SPARK: Sparsity Aware, Low Area,
Energy-Efficient, Near-memory Architecture for
Accelerating Linear Programming Problems

Siddhartha Raman Sundara Raman, Lizy John, and Jaydeep P. Kulkarni
The University of Texas at Austin
s.siddhartharaman @utexas.edu

Abstract—Integer Linear Programming (ILP) is an important
mathematical approach for solving time-sensitive real-life op-
timization problems, including network routing, map routing,
traffic scheduling, etc. However, the algorithms for solving ILPs
are typically sparse and branch-intensive, and not CPU/GPU
friendly. In the paper “What could a million cores do to solve
Integer programs”, Koch et al. [40] presented data illustrating
that Integer Linear Programming (ILP) applications take tens
of hours of execution time even on the largest parallel comput-
ers. Long execution time is a problem because many real-life
applications need a decision in seconds or minutes. The widely
used ILP solvers, like Gurobi (optimized for CPUs), perform
software-based optimizations to handle the inherent sparsity in
ILPs but still do not meet decision threshold because of the
limited throughput of CPUs. GPUs are suited for large-sized
dot-product compute, however, GPU-based ILP solvers also do
not meet decision thresholds as (i) GPU is not sparsity friendly
and (ii) GPU incurs thread divergence for branching, resulting
in under-utilization of streaming engines and periodic host-GPU
interaction. We propose SPARK, a sparsity-aware, reuse-aware,
energy-efficient, reconfigurable, near-cache ILP architecture that (i)
re-configures the existing L1 cache present in CPUs to perform
near-cache acceleration with easy integration into the baseline
CPU pipeline with minimal area overhead (~ 1.4% of a CPU),
(ii) performs near-cache sparsity detection and sparsity-aware
compute, reducing the number of insignificant computations,
and data movement energy overheads, (iii) leverages the com-
putational patterns present in algorithms used for solving ILP to
realize a reuse-aware architecture, and (iv) is applicable to solving
sparse and dense ILPs and LPs (Linear Programs). We observe
15x/20x, and 152x/740x performance/energy improvement over
AMD’s Zen3 CPU, and Nvidia’s Tesla v100 GPU for sparse real-
life ILPs in Mixed Integer Programming library (MIPLIB 2017).
For sparse LPs (non-integer), SPARK achieves 7-17x/103-250x
performance/energy improvement over CPU/ GPU indicating
SPARK’s broad applicability.

I. INTRODUCTION

Linear Programming (LP) [14] [12] is an essential math-
ematical tool used to analyze a variety of optimization or
feasibility problems, with the solution to these problems
deduced based on a set of linear constraints. A variant of linear
programming called integer linear programming (ILP), adds
complexity by restricting the solution space to a set of integers.
Solving ILP problems has been historically challenging [38]],
[40]. Firstly, real-world ILP applications, like network routing,
stock investments, traveling salesman, and emergency dispatch
scheduling [38]], demand timely decisions. Optimizers like

MIPLIB 2017/ Time-sensitive CPU+Gurobi | GPU+cuSparse | Decision
2010 instance Real-life application | solution time | solution time | threshold
Ns1111636 (NS) Network routing 103 hrs 105 hrs <10mins
Markshare2 (MS) | Market sharing 1.5 hrs 1.75 hrs <1min
Stp3d (ST) Map routing 114 hrs 110 hrs <1min
Timtabl (TT) Traffic scheduling 10 mins 8 mins <30 secs
Air05 (AR) Airline scheduling 45 mins 40 mins <5mins
Blpar9s8 (BL) Railway planning 30 mins 35 mins <5mins
gen-ip054 (GE) Random ILPs 1.25 hrs 1.7 hrs <5mins

Fig. 1. ILPs on CPUs and GPUs do not converge at the solution within
the decision threshold time for time-sensitive real-life applications.
Gurobi [23] and CPLEX [13|] use data patterns and multi-
threading on CPUs for precise solutions. Koch et al. [40] show
many ILP executions take tens of hours, even on 4000-8000
cores. While GPUs are an option, dataset sparsity (65-99%)
poses a challenge [21]]. Execution times of state-of-the-art op-
timizations on CPUs and GPUs, as shown in Fig.|l|for selected
applications from MIPLIB 2017 [20], significantly surpass
the decision threshold time for time-critical applications, even
when leveraging libraries like cuSparse for GPU-based sparse
problem execution. Secondly, the energy to converge at the
solution, can be extremely high (~ 10° Joules), when MIPLIB
benchmarks are executed on a CPU, because of data movement
overhead and computational costs with large-sized sparse ILPs.

Domain-specific accelerators show promise for large prob-

lems with high runtimes and energy demands [35] [36]
[31]] [64], but solutions without dedicated accelerators are
preferable. While the dot product in ILP benefits from paral-
lelism, sparsity and control-intensive tasks present challenges.
Additionally, moving large data between the host CPU and
accelerator is a challenge. Our solution involves a near-
memory architecture integrated into the CPU, leveraging L1
cache for compute and minimizing data movement overheads.
We allocate small area for dedicated sparsity-aware peripheral
logic near L1 cache to handle control-intensive parts of ILP.
The major features of SPARK are:

o Sparsity awareness: A sparsity-aware algorithm is pro-
posed to alleviate insignificant computes along with the
ability to perform useful compute leveraging the high
throughput of PIM, leading to energy efficient compute.

o Reconfiguring CPU components: Spark is tightly inte-
grated into the CPU pipeline, and reuses existing CPU
components such as L1 cache, to accelerate ILP.

+ Reuse-awareness: Identification of computational pat-

a) Traditional execution flow for ILP

Software optimized [Jacobi iterative method for

[Branch & Bound]
for sparsity system of linear equations (SLE,

method (B&B)

c) Branch & Bound method
Input: X from Jacobi, initial C
Output: Solution X and Cost
procedure BRANCH_BOUND(C,D,X)
GLB = floor(Min_cost(X)) //Local bound
while (queue !empty && node is leaf)
(var1,var2) = min(frac,LB) //#2a
X_n = Soln_find (node,parents,C) //#3
Enqueue (X_n, node, parents) //#3
LB=Calculate_cost(X_n) //#1
Dequeue_pruning (queue) //#2b
Optimal_cost=Cost(node_leaf) //#4

b) Jacobi iterative method
Input: C, D, X, Error limit (Err)
Output: Solution X for the constraints
procedure JACOBI ITERATION(C,D,X)
for n=1 to Num.Iterations do
for i=1 to Num.Constraints do
sum=0
forj=1tonandj!=1do
sum+= C;*X[n] //#1
X[n+1] = (D-sum)/C;; //#2
if L1 norm of X[n+1] — X[n] <= Err//#3
return X[n+1]

Fig. 2. a) CPU/GPU-based ILP execution involves software optimization
of sparsity, followed by SLE, B&B methods. Pseudocodes for b) Jacobi
iterative method (SLE) and c¢) Branch and Bound (B&B).

terns in ILP algorithms to enable reuse of near-memory
logic across different compute engines.

o Near-cache architecture: The fine-grain near-memory
dot product compute maximizes parallelism, while the
coarse-grain dedicated hardware ensures high perfor-
mance for control-intensive tasks, minimizing data move-
ment through in/near-memory computing.

o ILP Speedup: Spark achieves 15x/20x performance,
and 152x/740x energy improvements over AMD’s Zen3
CPU/Nvidia’s Tesla v100 GPU for sparse ILPs.

« Broad applicability - LP Speedup: Spark is also suit-
able for LP problems in addition to ILP problems, and re-
sults in 5-7x/150-180x performance/energy improvement
over CPU/GPU in dense LP, and 7-17x/103-250x perfor-
mance/energy improvement over CPU/GPU in sparse LP.

II. BACKGROUND
A. Integer linear programming (ILP) formulation

Linear programming [19] (LP) solves optimization problems
with non-negative solutions. Integer linear programming (ILP)
[4], [39] (special case of LP) restricts solutions to integers [[7]],
leading to exponential time complexity.

ILP constraints are represented by (i) a 2D matrix (C) with
rows/columns equal to the number of constraints/variables, and
(1) a vector (D) with rows equal to the number of constraints.
Additional constraints like X; > 0 and Xj& Z restrict the
solution to non-negative integers [42], [44].

Thus, the general form of olj)vtimization version of ILP
problem is OptimizeF (X) = > _, Aj*X;. The general form
of the feasibility version of ILP problem is B = Zjvzl Ajx Xj,
where N is the number of variables, represented as Xy in
a system of linear equations. ILP’s solutions satisfy these
constraints: 7)C * X < D;ii)X; > 0;ii4)X; € Z

B. Traditional execution flow for solving ILPs

Direct algorithms [[18]], [32], [37] excel with smaller con-
straint sets, while iterative ones handle real-time optimization
with complex constraints. Iterative methods like Jacobi and
Gauss-Seidel [2], [49], [59]] find optimal solutions, relaxing
integer constraints, and Branch and Bound (B&B) [17], [61]]

refines these to integer solutions. Fig.[2]a shows ILP flow, with
sparsity-optimized software executing SLE followed by B&B.
MIPLIB 2017 benchmarks reveal sparsity levels of 65%-99%.

C. Jacobi method for system of linear equations (SLE)

This iterative numerical technique solves a system of linear
equations. It works with input constraints (matrix C), variables
(X), and constants (D). i) Initial Approximation: Begin with
a randomly initialized solution vector X. ii) Iterative Updates:
Refine the solution iteratively by updating each variable. Each
iteration computes new variable values based on the old values
of all others. In Fig. [2lb, #1 and #2 find updated X using
MAC, subtraction, and division. iii) Convergence criterion:
The process continues until a convergence criterion is met,
which occurs when changes in X between iterations become
sufficiently small (L1 norm). Label #3 in Fig. 2]b checks if
L1 norm is less than a predefined error limit.

D. Branch and Bound (B&B)

B&B, after Jacobi, finds the optimal integer solution by
generating child nodes for each parent node and selecting a
branching variable based on the node’s established bounds.
B&B for minimization (min) problem involves steps shown
in Fig. Plc: i) Branching start: The lower bound (LB) is
initialized to the ceil of > 7_, A; X;. Global UB is the
value of F(X) when X is the ceil of the obtained solution
from SLE (#1 in Fig. Plc); ii) Branching node/variable:
Variable/node with the least fractional/local LB part branches
first (#2a in Fig. [2|c); iii) Branching continuation: C matrix
updates each iteration to include new constraints from B&B,
and the updated X matrix is identified at each branch with
the local LB of each node (#3 in Fig. c). iv) Branching
complete: Pruning occurs in four ways: (a) The solution vector
X from SLE consists of non-negative integers. (b) When the
local LB equals the global UB, and other local LBs are less
than the global UB. (c) F(X) is identical across leaf nodes, with
at least one node having non-negative integers. (d) F(X) is the
same across some branches, with at least one valid solution
and others infeasible (#2b in Fig. 2lc).

I11. MOTIVATION
A. Understanding 3C criterion for ILP execution

To explain SPARK’s necessity, we highlight why existing
accelerators are unsuitable for ILP execution. ILP involves
more than just matrix operations, requiring the 3C criterion:
C1 - Dot-product intensive operations in SLE, C2 - Handling
sparse constraints, and C3 - Managing control flow tasks like
L1 norm in SLE, B&B. Existing accelerators typically fulfill
at most two of these, not all.

B. Shortcomings of Linear Algebra/Tensor accelerators

Traditional linear algebra accelerators handle dot-product
intensive operations such as matrix-matrix/matrix-vector mul-
tiplications in convolution, fast-fourier transform for signal
processing. These are mainly classified as application-specific

MIPLIB 2017/2010 | GPU+cuBLAS | CloudTPU CGRA solution | Estimated
instance solution time | solution time* | time* SparseTPU*
Ns1111636 (NS) 108 hrs 244 hrs 250 hrs 150hrs
Markshare2 (MS) 3.5hrs 9hrs 19 hrs 6.5hrs
Stp3d (ST) 114 hrs 272 hrs 300hrs 195hrs
Timtabl (TT) 9.5 mins 23mins 1lhr 20mins

Fig. 3. Experiments with TPUs/CGRAs show unacceptable solution times
(in hours), even at reduced accuracies (* indicates 98% of CPU accuracy
is achieved).

integrated circuits (ASIC) like TPU, Bison-e, and reconfig-
urable architectures like CGRA, Transmuter [46], etc.

Experiments with TPUs for ILP workloads show they un-
derperform compared to CPUs/GPUs, which already struggle
to meet decision thresholds (Fig[I). Results in Fig[3|align with
CloudTPU documentation [1]], highlighting TPUs’ inefficiency
for branching and sparse operations. Additionally, solution
accuracy on TPUs is only 98% of that on CPUs, compromising
both accuracy and solution time.

Bison-e [48]], an ASIC optimized for generic integer linear
algebra applications, uses binary segmentation for matrix-
matrix/vector multiplication, addressing characteristic CI.
However, Bison-e currently lacks control for handling sparse,
control-flow intensive operations, unsuitable for ILP, and
framework/compiler support is still in nascent phase.

Coarse-grained reconfigurable architectures (CGRA) are
valued for their reconfigurability, mapping problems to data-
dependency graphs (DDG). However, they rely heavily on
compilers and perform poorly on ILPs with conditional state-
ments [[15]. Data sharing between the CPU and CGRA is
complex with current frameworks, limiting their suitability for
real-world ILPs (Fig[3). We also observed sparsity and control
flow issues causing underutilization of processing engines.

Transmuter [46] uses a reconfigurable data-flow model (like
CGRA), adaptable memory, and cross-bar arrays, allowing
kernel computation with varying arithmetic intensity. However,
it has drawbacks: i) Only 2x speedup over CGRA, insufficient
compared to CPUs/GPUs. ii) Frequent data movement from
the host CPU. iii) High integration overhead for control
engines resembling local CPUs. iv) Unclear energy cost for
clocking local control units. v) High reconfigurability overhead
for sparse/branching workloads.

C. Shortcomings of existing sparsity-aware accelerators

Numerous sparsity-aware accelerators, dedicated to machine
learning, are unsuitable for solving ILPs due to their i) inability
to handle control-flow-intensive operations. ii) Offloading such
operations to the host requires periodic host-accelerator data
movement, impacting performance/energy.

Sparse-TPU [28|] addresses sparsity by leveraging static
sparsity in weights, allowing offline encoding of data and
transformations for arranging them as structured dense compu-
tations. i) Sparsity-aware TPUs incur a fundamental overhead.
Data must be pre-processed to ensure that non-zero elements
access the correct index/PE block across processing engines
aligned in a mesh style, adding extra overhead. [63] ii) The
proposed 2D tensor matrix approach requires adaptation to

a) 2 50
o # of ml 2 4 b) W GPU m GPU+cuSparse
S5 threads 6 m8 m10
L —_
* X
£
:
S0 S
=
3 =)
&0
NS MS ST TT NS MS ST TT

Fig. 4. a) ILP on CPU - Performance saturation with increasing number
of threads suggests hardware bottlenecks like limited throughput and
high data movement. b) ILP on GPU - GPU utilization with/without
cuSparse is less due to sparsity and thread divergence

modern TPUs at a 3D level. Column packaging may not
achieve optimal density for a 3D matrix. iii) Software-based
sparsity encoding/detection is slower compared to extremely
parallel hardware-based sparsity detection. iv) Sparse TPUs,
at best, exhibit characteristics of CI and C2, but struggle
with control-flow-intensive operations, leading to frequent
data movement cost and rendering them unsuitable for ILP
operations. v) A reported 16x speedup aids SLE but not L1
norm or B&B, falling short of CPU/GPU performance levels.
Impact on solution accuracy remains uncertain.

EIE [24] is a specialized DNN hardware accelerator that
employs Deep Compression for network pruning and uti-
lizes a dedicated pipeline for matrix-vector multiplication.
Other sparsity-aware accelerators, such as SparTen [22] and
ExTensor [29], require components like prefix-sum adders
and content address match, designed specifically for CNN.
These cannot handle B&B or L1-norm operations due to their
control logic limitations, requiring offloading to the host CPU,
increasing data movement and energy costs. To modify them
into ILP accelerators, additional structures like queues, sub-
tractors, and dividers would be needed for B&B and L1-norm,
effectively requiring a separate accelerator. This is because
they are designed only for sparse dot-product computations,
and their existing structures can’t be reused for B&B/L1-norm.

D. Shortcomings of Ising/Boltzmann accelerators

Boltzmann/Ising accelerators map NP-complete Combina-
torial Optimization Problems onto an Ising graph, where
spins (S) and interaction coefficients (IC) represent variables
and constants, respectively. Existing Ising accelerators face
limitations for ILPs: i) Binary-valued spins limit their appli-
cability to binary ILPs, unlike real-life applications. ii) Most
Ising accelerators like [62] [52] [55] rely on Hamiltonian
energy being represented as a quadratic formulation of product
between S and IC, suitable for PIM compute. However, binary
ILPs warrant a different Hamiltonian energy (mentioned in
[43]]), not captured by the existing Ising accelerators.

E. Shortcomings of CPU/GPU based execution

While multicore CPUs can be used for ILP solving, Koch
et al. [40] presented the inadequacy of solving ILPs on
multicores, Fig. fla suggests that increasing threads do not
scale performance ([40]). CPUs, using sparsity-optimized
software like Gurobi rely on Von Neumann compute.

SPARK'’s execution of ILP

a)
ILP problem Hardware Dense [Jacobi iterative Branch & Bound
based sparsity [method (SLE) method (B&B)

detection (FC)

S|
Parse [Sparsity-aware compute (SA) }

b) Problem
Accelerate Jacobi iterative method

Proposed solution

In-L1 cache dot product/near-L1 cache

(SLE) arithmetic operations
Accelerate Branch & Bound method Reuse-aware in/near-L1 dot
(B&B) product/arithmetic operations

Hardware based Sparsity detection (FC) Near-L1 sparsity detection

Sparsity-awareness (SA) Near-L1 sparsity-aware compute

Tightly integrated with CPU’s L1-cache

Dead silicon area in accelerators

Fig. 5. a) SPARK uses hardware-based sparsity detection, execution
based on sparsity. b) Problems in solving ILPs and proposed solutions

GPUs can solve ILPs, but the sparsity poses challenges [21].
Data is transferred from the CPU’s Data (D) cache via shared
memory to GPU cores, incurring data movement overhead
leading to energy bottleneck. Fig. []b shows the under-
utilization in GPUs with/without cuSparse, because of sparsity
and thread divergence [23]] [[10]], negatively affecting efficiency
[25] [33]. GPU+cuSparse/cuBLAS (Fig were compared,
with the former outperforming the latter. Subsequently, results
from cuSparse alone are presented.

FE. Challenges in existing B&B accelerators

Software optimizations to accelerate B&B have been pro-
posed [10], [50], while no hardware accelerators for B&B
exist. To reduce thread divergence in GPU-based B&B,
Chakroun et al. [10] used an entirely software-driven opti-
mization for executing branches in parallel. The authors of [50]]
propose a fast algorithm for optimal sub-problem identification
in feature selection. However, these suffer from sparsity,
necessitating periodic host-GPU interaction and unnecessarily
lengthening the time of short threads.

G. Challenges in existing Linear Programming accelerators

Prior research [9] [8] investigates the use of a linear solver
System on Chip (SoC) architecture that utilizes a Residue
Number System (RNS) combined with residual processors
(RP) functioning as SIMD (Single Instruction, Multiple Data)
units. While this approach offers parallel computation benefits,
RNS suffers from significant limitations, primarily its low
dynamic range, which restricts its ability to handle problems
with a wide range of values. This limitation hinders conver-
gence, reduces performance, and makes it difficult to apply
the system to problems with more than 10-20 constraints
or larger-scale Linear Programming (LP) problems. Another
study [6] explores the use of FPGA for implementing the
Simplex algorithm, leveraging block-RAM for data storage
to speed up the optimization process. However, this FPGA-
based solution faces scalability issues, particularly in terms of
its ALUs, and it lacks the necessary support for solving Integer
Linear Programming (ILP) problems using Branch-and-Bound
(B&B) methods.

CPU CPU L1 cache Bank0 .. [_Bankn-1
Core 0 ‘ Core 1 5 safsajsal [s-a)[sasag
U PU SLE,B&B engines AR, [AR, |
+) Sub, ;Div, Sub, ;Div,
Core 2 || Core 3 Standard CPU logic Counter/Queues/Max/Cell

CJRepurposed L1 for in-memory compute [Additional near-memory logic

Fig. 6. Spark is realized by re-configuring L1 cache (orange) in CPUs
for PIM along with minimal near-memory logic (green) shared among
FC, SA, SLE, and B&B engines. In an L1 cache with n banks, engines
are realized using: shift-add (s-aj.3) at a finer granularity of 1 per 16
columns in a bank for 16-bit compute, adder reduction (AR;) for s-a
outputs, subtraction (Suby), and division (Div;) at a coarser granularity
of 1 per bank. The counters/queues/max/ceil are shared across the cache.

H. Challenges in existing processing-in-memory accelerators

PIM accelerators have been proposed for a wide range of
computational problems [16] [S] [26] [3]], but they are found
to be inadequate for the specific needs of ILP acceleration.
One key issue is the use of a 1-bit adder on the column-lines,
which proves insufficient for effectively addressing two critical
aspects of ILP computation. First, it struggles to accelerate the
sparse, control-flow-intense parts of ILP problems, where effi-
ciency is key. Second, it does not provide sufficient throughput,
preventing the near-memory logic from fully exploiting its
potential. Finally, the existing PIM accelerators do not handle
sparsity extremely well. For effective ILP acceleration, it is
essential to handle control-flow intensive throughput-heavy
sparse operations efficiently.

IV. THE SPARK ARCHITECTURE
A. Learning from shortcomings of prior approaches

Traditional accelerators for linear algebra, sparsity,
Ising/Boltzmann models, CGRAs, and ILP-related works
struggle with sparsity, control-heavy operations, and data
movement between host and accelerator. CPU and GPU
optimizations outperform them, with CPUs leading. SPARK
reconfigures L1 cache for dot-product compute, adding
minimal near-L1 logic across CPU cores for hardware-based
sparsity detection, SLE/B&B execution (Fig. [5]a).

B. SPARK’s acceleration strategy satisfying 3C criterion

SPARK’s acceleration strategy (Fig. [B]b) satisfies the 3C
criterion: (i) C1: Optimizes SLE compute throughput via
in/near-memory arithmetic operations. (ii) C2: Handles spar-
sity with algorithmic transformation and sparsity-aware com-
pute. (iii) C3: Accelerates B&B by optimizing control flow
and reusing SLE components. (iv) SPARK is compact, energy-
efficient, and easily integrates into SoCs.

C. Choice of tightly integrated over dedicated accelerator

Integrating dedicated accelerators into modern SoCs is chal-
lenging due to i) accelerators increasing area overhead/cost,
ii) handling control-intensive tasks suited for CPUs, adding
overhead to throughput-focused accelerators, iii) high data
movement cost between CPU and accelerator, even for small
MIPLIB benchmarks, increasing power overhead, and iv)
requiring a distinct programming model, unlike adding instruc-
tions to an existing ISA, which is adaptable for programmers.

4| 8| 2 w 2l 2| 2| w
N x| X N x| X N
Banko | G2 | G | Gz | Dy Bank1 | S | G | G D,
c21 CZZ C23 DZ C21 C22 CZS DZ
R, | R, | Ry | O R | R, | Rs | O
S S = =
Rw | £ | 2| 2| < Row P B e
buffer S % * o buffer o * * (a]
o [} u] © &l 2
(€] (€) O (@)
l T T —
l Assumed C, D, R are all 16-bits;
. X is 2-bits for illustration
"X, Ci3*Xs sA=shiftand add;
AR = Adder reduction
ch*XZ + C13*X3
Fig. 7. In-L1 dot product compute followed by near-L1 accumulation,

adder reduction for SLE solving while re-using row buffer/sense amplifier

D. SPARK’s tightly integrated architecture

SPARK reconfigures the L1 cache and the added near
memory logic to realize the following engines: i) FC
(Fetch/Control) engine for sparsity detection; ii) SA (Sparsity-
aware) engine for sparsity-aware compute. iii) SLE engine for
SLE acceleration, iv) B&B engine for B&B acceleration.

Micro-architecture overview: Fig. [shows SPARK’s archi-
tecture on a 4-core machine, with n banks of L1 cache per
core and near-memory logic shared to realize different engines.
The shift-and-add (s-a;.3) operates on partial dot products in
memory, with 1 per 16 columns per bank for 16-bit com-
pute, aligning with MIPLIB value ranges. The adder reduc-
tion (AR) of s-a outputs/subtractors(Sub;)/dividers(Div,) are
present at a coarse granularity of 1 per bank, with additional
counters/queues shared across L1-cache.

E. SPARK’s choice of units

SPARK’s design focuses on selecting its computational units
to minimize area while ensuring that throughput is maintained.
In SLE compute, the primary arithmetic operation is MAC,
crucial for updating variables by performing MAC across X
and C vectors with all other variables (#1 in Fig. @a). Because
of the importance of the MAC operation in updating these
variables, the SA units are designed to operate at a finer
granularity to efficiently handle these operations in parallel. In
contrast, subtraction and division operations are only needed
after all the MAC operations have been computed. These
operations require much less complexity and thus can be
handled with a single 2-input operation, as illustrated in 2 of
Fig. 2b). Therefore, these are present at a coarser granularity.
Similar reasoning can be extended to proposed reuse-aware
B&B, sparsity-aware ILP compute.

F. SPARK - LI cache reconfigured for compute

Architecture: The L1 cache in modern processors is typ-
ically organized into multiple banks and utilizes 8T SRAM
bitcells ([L1] [56] [47] [57] [60] [41] [53] [54]), which
feature decoupled read/write ports. This configuration allows
for efficient data access, as read and write operations can occur
simultaneously without interfering with each other. SPARK
stores constraint coefficients (Cjj, D;) and cost function (R;)

in L1 cache, reconfiguring it for compute using decoupled read
port.

Example:Fig. [/| shows in/near-memory compute for SLE
step #1 for Xy using PIM(L1)+SA+AR. Assuming C, D, R are
16 bits and X is 2 bits, C/D is replicated across 2 banks. The
15/2" banks handle the dot-product between C (in memory)
and the 0/1% bit (mapped to RBL) of X. Row-buffer stores
the dot-product result. SA shifts and adds partial products, and
AR reduces them to calculate Ci,*X,+C;3*X3.

G. Circuit details for in-memory compute

L1 cache uses 8T SRAM with decoupled read/write ports
(RWL, RBL, WWL, WBL) allowing read-after-write in 2
cycles, compared to 3 cycles for 6T SRAM [45], offering
a performance benefit. These have decoupled read (RBL-
read bit-line/RWL- read word-line) and write (WBL- write bit
line/WWL - write word line) ports, wherein decoupled read-
port is “reconfigured” for compute. All columns are computed
in 8T SRAM array in parallel.

Dot product compute is performed by storing coefficients
onto the bit-cell (SN) and pre-charging RBL based on the
value of the incoming variable (X) (Fig. [8la,b). For X="1"/"0",
RBL is precharged to V../(V./2) respectively. For performing
dot product between "1’ (SN) and 1’ (RBL), RBL discharges
below V../2, while RBL is greater than V../2 in other cases.
RBL discharges via read-port transistors marked in orange, and
is sensed by repurposing the sense-amplifier logic to obtain dot
product, without modifying array.

H. Choice of L1 cache over last level cache

This choice considered factors like size, performance,
throughput, and energy efficiency for MIPLIB benchmarks.

Observation: ~65% of MIPLIB 2017 benchmarks, fit within
a 128KB L1 cache. For 65% of workloads, L1 cache demon-
strated: i) superior performance with low access latency, ii)
sufficient throughput accommodating the entire workload, and
iii) lower energy demands due to reduced data movement
compared to constant CPU core requests to LLC. 35% of
benchmarks exceeding L1 capacity led to a trade-off analysis
between L2 and L1 caches for energy efficiency (throughput
divided by energy) in an 8MB LLC versus a 128KB L1 cache.

Results: Simulations show that masking data movement
from L2-L1 outweighs LLC’s throughput benefits, resulting
in 20-25x energy efficiency enhancement in MIPLIB bench-
marks. L1 cache was selected, incorporating prefetching to
reduce data movement latency while maximizing efficiency.

1. Prefetching for large workloads

Idea: For large workloads that exceed the capacity of the L1
cache, we have implemented a robust prefetching mechanism
to effectively address performance and throughput bottlenecks
that arise due to cache misses. This strategy takes full ad-
vantage of the highly structured and predictable nature of L1
cache accesses. We ensure the accesses to L1 cache start from
top to bottom of PIM array, ensuring determinstic compute.

Timeliness/prefetch location: Initiating sequential prefetch-
ing requests early enough ensures fill latency amortization in

In-memory Dot product

a) L1 cache—=PIM b) 8T SRAM Bitcell in L1 cache

Ve (X="0') — %
/ =y ==&
:) ! X Cc "RBL@T
® Ci1| C12 | Cy3 | Dy (AN ‘o >V, /2
2 | G| G| G5 |D ‘o ‘1 >V /2
= R21 RZZ RB 02 SN — Storage node ® — — o/
8 =2l Read RWL/RBL) |@'Y [0 [>Ve/2
a [Column decode + | R-IW_L Write (WWL/WBL) — —
® Row buffer \ rite ® 1 1 <V /2

Fig. 8. a) L1 cache, organized as banks, stores C and cost function (R)
consisting of b) 8T SRAM bit cells with decoupled read (orange) and
write ports (blue). A data-dependent precharge maps X onto RBL with
C stored in bitcell. Dot-product compute between X and C is identified
by the value of RBL. RBL at T! > Vce/2 => ’0°, RBL < Vee/2 => 17,

case of overflow. The choice of a sequential access order is
particularly advantageous because the convergence iterations
within the computation process are independent of the order
in which variables are updated. This independence effectively
eliminates the possibility of performance bottlenecks that
might otherwise occur if variable update order were a limiting
factor. Data is efficiently filled into the L1 cache via the
CPU core’s dedicated fill pipeline. The data filling process
is optimized by replacing the least recently “computed” input
constraint, which ensures that the cache is continually popu-
lated with the most relevant data for ongoing computations.
This approach takes advantage of the L1 cache’s ability to
support simultaneous read and write operations to different
indices, a feature made possible by the decoupled read and
write ports in the cache architecture.

J. Impact on traditional CPU workloads

We compared timing metrics with/without near-memory in
load-store unit in a 2mm*2mm floorplan and 2ns clock latency
in 45nm technology, post place,route, regarding i) increased
gate depth affecting critical paths, ii) placement disruptions in
conventional logic due to the near-memory logic, iii) latency,
access ports, energy, capacity, associativity.

Gate depth: The timing of critical paths in the system re-
mains unaffected by the proposed changes. Specifically, there
are three key factors contributing to this: (i) Near-memory
logic operates in a separate inactive pipeline during normal
operations, and do not add gate depth. The typical critical path
for reads involves setting up the read-index (virtual address
in VIPT cache), wherein the address can be forwarded from
execution units. This path remains unaffected by SPARK. (ii)
In the case of processing-in-memory (PIM), no significant
modifications are made to the array itself. The only change is
the introduction of a 2:1 multiplexer on the periphery, which
is used to perform dot-product computations. This multiplexer
delay is absorbed with no latency impact (iii) Fill datapath,
which gets activated on a fill of a line from higher level caches,
is untouched, adding no extra gate depth.

Placement disruptions: There are no additional routing
hotspots, congestion leading to placement perturbations,
achieved by careful placement of added near memory logic.

If deemed sparse; compute the following:
procedure POT_SOLN(CN,CCN,C,D,CC)
for i=0 to CN do (Initialize k to 0)
for j=0 to CCN do
if K!=j then
Sub[ent]+= (D[il-C[i][i]*CC[il)
PSArr[cnt][j] = CC[j]
PSArr[cnt][k] = (Sub[cnt]/C[i][K])
k++; cnt++;
procedure POT_COSTS(cnt,CCN,PSArr,Cost)
for i=0 to cnt do
for j=0 to CCN do
PCArr([i] = PSArr[i][j] * Cost funclj]
Cost = MaxPCArr

Sparsity aware algorithm

Input:

CC array = Constraints of form Xi <= Di

C array = Constraints not in CC array

Size of C and CC arrays= CN, CCN,

of constraints(m), variables(n),

Cost Function, C, Const,

D and CC arrays

Cnt initialized to 0

Output:

Solution X and Cost

Sparsity detection:

procedure SPARSE_DETECT(CCN, n)
if (n==CCN) Sparse=1

Fig. 9. Proposed sparsity-aware (SA) algorithm begins with the detection
of sparsity in FC engine. If deemed sparse, SA engine executes the
proposed SA algorithm, by identifying potential solutions, and costs.

Most near-memory logic is placed near the fill datapath, which
isn’t timing critical due to low logic depth, allowing it to
tolerate wire delay. Only final stage is near read-datapath, and
its low logic depth doesn’t disrupt pipelines. Therefore, there’s
no performance/timing impact from added logic, and SPARK
incurs no dynamic power cost as it can be fully gated.

Latency, access ports, energy, capacity, associativity:
SRAM latency remains unchanged, as no additional logic is
added to the read/write datapath. SPARK’s near-memory logic
only engages after the computed output from the memory
array is captured in the row-buffers (flip-flops).

At the bitcell level, there is no change in access ports. We
reuse the decoupled read port in high-performance 8T SRAM
for compute, maintaining 1 read, 1 write port. At the array
level, the number of compute accesses matches that of simul-
taneous read accesses, since we reuse the existing row/column-
decoding logic, leaving the access ports unchanged.

Read/write energy remains unaffected, as the memory ar-
ray’s read/write datapath isn’t altered for compute. The only
additional power comes from precharge, due to 2:1 multiplexer
for selecting between Vcc/2 and Vcec, adding just 0.001pJ,
since it’s shared across a column. Associativity, capacity and
hit/miss detection circuitry remains unaffected. Like modern
processors, we use way-predictor to identify way to access,
firing the tag array to confirm correctness. In compute mode,
data is “computed” rather than just array read.

Cache Coherence: Among C*D* X* stored in memory,
cache lines containing C,D do not undergo update, while
X undergoes update. Incase lines containing C*/D*/X* get
replaced or X* get updated, coherence in traditional CPUs is
reused for communicating to other cores. We assume MESI
protocol. Memory consistency is unaffected, as existing order-
ing requirements between memory operations is unaltered.

V. SPARK’s FULL-STACK APPROACH
A. Sparsity-aware algorithm

We propose a sparsity-aware algorithm (Fig. [9), explained
both mathematically and graphically.

Mathematical understanding: The algorithm starts by de-
tecting sparsity (SPARSE DETECT) in ILP problems. In
an ILP problem with m constraints and n variables (m >
n), the algorithm classifies constraints as either cardinality

0 0 Bl | Step 2: Verify near-memory in B&B engine ‘

Solve in'SLE engine
[X = {X1[sol], X2[sol], X3[sol]}]

[X={X1[sol], X2[sol], E3}]

Fig. 10. Reuse-aware B&B - a) B&B adds sparse constraints (gray) to
originally dense (blue) ILPs, and is solved by reusing SLE engine for B&B
without dedicated B&B hardware, but suffers from energy-inefficiency.
b) Proposed approach overcomes this by having near-memory queues

constrained (CC) or general. Specifically, constraints of the
form X; < D; are added to the CC array, while other constraints
are placed in the general constraints (C) array. When the CC
array contains exactly ”n” elements, the ILP is considered
sparse, indicating that there is a reduced number of active
constraints relative to the total possible number. Following
sparsity detection, the algorithm proceeds to the POTSOLN
function, which identifies potential solutions. This is achieved
through efficient dot-product operations performed between
the C and CC arrays. After the dot products are computed,
subtraction and division steps are applied to further identify
potential solutions. Finally, the POTCOSTS function (3) is
responsible for determining the maximum and minimum cost
values associated with the identified potential solutions.
Graphical understanding: In an n-dimensional space, CC
array elements form parallel planes, while C array elements
form non-parallel planes. The intersection of these planes gives
the optimal solution. Substituting values from n-1 CC array
elements into n-1 C array variables yields the n" variable for
all constraints (#1, #2 in POT_SOLN). X vectors represent
potential solutions, and their costs are potential costs.

B. Reuse-aware B&B algorithm for low area

Idea: To reduce area for B&B acceleration, we propose a
reuse-aware approach that allows hardware sharing between
B&B and SLE. SPARK reuses the SLE engine for B&B due
to the similarities in their computations.

Observation: With each branch, an ILP with n constraints
expands to “n+m” constraints, where ”m” is the branching tree
depth. For an ILP with 3 dense and sparse constraints after 3
B&B levels (n=3), there are two options: i) Reusing the SLE
engine for B&B without area overhead, or ii) Adding hardware
with a reuse-aware approach.

Tradeoff analysis: The first option (Fig@]a) causes energy
inefficiency and SLE under-utilization by solving additional
sparse constraints in the SLE engine. The second option
(Fig[TIOb) improves efficiency by solving only the first 2 dense
constraints in SLE, while verifying the remaining 4 constraints
near-memory, using parallel logic for 3 sparse constraints and
MAC for 1 dense constraint. This boosts energy efficiency and
compute density in the L1 cache. The near-memory queue for
sparse elements further improves energy efficiency by 30%
and compute density by 20%.

e, [c, |cs |0 b) Contents stored in-memory ~ _Near-memory queue Instruction Usage
e e e I Cyu |Gy |G | Dy Cyy |Gy |G |Ds VFC VS,[Addr] | Detect sparsity in constraints from [Addr], mark sparse VS
21 22 23 2
e e e In Cu |Gy |G | D, By [0 |0 |E VSASLE VC, VX, | SA/SLE given VS, constraints from [Addr], VC for cost, writes
31 | G2 [Gas 3 : T - 0 By, |0 E, VS, [Addr] the result into VX
By (0 [0 Ey Step 1: Solve in SLE engine - -
X = {X1[sol],X2[sol], E3} 0 [0 [Bs |Es VBB VB, VX, | B&B uses Vx written by VSASLE and constraints from [Addr],
0 |8y, |0 & N = [Addr] writes back to VB, VC

Fig. 11. SPARK’s additional instructions

Engine Step/Algorithm Hardware acceleration method
FC If(n==CCN) Sparse=1 Stage 1- Fetch constraints ; use near-
engine (#1) memory counter to detect sparsity

SA | Sub[cnt]+= (D[i] -C[i][j1*CC[j]) (#1) Stage 1- In/near-memory MAC.

engineloearricnt]kI=(Sublcnt]/CLiIIk]) (#2)

PCArr[i] = PSArr[i][j]*Cost[j](#3)
Cost = MaxPCArr (#4)

sum+= C;*Xj[n]
SLE (#1)

Stage 2 — Parallel subtraction, division
Stage 3 — Near-memory MAC
Stage 4 — Near-memory MAC

Stage 1- Near-memory MAC;
Stage 2- Adder reduction

engine X[n+1] = (D;-sum)/C;; Stage 3 — Parallel subtractors, dividers
(#2) Stage 4 — Iter2 queue write of X;,
Parallel execution across j
L1 norm of X[n+1], X[n] <= Err |Stage 5 Copy updated X; values X;[n+1] from
(#3) iter2->iterl queue + near-memory L1-norm
B&B LB = Calculate_cost(X_n) (#1) Stage 1 — PIM/Near-memory MAC
enginel(yar1,var2) = min(frac,LB) (#2a), Stage 2a— Near-memory comparison

Dequeue_pruning (queue) (#2b) Stage 2b — Parallel nodes invalidation

Enqueue (X_n, node, parents) ; #3

Stage 3 — Reuse-aware approach
Stage 4 — Near-memory MAC

Stage 5 — Near-memory MAC

Opt_cost=Cost(node_leaf) #4

Fig. 12. Acceleration strategy for algorithms in Fig2] Fig[J]

C. SPARK’s programming model

Unlike dedicated accelerators, which often require the use
of specialized and complex programming models, SPARK
offers a more seamless integration by leveraging existing
programming models such as sequential, multithreading, par-
allel, functional, and others. This flexibility is made possible
because SPARK reuses the CPU microarchitecture with mini-
mal additional instructions, meaning it can operate within the
frameworks developers are already familiar with. Moreover,
the modifications introduced by SPARK occur primarily at
the compiler level, meaning that the underlying changes in
the system are largely transparent to the programmer. This
design choice ensures that the impact on the programming
model is minimal, allowing SPARK to work effectively with
any existing CPU programming model.

D. SPARK’s ISA modifications

SPARK introduces a set of new instructions and registers
that significantly enhance the CPU’s capabilities in handling
specialized tasks. A control register is added that can be
programmed to configure L1 cache to compute mode. This
can be achieved similar to writing system registers (eg. MSR
in ARM). If needed, the system can easily reset this register to
return to a non-compute mode, ensuring flexibility and control
over the processor’s operating state. When in compute mode,
new instructions such as VFC, VSASLE, and VBB (Fig@
are decoded in front-end, signaling the back-end of the core
for performing high-throughput near-memory execution [5§].

Step 1: ILP formulation Step 2: Constraints Step 3: FC engine detects sparsity
stored in PIM array
Investment problem

X.<=D Input constraints
Availability Budget 1<=Dy; — }
. 2 Cy= Cost of X,<=Dy; lCardltnallltyd lNon-cardmdaIIy
e 0 G, each type €3 *X,#Cay*X,<=D3 constraine constraine
Gudeet >3 L10

Di= Available units
Xi= Purchased units
Maximize Ri*Xi

C Array

1D, CC Array

| # of CC array= variables => sparse |

xpected return : Ri
Step 4: Sparsity aware algorithm in SA engine

D/ = (D5 - C5*D)/Cy;

[C3*Dy] » [Ry*Ds+
Carray, D,,D. ,
éC arra:l/] [C5,*D,] %Dl, DZ } R,*D,’] Opt. cost
[RuR,] [Ds] [RuRz] [R,*Dy+ X vector
17142, [Rl,Rz] 1,12, Rl*DII]

L—[PS array PC array

Stage 1: } L[Stage 2 J L[Stage 3 J L[Stage 4]
PIM+SA Sub+Div PIM+SA+AR MAX
Fig. 13. Step 1: Investment problem with sparse constraints is stored in
L1 cache. Step 2: C matrix and D vector is fetched from the L1 cache
in FC engine. Step 3: These are pushed onto either the CC or C array

and is used for sparsity detection. Step 4: Sparsity-aware approach uses
PIM’s high throughput compute between C and CC array.

E. SPARK’s execution strategy

VEC execution: VFC directs the FC engine to detect spar-
sity, providing ILP sparsity status, crucial for step #1 in Fig.
E} VEC starts by loading constraints into L1 cache. C, D,
X vectors can span multiple cache lines without assumptions
about their location. Each 64B cache line stores 32 16-bit
coefficients. During compute, data is read using base address
+ offset, and the sparse bit in the VS register is set based on
sparsity, repeating across constraints to assess overall sparsity.

VSASLE execution: If deemed sparse, VSASLE is executed
in SA engine, else, executed in SLE engine. VX undergoes
dot product compute with constraints stored in memory,
with VX mapped onto L1 cache columns (Fig[7), for which
small (0.001% area overhead) decoding logic is added near-
L1 cache. VX stores updated X values post each iteration,
mapped onto iteration queues in hardware. During sparsity-
aware compute, the address from memory points to either C
or CC array elements (#1-2 in Fig[9), and points to constraints
for performing Jacobi, in dense compute. SPARK’s multiple
cache banks help with achieving a high throughput of 32 16-bit
MAC:s possible in a given cycle from a single core for a dense
ILP. If a constraint crosses multiple CLs, we perform partial
updates for each CL. VC is used for storing the initial cost
and stores the updated cost, as we proceed through iterations.

VBB execution: The VBB instruction reads the contents of
the VX register and, based on the data, activates the B&B
engine for the final ILP solution. This process follows the same
principles as those used in the SLE engine, as SLE engine is
reused for B&B compute as well. If ILP is sparse, VBB acts
as NOP, as B&B engine can be gated during sparse compute.

F. SPARK’s execution flow for sparse ILP

FC engine uses near-memory counters to detect sparsity. SA
engine uses MAC, subtraction, division to solve sparsity-aware
compute. SLE engine uses near-memory MAC, subtraction,
and division, B&B engine reuses SLE engine in step 3, near-
memory MAC, subtraction, division, discussed in Fig

Step 1 shows ILP formulation for investment problem by
using FC and SA engine.

Step 1: ILP formulation + Step 3: FC engine detects sparsity
Step 2: Constraints stored in PIM array Counter for # of entries stored in CSR |
ILP formulation: [] Constraints’ Carray
Ciq|* Xy +[Caff X +(Coaf* X3 <= Dy coefficients icc array Cy |Cyp |Cys
* * X, <= :
Ca . Xy +(Caf" Xy #(Cy3 X X3 <= 1D, in memory CCempty S 16 1
Ca1|* Xy +[Caff X +(Caal* X3 <= Dy -> Dense
Raal* Xy +Rooff X5 +[Rys/* X3 = |Cost Gy |Gy |Gy
-Steg 4: Jacobi iterative method in SLE engine Iter 2
Ci *X Cy*X D, -
(€l | [o dlnl s v X,[n+1],
Ci*%,[n], Ci*X,[n]+ (C*X,[n] +
[X;[n] X,[n] > * X,[n+1],
X [n]] ’ Ci3*Xs[n], Ci3*X5[n], C13*X3[n])) X,[n+1]
N D4 Dy /Cy 3
L Stage 1: Stage 2: L Stage 3: Stage 4:
PIM+SA AR Sub+Div Result write

End of every iteration (Stage 5) — Iter2 copied to Iter1, with L1 norm calculation

Step 5: Reuse-aware B&B compute in B&B engine Iter queuel
LB register, Variable, SLE solution, Verified
Xy[sol], P X
Upate UB value, Write into solution,
X [sol], "
array node, Branch Feasible
X3[sol]
dequeue queue or not?
Stage 1: Stage 2 Stage 3: | Stage 4:
PIM+SA EReCEllr> SLE engine Verification

Pruner

Stage 5 : PIM+SA+AR to obtain

[2 (n-1) input } {
Xi[br], X,[br], X;[br], if deemed feasible |__constraints constraint

1input }

Fig. 14. ILP with 3 constraints (for example) is stored in the L1 cache
in Step 1. In step 2, C and D matrices in the L1 cache are read out and
in step 3, the FC engine detects the problem to be dense, as CC array is
empty. Jacobi iterative method is executed in Step 4 and the reuse-aware
B&B approach in B&B engine accelerates B&B in step 5.

Step 2 shows PIM (L1 cache) array contents, for illustration
Fig.[8a. If there are n constraints of the form X;<D; and (m-n)
constraints of the form YC;*X;<D;, n constraints of the form
are stored first, followed by m-n constraints, to detect sparsity
early and turn off SLE, B&B engines. Fig. [[3]illustrates this by
storing X, <D, followed by C3;*X;+C3,*X,<Ds3 in Step 2.

Step 3 checks if a constraint is sparse by counting its non-
zero coefficients. If there are 2, it goes to the CC array;
otherwise, it goes to the C array. The first two constraints
store X; and D; in the CC array, while the 3" constraint is
pushed to the C array. Sparse constraints are counted in the
CC array to determine if the ILP is sparse. The FC engine
filters out zero coefficients from C/CC arrays.

Step 4 performs sparsity-aware ILP compute in SA engine
using PIM’s high throughput. Stage 1 executes a near-memory
MAC between elements in C (stored in memory) and CC ar-
rays (mapped to column). Stage 2 finds potential solutions (PS)
using near-memory subtractors/dividers. In stage 3, cost of
each PS is computed using near-memory MAC and enqueued
into the PC array, with optimal cost found in stage 4.

G. Execution flow for dense ILP

Step 1: Fig. ['lzf] shows ILP with 3 dense constraints stored
in L1 cache.

Step 2,3: Constraints are read from L1 cache, and the ILP
is deemed dense since the CC array is empty, based on the
approach mentioned for sparse ILPs.

Step 4: ILP is executed using SLE. Stages 1-2 in SLE
engine execute near-memory MAC (Fig. [8c) with stage 3’s
divider computing step #2 in Fig. Stage 4 updates the
result into the Iter2 queue. In stage 5, L1 norm compute

determines whether the problem has converged. The final
solution (Xj_3[sol]) is transferred to B&B engine.

Step 5: B&B compute for the initial branching tree level is
shown using X;.3[sol], assuming the final solution (X;_3[br])
is achieved after one level of branching. In (i) Stage 1, global
LB/local UB is calculated by reusing PIM for dot-product and
storing in global LB register/local UB array. The local UB
array/queue is enqueued after each branching tree level, while
global UB remains constant (ii) Stage 2 identifies branching
nodes, values, variables, and decisions for parallel pruning
using max/ceil/max functions. (iii) Stage 3 capitalizes on
parallelism from the SLE engine. (iv) Stage 4 uses reuse-aware
approach to verify the solution, by a) reusing PIM, b) using
simple MAC without replicating SLE engine. 3 arrays store
branching values, variables, and indices of parent nodes, for
cases where child node is invalidated along with parent node.
(v) In Stage 5, the final solution is obtained through MAC.

H. Execution flow for dense/sparse LPs

Sparse/dense LPs use same flow as their ILP counterparts.
In LPs the final solution comes from SLE, as B&B is unused.
Revisiting SLE algorithm in Fig. 2} using integers for C/D
in-memory enables add/sub/mul operations with the mantissa,
given identical exponents across X. Steps #1,#2 are resolved
to an integer dot-product/subtraction between mantissa of X
and C, with divider in step #2. Steps #1, #2 are repeated till
convergence.

VI. EVALUATION METHODOLOGY
A. Benchmarks

MIPLIB 2017/2010 [20] consists of real-life ILPs developed
to analyze the performance of different ILP solvers. We chose
7 benchmarks (a mix of Ll-cache fitting and overflowing
benchmarks) to evaluate SPARK’s benefits. For instance, NS,
ST, BL do not fit inside the L1 cache, to study SPARK’s
effectiveness for large-sized workloads.

B. Simulation methodology

SPARK 1is compared to software-optimized ILP execution
on multi-core CPU/GPU, as there are no prior ILP accel-
erators, and traditional accelerators fall short of CPU/GPU
performance (Fig[3). SPARK’s performance is modeled us-
ing a C++-based cycle-accurate simulator with a prefetching
strategy to hide data movement latency, and it simulates PIM
array intricacies at the RBL/RWL level, which existing CPU
simulators (Gem5) cannot. Python API-based ILP execution
provides end-to-end application performance, including setup
and data loading effects seen in CPU/GPU execution.

C. SPARK model

SPARK’s model includes 32KB I/D cache, 64B cache line
size, 4MB shared L2 cache, LRU replacement, 2GB DRAM,
5-wide decode, 8-fetch width, 32-entry load/store queue, and
a stride-2 prefetcher for the PIM-capable L1. To validate
SPARK’s CPU modeling (without PIM mode), we compare
to Gem5 using 16 SPEC benchmarks (8 INT/8 FP), covering

L1 cache hits (eg. sjeng, hmmer) and misses (eg. bzip2,
gce, gobmk) to evaluate prefetching/memory performance.
SPARK’s metrics, including L1 cache hits, miss latency,
execution time, align within 0.2% of Gem5 results.

D. SPARK micro-architecture

8T SRAM-based L1 cache array is organized into 16 banks,
each with 256 rows and 256 columns, optimized for PIM
compute. The near-memory logic includes: a) A 32-bit counter
in the control stage’s cardinality checker for sparsity detection.
b) The SLE engine includes two 256-entry centralized arrays
repurposed for potential solutions and cost arrays in the SA
engine. c) The B&B engine has a shared Global UB/LB
register with 1024 entries, including UB/LB and branch vari-
able/value arrays. d) Subtractors/dividers are set at 1 per bank,
with adders at 1 per 16 columns. Energy for compute/read is
based on RBL discharge when RWL is ON, with 40fF/35fF
capacitance at 1V. SRAM latency is 2ns, and data movement
costs 1pJ/bit [30]. We describe near-memory logic in System
Verilog and synthesize SPARK’s digital components for area,
power, and energy estimates using Synopsys Design Compiler
with 45nm FreePDK technology [51]], operating at 1V with a
2ns clock.

E. CPU/GPU comparison

Multi-core CPU is AMD’s Zen3, using ILP solver Gurobi,
multi-threading/cores and AVX. The GPU used is NVIDIA’s
Tesla v100, along with cuSparse to solve sparse ILPs. Execu-
tion times are recorded for performance comparison. Power for
GPU is measured using Nvidia System Management Interface
(nvidia-smi). The power in the idle state is deducted from the
power associated while executing an ILP to separate power
usage from other processes. In CPUs, power is measured
using power-stat, discounting idle power. Energy is obtained
by multiplying time with power.

F. Performance Breakdown Evaluation

SPARK’s benefits come from i) reduced data movement due
to in/near-memory compute alongwith prefetching. ii) high
throughput of parallel PIM compute. iii) Sparsity-awareness.
We identify their relative contributions: For iii), we get rid
of sparse datapath and compute using dense datapath. For ii),
we model PIM’s throughput to be 1 op/cycle to mimic non-
parallel PIM compute, while the remaining benefits come from
the reduced data movement aspect.

VII. RESULTS
A. Performance comparison for sparse ILP wrt CPU

Fig.[15]a shows the comparison of execution time measured
using Spark and software-optimized multi-core CPU (AMD
Zen3)/GPU ILP, running MIPLIB benchmarks, considering
application-level tradeoffs. The execution times in CPUs are
at least 12x-15x higher than in Spark due to reduced data
movement, increased throughput in PIM and early detection
of sparsity with sparsity-aware execution leading to reduced
number of insignificant computations to complete iterations

Gurobi/cuSparse optimized CPU/GPU m CPU m GPU _m Spark
a) 14 4 ” o o % « 12
12 | & £ = I
S o L ~ N
a 1 - - —
o
g2 08
+ T
s 8 0.6
8=
§ g 0.4
Zgo2
0
05 NS MS ST T AR BL GE
b):', ' M Data movement g ™ Parallel PIM compute Sparsity-aware
<
L c
2 0
38
as
p=)
®E
Qv <
38
NS MS ST T AR BL GE
c) 0.6
| M Data movement [l ® Parallel PIM compute Sparsity-aware
2
O
$5
a5
=)
=
O <
&8
NS MS ST T AR BL GE
Fig. 15. Speedup of Spark for sparse ILP: a) Spark shows 12-15x/12-

20x speedup over Gurobi/cuSparse optimized CPU/GPU. Relative contri-
bution of reduced data movement, parallel compute, and sparsity-aware
compute for improvement over b) CPU ¢) GPU.

faster. This is valuable in cases where the sparsity is less (70-
80%) like in MS, AR. Fig. @b shows that data movement
cost in large workloads is higher, parallel PIM compute is
useful uniformly across all workloads, sparsity-aware compute
is more valuable in highly sparse workloads. Speedup is higher
for workloads that fit in L1, due to reduced data movement

B. Performance comparison for sparse ILP wrt GPU

Despite cuSparse optimization, GPU performance lags be-
hind the CPU, while SPARK achieves a 12-20x speedup over
the GPU due to (i) the absence of host-GPU interaction over-
head, as SPARK integrates seamlessly into the CPU pipeline.
(i) The data transfer overhead for dot product computation
is reduced by performing in/near-memory compute. (iii) The
near-memory sparsity-aware algorithm minimizes hardware
underutilization from sparsity/B&B by performing only useful
compute with PIM, as seen in NS, ST, TT, AR, and BL,
where sparsity is very high. (iv) cuSparse is ineffective for
MS, GE than Gurobi, where sparsity is low, resulting in longer
execution time than CPU, achieving 20x speedups. Fig. [[3]c
shows similar trends as that of Fig. [T3]b.

C. Energy comparison for sparse ILP wrt CPU

Spark shows 117-152x energy improvement over CPU,
considering power, execution time (Fig. [I6). For CPU and
Spark, the average power required is approximately 80-90W
for the CPU and 7-10W for Spark. This substantial difference
in power consumption is primarily due to Spark’s design,
which significantly reduces data movement, incorporates early
sparsity detection, and utilizes a reuse-aware architecture.
These optimizations help minimize power consumption in

10

Gurobi/cuSparse optimized CPU/GPU m CPU = GPU = Spark
> > x

1000 =<
x x =
c a9 20 g Sy S o7 &
S £100 =
&
€
S 8 e e = = =
2o 10 § % § % % ‘% 2
S8 %] 3 b n 0 2
S5 1 © o ~ o o =
2 e
@ £
c O
w 0'1
NS MS ST T AR BL GE
Fig. 16. Spark shows 117-152x/400-740x improvement in energy for

sparse ILP over CPU/GPU. Note: y-axis uses log scale.

Spark compared to the CPU. In addition to offering significant
energy improvements of 120x in extremely sparse workloads,
Spark achieves even higher energy savings of 150x in GE,
a less sparse workload. This improvement is driven by early
sparsity detection, which enables the system to shut off unused
engines, further reducing energy usage.

D. Energy comparison for sparse ILP wrt GPU

We observe 400-740x energy improvements over the GPU
(which averages 250W). Specifically, the GPU’s streaming
engine is often underutilized, and there is frequent host-GPU
data movement, both of which contribute to inefficiencies
in energy usage. Additionally, GPUs lack the specialized
execution units required for optimal energy efficiency in
certain workloads. These issues are effectively mitigated by
leveraging near-memory sparsity and reuse-aware compute
strategies, which optimize the computation process directly
within memory, reducing unnecessary data movement. For
less-sparse workloads like GE, the energy improvements are
higher (740x) because of inefficient GPU compute.

E. Performance/energy comparison for sparse LP

We relax integer constraints from MIPLIB benchmarks,
removing B&B. GPUs struggle with sparsity and thread di-
vergence. Fig. [[7]a shows if CPUs outperform GPUs with-
out Bdivergence, the ILP problem is sparsity-bound (SB).
Otherwise, it is divergence-bound (DB). In benchmarks like
NS, speedups in solving LPs over CPUs are seen, but not
significant, demonstrating the interaction between divergence
and sparsity bounds, with divergence dominating sparsity.
Spark shows a speedup of 7-20x/8-17x than CPU/GPU due
to sparsity aware near-memory compute. For DB benchmarks,
the enhanced performance of the GPU makes up for the overall
power requirement. For SB benchmarks (MS, GE), CPU power
overhead is higher. With SPARK’s near-memory sparsity-
aware compute, the B&B engine is turned off, yielding 103-
272x/96-250x improvements over CPU/GPU (Fig. [I7}b).

F. Performance/energy comparison for dense ILP

We run randomly generated dense ILP constraints on CPUs
with Gurobi and on GPUs without cuSparse. SPARK’s near-
memory SLE engine improves efficiency and performance.
Fig. [I8h shows a 6-8x speedup over the CPU due to limited
throughput and high execution latency. Thread divergence in
B&B reduces GPU throughput, leading to periodic host-GPU

Gurobi/cuSparse optimized CPU/GPU m CPU m GPU m Spark

15
a) DB - Dlvergence bound, SB —Sparsity bound
§ DB DB DB SB
geo !
3
S=2o0s
50 x X > >
g S = % S
wc 0
b) T AR BL GE
1000
K 112x 152« 103x ¥ 1s0x oL 208
S 100
©
€
s 10
C
% ©
ga !
ge
NS MS ST T AR BL GE
MIPLIB benchmark (with integer constraints relaxed)
Fig. 17. Spark vs CPU/GPU for LP - Sparse LP in SA engine- a)

Performance b) Energy comparison between Gurobi (CPU) and cuSparse
(GPU) decoupling sparsity (both SLE and B&B) and thread divergence
issues (B&B) in GPU, as there is no B&B overhead. Spark shows 7-20x/8-
17x speedup/energy improvement of 103-272x/96-250x over CPU/GPU.

interactions, causing a 7-10x speedup for SPARK over the
GPU. For dense ILP, we observe linear speedup for 1K-
10K constraints, as convergence slows with more constraints.
Fig. [I8b shows a 60-75x/180-210x energy improvement over
CPU/GPU with reuse-aware near-memory approach.

G. Performance/energy comparison for dense LP

We relax the integer constraints of dense ILPs, and find the
time/power for evaluating SLE, as there is no B&B for LPs.
Fig. [I8]c shows a 4-5x speedup due to the near-memory high-
throughput approach, while GPU requires frequent host-GPU
interactions. Jacobi’s speedup contribution ranges from 48%
to 51% for 1K-50K constraints, with the rest from B&B. The
dataset’s density increases GPU utilization, leading to better
speedups than CPUs. Despite this, GPU power usage increases
energy consumption, especially with Gurobi for CPUs up to
10K constraints. Beyond 50K constraints, energy decreases
due to better streaming engine utilization. SPARK shows a
105-180x energy improvement over CPU/GPU by shutting off
the B&B engine and leveraging near-memory compute.

H. SPARK’s area analysis

SPARK’s area analysis is divided into three main com-
ponents: i) memory array (bitcells), ii) peripheral circuitry
(row/column decoders, multiplexers, and sensing circuitry),
and iii) added near-memory logic (shifters and adders).

Memory array: We use a 16-bank 8T SRAM array with a
size of 0.08mm? per core. SPARK doesn’t alter the memory
array, as the existing RBL and contents are reused for in-
memory computation, ensuring that the area occupied by the
memory array remains unchanged.

Peripheral circuitry: SPARK introduces a 2:1 multiplexer
to enable efficient dot-product computation through RBL
precharge. This results in increasing the area by 0.005mm?
per core. Other multiplexers/decoders remain unchanged from
the baseline peripheral circuitry.

Added near-memory: SPARK requires 0.37mm? per core,
including sparsity detection counters (0.03mm?/0.1%),
subtractors/dividers (0.11mm?/0.4%), shift-add/adder

11

a)g 8 b) 1000
N mCPU mGPU - m CPU m GPU m Spark
g_6 & 100
53 B x <
c O gy o “510 = < < s
58 Sl | 5N N | R E
T 2 %21 =
a @
20 5 01
1K 2K 5K 10K
<) 15 i) 1000
@ mCPU mGPU Ci M CPU m GPU m Spark
E] & 100
g 310 ® v
— Ny
R Smo (S M BE 1 ks
[Nyl 5 1% cwv *x] < = ™
% cDelSPENEN 2 |10 M5 WY I 1N
n w01
1K 2K 5K 10K 50K 1K 2K 5K 10K 50K
Number of constraints Number of constraints
Fig. 18. a) Dense ILP speedup sensitivity to problem size : Speedup

of 6-8x/7-10x b) Energy improvement of 60-75x/180-210x over
CPU+Gurobi/GPU c) Dense LP sensitivity: Speedup of 7-7.5x/4-5x over
CPU/GPU d) Energy improvement of 105-115x/150-180x over CPU/GPU.

(0.1mm?/0.4%), comparators (0.02mm?/0.1%), and
control/queues (0.11mm?/0.4%). Reduced area is due to
resource sharing across SPARK engines.

1. Comparison between Tesla A100 and V100

We simulate using Tesla A100 in addition to the Tesla V100,
with the results shown in Fig. [[9] While the A100 boasts
higher computational power and increased memory bandwidth
compared to the V100, the observed performance gains are
minimal and only become significant when processing large
workloads. For smaller workloads, both GPUs show nearly
identical performance in terms of solution time. This is be-
cause, despite the A100’s higher throughput capabilities, the
latency involved in data movement cannot be sufficiently offset
by its increased bandwidth in smaller datasets. Furthermore,
the A100 consumes more energy due to its higher power
requirements, which may reduce its overall energy efficiency
for tasks that do not fully leverage its enhanced capabilities,
making V100 a power-efficient option for smaller workloads

J. SPARK’s performance with varying LI/L2/L3 sizes

Fig 20 shows SPARK’s performance variation with L1 size,
highlighting the interaction between L1 cache size and cache
throughput (determined by read/compute size).

Cache size: For workloads that do not fit in the L1 cache
(such as NS, ST, and BL), reducing the size of the L1 cache
further leads to a decrease in performance. This is due to
the increased number of cache misses and the need to fetch
data from slower levels of memory. However, prefetching

MIPLIB Instance | V100 Soln time | A100 Soln time | V100 energy | A100 energy
NS 105 hrs 100 hrs 27.2 KWh 29 KWh

MS 1.75 hrs 1.7 hrs 0.5 KWh 0.7 KWh

ST 110 hrs 103 hrs 28 KWh 30 KWh

T 8 mins 9 mins 52 Wh 55 Wh

AR 40 mins 45 mins 0.2 KWh 0.4 KWh

BL 35 mins 45 mins 0.1 KWh 0.2 KWh

GE 1.7] hrs 1.6 hrs 0.4 KWh 0.5 KWh

Fig. 19. A100/V100 comparison

m32K,64B W 32K,328

1x = 64K, 64B

NS’JMSJsTJTT‘JAr&‘JBLJGE”

Fig. 20. Speedup normalized to 64KB L1 cache, read of 64B. Label X,Y
implies L1 cache of size X, read of Y

32K,128B 128K,64B 128K,32B 128K,128B

=N

5

Speedup
o o *

mitigates most of this performance loss, limiting the overall
performance drop to just 0.2x. On the other hand, increasing
the L1 cache size for these workloads provides a performance
boost, achieving a speedup of up to 1.5x by reducing cache
misses and improving memory access times. For workloads
that fit entirely within the L1 cache, performance remains
unaffected by changes in cache size, as all necessary data is
already available in the faster L1 cache.

Read/compute size: L1 cache read/compute size is crucial
as it directly affects SPARK’s near-memory logic utilization.
Halving the throughput typically reduces speedup by half
across most workloads. Conversely, doubling throughput, size
enables speedups of 2.4x for workloads that don’t fit in L1.

For L2 cache, read/compute size is irrelevant since we
don’t perform near-L.2 compute (reserved for follow-up work).
Reducing L2 size from 4MB to 2MB halves performance,
but prefetching can recover up to 0.9x. L3 cache shows no
sensitivity in MIPLIB benchmarks, as they fit within L1, L2.

VIII. DISCcUSSION
A. SPARK’s importance

Firstly, SPARK accelerates ILP/LP with minimal area over-
head by tightly integrating CPUs with L1 cache, exceeding de-
cision thresholds in several benchmarks (TT, AR, BL, GE). It
delivers significant speedups over CPU/GPU and lower energy
compared to existing methods. Even when the threshold isn’t
met for some benchmarks, SPARK consumes less energy than
CPU/GPU execution, enabling energy-efficient ILP execution.
We have developed near-L1, L2 compute, which improves
results in benchmarks that doesn’t meet threshold, left for
future work. Thus, SPARK is a high-performance, energy-
efficient architecture and a foundation for other accelerators.

Secondly, there are 2 broadly used architectures for accel-
erating workloads, chosen based on the workload:

1) Dedicated accelerator - Located farther from the CPU, these
are used for specialized workloads, where the cost of moving
data is offset by the accelerator’s high throughput.

ii) GPU - Depending on the SoC design and programming
model, GPU may take precedence of execution over dedicated
accelerators but offers similar tradeoffs as that of dedicated
accelerators in terms of throughput/data movement.

In SPARK, we demonstrate that workloads like ILP re-
quire real-time processing, making near L1-cache compute
necessary for energy-efficient, high-performance design. Thus,
we propose an architecture tightly integrated with CPU’s L1,
reconfiguring CPU’s L1 for compute.

12

B. SPARK’s generality to different ILP algorithms

SPARK is adaptable to various ILP algorithms, allowing
them to be mapped onto it without hardware modifications. In
ILP, constraints are typically expressed as C'«+ X < D, and
different algorithms use this to solve problems efficiently.

For a small number of constraints where direct methods
like Cramer’s rule may be preferred, the task is to solve n-
equations with n-variables and check if other equations satisfy
the solution. For example, consider 3 constraints of the form
Ci; * X; < D;. Coefficients are stored in memory, with RBL
mapped to C;; to compute the bit-wise dot-product. Using SA
and AR, the final dot-product between Cj; and Cj; is written
into queues. Subtraction is then performed by reading from
the queues, followed by division to get the final result.

For a larger problem, hypothetically if Gauss-Seidel method
[59] is preferred over Jacobi, the lower and upper triangular
matrices are stored in memory. X is multiplied by the upper
triangular matrix as in Jacobi, and D is subtracted similarly.
The divider computes the determinant, and multiplication with
the lower triangular matrix follows same approach as Jacobi.

C. Algorithmic insight and regularizing divider for low area

Background: Jacobi’s iterative method and B&B seek local
optima using the L1 norm but often get stuck in local min-
ima, mitigated by annealing or regularization. Algorithmically,
division is the final step in each iteration, followed by regu-
larization, requiring extra hardware. Hardware-wise, dividers
are area-intensive and not ideal for near-memory compute.

Idea: We propose using a “regularizing-divider” for regular-
ization by employing less-accurate division through approxi-
mate dividers, as in [34] [27]]. This replaces costly division
with subtracting the first m-bits of mantissa values, with
m adjustable based on error. If the error exceeds 1%, a
64B lookup table (shared across memory banks) provides a
correction value to refine the subtraction for the final output.

Results: Subtraction approximation reduces gate depth,
achieving 0.5ns latency, 0.15pJ energy in FreePDK 45nm tech-
nology, enabling energy-efficient single-cycle division. This
results in an average error of 0.2% on MIPLIB benchmarks,
aiding regularization of updated X values. The lookup table
occupies 0.02mm? per core, with a subtractor area of 0.04mm?.

IX. CONCLUSION

We propose Spark, a near-memory sparsity-aware acceler-
ator that reconfigures L1 cache in CPUs for high-throughput
compute, removing redundant computations with a sparsity-
aware approach, reuse-aware approach for control-flow in-
tensive operations that helps reduce the near-memory logic
area overhead. Spark achieves speedup of 15x/20x and en-
ergy benefits of 152x/740x, over AMD’s Zen3 CPU/Nvidia’s
Tesla v100 GPU for real-life sparse MIPLIB 2017 appli-
cations. In dense ILPs, Spark achieves 6-10x/60-210x per-
formance/energy improvement over CPU and GPU. Spark
achieves 7-17x/103-250x performance/energy improvement
over CPU and GPU in sparse LP, and 5-7x/150-180x perfor-
mance/energy improvement over CPU/GPU in dense LP.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

“[online] introduction to cloud tpu,” https://cloud.google.com/tpu/docs/
intro- to- tpu.

S. Abdullaev, “The hamilton-jacobi method and hamiltonian maps,”
Journal of Physics A: Mathematical and General, vol. 35, no. 12, p.
2811, 2002.

S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 1EEE, 2017, pp.
481-492.

F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah, “Generic
ilp versus specialized 0-1 ilp: An update,” in Proceedings of the 2002
IEEE/ACM international conference on Computer-aided design, 2002,
pp. 450-457.

A. Arora, T. Anand, A. Borda, R. Sehgal, B. Hanindhito, J. Kulkarni, and
L. K. John, “Comefa: Compute-in-memory blocks for fpgas,” in 2022
IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1EEE, 2022, pp. 1-9.

S. Bayliss, C.-s. Bouganis, G. A. Constantinides, and W. Luk, “An fpga
implementation of the simplex algorithm,” in 2006 IEEE International
Conference on Field Programmable Technology, 2006, pp. 49-56.

T. Berthold, “A computational study of primal heuristics inside an mi
(nl) p solver,” Journal of Global Optimization, vol. 70, no. 1, pp. 189—
206, 2018.

J. Bucek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “Design of a
residue number system based linear system solver in hardware,” Journal
of Signal Processing Systems, vol. 87, pp. 343-356, 2017.

J. Buéek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “System on chip
design of a linear system solver,” in 2014 International Symposium on
System-on-Chip (SoC), 2014, pp. 1-6.

I. Chakroun, M. Mezmaz, N. Melab, and A. Bendjoudi, “Reducing
thread divergence in a gpu-accelerated branch-and-bound algorithm,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 8,
pp. 1121-1136, 2013.

L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer,
R. H. Dennard, W. Haensch, and D. Jamsek, “An 8t-sram for variability
tolerance and low-voltage operation in high-performance caches,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 4, pp. 956-963, 2008.

V. Chvatal, V. Chvatal et al., Linear programming. Macmillan, 1983.
I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

G. B. Dantzig, “Linear programming,” Operations research, vol. 50,
no. 1, pp. 4247, 2002.

S. Dave and A. Shrivastava, “Ccf: A cgra compilation framework,” 2018.
C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” in 2018 ACM/IEEE 45Th annual international
symposium on computer architecture (ISCA). 1EEE, 2018, pp. 383-396.
M. Fischetti, A. Lodi, M. Monaci, D. Salvagnin, and A. Tramontani,
“Improving branch-and-cut performance by random sampling,” Mathe-
matical Programming Computation, vol. 8, no. 1, pp. 113-132, 2016.
F. Gao and L. Han, “Implementing the nelder-mead simplex algorithm
with adaptive parameters,” Computational Optimization and Applica-
tions, vol. 51, no. 1, pp. 259-277, 2012.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe,
T. Berthold, P. Christophel, K. Jarck, T. Koch, J. Linderoth et al., “Miplib
2017: data-driven compilation of the 6th mixed-integer programming
library,” Mathematical Programming Computation, vol. 13, no. 3, pp.
443-490, 2021.

A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe,
T. Berthold, P. M. Christophel, K. Jarck, T. Koch, J. Linderoth,
M. Liibbecke, H. D. Mittelmann, D. Ozyurt, T. K. Ralphs, D. Salvagnin,
and Y. Shinano, “MIPLIB 2017: Data-Driven Compilation of the
6th Mixed-Integer Programming Library,” Mathematical Programming
Computation, 2021. [Online]. Available: https://doi.org/10.1007/s12532-
020-00194-3

G. Gockner, “Guorobi blog,” https://support.gurobi.com/hc/en-
us/articles/360012237852-Does-Gurobi-support-GPUs-, 2023.

A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“Sparten: A sparse tensor accelerator for convolutional neural
networks,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,

13

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32

—

(33]

[34]

[35]

(36]

USA: Association for Computing Machinery, 2019, p. 151-165.
[Online]. Available: https://doi.org/10.1145/3352460.3358291

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2022. [Online]. Available: https://www.gurobi.com

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243-254, 2016.

T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in gpu
programs,” in Proceedings of the fourth workshop on general purpose
processing on graphics processing units, 2011, pp. 1-8.

B. Hanindhito, R. Li, D. Gourounas, A. Fathi, K. Govil, D. Trenev,
A. Gerstlauer, and L. John, “Wave-pim: Accelerating wave simulation
using processing-in-memory,” in Proceedings of the 50th International
Conference on Parallel Processing, 2021, pp. 1-11.

S. Hashemi, R. I. Bahar, and S. Reda, “A low-power dynamic divider
for approximate applications,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1-6.

X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye,
Y. Chen, R. Dreslinski, and T. Mudge, “Sparse-tpu: Adapting systolic ar-
rays for sparse matrices,” in Proceedings of the 34th ACM international
conference on supercomputing, 2020, pp. 1-12.

K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 319-333.

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 10-14.

Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, and Y. S. Shao, “Cosa: Scheduling by constrained
optimization for spatial accelerators,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). 1EEE,
2021, pp. 554-566.

Q. Huangfu and J. J. Hall, “Parallelizing the dual revised simplex
method,” Mathematical Programming Computation, vol. 10, no. 1, pp.
119-142, 2018.

R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommendations,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 968-981.

M. Imani, R. Garcia, A. Huang, and T. Rosing, “Cade: Configurable
approximate divider for energy efficiency,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). 1EEE, 2019, pp.
586-589.

N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles, C. Young, X. Zhou, Z. Zhou, and
D. A. Patterson, “Tpu v4: An optically reconfigurable supercomputer
for machine learning with hardware support for embeddings,”
in Proceedings of the 50th Annual International Symposium on
Computer Architecture, ser. ISCA °23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589350

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” SIGARCH Comput.
Archit. News, vol. 45, no. 2, p. 1-12, jun 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

V. Klee and G. J. Minty, “How good is the simplex algorithm,”
Inequalities, vol. 3, no. 3, pp. 159-175, 1972.

T. Koch, T. Berthold, J. Pedersen, and C. Vanaret, “Progress in math-
ematical programming solvers from 2001 to 2020,” EURO Journal on
Computational Optimization, p. 100031, 2022.

https://cloud.google.com/tpu/docs/intro-to-tpu
https://cloud.google.com/tpu/docs/intro-to-tpu
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1145/3352460.3358291
https://www.gurobi.com
https://doi.org/10.1145/3579371.3589350
https://doi.org/10.1145/3140659.3080246

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

T. Koch, A. Martin, and M. E. Pfetsch, “Progress in academic computa-
tional integer programming,” in Facets of Combinatorial Optimization.
Springer, 2013, pp. 483-506.

T. Koch, T. Ralphs, and Y. Shinano, “Could we use a million cores
to solve an integer program?”’ Mathematical Methods of Operations
Research, vol. 76, no. 1, pp. 67-93, 2012.

J. Kulkarni, M. Khellah, J. Tschanz, B. Geuskens, R. Jain, S. Kim,
and V. De, “Dual-v cc 8t-bitcell sram array in 22nm tri-gate cmos for
energy-efficient operation across wide dynamic voltage range,” in 2013
Symposium on VLSI Technology. IEEE, 2013, pp. C126-C127.

L. Liberti, “Symmetry in mathematical programming,” in Mixed Integer
Nonlinear Programming. Springer, 2012, pp. 263-283.
A. Lucas, “Ising formulations of many np problems,
physics, vol. 2, p. 5, 2014.

F. Margot, “Exploiting orbits in symmetric ilp,” Mathematical Program-
ming, vol. 98, no. 1, pp. 3-21, 2003.

S. S. T. Nibhanupudi, S. R. S. Raman, and J. P. Kulkarni, “Phase
transition material-assisted low-power sram design,” IEEE Transactions
on Electron Devices, vol. 68, no. 5, pp. 2281-2288, 2021.

S. Pal, S. Feng, D.-h. Park, S. Kim, A. Amarnath, C.-S. Yang, X. He,
J. Beaumont, K. May, Y. Xiong et al., “Transmuter: Bridging the effi-
ciency gap using memory and dataflow reconfiguration,” in Proceedings
of the ACM International Conference on Parallel Architectures and
Compilation Techniques, 2020, pp. 175-190.

S. R. S. Raman, S. Xie, and J. PKulkarni, “Compute-in-edram with
backend integrated indium gallium zinc oxide transistors,” in 2021 I[EEE
International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-
5.

E. Reggiani, C. R. Lazo, R. F. Bagué, A. Cristal, M. Olivieri, and O. S.
Unsal, “Bison-e: A lightweight and high-performance accelerator for
narrow integer linear algebra computing on the edge,” in Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 56—69.

G. L. Sleijpen and H. A. Van der Vorst, “A jacobi—davidson iteration
method for linear eigenvalue problems,” SIAM review, vol. 42, no. 2,
pp. 267-293, 2000.

P. Somol, P. Pudil, and J. Kittler, “Fast branch bound algorithms for
optimal feature selection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 7, pp. 900-912, 2004.

J. E. Stine, 1. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh et al., “Freepdk:
An open-source variation-aware design kit,” in 2007 IEEE international
conference on Microelectronic Systems Education (MSE’07). 1EEE,
2007, pp. 173-174.

Y. Su, H. Kim, and B. Kim, “31.2 cim-spin: A 0.5-to-1.2v scalable
annealing processor using digital compute-in-memory spin operators and
register-based spins for combinatorial optimization problems,” in 2020
IEEE International Solid- State Circuits Conference - (ISSCC), 2020,
pp. 480-482.

S. R. Sundara Raman, L. John, and J. P. Kulkarni, “Nem-gnn:
Dac/adc-less, scalable, reconfigurable, graph and sparsity-aware near-
memory accelerator for graph neural networks,” ACM Trans. Archit.
Code Optim., vol. 21, no. 2, May 2024. [Online]. Available:
https://doi.org/10.1145/3652607

S. R. Sundara Raman, L. John, and J. P. Kulkarni, “Nem-gnn:
Dac/adc-less, scalable, reconfigurable, graph and sparsity-aware near-
memory accelerator for graph neural networks,” ACM Trans. Archit.

>

Frontiers in

Code Optim., vol. 21, no. 2, May 2024. [Online]. Available:
https://doi.org/10.1145/3652607
S. R. Sundara Raman, L. K. John, and J. P. Kulkarni, “Sachi: A

stationarity-aware, all-digital, near-memory, ising architecture,” in 2024
IEEE International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2024, pp. 719-731.

S. R. Sundara Raman, S. S. T. Nibhanupudi, and J. P. Kulkarni,
“Enabling in-memory computations in non-volatile sram designs,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 12, no. 2, pp. 557-568, 2022.

S. R. Sundara Raman, S. Xie, and J. P. Kulkarni, “Igzo cim:
Enabling in-memory computations using multilevel capacitorless
indium—gallium-zinc—oxide-based embedded dram technology,” IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits,
vol. 8, no. 1, pp. 3543, 2022.

J. Turley, “Tensilica cpu bends to designers’ will,” Microprocessor
Report, vol. 13, no. 3, p. 12, 1999.

14

[59]

[60]

[61]

[62]

[63]

[64]

M. Usui, H. Niki, and T. Kohno, “Adaptive gauss-seidel method for lin-
ear systems,” International Journal of Computer Mathematics, vol. 51,
no. 1-2, pp. 119-125, 1994.

S. Vangal, S. Paul, S. Hsu, A. Agarwal, S. Kumar, R. Krishnamurthy,
H. Krishnamurthy, J. Tschanz, V. De, and C. H. Kim, “Wide-range
many-core soc design in scaled cmos: Challenges and opportunities,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 29, no. 5, pp. 843-856, 2021.

L. A. Wolsey, “Heuristic analysis, linear programming and branch and
bound,” in Combinatorial Optimization II. Springer, 1980, pp. 121-134.
S. Xie, S. R. S. Raman, C. Ni, M. Wang, M. Yang, and J. P. Kulkarni,
“Ising-cim: A reconfigurable and scalable compute within memory ana-
log ising accelerator for solving combinatorial optimization problems,”
IEEE Journal of Solid-State Circuits, pp. 1-13, 2022.

R. Xu, S. Ma, Y. Guo, and D. Li, “A survey of design and optimization
for systolic array based dnn accelerators,” ACM Computing Surveys,
2023.

Y. Zhang, N. Zhang, T. Zhao, M. Vilim, M. Shahbaz, and K. Oluko-
tun, “Sara: Scaling a reconfigurable dataflow accelerator,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA). 1EEE, 2021, pp. 1041-1054.

https://doi.org/10.1145/3652607
https://doi.org/10.1145/3652607

	Introduction
	BACKGROUND
	Integer linear programming (ILP) formulation
	Traditional execution flow for solving ILPs
	Jacobi method for system of linear equations (SLE)
	Branch and Bound (B&B)

	MOTIVATION
	Understanding 3C criterion for ILP execution
	Shortcomings of Linear Algebra/Tensor accelerators
	Shortcomings of existing sparsity-aware accelerators
	Shortcomings of Ising/Boltzmann accelerators
	Shortcomings of CPU/GPU based execution
	Challenges in existing B&B accelerators
	Challenges in existing Linear Programming accelerators
	Challenges in existing processing-in-memory accelerators

	THE SPARK ARCHITECTURE
	Learning from shortcomings of prior approaches
	SPARK's acceleration strategy satisfying 3C criterion
	Choice of tightly integrated over dedicated accelerator
	SPARK's tightly integrated architecture
	SPARK's choice of units
	SPARK - L1 cache reconfigured for compute
	Circuit details for in-memory compute
	Choice of L1 cache over last level cache
	Prefetching for large workloads
	Impact on traditional CPU workloads

	SPARK's FULL-STACK APPROACH
	Sparsity-aware algorithm
	Reuse-aware B&B algorithm for low area
	SPARK's programming model
	SPARK's ISA modifications
	SPARK's execution strategy
	SPARK's execution flow for sparse ILP
	Execution flow for dense ILP
	Execution flow for dense/sparse LPs

	EVALUATION METHODOLOGY
	Benchmarks
	Simulation methodology
	SPARK model
	SPARK micro-architecture
	CPU/GPU comparison
	Performance Breakdown Evaluation

	RESULTS
	Performance comparison for sparse ILP wrt CPU
	Performance comparison for sparse ILP wrt GPU
	Energy comparison for sparse ILP wrt CPU
	Energy comparison for sparse ILP wrt GPU
	Performance/energy comparison for sparse LP
	Performance/energy comparison for dense ILP
	Performance/energy comparison for dense LP
	SPARK's area analysis
	Comparison between Tesla A100 and V100
	SPARK's performance with varying L1/L2/L3 sizes

	Discussion
	SPARK's importance
	SPARK's generality to different ILP algorithms
	Algorithmic insight and regularizing divider for low area

	CONCLUSION
	References

