert

involve significantly more accumulations than gemm and take more advantage of adaptive precision.

7.8 Chip Area Distribution

Figure 22 shows the area distribution of the PIMSAB chip. 72% of the chip area is consumed by the CRAMs, indicating a

large percentage of useful compute/storage area. The dynamic and static networks take ∼7.5% of the chip area, while the
Manuscript submitted to ACM

PIMSAB 23

shuffle logic occupies ∼1.5% of the area. The DRAM controller, transpose units and transceivers (XCVR) occupy 17% of

the chip. Considering the additional capabilities enabled by PIMSAB, the overhead is relatively low.

8 RELATEDWORK

Instead of moving data to distant compute units, PIM brings computation closer to the data. Recent works have used Non-

Volatile Memories (NVM) like Resistive RAMs (ReRAM) or Spin-Transfer Torque Magnetic RAM (STT-MRAM) [9,

17, 19, 20, 34]. NVM based solutions are nascent and are yet to reach large scale production, and have endurance and

technology scaling limitations.

Many DRAM-based PIM were proposed [14, 16, 27, 33], without compilers, so they are difficult to program them.

CHOPPER [31] is a full-stack DRAM PIM that is programmed from a bit-sliced DSL. Inspired by their code scheduling

strategies, we developed our bit-level lifetime analysis technique. UPMEM [29] and Samsung HBM-PIM [26] are recent

commercial DRAM PIM architectures. SRAM-based PIM has the advantage of simple integration with compute logic

using the same process, and also the ability to exploit data reuse in applications. PIMSAB uses SRAM-based PIM. Some

SRAM-based approaches are analog [7, 23, 24], requiring expensive DACs and ADCs. Other approaches use the property

of enabling multiple wordlines in an SRAM at the same time [10, 12, 39]. This requires reducing wordline voltage to

avoid data corruption, and modifying sense amplifiers. PIMSAB uses conventional dual ported RAMs instead, based on

CoMeFa [5]. This costs area, but is practical and robust.

Neural Cache [10] and Duality Cache [12] are popular SRAM-based PIM architectures in which the focus is to

repurpose existing caches in CPUs to perform in-situ computations. Neural cache uses an ad-hoc programming approach,

and Duality Cache introduces a restricted version of the CUDA programming interface; both of these are lower-level and

expose hardware aspects to programmers (e.g. SRAM-array dimensions). Our Tensor DSL abstracts hardware and is

easier to program and perform explorations with.

Fujiwara et al. [13] design an SRAM-based compute-in-memory chip that provides 254 TOPS/W throughput for 4-bit

operations. They fabricate the chip, but no performance evaluation of real workloads is provided. Other works such as

PUMA [4] and IMDPP [11] develop compilers to make PIM systems easier to program. Their TensorFlow or C++ based

graph-level programming interfaces are harder to perform performance tuning with than our Tensor DSL. Also, they use

ReRAM instead of SRAM-based PIM.

Recently, Processing-In-Memory has been proposed for FPGAs as well. CCB [40] uses the same technology as Neural

Cache [10] to enable block RAMs on an FPGA to perform computation, while CoMeFa [5] uses the dual-ported nature of

block RAMs. Comparing with PIMSAB’s Tensor DSL programming interface, these works still require users to design

finite state machines to send instructions to the RAM blocks, which is error-prone and time-consuming.

The bit-serial approach has a long history, going back to their use for neural networks in the 1980s [? ?]. Stripes [21]

is a more recent such DNN accelerator. PIMSAB combines a bit-serial approach with PIM.

9 CONCLUSION

We present PIMSAB, a system for in-memory acceleration of massively parallel workloads like Deep Learning. Our

system employs novel mechanisms for spatially-aware communication and bit-serial-aware computation. While other

PIM accelerators have been proposed for DL, our work makes significant strides in making PIM-based accelerators

feasible for real-world DL problems. With the scalable hierarchical architecture combined with the H-tree and mesh

interconnects at different levels, along with the shuffle network, adaptive precision and constant operation support, we

make significant improvement in the capability of PIM-based accelerators.
Manuscript submitted to ACM

24 Ma et. al

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das. 2017. Compute Caches. In 2017 IEEE

International Symposium on High Performance Computer Architecture (HPCA). 481–492. https://doi.org/10.1109/HPCA.2017.21
[2] A.A. Aggarwal and D.M. Lewis. 1994. Routing Architectures for Hierarchical Field Programmable Gate Arrays. In Proceedings 1994 IEEE

International Conference on Computer Design: VLSI in Computers and Processors. 475–478. https://doi.org/10.1109/ICCD.1994.331954
[3] Khalid Al-Hawaj, Olalekan Afuye, Shady Agwa, Alyssa Apsel, and Christopher Batten. 2020. Towards a Reconfigurable Bit-Serial/Bit-Parallel Vector

Accelerator using In-Situ Processing-In-SRAM. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). 1–5.
[4] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R. Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu,

John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. 2019. PUMA: A Programmable Ultra-efficient Memristor-based Accelerator for Machine
Learning Inference. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 715–731. https://doi.org/10.1145/3297858.3304049

[5] Aman Arora, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, and Lizy K. John. 2022. CoMeFa: Compute-in-
Memory Blocks for FPGAs. In 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 1–9.
https://doi.org/10.1109/FCCM53951.2022.9786179

[6] H. B. Bakoglu. 1990. Circuits, interconnections, and packaging for VLSI. Addison-Wesley Pub. Co.
[7] Avishek Biswas and Anantha P. Chandrakasan. 2019. CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for

Low-Power Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 54, 1 (2019), 217–230. https://doi.org/10.1109/JSSC.2018.2880918
[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos

Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. In 13th OSDI.
[9] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-Memory

Architecture for Neural Network Computation in ReRAM-Based Main Memory. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 27–39. https://doi.org/10.1109/ISCA.2016.13

[10] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester, David Blaaauw, and Reetuparna Das. 2018.
Neural Cache: Bit-Serial in-Cache Acceleration of Deep Neural Networks. In Proceedings of the 45th Annual International Symposium on Computer
Architecture (Los Angeles, California) (ISCA ’18). IEEE Press, 383–396. https://doi.org/10.1109/ISCA.2018.00040

[11] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory Data Parallel Processor. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’18). Association for Computing Machinery, New
York, NY, USA, 1–14. https://doi.org/10.1145/3173162.3173171

[12] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality Cache for Data Parallel Acceleration. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery, New York, NY, USA, 397–410.

[13] Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Mei-Chen Chuang, Rawan Naous, Chao-Kai Chuang, Takeshi Hashizume, Dar Sun, Chia-Fu
Lee, Kerem Akarvardar, Saman Adham, Tan-Li Chou, Mahmut Ersin Sinangil, Yih Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, and
Tsung-Yung Jonathan Chang. 2022. A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital Computing-in-Memory Macro Supporting Wide-Range
Dynamic-Voltage-Frequency Scaling and Simultaneous MAC and Write Operations. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 65. 1–3. https://doi.org/10.1109/ISSCC42614.2022.9731754

[14] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association for Computing
Machinery, New York, NY, USA, 100–113. https://doi.org/10.1145/3352460.3358260

[15] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu, and M. Sarwar. 2016. OpenRAM: An open-source memory compiler. In 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). https://doi.org/10.1145/2966986.2980098

[16] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose,
Juan Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: a framework for bit-serial SIMD processing using DRAM. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’21). Association for Computing
Machinery, New York, NY, USA, 329–345.

[17] Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan Govil, Dimitar Trenev, Andreas Gerstlauer, and Lizy John. 2021. Wave-PIM:
Accelerating Wave Simulation Using Processing-in-Memory. In 50th International Conference on Parallel Processing (Lemont, IL, USA) (ICPP
2021). Association for Computing Machinery, New York, NY, USA, Article 8, 11 pages. https://doi.org/10.1145/3472456.3472512

[18] Chun Hok Ho, Chi Wai Yu, Philip H.W. Leong, Wayne Luk, and Steven J.E. Wilton. 2007. Domain-Specific Hybrid FPGA: Architecture and Floating
Point Applications. In 2007 International Conference on Field Programmable Logic and Applications. 196–201. https://doi.org/10.1109/FPL.2007.
4380647

[19] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM: In-Memory Acceleration of Deep Neural Network Training with
High Precision. In Proceedings of the 46th International Symposium on Computer Architecture. 802–815. https://doi.org/10.1145/3307650.3322237

[20] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2018. Computing in Memory With Spin-Transfer Torque Magnetic RAM.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 3 (2018), 470–483. https://doi.org/10.1109/TVLSI.2017.2776954

Manuscript submitted to ACM

https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/ICCD.1994.331954
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1109/FCCM53951.2022.9786179
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/3173162.3173171
https://doi.org/10.1109/ISSCC42614.2022.9731754
https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/3472456.3472512
https://doi.org/10.1109/FPL.2007.4380647
https://doi.org/10.1109/FPL.2007.4380647
https://doi.org/10.1145/3307650.3322237
https://doi.org/10.1109/TVLSI.2017.2776954

PIMSAB 25

[21] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. 2016. Stripes: Bit-serial deep neural network computing. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.

[22] Mingu Kang, Sujan K. Gonugondla, Ameya Patil, and Naresh R. Shanbhag. 2018. A Multi-Functional In-Memory Inference Processor Using a
Standard 6T SRAM Array. IEEE Journal of Solid-State Circuits 53, 2 (Feb. 2018), 642–655. https://doi.org/10.1109/JSSC.2017.2782087

[23] Mingu Kang, Sujan K. Gonugondla, and Naresh R. Shanbhag. 2020. Deep In-Memory Architectures in SRAM: An Analog Approach to Approximate
Computing. Proc. IEEE 108, 12 (2020), 2251–2275. https://doi.org/10.1109/JPROC.2020.3034117

[24] Mingu Kang, Min-Sun Keel, Naresh R. Shanbhag, Sean Eilert, and Ken Curewitz. 2014. An energy-efficient VLSI architecture for pattern recognition
via deep embedding of computation in SRAM. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
8326–8330. https://doi.org/10.1109/ICASSP.2014.6855225

[25] Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig, Pradeep Ramini, Duane Merrill, Aniket Shivam, Piotr Majcher, Paul Springer, Markus
Hohnerbach, Jin Wang, and Matt Nicely. 2022. CUTLASS. https://github.com/NVIDIA/cutlass

[26] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo Young Kim,
Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho
Kim, SooYoung Kim, Eun-Bong Kim, David Wang, Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and
Nam Sung Kim. 2021. 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications. In 2021 IEEE International Solid- State Circuits Conference (ISSCC), Vol. 64. 350–352.
https://doi.org/10.1109/ISSCC42613.2021.9365862

[27] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2017. DRISA: A DRAM-based Reconfigurable
In-Situ Accelerator. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 288–301.

[28] NCSU. 2018. FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
[29] Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu, Jacob Grossbard, Mohammad Dashti, Romaric Jodin, Alexandre Ghiti, Jordi

Chauzi, and Alexandra Fedorova. 2021. A Case Study of Processing-in-Memory in off-the-Shelf Systems. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, 117–130. https://www.usenix.org/conference/atc21/presentation/nider

[30] Amin Norollah, Danesh Derafshi, Hakem Beitollahi, and Ahmad Patooghy. 2018. PAT-Noxim: A Precise Power & Thermal Cycle-Accurate NoC
Simulator. In 2018 31st IEEE International System-on-Chip Conference (SOCC). 163–168. https://doi.org/10.1109/SOCC.2018.8618491

[31] Xiangjun Peng, Yaohua Wang, and Ming-Chang Yang. 2023. CHOPPER: A Compiler Infrastructure for Programmable Bit-serial SIMD Processing
Using Memory in DRAM. In 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). 1275–1288.

[32] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2012. Decoupling Algorithms from
Schedules for Easy Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4, Article 32 (jul 2012), 12 pages.

[33] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B.
Gibbons, and Todd C. Mowry. 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology. In 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 273–287.

[34] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional
Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). 14–26.

[35] A. Stillmaker and B. Baas. 2017. Scaling equations for the accurate prediction of CMOS device performance from 180 nm to 7 nm. Integration, the
VLSI Journal 58 (2017), 74–81. http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/.

[36] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony Tung, Omid Rowhani, Varghese George, John Wawrzynek, and André
DeHon. 1999. HSRA: High-Speed, Hierarchical Synchronous Reconfigurable Array. In Proceedings of the 1999 ACM/SIGDA Seventh International
Symposium on Field Programmable Gate Arrays (Monterey, California, USA) (FPGA ’99). Association for Computing Machinery, New York, NY,
USA, 125–134. https://doi.org/10.1145/296399.296442

[37] Arizona State University. 2012. Predictive Technology Model. http://ptm.asu.edu/
[38] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew

Adams, and Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions. arXiv preprint
arXiv:1802.04730 (2018).

[39] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David Blaauw, and Dennis Sylvester. 2020. A 28-nm Compute
SRAM With Bit-Serial Logic/Arithmetic Operations for Programmable In-Memory Vector Computing. IEEE Journal of Solid-State Circuits 55, 1
(2020), 76–86. https://doi.org/10.1109/JSSC.2019.2939682

[40] Xiaowei Wang, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros, Eriko Nurvitadhi, Charles Augustine, Ravi Iyer, and Reetuparna Das.
2021. Compute-Capable Block RAMs for Efficient Deep Learning Acceleration on FPGAs. In 2021 IEEE 29th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 88–96. https://doi.org/10.1109/FCCM51124.2021.00018

[41] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications of the Obvious. SIGARCH Comput. Archit. News 23, 1 (1995).
[42] Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev, Brian Kloppenborg, James Malcolm, and John

Melonakos. 2015. ArrayFire - A high performance software library for parallel computing with an easy-to-use API. https://github.com/arrayfire/
arrayfire

Manuscript submitted to ACM

https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1109/JPROC.2020.3034117
https://doi.org/10.1109/ICASSP.2014.6855225
https://github.com/NVIDIA/cutlass
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.usenix.org/conference/atc21/presentation/nider
https://doi.org/10.1109/SOCC.2018.8618491
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
https://doi.org/10.1145/296399.296442
http://ptm.asu.edu/
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/FCCM51124.2021.00018
https://github.com/arrayfire/arrayfire
https://github.com/arrayfire/arrayfire

	Abstract
	1 Introduction
	2 Background
	2.1 Bit-serial Processing-In-Memory in SRAMs
	2.2 Tensor Domain-Specific Language (DSLs)

	3 Overview
	3.1 Hardware Organization
	3.2 System Architecture
	3.3 Enabling Scalable and Performant Processing-In-Memory

	4 Architecture
	4.1 Instruction Set Architecture (ISA)
	4.2 Microarchitecture

	5 Compiler
	5.1 Overview
	5.2 Parallelism Distribution & Memory Allocation
	5.3 Optimizing CRAM Data through Adaptive Precision
	5.4 Data Loading & Packing
	5.5 Implementation

	6 Evaluation Methodology
	6.1 Modeling PIMSAB
	6.2 Baselines
	6.3 Benchmarks

	7 Results
	7.1 Comparison with NVIDIA A100 GPU
	7.2 Comparison with SRAM PIM (Duality Cache)
	7.3 Comparison with DRAM PIM (SIMDRAM)
	7.4 Time and energy breakdown
	7.5 Sensitivity to different hardware parameters
	7.6 Sensitivity to different workload parameters
	7.7 Ablation Studies
	7.8 Chip Area Distribution

	8 Related Work
	9 Conclusion
	References

