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Contemporary DRAM systems have maintained impressive scaling by

managing a careful balance between performance, power, and storage density. In

achieving these goals, a significant sacrifice has been made in DRAM’s operational

complexity. To realize good performance, systems must properly manage the

significant number of structural and timing restrictions of the DRAM devices.

DRAM’s efficient use is further complicated in many-core systems where the

memory interface has to be shared among multiple cores/threads competing for

memory bandwidth.

In computer architecture, caches have primarily been viewed as a means to

hide memory latency from the CPU. Cache policies have focused on anticipating

the CPU’s data needs, and are mostly oblivious to the main memory. This work

demonstrates that the era of many-core architectures has created new main memory

bottlenecks, and mandates a new approach: coordination of cache policy with main

memory characteristics.
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Using the cache for memory optimization purposes dramatically expands

the memory controller’s visibility of processor behavior, at low implementation

overhead. Through memory-centric modification of existing policies, such as

scheduled writebacks, this work demonstrates that performance-limiting effects

of highly-threaded architectures combined with complex DRAM operation can be

overcome. This work shows that an awareness of the physical main memory layout

and by focusing on writes, both read and write average latency can be shortened,

memory power reduced, and overall system performance improved.

The use of the “Page-Mode” feature of DRAM devices can mitigate many

DRAM constraints. Current open-page policies attempt to garner the highest level

of page hits. In an effort to achieve this, such greedy schemes map sequential

address sequences to a single DRAM resource. This non-uniform resource usage

pattern introduces high levels of conflict when multiple workloads in a many-core

system map to the same set of resources.

This work presents a scheme that provides a careful balance between

the benefits (increased performance and decreased power), and the detractors

(unfairness) of page-mode accesses. In the proposed Minimalist approach, the

system targets “just enough” page-mode accesses to garner page-mode benefits,

avoiding system unfairness. This is accomplished with the use of a fair memory

hashing scheme to control the maximum number of page mode hits.

High density memory is becoming ever more important as many execution

streams are consolidated onto single chip many-core processors. DRAM is

ubiquitous as a main memory technology, but while DRAM’s per-chip density
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and frequency continue to scale, the time required to refresh its dynamic cells has

grown at an alarming rate. This work shows how currently-employed methods to

schedule refresh operations are ineffective in mitigating the significant performance

degradation caused by longer refresh times. Current approaches are deficient

– they do not effectively exploit the flexibility of DRAMs to postpone refresh

operations. This work proposes dynamically reconfigurable predictive mechanisms

that exploit the full dynamic range allowed in the industry standard DRAM memory

specifications. The proposed mechanisms are shown to mitigate much of the

penalties seen with dense DRAM devices.

In summary this work presents a significant improvement in the ability

to exploit the capabilities of high density, high frequency, DRAM devices in a

many-core environment. This is accomplished though coordination of previously

disparate system components, exploiting integration of such components into

highly integrated system designs.
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Chapter 1

Introduction

It is now well-understood that in the nanometer era, technology scaling will

continue to provide transistor density improvements, but that power density and

performance improvements will slow. In response, processor designers now target

chip-level throughput (instead of raw single-core performance), packing increasing

numbers of cores and threads onto a chip. In 2000, virtually all server processors

were single-core, single-thread; today systems contain 16 threads in the Intel

Nehalem EX [10], 32 threads in the IBM POWER7 [23], and 128 threads in the

Sun Rainbow Falls [10].

The processor-memory interface has been particularly challenged by this

many-core trend. Technology scaling provides roughly 2x the number of transistors

per lithography generation, so when core or thread counts more than double per

generation, the result is generally a decrease in the available cache size per core

and/or thread. This is very evident in the Rainbow Falls design, where 128 threads

share a 6 MB cache. From first principles, a drop in on-chip cache size will result in

higher miss rates and higher memory bandwidth demands. Single socket memory

demands have thus been rapidly increasing, not only due to core and thread counts,

but also from the transition to throughput-type designs, which provide fewer cache

1



bits per thread.

These many-core architectures struggle not only to provide sufficient main

memory bandwidth per core/thread, but also to schedule high bus utilization

compared to single threaded designs. Server processors generally have one or

two main memory controllers per chip, meaning that many cores share a single

controller and a memory controller simultaneously sees requests from different

work streams. In this context, locality is easily lost, and it becomes difficult to

find and schedule spatially sequential accesses. Inefficient scheduling results in

performance reductions and consumes unnecessary energy.

Most servers currently use JEDEC (Joint Electron Device Engineering

Council) standardized Double-Data-Rate (DDR) memory [22], so a fairly accurate

understanding of memory bandwidth scaling can be obtained by looking at DDR

trends. In terms of raw IO (Input/Output) speeds, DDR has continued to improve,

with peak speeds doubling each generation (400Mbps DDR, 800Mbps DDR2,

1600Mbps DDR3). IO frequencies continue to scale, but other key parameters,

such as reading a memory cell or turning a bus around from a write to a read

operation, are not scaling at comparable rates. At higher signaling rates, the

electrical integrity of bus interconnects becomes much more difficult to maintain

– both within the DRAM chips and across the main memory path to/from the

processor. This results in a complex set of timing parameters which dictate that gaps

be inserted when the access stream transitions from a write to a read or vice-versa,

significantly degrading effective memory bandwidth. This problem has worsened

with each memory generation. For example, tWRT, the Write-to-Read Turnaround

2



Figure 1.1: DDR3 single rank bus utilization efficiency, limited by DRAM
parameters (tRC, tRRD, tFAW), and bus turnaround time (tWRT) [22]

delay, has stayed within a range of 5-10ns for DDR through DDR3. Therefore,

as DRAM IO frequencies increase, the number of cycles wasted between each

access grows. Figure 1.1, calculated from JEDEC parameters, shows the dramatic

impact of these mandatory timing delays on effective bandwidth: even with perfect

scheduling, utilization of a single memory rank can be as low as 25-40% for

high-frequency DDR. Clearly, this trend cannot continue – in the many-core era,

computer architects must find ways to improve not only raw memory bandwidth,

but also memory bandwidth efficiency.

While DRAM devices output only 16-64 bits per request (depending on the

DRAM type and burst settings), internally, the devices operate on much larger, 1KB

pages (also referred to as rows). Since the read latency and power overhead of the

DRAM cell array access have already been paid, accessing multiple columns of

that page decreases both the latency and power of subsequent accesses. These

successive accesses are said to be performed in page mode and the memory

3



requests that are serviced by an already opened page loaded in the row buffer are

characterized as page hits.

Due to the reductions in both latency and energy consumption possible

with page mode, techniques to aggressively target page mode operations are often

used. There are downsides however, which must be addressed. Leaving a specific

page open produces a higher access latency to other rows in the same bank (page

conflict). In addition, certain scheduling algorithms such as the First-Ready, First-

Come-First-Served (FR-FCFS) [51] give higher priority to page hit operations,

which can result in unfairness for non page hit operations. Therefore, although

row buffer hits are useful, they must be used in moderation.

In addition to limits on bandwidth scaling, the act of refreshing the DRAM

cells has become more invasive. Each DRAM cell requires a refresh every 64ms.

DDR DRAM chips implement internal refresh control logic, such that the memory

controller must send refresh commands at a specified rate such that all rows in the

DRAM are refreshed in this 64ms time. Traditionally this rate was determined

by dividing the 64ms by the number of rows in the dram. As DRAM density

double with each generation, the number of rows also doubles. As such, using this

traditional method, the rate at which refresh command must be sent would need

to double with each generation. In order to reduce the magnitude of the refresh

penalty, DRAM vendors have designed refresh commands such that multiple rows

are refreshed in one command. While this does reduce the refresh penalty, there is

a cost in that the time required to execute a refresh increases with each generation.

This is shown in Table 5.1. The parameter tRFC defines the time for refresh

4



Table 1.1: Refresh parameters as density increases [22]

DRAM type tRFC tREFI@85◦C tREFI@95◦C

512Mb 90ns 7.8µs 3.9µs

1Gb 110ns 7.8µs 3.9µs

2Gb 160ns 7.8µs 3.9µs

4Gb 300ns 7.8µs 3.9µs

8Gb 350ns 7.8µs 3.9µs

commands to complete while tREFI defines the interval between refresh commands.

Data is included for both 85C and 95C operational points. Note that 95C is common

operating point in dense server environments such as the systems that this work

targets.

1.1 Objective

These complexities in achieving high performance in memory systems

require advancements in scheduling policies. This dissertation seeks to achieve

these advancements through innovative coordination of previously isolated system

components combined with more sophisticated policies in previously ignored

aspects of memory scheduler design.

Traditional memory controller designs are implemented in relative isolation

with respect to the devices they service. Requests to read and write memory are

scheduled for execution in the DRAM through internal request queues and priority

5



logic. Internally generated requests such as refresh are also generated and executed.

This work explores the improved system execution speed and energy usage of

memory controller policies that coordinates the processing of the read, write, and

refresh commands both within and beyond the memory controller functional unit.

Design philosophy of the Coordinated controller: Develop mechanisms

to increase both direct and perceived control over the operation set presented to the

memory controller scheduler, enabling more efficient scheduling.

1.2 Overall Mechanism Description

The following sections describe the various micro-architectural components

and mechanisms that comprise the overall Coordinated Memory Scheduler. The

overall system is shown in Figure 1.2. In this system, several system components

communicate with the memory scheduler to comprise the Coordinated design.

These components are,

1. Minimalist open-page policy: The management of the DRAM row buffer is an

important aspect of the memory system. Row buffer hit induced starvation has

been shown to be a significant problem in multi core systems [45]. This work

utilizes a minimalist open-page policy, where “just enough” page mode hits are

produced, while avoiding row buffer hit induced starvation.

2. Virtual Write Queue [58]: Enables direct control of cache write traffic based

off memory traffic.

3. Elastic Refresh Queue [57]: A structure to stage and control execution of

6
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refresh requests, and ensure DRAM parameters are not violated.

1.3 Thesis Statement

The complexity of high frequency and density DRAM combined with the

need to support many execution threads of modern multi-threaded chip multi-

processors can be mitigated by coordinating the CPU, cache, and memory controller

policies around these constraints.

1.4 Contributions

To achieve this goal, this dissertation makes several contributions. These

are listed below.

1. Minimalist open-page: Identify the memory controller should target a smaller

number of page hits through the memory hash function. This prevents row-

buffer induced starvation.

2. Virtual Write Queue: Propose a coordinated system between the last level cache

and the memory write scheduler, increasing the efficiency of write scheduling,

increasing overall bandwidth and reducing read latency increases due to write

conflicts.

3. Elastic Refresh: Identify refresh induced latency penalties in high-density

DRAM, and propose predictive mechanisms that significantly mitigate the

penalty.

8



1.5 Organization

The structure of this work is as follows. Chapter 2 contains background of

DRAM systems. Chapter 3 describes the experimental methodology utilized in this

work. This is followed by a survey of related work in Chapter 4. Chapter 5 contain

a detailed analysis of the most important emerging DRAM complicities and system

behaviors. This drives to motivation for coordinated scheduling policies. Chapter 6

covers DRAM ”page mode” in light of these system constraints, proposing a

Minimalist open-page policy. Chapter 7 is a detailed description of the Virtual

Write Queue, which coordinates the last level cache and memory write scheduler.

Completing the design components, the Elastic Refresh mechanism is covered in

Chapter 8, which mitigates refresh penalties in high-density memory. Following

each design description, analysis sections covers both high level and detailed

simulations of the proposed policies.

9



Chapter 2

Main Memory Background and Terminology

The system structure assumed for this work is shown in Figure 2.1.

To maximize memory bandwidth and memory capacity, server processors have

multiple memory channels per chip. Each channel is connected to one or more

DIMMs (memory cards), each containing numerous DRAM chips. These DRAM

chips are arranged logically into one or more ranks. Within a rank, each DRAM

chip provides just 4-8 bits of data per data cycle, and a rank of 8-16 DRAM chips

works in unison to produce eight bytes per data cycle. The DRAM burst-length

(BL) specifies an automated number of data beats that are sent out in response to

a single command, commonly 8 data beats, to provide 64 Bytes of data. From the

time of applying an address to the DRAM chips, it takes about 24ns (96 processor

clocks at 4GHz) for the first cycle of data, but subsequent data appear at high

frequency, closer to 2-3 processor clocks.

Internally, DRAM chips are partitioned into banks that can be accessed

independently, and banks are partitioned into pages. DRAM page mode provides

the opportunity to read or write multiple locations within the same DRAM page

more efficiently than accessing a new page. Page mode accesses require that the

memory controller find requests with adjacent memory addresses, but are executed

10
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Figure 2.1: Baseline CMP and memory system

with fewer timing constraints, and incur lower per-access power than non-page

mode accesses.

DRAM chips are optimized for cost, meaning that technology, cell, array,

and periphery decisions are made with a high priority on bit-density. This results

in devices and circuits which are slower than standard logic, and chips that are

more sensitive to noise and voltage drops. A complex set of timing constraints has

been developed to mitigate each of these factors for standardized DRAMs, such as

outlined in the JEDEC DDR3 standard [22]. These timing constraints result in dead

times before and after each random access; the processor memory controller’s job

is to hide these performance-limiting gaps through exploitation of parallelism.

11



Chapter 3

Experimental Methodology

Evaluation of computer systems present a complex set of constraints.

Moore’s law is a double edged sword. Each new generation of machines enables

greater compute capability for simulation based analysis methods. However, each

future system becomes more complex, forcing system evaluation to be inherently

extrapolation based. While rapid prototyping based on configurable arrays is

growing in popularity [5], the flexibility and speed of general purpose system based

simulation of designs is still the leading evaluation system. While simulation

methods are commonly used, care must be taken to address the difficulties in

simulating enough detail, yet managing simulation runtime overhead. Beyond

model representativeness, the workload simulated must be properly reduced from

the full complete program execution.

This dissertation uses a combination of a full-system timing/functional

simulator SIMICS [38], along with the detailed processor, interconnect, and

memory system microarchitecture simulator GEMS [39], to evaluate the proposed

memory subsystem enhancements. Evaluation of the proposed structures is

primarily based on cycle simulation of various Spec CPU 2006 benchmark

configurations [12]. This was augmented with analysis of complex commercial

12



workloads using bus traces gathered from machines running complex workloads,

of the scale which is unfeasible in simulation. In addition smaller less detailed

simulations were used when the number of experiments would be prohibitive and

unnecessary.

A summary of the primary evaluation tool is provided in the following

subsections. This is followed by descriptions of the evaluated benchmarks, and

the evaluation metrics utilized.

3.1 GEMS on Simics Simulator

This work utilizes Simics from Virtutech [38] as a fully system timing

simulator. Simics is a very powerful full system simulator that is able to boot and

run unmodified operating systems and their applications on the target simulated

machine. Simics is a system-level instruction set (ISA) simulator that is able

to accurately simulate the functionality of each ISA instruction in the system.

Simics is an architectural simulator only, detailed micro-architecture timings of

the instruction execution must be modeled outside Simics. The configuration

used in this work (Simics 3.0) simulates an existing SPARC-v9 SMP processor,

the UltraSPARC III+, along with the necessary memory modules, motherboard

chipset, network card and hard disk to allow booting and running a full, unmodified

version of Solaris 10 operating system using an SMP kernel. An overview of the

Simic’s architecture is illustrated in Figure 3.1. In summary, Simics provides the

necessary infrastructure to simulate a full, real machine at the functional level while

the detailed cycle-accurate, timing simulation of a realistic processor and memory

13



Figure 3.1: Simics functional simulator architecture [38]

hierarchy is left to GEMS as an external module added to Simics API hooks.

3.2 Detailed Microarchitecture Simulator

As a detailed microarchitecture simulator this dissertation uses the multi-

facets general execution-driven multiprocessor simulator (GEMS) toolset from the

University of Wisconsin [39]. As described in the previous section, GEMS in

combined with Simics to provide a detailed, cycle-accurate simulator by decoupling

simulation functionality and timing. Simics provides a robust environment to boot

an unmodified OS along with the functional simulator. GEMS timing modules

interact with Simics to determine when Simics should execute an instruction.

However, what the result of the execution of the instruction is ultimately dependent

on Simics. Therefore, the two tools operate in a lock-step mode. Even though,

14



GEMS decouples functional simulation and timing simulation, the functional

simulator is still affected by the timing simulator, allowing the system to capture

timing-dependent effects.

The basic architecture of GEMS is illustrated in Figure 3.2. Its basic

functionality is divided between two basic components: Ruby and Opal. Ruby is

the most important component and is the basic timing simulator of a multiprocessor

memory system that models: caches, cache controllers, system interconnect,

memory controllers, and banks of main memory. Ruby combines hard-coded timing

simulation for components that are largely independent of the cache coherence

protocol (e.g., the interconnection network) with the ability to specify the protocol-

dependent components (e.g., cache controllers, coherence protocol) in a domain-

specific language called SLICC (Specification Language for Implementing Cache

Coherence). When Ruby is used stand-alone it simulates a simplified in-order

processor for every core in the system. To simulate more advanced cores,

the additional Opal module has to be used along with Ruby in Simics. Opal

models a SPARC ISA, out-of-order, superscalar, deeply-pipelined processor core.

Opal is configured by default to use a two-level gshare branch predictor, MIPS

R10000 style register renaming, dynamic instruction issue, multiple execution

units, and a load/store queue to allow for out-of-order memory operations and

memory bypassing. Because Opal runs ahead of the Simics functional processor,

it models all wrong path effects of instructions that are not eventually retired.

Opal implements an aggressive implementation of sequential consistency, allowing

memory operations to occur out-of-order and detecting possible memory ordering

15
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Figure 3.2: GEMS detailed, full-system, microarchitecture simulator overview [39]

violations as necessary.

Overall, the combination of Ruby, Opal and Simics allows a very detailed

and accurate simulation of almost any CMP and memory-subsystem configuration.

Some more advance features that are missing from a typical contemporary core,

like cache-line prefetchers and banked DNUCA-like last-level caches were added

on top of Ruby. More details about modifications and additions in the baseline

simulation tool-set is describe in each individual chapter.

3.3 Bus Trace Simulation

Further evaluation was performed through a set of simulations using three

diverse commercial workloads. Due to the complexity and size of the commercial

workloads, a detailed evaluation using a cycle-accurate, full system simulator is

prohibitively expensive. A large contributor to this complexity is the configuration
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of the runtime environment. For example, full-size database systems contain

massive disk arrays, large “workload drivers”, large working sets, and high numbers

of execution threads. As a solution, commercial workloads were evaluated using

bus trace based cache simulations. These bus traces contain all primary cache

misses generated as benchmarks run at full speed. This enabled evaluation of

the detailed address relationships, and how these translated into specific memory

resources.

These bus traces were collected on an IBM POWER5 [55] system using

an IBM internal-use-only toolset. The tracing system operates by observing cache

miss operations on the system bus interface. In order to decrease the filtering of

requests observed, the cache is configured into direct mapped mode, with only one

eight the full capacity. While the peak benchmark score is reduced with this smaller

cache, the system is still well behaved (i.e., no software timeouts), and provides

realistic operation. Each operation is packed into full cache line records, that are

written to a dedicated in-memory buffer. Each record contains the operation type,

device issuing the request, coherence state, and timestamp information. As traffic

can potentially overrun the tracing hardware, the system includes support to indicate

any lost records, while maintaining proper timestamps.

The bus traces were evaluated using basic cache protocol simulation

written in the C programming language. The simulator did contain basic timing

information, that was utilized to estimate the behavior of the structures in the

cache and memory system. This analysis was essentially a relatively low cost

method to extend the evaluation into an application space not possible with detailed
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simulations methods.

3.4 Benchmarks Suites

This work utilizes various combinations and configurations of the SPEC

CPU2006 benchmark suite for detailed simulation, while full scale commercial

workloads drive the bus traced analysis. This section contains descriptions of these

workloads.

3.4.1 SPEC CPU2006

To evaluate the performance of a single core configuration and multipro-

grammed workloads set, SPEC CPU2006 [12] was used. SPEC CPU2006 is the

most popular set of benchmarks used in the evaluation of the CPU performance

and memory of a modern server computer systems. The 29 benchmarks within the

integer and floating point suites contain a broad mix of workloads, ranging from

CPU intensive workloads to memory bandwidth bound applications. The workload

is limited in the exclusion of system IO traffic, and true multi-threaded workloads.

Workloads that stress these systems aspects are left for future work, as optimization

of the system without these additional complexities still provides a very significant

scope for this work.

3.4.2 Commercial Workloads

Traces were collected on three commercial workload. The first workload

is an On-Line Transaction Processing (OLTP) workload driven by hundreds of

18



simulated individual clients generating remote transactions against a large database.

The second workload represents a typical Enterprise Resource Planning (ERP)

workload. As with the OLTP workload, the ERP workload was driven by simulated

users who sent remote queries and updates to the database. Finally, the third

workload is SPECjbb2005 benchmark [12] that targets the performance of a three-

tier client/server system with emphasis on the middle tier.
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Chapter 4

Related Work

This research relates to prior work in the field through a range of perspec-

tives. Each of the following sections presents the most relevant work in each area.

Multi-threaded aware DRAM schedulers: Multi-threaded aware pro-

posals have primarily addressed mechanisms to reorder requests received by

the memory controller. Work on Fair Queuing Memory Systems by Nesbit,

et al. [48] utilizes fair queuing network principles on the memory controller

to provide fairness and throughput improvements. Parallelism-Aware Batch

Scheduling [47] alleviates the problem by maintaining groups of requests from the

various threads in the system and issuing them in batches to the controller. A suite

of work has considered minimizing prefetch impacts on overall memory subsystem

performance, some of which consider prioritizing prefetch according to page mode

opportunity [35] [33].

System and DRAM interaction: Proposals to improve interactions be-

tween the DRAM controller and other system components have been proposed

in the following areas. The Eager Writeback technique [32] addresses breaking

the connection between cache fills and evictions, but the approach has minimal

communication between the last-level cache and the memory controller and thus
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misses performance and power opportunities which arise through knowledge of

logical-to-physical address mapping and troublesome memory timing constraints.

SDRAM-aware scheduling from Jang, et al. [21] addresses management of the on-

chip network such that requests are ordered with regard to memory efficiency.

DRAM write-read turnaround: For specialized applications, DRAMs

have been offered with separated read and write IOs, allowing for high bus

utilization, even for mixed read/write access streams [1]. Borkenhagen, et al. [4],

describe the problem of DRAM write-to-read turnaround delay, and recognize

the need for cache/memory controller interaction to most effectively alleviate its

performance effect. Borkenhagen, et al. propose a read predict signal, which

provides the memory controller early notice that a read may soon arrive at the

memory controller. If read predict is asserted, the memory controller will not issue

pending writes, to avoid incurring a write-to-read turnaround delay which would

delay the read.

Row Buffer Access Priority: Rixner, et al. [51] first described the First-

Ready First-Come-First-Serve scheduling policy that prioritizes row-hit requests

over other requests in the memory controller queue. This proposal utilizes a

combination of a column centric DRAM mapping scheme combined with FR-

FCFS policy. This approach was shown to create starvation and throughput

deficiencies when applied to multi-threaded systems as described by Moscibroda et

al. [45]. Prior work attempts to mitigate these problems through memory requests

scheduling priority. Solutions that bias row buffer hits such as FR-FCFS [51]

map to Scenario 1. Mutlu, et al. based their “Stall Time Fair Memory” (STFM)
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scheduler [46] on the observation that giving priority to requests with opened pages

can lead to significant introduction of unfairness in the system. As a solution their

proposed a scheme that identifies threads that are stalled for a significant amount

of time and prioritize them over requests to open-pages. On the average case,

STFM will operate similarly to FR-FCFS mapping to Scenario 1. The “Micro-

pages” proposal from Sudan, et al. [59] describe a scheme that uses smaller than

typical OS page sizes in an effort to co-locate multiple frequently used pages in the

same DRAM row buffer. Their solutions includes software and hardware migration

mechanisms to move data in such small pages.

The Adaptive per-Thread Least-Attained-Service memory scheduler (AT-

LAS) [26] proposal, that tracks attained service over longer intervals of time, would

follow Scenario 2, where the low bandwidth workload B would heavily penalize

workload A. Following the same logic, the Parallelism-aware Batcher Scheduler

(PA-BS) [47] ranks lower the applications with larger overall number of requests

stored in every “batch” formed in the memory queue. Since streaming workloads

inherently have on average a large number of requests in the memory queue, they

are scheduled with lower priority and therefore would also follow follow Scenario 2.

The most recent work, the Thread Cluster Memory Scheduler (TCM) [27] extends

the general concept of the ATLAS approach. In TCM, unfriendly workloads with

high row-buffer locality, that utilize a single DRAM bank for an extended period of

time, are given less priority in the system, such that they interfere less frequently

with the other workloads.

Prefetch Scheduling: Lee, et al. [31] propose a Prefetch-Aware controller

22



priority, where processors with a history of wasted prefetch requests are given lower

priority. In the proposed approach, prefetch confidence and latency criticality are

generated for each request, based on state of the prefetch stream combined with a

history of stream behavior. With this more precise per request information, more

accurate decisions can be made. Lin, et al. [34] proposed a memory hierarchy

that coordinated the operation of the existing prefetch engine with the memory

controller policy to improve bus utilization and throughput. In their hierarchy, the

prefetch engine issues requests that are spatially close to recent demand misses

in L2 with the memory controller sending the requests to memory only when the

memory bus is idle. Their prefetcher relies on a column-centric address hash which

introduces unfairness in the system that is not addressed in the proposal.

DRAM power reduction through page-mode writes: Several approaches

have been proposed for DRAM power management, however most leverage

memory sleep states, rather than exploiting page mode power savings. [24]

considers the power cost of opening and closing pages, and [36] proposes a Page Hit

Aware Write Buffer (PHA-WB), a 64-entry structure residing between the memory

controller and DRAM, which holds onto writes until their target page is opened

by a read. The PHA-WB, however, was evaluated for a writethrough cache, for

which memory-level access locality will be much more apparent than in a writeback

structure. Writeback caches provide significant improvements in available memory

bandwidth and power consumption, so are thus a more realistic baseline for many-

core server-class systems.

Avoiding Refresh: One option to help reduce refresh penalties is to avoid
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sending some fraction of the operations that are determined to be unneeded. In

the Smart Refresh [9] work, the authors propose taking advantage of the inherent

refresh that occurs through existing read and write operations when ranks are

precharged. In ESKIMO [18], methods are proposed to utilize semantic knowledge,

such as “deleted” dynamically allocated memory, to avoid refreshing memory

regions which the program is no longer using. While both of these refresh

avoidance techniques are potentially quite useful, they are incompatible with

existing commodity DRAM devices. In addition, the significant design changes

required would be difficult and timely to negotiate through JEDEC committees,

and proprietary DRAM designs, such as Rambus DRAM, have been challenging to

bring to market.

Hiding Refresh: It is straight-forward to envision a DRAM architected

such that read and write commands may be completed in other sections of the

memory at the same time as refresh is taking place elsewhere in the bit-arrays or

banks. Indeed, such concurrent refresh schemes have been implemented outside

the commodity server DRAM space [61]. However, for commodity DRAMs, this

approach has not been taken, due to the high current draw of a refresh operation,

and the added design and system expense that might be required to support multiple

simultaneous operations, from a power supply/noise perspective.

As irregular memory latency can be detrimental to real time systems,

memory refresh prevents dynamic memory adoption in many embedded application

spaces. In “Making Refresh Predictable” [2], the program itself can specify when

refresh operations can be sent, thus avoiding penalties. Extending this idea to
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the more general server computation space may be possible, but the irregularity

and complexity of multi-programmed system operation increases the difficulties of

deploying this solution compared to more explicitly controlled real time systems.

Memory Request Prediction: The concept of predicting future memory

references has been proposed as a method to decide when to enter latency-

penalizing lower power DRAM states [6]. The fundamental difference between the

prediction for low power states as compared to refresh is centered in the functional

requirement of refresh (to prevent loss of memory data). As such, the urgency

aspect of refresh, which drove the dynamic nature of the prediction in this work is

very different from this prior work. Another important difference between refresh

and powerdown scheduling policies is highlighted by Fan, et al. in [8], which

demonstrates lower DRAM power if idle-time predictors are ignored, and memory

is put in low power states as soon as possible. With powerdown, it is beneficial

to drive to the lower power state as often as possible, whereas refresh must be

driven at a specific rate. Fan’s observations about powerdown essentially reflect the

traditional Demand Refresh scheduling policy, which was found to be quite poor.
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Chapter 5

Characterization of Memory System Behavior

In order to motivate the work, the following section presents the particular

challenges associated with DRAMs systems. Analysis identified these characteris-

tics as the most important factors in addressing memory performance:

5.1 Bus turnaround penalty

As described in the introduction, memory IO frequencies have been im-

proving (resulting in raw bandwidth increases), but timing constraints related to

signaling and electrical integrity have, for the most part, remained constant. This

is especially well illustrated by tWRT, which defines the minimum delay from the

completion of a write to the initiation of a read at the same DRAM rank. tWRT

is 7.5ns on DDR3 devices – at 4GHz, this is 30 CPU cycles – a very significant

penalty for any reads issued after a write.

Figure 5.1 conceptually illustrates DDR3 write command timings. Suc-

cessive writes can be issued back-to-back, realizing 100% data bus utilization

(Figure 5.1.a). On the other hand, when a read follows a write to the same

device, the read must not only wait for the write’s completion, but also for the

bus turnaround time to elapse. This adds noticeable latency to the read operation
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Figure 5.1: Write-to-read turnaround noticeably worsens command latency and
databus utilization. tWPST [22] further worsens turnaround, but has been removed
for simplicity

(Figure 5.1.b), and results in dismal data bus usage: 31%. For server-class

1066Mbps DDR3, the extra nine DRAM cycles between a write and read amount

to a ≈66 cycle read penalty at 4GHz.

Memory scheduling efficiency is thus heavily influenced by the mixing

of read and write operations. Timing gaps are required when read and write

operations are intermingled in a continuous memory access sequence, but with

many application streams and limited queuing resources, these turnarounds are

generally difficult for the memory controller to avoid. As shown in Figure 5.2,

memory data bus utilization can be greatly improved by significantly increasing the

number of consecutive read/write operations the memory controller issues before

switching the operation type on the bus. For example, if the scheduler can manage

32 reads/writes per scheduling block, utilization grows to 94%. Throughout the
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Figure 5.2: Bus utilization based on cache burst lengths

text, streams of consecutive reads or writes are referred to as a cacheline burst to

memory.

5.2 Page Mode

A typical memory controller organization is shown in Figure 5.3(a). A

significant component of this work proposes optimizations to improve the access

latency and increase the sustained efficiency of the IO interface connecting main

memory with the processors. This is accomplish through policy improvements to

the memory scheduler and how operations are mapped to the DRAM devices.

While DRAM devices output only 16-64 bits per request (depending on

the DRAM type and burst settings), internally, the devices operate on much larger,

1KB pages (also referred to as rows). As shown in Figure 5.3(b), each DRAM array

access causes all 1KB of a page to be read into an internal array called Row Buffer,

followed by a “column” access to the requested sub-block of data. Since the read

latency and power overhead of the DRAM cell array access have already been paid,
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accessing multiple columns of that page decreases both the latency and power of

subsequent accesses. These successive accesses are said to be performed in page

mode and the memory requests that are serviced by an already opened page loaded

in the row buffer are characterized as page hits.

Due to the reductions in both latency and energy consumption possible

with page mode, techniques to aggressively target page mode operations are often

used. There are downsides however, which must be addressed. Leaving a specific

page open produces a higher access latency to other rows in the same bank (page

conflict). In addition, certain scheduling algorithms such as the First-Ready, First-

Come-First-Served (FR-FCFS) [51] give higher priority to page hit operations,

which can result in unfairness for non page hit operations. Therefore, although

row buffer hits are useful, they must be used in moderation.

The potential benefits (and caveats) of page mode are the following:
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1. Latency Effects: A read access to an idle DDRx DRAM has a latency of 25ns.

An access to an already opened page reduces this latency in half to 12.5ns.

Conversely, the accesses to different rows in the DRAM bank can result in

increased latency. Overall, increases in latency are caused by two mechanisms

in the DRAM. Firstly, if a row is left open in an effort to service page hits, to

service a request to another page incurs a delay of 12.5ns to close the current

page followed by the latency to open and access the new page. Secondly,

DRAM devices specify a minimum delay between back-to-back activations of

two different rows within the same bank. This delay, known as tRC parameter,

has remained approximately 50ns across the most recent DDRx DRAM devices.

In a system that attempts to exploit page mode accesses, the overall effect on

loaded memory latency and program execution speed due to the combination

of these properties can significantly increase the observable latency. In addition,

the DRAM device access is only a component of the processor’s observed access

latency to memory. For example, in the Intel I7 processor design the DRAM

contributes 25ns of the total latency of 65ns memory latency [44]. Thus while a

page hit halves the DRAM device latency, the observed latency reduction is only

20%. To summarize, the relative capacity and latency of the various levels in a

modern memory hierarchy are shown in Figure 5.4. Note the small latency and

capacity of the row buffer, which limits any benefit to spatial locality on capacity

based cache misses.

2. Bank Utilization: The utilization of the DRAM banks can be a critical

parameter in achieving high scheduling efficiency. If bank utilization is high,
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the probability that a new request will conflict with a busy bank is greater.

As the time to activate and precharge the array overshadows data bus transfer

time, having available banks is often more critical than having available data bus

slots. Increasing the data transfered with each DRAM activate, through page

mode, amortizes the expensive DRAM bank access, reducing utilization. Figure

5.5 shows the bank utilization of a DDR3 1333 MHz system, with two devices

(ranks) sharing a data bus at 60% bus utilization. A closed-page policy, with

one access per activate would produce an unreasonably high bank utilization

of 62%. However, the utilization drops off quickly as the accesses per activate

increases. For example four accesses per activate reduces the bank utilization to

16%, greatly reducing the probability that a new request will be delayed behind

a busy bank.
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3. Power Reduction: Page mode accesses reduce DRAM power consumption by

amortizing the activation power associated with reading the DRAM cells data

and storing them into the row buffer. Figure 5.6 shows the DRAM power

consumption of a 2GBit DDR3 1333MHz DRAM as the number of row accesses

increases. As the power corollary of Amdahl’s law predicts, since page mode

only reduces the page activation power component, DRAM power quickly

becomes dominated by the data transfer and background (not proportional to

bandwidth) power components.

4. Other DRAM Complexities: Beyond the first order effects described above,

more subtle DRAM timing rules can have significant effects of DRAM uti-

lization, especially as the data transfer clock rates increase in every DRAM

generation. As many DRAM parameters do not scale with frequency increases
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Figure 5.6: Improvements for increased access per activation: DRAM power for
each 2GBit DDR3 1333 Mhz at 40% read, 20% write utilization [42]

due to either constant circuit delays and/or available device power. One example

is the TFAW parameter. TFAW specifies the maximum number of activations

in a rolling time window in order to limit peak instantaneous current delivery to

the device. In a 1333MHz DDR3, the TFAW parameter specifies a maximum

of four activations every 30ns. A transfer of a 64 byte cache block requires

3ns, thus for a single transfer per activation TFAW limits peak utilization to

80% (6ns∗4/30ns). However, with only two accesses per activation, TFAW has

no effect (12ns ∗ 4/30ns > 1). The same trend is observed across several other

DRAM parameters, where a single access per activation results in efficiency

degradation, while a small number of accesses alleviates the restriction.

In summary, a relatively small number of accesses to a page is very effective
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in taking advantage of DRAM page mode for both scheduling and power efficiency.

For example, at four row accesses per activation, power and bank utilization are

80% of their ideal values. Latency effects are more complex, as scheduling policies

to increase page hits also increase bank conflicts, making raw latency reductions

difficult to achieve.

5.2.1 Write Page mode opportunities

Page mode DRAM access greatly improves both memory utilization and

power characteristics, but the optimization possibilities for read and write opera-

tions are significantly different. Reads are visible as the program (or a prefetch

engine) generates them; this should enable spatial locality in reference sequences to

be executed in page mode. In contrast, write operations (in the common writeback

cache policy) are generated as older cache lines are evicted to make room for newly

allocated lines. As such, spatial locality at eviction time can be obscured through

variation in set usage between allocation and eviction, as shown in Figure 5.7.

Figure 5.7 shows the total number of page mode writes possible for various

commercial workloads, for a range of memory controller write queue sizes. The

workloads and simulation environment for this characterization data are described

in Section 7.8. For practical write queue sizes, such as 32 entries, there is

essentially no page mode opportunity (approximately one write possible per page

activate). That stated, a large amount of spatial locality is contained within the

various cache levels of the system, but today’s CPU-centric caches do not give

the memory controller visibility into this locality. Significantly larger memory
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Figure 5.7: Characteristics of commercial workloads: Page writes per activate
vs. number of Physical Write Queue entries

controller write queues, though impractical, could provide the needed visibility and

enable significant page mode opportunities.

Note, the commercial workloads shown here reflect lower amounts of

potential write page hits compared to the SPEC CPU 2006 workloads. For example,

the OLTP workload has limited write page-mode opportunities even for very large

write queue sizes. With SPEC CPU workloads, single threaded version with 32

write queue entires were effective in finding many page mode operations. To

achieve these write page levels with multiple processors, the sizes needed to scale

linearly. For example an eight core system achieved single core hit rates with a

256 entry write queue structure. As the write queue lookup is associative, growing

the stricture to even 256 entires would require some kind of multi-level structure,

which adds significant complexity.
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Figure 5.8: Refresh performance penalty for emerging DRAM sizes (four-core).
See Section 8.6.1 for a description of the modeled architecture.

5.3 Refresh Penalty

In order to retain the contents of dynamic memory, refresh operations

must be periodically issued. JEDEC-standard DRAMs maintain an internal counter

which designates the next segment of the chip to be refreshed, and the processor

memory controller simply issues an address-less refresh command. As more bits

have been added to each DRAM chip, changes have occurred in two key JEDEC

parameters—tREFI and tRFC—which specify the interval at which refresh

commands must be sent to each DRAM and the amount of time that each refresh

ties-up the DRAM interface, respectively.

Most prior work on memory controller scheduling algorithms has assumed

that refresh operations are simply sent whenever the tREFI-dictated “refresh timer”

expires. This is a sufficient assumption for historical systems, where refresh

overhead is relatively low, i.e. refresh completes quickly, and does not block

read and write commands for very long. However, for the 4Gb DRAM chips
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which have been recently demonstrated [53], and would be anticipated to appear

on the mass market soon, a refresh command takes a very long time to complete

(300ns). The net effect is a measurable increase in effective memory latency, as

reads and writes are forced to stall while refresh operations complete in the

DRAM. The baseline performance impact of 2Gb, 4Gb, and 8Gb chips is shown

across the Spec2006 benchmark suite [12] in Figure 5.8, normalized to application

performance when run without DRAM refresh commands. This penalty grows

from negligible to quite severe: up to 30% for memory latency sensitive workloads

with a geometric mean of 13% for integer and 6% for floating point. As denser

memory chips come to market, this problem will only become worse [20].

5.3.1 DRAM Refresh Requirements and Thermal Environment of Modern
Servers

The temperature at which a device is operated significantly impacts its

leakage. For DRAM cells, which consist of a storage capacitor gated by an

access transistor, their ability to retain charge is directly related to leakage through

the transistor, and thus to temperature. While processors have hit a power-

related “frequency wall,” and have stopped scaling their clock rates, DRAMs have

continued to be offered at faster speeds, resulting in increased DRAM power

dissipation. At the same time, server designs have become increasingly dense

e.g., the popularity of blade form-factors), and so main memory is increasingly

thermally-challenged. The baseline server DRAM operating temperature range is

0◦C – 85◦C, but the JEDEC standard now includes an extended temperature range

of (85◦C – 95◦C), and this has become the common realm of server operation [16,
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43]. In this extended range, DRAM retention time is specified to be one-half that

of the standard thermal environment.

In the standard thermal range, each DRAM cell requires a refresh every

64ms. As the memory controller issues refresh operations, the DRAM’s internal

refresh control logic sequentially steps through all addresses, ensuring that all rows

in the DRAM are refreshed within this 64ms interval. The rate at which the memory

controller must issue refreshes was initially determined by dividing 64ms by the

number of rows in the DRAM. This value, referred to as tREFI (REFresh Interval),

was specified to be 7.8µs for 256M DDR2 DRAM. As DRAM density doubles

every several lithography generations, the number of rows also doubles. As such,

using this traditional method, the rate at which refresh commands must be sent

would need to double with each generation.

Instead, in order to reduce the volume of refresh traffic, DRAM vendors

have designed their devices such that multiple rows are refreshed with one

command [41]. While this does reduce the command bandwidth, the time required

to execute a refresh increases with each generation, as more bits are handled in

response to each refresh command [20]. Ideally, DRAM devices would simply

refresh more bits with each operation, but this would over-tax the available current

delivery. The length of time of this delay is the parameter tRFC (ReFresh Cycle

time). Table 5.1 shows the worsening of tRFC as DRAMs become more dense,

along with the impact of temperature on tREFI. Note that initially the increase in

tRFC was significantly less than 2x i.e., 512Mb to 1Gb). This was possible due to

constant-time aspects of refresh such as decoding the command and initiating the
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engine.

5.3.2 Refresh Cycle Time Beyond JEDEC DDR3

Table 5.1 contains the JEDEC DDR3 tRFC values. Projections to future

values are difficult due to the seeming discontinuity between the trend lines shown

in Figure 5.9. The linear regression from 512Mbit–4 Gbit would project 550 ns for

8 Gbit. The actual DDR3 JEDEC value is specified at 350 ns. There is debate in the

DRAM community as to what tRFC values will be required for even higher density

DDR4 memory, especially as new materials must be used to scale DRAM to higher

densities and lower lithographies.

Table 5.1: Refresh parameters as density increases [22]

DRAM type tRFC tREFI@85◦C tREFI@95◦C

512Mb 90ns 7.8µs 3.9µs

1Gb 110ns 7.8µs 3.9µs

2Gb 160ns 7.8µs 3.9µs

4Gb 300ns 7.8µs 3.9µs

8Gb 350ns 7.8µs 3.9µs

5.4 Bursty behavior

Most programs exhibit bursty behavior. At the last-level cache, this results

in phases when a large number of load misses must be serviced. Common cache

allocation/eviction policies compound this effect, as bursts of cache fills create
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Figure 5.9: tRFC Across DDR3 Generations

bursts of forced writebacks, thus clustering bursts of reads with bursts of writes.

Figure 5.10 shows the distribution of time between main memory operations

for three workloads. The workloads and analysis are discussed in more detail in

Section 7.8. Note that 20-40% of all memory requests occur with less than ten

cycles delay after the previous memory operation, while the median can be in the

hundreds of cycles and many requests take significantly longer.

Over-committed multi-threaded systems have always experienced some

degree of cache thrashing, as workloads evict one another’s data, and threads re-

warm their local cache. However, this is no longer a problem seen only in large-

scale SMP systems. Instead, this phenomenon is inherent to today’s virtualized

computing environments as disparate partitions share a physical CPU. If write

operations can be executed early, bursts of read operations execute with lower
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Figure 5.10: Characteristics of commercial workloads: distribution of time between
memory requests

combined bandwidth demands. Ideally, the memory controller will always have

write operations ready to be sent to idle DRAM resources.

5.5 Balanced Designs and Importance of Cache Capacity and
Memory Bandwidth

An efficient design requires each of the structures in the system to be

appropriately balanced. If certain components are over-sized, these resources are

wasted while undersizing structures create bottlenecks. As analyzed in “Scaling the

bandwidth wall” [52], the balance between number of cores, cache capacity, and

memory bandwidth must scale appropriately into future generations. In practice,

a system will service workloads with a wide range of cache capacity requirements

and memory bandwidth pressure. Therefore, a well designed system will saturate
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the memory interface on a reasonable subset of workloads. However, this leaves an

important fraction of workloads where the bandwidth usage is significant, yet not

saturated.

This insight has important implications into systems design. Specifically,

the analysis indicated that the fullness of the read input queues of the memory

controller is relatively low for many workload combinations. The only cases where

significant queue depths were observed was in cases of high bandwidth workloads

executing together, saturating the memory interface. Due to the low fullness of the

memory structures in these cases, policies which employ reordering of requests in

the memory controller as the primary control point are inherently ineffective for

workloads where the memory interface is below saturation. This is a significant

motivator for this work.
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Chapter 6

Minimalist Open-page Policy

As management of the DRAM row buffer is fundamental aspect of the

memory system design, this chapter covers the baseline policy assumed in the

subsequent sections. Row buffer hits enable potentially lower acces latency and

power consumption combined with reduced DRAM resource utilization. Yet, row

buffer hit induced starvation has been shown to be a significant problem in multi

core systems [45]. This work utilizes a Minimalist open-page policy, where “just

enough” page mode hits are produced, while avoiding row buffer hit induced

starvation. This chapter covers the positive and negative aspect of page mode hits,

and how a Minimalist policy balances between these properties.

6.1 Row Buffer Locality in Modern Processors

This section describes observations as to the characterization of page mode

access as seen in current workstation/server class designs. Contemporary CMP

processor designs have evolved to impressive systems on a chip. Many high

performance processors (eight in current leading edge designs) are backed by large

last-level caches containing up to 32 MB of capacity [23]. A typical memory

hierarchy that includes the DRAM row buffer is shown in Figure 5.4. As a large last-
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level cache filters requests to memory, row buffers inherently exploit only spacial

locality. Temporal locality within the program results in hits to the much larger

last-level cache.

Access patterns with high levels of spatial locality, that miss in the large

last level cache, are often very predictable. In general, speculative execution

and more specifically modern prefetch algorithms can be exploited to generate

memory requests with spatial locality in dense access sequences. Consequently,

the relatively small latency benefit of page mode is hidden.

6.2 Bank and Row Buffer Locality Interplay With Address
Mapping

Commonly used open-page address mapping schemes put all column bits

directly above the cache block to capture the greatest possible number of page

hits [26, 34, 47, 51]. As identified by Moscibroda, et al. [45], this hashing can

produce interference between the applications sharing the same DRAM devices,

resulting in significant performance loss. The primary problem identified in

that work is due to the FR-FCFS [51] policy where page hits have a higher

priority than requests with lower page affinity. Beyond fairness, schemes that map

long sequential address sequences to the same row, suffer from low bank-level

parallelism (BLP). If many workloads with low BLP share a memory controller,

it becomes inherently more difficult to interleave the requests, as requests from two

workloads mapping to the same DRAM bank will either produce a large number of

bank conflicts, or one of them has to stall, waiting for all of the other workload’s
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request to complete, significantly increasing it’s access latency.

Figure 6.1 illustrates an example where workload A generates a long

sequential access sequence, while workload B issues a single operation mapping to

the same DRAM. With a standard open-page policy mapping, both requests map to

the same DRAM bank. With this mapping, there are two scheduling options, shown

in Scenarios 1 and 2. The system can give workload A higher priority until all page

hits are completed, significantly increasing the latency of the workload B request

(Scenario 1, Figure 6.1). Conversely, workload A can be interrupted, resulting in

very inefficient activate to activate commands conflict for request A4 (Scenario 2,

Figure 6.1), mainly due to the time to load the new page in the row buffer and the

unavoidable tRC timing requirement between back-to-back activations of a page in

a bank. Neither of theses solutions optimize fairness and throughput. This proposal

adapts the memory hash to convert workloads with high row buffer locality (RBL),

into workloads with high bank-level parallelism. This is shown in Scenario 3 of

Figure 6.1, where sequential memory accesses are executed as reading four cache

blocks from each row buffer, followed by switching to the next memory bank. With

this mapping, operation B can be serviced without degrading the traffic to workload

A.

6.3 Proposed Minimalist Open-page Mode Scheme

As analyzed in the motivation section, the Minimalist Open-page scheme

is based on the observation that most of the page-mode gains can be realized

with a relatively small number of page accesses for every page activation. In
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Figure 6.1: Row buffer policy examples

addition, address hashing schemes that map sequential regions of memory to a

single DRAM page result in poor performance due to high latency conflict cases.

The Minimalist policy defines a target number of page hits that enable a careful

balance between the benefits (increased performance and decreased power), and

the detractors (resource conflicts and starvation) of page-mode accesses. With

this scheme several system improvements are accomplished. Firstly, through the

address mapping scheme, fairness is provided. This alleviates the memory request

priority scheme requirements compared to prior approaches that must address row-

buffer starvation. This work proposes the scheduler can focus its priority policy on

memory request criticality, which is important in achieving high system throughput

and fairness.

As described in Section 6.1, most of the memory operations with “page-

mode” opportunities are the results of memory accesses generated through prefetch

operations. Therefore, the prefetch engine in the processor is used to provide

request meta-data information which directs the scheme’s page-mode accesses and
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request priority scheme. In effect, this enables the prefetch generated page-mode

access to be done reliably, with back to back scheduling on the memory bus.

In the remainder of this section the Minimalist policy is described in detail.

First, the fair address mapping scheme that enables bank-level parallelism with

the necessary amount of row-buffer locality is described. This is followed by the

prefetch hardware engine, as this component provides prefetch request priorities

and prefetch-directed page mode operation. Finally, the scheduling scheme for

assigning priorities and issuing the memory request to the main memory is covered.

6.4 DRAM Address Mapping Scheme

The differences between a typical mapping and the one used in this proposal

are summarized in Figure 6.2. The basic difference is that the Row Column access

bits that are used to select the row buffer columns are split in two places. The first

2 LSB bits (Least Significant Bits) are located right after the Block bits to allow the

sequential access of up to 4 consequent cache lines in the same page. The rest of

the MSB (most significant bits) column bits (five bits in this case since 128 overall

cache lines stored in every row buffer) are located just before the Row bits. Not

shown in the figure for clarity, higher order address bits are XOR-ed with the bank

bits shown in the figure to produce the actual bank selection bits. This reduces

row buffer conflicts as described by Zhang, et al. [64]. The above combination of

bits selection allows workloads, especially streaming, to distribute their accesses

to multiple DRAM banks; improving bank-level parallelism and avoiding over-

utilization of a small number of banks that leads to thread starvation and priority

47



Row Bank BlockColumn

DIMM
1bit

Rank
1bit

MC
1bit

57131416171819 0
Row Bank BlockCol

DIMM
1bit

Rank
1bit

MC
1bit

13 567911121319 08
Col

1418

Column 7 bits

5 bits 2 bits

6

(a) Typical Mapping

Row Bank BlockColumn

DIMM
1bit

Rank
1bit

MC
1bit

57131416171819 0
Row Bank BlockCol

DIMM
1bit

Rank
1bit

MC
1bit

13 567911121319 08
Col

1418

Column 7 bits

5 bits 2 bits

6
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Figure 6.2: System Address Mappings to DRAM Address - Example system in
figure has 2 memory controllers (MC), 2 Ranks per DIMM, 2 DIMMs per Channel,
8 Banks per Rank and 64B Cache-lines.

inversion in multi-core environments.

6.4.1 DRAM Page Closure (Precharge) Policy

In general, the Minimalist policy does not speculatively leave DRAM pages

open. If a multi-line prefetch request is being processed, the page is closed with

an auto-precharge sent with the read command (In DDRX the auto-precharge bit

indicates to close the page after the data are accessed [19]) . This saves the

command bandwidth of an explicit precharge command. For read and single line

prefetch operations, the page is left open based on the following principle. The tRC

DRAM parameter specifies the minimum time between activations to a DRAM

bank. The tRC is relativity long at 50ns compared to the precharge delay of 12.5ns.
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Therefore, closing a bank after a single access does not allow reactivation of the

bank until the tRC delay expires. With this insight, pages are speculatively left

open for the tRC window, as this provides for a “free” open page interval.

6.5 Evaluation

The scheme was evaluated through a simulated an 8 core CMP system

using the Simics functional model [38] extended with the GEMS toolset [39].

The system was configured with an aggressive out-of-order processor model from

GEMS combined with a detailed memory subsystem. In addition, the default

memory controller was augmented to simulate a DDR3 1333MHz DRAM using the

appropriate memory controller policy for each experiment. Table 6.1 summarizes

the full-system simulation parameters used in the study.

The evaluation utilized a set of multi-programmed workload mixes from

the SPEC cpu2006 suite [12]. 27 randomly selected 8-core mixes spanning from

low bus utilization levels to saturation were selected. This was accomplished

with summations of the single core bandwidth requirements of a large number

of randomly selected workloads. 27 sets were then selected by choosing the

total bandwidth target to span from 15% to 300% of the available peak memory

bandwidth. The sets are ordered from lower to higher bus utilization. In addition,

the workloads were divided in low, medium, and high sets with nine workloads

each. The bandwidth threshold between low and medium is 35%, while the medium

to high is 70% (the point where the system enters bus saturation). For the evaluation,

each experiment was executed in Simics to its most representative phase; the next
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Table 6.1: Full-system detailed simulation parameters

Core Characteristics
Clock Frequency Pipeline Reorder Buffer

/Scheduler Branch Predictor

4 GHz 30 stages / 4-wide
fetch / decode 128/64 Entries Direct YAGS /

indirect 256 entries

Prefetcher H/W stride n with dynamic depth, 32 streams / core

L1 Data & Inst.
Cache L2 Cache Outstanding

Requests Memory Latency

Memory Subsystem

64 KB, 2-way
associative, 3 cycles

access time, 64B
blocks

16 MB, 8 ways
associative, 12 cycles

bank access, 64B
blocks

16 Requests per Core 65ns

Controller
Organization DRAM Controller Resources Memory

Bandwidth

2 Memory
Controllers
2 Ranks per
Controller

8 DRAM chips per
Rank

DDR3 1333MHz
8-8-8

32 Read Queue & 32
Write Queue Entries 21.333 GB/s
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100M instructions to warm up the caches and memory controller structures; and

then simulated until the slower benchmark completes 100M instructions. Only the

statistics gathered for the representative 100M instruction phase after the warming

up period were used for speedup calculations.

For each experiment a speed-up estimation was calculated using the weighted

throughput, ∑(IPCi/IPCi,FR−FCFS), where IPCi,FR−FCFS is the IPC of the i-th

application measured in the FR-FCFS baseline system using an open-page policy

memory controller. In addition, to estimate the execution fairness of every proposal,

the harmonic mean of weighted speedup, Fairness = N/∑(IPCi,alone/IPCi), where

IPCi,alone is the IPC of the i-th application when it was executed standalone, was

utilized. This method was previously suggested by Luo, et al. [37].

The Minimalist Open-page scheme is compared against three of the most

representative memory controller policies proposed in the past: a) Parallelism-

aware Batcher Scheduler (PAR-BS) [47], b) Adaptive per-Thread Least-Attained-

Service memory scheduler (ATLAS) [26], and c) First-Ready, First-Come-First-

Served (FR-FCFS) [51] with open-page policy.

6.5.1 Throughput

The analysis compares the speedups PABS, ATLAS, and Minimalist to FC-

FCFS. The results are shown in Figure 6.3. For the lowest bandwidth workloads

(1 to 4) no improvements are observed over FR-FCFS. As the memory utilization

increases, some reasonable gains are seen on workloads 5 and 7. For the medium

bandwidth workloads, significant gains for Minimalist are observed over all other
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Figure 6.3: Speedup of PABS, ATLAS, and Minimalist relative to FR-FCFS

policies. For example, in workload set 10, Minimalist achieves more than 28%

gains over all other policies. These gains are mainly due to the memory streaming

workload libquantum as Table 6.2 shows. Libquantum is disruptive in systems

with typical open-page mapping, where low bank level parallelism is observed.

Minimalist does well in this case, due to the inherently fair memory hash, where

libquantum does not ”park” on a specific memory bank for many sequential

requests. In addition, both PABS and ATLAS are effective only when the memory

queues contain reasonable numbers of operations. This does not occur unless

bandwidth is saturated.

For high bandwidth workloads, such as experiment sets 18, 21 and 22 from

Table 6.2, significant gains are seen compared to the ATLAS and PAR-BS policies.

However, the overall geometric mean of the high bandwidth cases exhibits a slightly

lower speedup. The larger amount of memory queuing enables the PABS and

ATLAS policies to be effective. As the Minimalist hash solves row-buffer induced

starvation without utilizing the memory scheduler priority, further enhancements to

the priority scheme beyond FR-FCFS are possible. These optimizations are left for

future work.
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Table 6.2: Randomly selected workloads for 8-core SPEC cpu2006 workload sets
Exp. # Workload Sets (Core-0→ Core-7)

1 xalancbmk, xalancbmk, omnetpp, soplex, lbm, omnetpp, wrf, zeusmp

2 bzip2, omnetpp, astar, libquantum, xalancbmk, soplex, sjeng, sjeng

3 gcc, leslie3d, zeusmp, sjeng, zeusmp, libquantum, mcf, gcc

4 gcc, namd, lbm, namd, soplex, lbm, tonto, milc

5 wrf, omnetpp, leslie3d, gamess, xalancbmk, tonto, lbm, xalancbmk

6 omnetpp, namd, GemsFDTD, leslie3d, calculix, GemsFDTD, bzip2, wrf

7 omnetpp, mcf, cactusADM, xalancbmk, mcf, omnetpp, GemsFDTD, gamess

8 gcc, omnetpp, omnetpp, xalancbmk, dealII, xalancbmk, cactusADM, libquantum

9 lbm, gamess, xalancbmk, sphinx3, mcf, soplex, omnetpp, omnetpp

10 gcc, soplex, tonto, soplex, leslie3d, libquantum, namd, astar

11 namd, xalancbmk, leslie3d, soplex, dealII, tonto, sphinx3, mcf

12 cactusADM, libquantum, libquantum, milc, gamess, mcf, omnetpp, soplex

13 omnetpp, namd, soplex, libquantum, h264ref, astar, lbm, lbm

14 soplex, xalancbmk, lbm, milc, omnetpp, perlbench, mcf, milc

15 libquantum, mcf, soplex, gromacs, omnetpp, xalancbmk, omnetpp, bwaves

16 xalancbmk, libquantum, lbm, gamess, omnetpp, mcf, xalancbmk, namd

17 hmmer, sphinx3, xalancbmk, cactusADM, libquantum, xalancbmk, zeusmp, GemsFDTD

18 GemsFDTD, wrf, gromacs, lbm, lbm, sphinx3, cactusADM, mcf

19 libquantum, astar, libquantum, sphinx3, xalancbmk, sphinx3, wrf, h264ref

20 bzip2, calculix, soplex, milc, lbm, xalancbmk, libquantum, namd

21 lbm, libquantum, lbm, mcf, cactusADM, lbm, xalancbmk, perlbench

22 leslie3d, sphinx3, xalancbmk, bzip2, h264ref, leslie3d, GemsFDTD, gobmk

23 sphinx3, sjeng, sphinx3, xalancbmk, leslie3d, mcf, soplex, xalancbmk

24 perlbench, soplex, lbm, lbm, xalancbmk, milc, libquantum, calculix

25 bwaves, leslie3d, omnetpp, xalancbmk, soplex, mcf, leslie3d, GemsFDTD

26 bwaves, libquantum, xalancbmk, namd, libquantum, libquantum, omnetpp, GemsFDTD

27 GemsFDTD, perlbench, lbm, astar, libquantum, xalancbmk, libquantum, zeusmp
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Figure 6.4: Fairness, compared to FR-FCFS

6.5.2 Fairness

Figure 6.4 shows the fairness improvement of all schemes relative to the

FR-FCFS baseline system using the harmonic mean of weighted speedup. It is

important to note that the throughput gains Minimalist achieves are accompanied

with improvements in the fairness. This is expected as the throughput gains

are a result of alleviating unresolveable conflict cases associated with row buffer

starvation. Essentially, Minimalist matches the throughput gains in cases without

row buffer conflicts while significantly improving cases where row buffer conflicts

exist.

As explained by Kim [26], ATLAS is less fair than PABS, since ATLAS

targets throughput over fairness (interestingly similar throughput was observed for

both algorithms in these experiments). Minimalist improves fairness up to 15% with

an overall improvement of 6.4%, 2.8% and 2.1% over the medium bus utilization

workload sets, and 5.74%, 3.48%, 2.87% over the high bus utilization workload

sets for FCFR, PABS and ATLAS, respectively.
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Chapter 7

The Virtual Write Queue

In computer architecture, caches have primarily been viewed as a means to

hide memory latency from the CPU. Cache policies have focused on anticipating

the CPU’s data needs, and are mostly oblivious to the main memory. This chapter

demonstrates that the era of many-core architectures has created new main memory

bottlenecks, and mandates a new approach.

This chapter proposes the Virtual Write Queue, which utilizes the cache for

memory optimization purposes, dramatically expanding the memory controller’s

visibility of processor behavior at low implementation overhead. Through memory-

centric modification of existing policies, such as scheduled writebacks, this work

demonstrates that performance-limiting effects of highly-threaded architectures can

be overcome. Through an awareness of the physical main memory layout and by

focusing on writes, both read and write average latency can be shortened, memory

power reduced, and overall system performance improved.

Typical memory controllers contain 10’s of queued write operations [55].

Queue structures are costly in terms of area and power, and the size of the write

queue is a critical parameter for overall memory subsystem performance. The

effective size of the write queue can be greatly increased using the lower LRU
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members of the last-level cache function as a very large write queue e.g., 64k

effective entries for the lower one-quarter of a 16 MB last-level cache). This LRU

section of the last-level cache is referred to as the Virtual Write Queue, in that

the usage of this region is overload and re-purposed as a much larger effective

queue structure. Analysis is shown that a coordinated cache/memory policy based

on direct management from the Virtual Write Queue mitigates DRAM challenges,

increasing the performance of the memory subsystem. Specifically:

1. Bus turnaround penalty avoidance: Through a Scheduled writeback policy,

the system efficiently drain more pending write operations, minimizing the prob-

ability of interleaved read and write operations, which incur costly scheduling

penalties (≈66 processor cycles @ 4GHz).

2. Gathering page mode opportunities: Directed cache lookups, to a broad

region of the LRU space, enable harvesting of additional writes to be executed

in page mode at higher performance and lower power.

3. Burst leveling: With the Virtual Write Queue, the ability to buffer ≈1000x

more write operations than in a standard memory controller enables significantly

greater leveling of memory traffic bursts.

Figure 7.1 shows the Virtual Write Queue, which logically consists of some

LRU fraction of the last-level cache (1/4 in this example); the Physical Write Queue

in the memory controller; and the added coordinating control logic and structures.

This structure is referred to as virtual because no additional queueing structures
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are added. The overall area cost is small: ≈0.3% overhead over a typical cache

directory implementation.

Scheduled Writeback: Traditional writeback cache policies initiate mem-

ory writes only when a cache fill replaces an LRU cacheline. This is referred to as

forced writeback. There are two problems with this policy. First, writes are only

sent to the memory controller at the time of cache fills, so idle DRAM cycles cannot

be filled with writes. This is addressed with Eager Writeback [32], where cachelines

are sent to the memory controller when it appears to be idle (an empty write queue

is detected). The second problem deals with the mapping of write locations to

DRAM resources. Since the memory controller is aware of each DRAM’s state, it

would ideally decide which writeback operation can be executed most efficiently.

With Eager Writeback, this selection is made by the cache, without knowledge of

what would be best for DRAM scheduling. Scheduled Writeback are introduced to

solve this problem. With Scheduled Writeback, the memory controller can direct

the cache to transfer lines that map to specific DRAM resources.

As shown in Figure 7.2, the primary microarchitectural addition over

traditional designs is the Cache Cleaner. The Cache Cleaner orchestrates Scheduled

Writebacks from the last-level cache to the Physical Write Queue. While the cache

and the Physical Write Queue are structurally equivalent to traditional designs (and

thus hardware overhead is minimal), the logical behavior is significantly altered.

This is reflected in the distribution of dirty lines in the system. Specifically, dirty

lines have been cleaned from the lower section of the cache, and the Physical Write

Queue is maintained at a higher level of fullness, with an ideal mix of commands
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separate read and write queues. Proposed Virtual Write Queue outlined.
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Figure 7.2: The proposed Virtual Write Queue details.

with respect to scheduling DRAM accesses. In addition, typical memory controllers

decide write operation priority based on only the Physical Write Queue, whereas

this system uses the much larger Virtual Write Queue. The Physical Write Queue

becomes a directly managed staging buffer, of the now much larger window of write

visibility.
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7.1 High Level Description of Virtual Write Queue Policies

At steady state, the Physical Write Queue is filled to a defined ≈full level

with a mix of operations to all DRAM resources. This level is chosen to keep the

queue as full as possible, while retaining the capacity to receive cache writebacks.

Scheduled Writebacks can vary in length, depending on the number of eligible lines

found in the same DRAM page; the write queue must maintain capacity to absorb

these operations.

The DRAM scheduler executes write operations based on the conditions of

the DRAM devices, read queue operations, and the current write priority. Write

priority is determined dynamically depending on the fullness of the Virtual Write

Queue. As write operations are executed to DRAM, the fullness of the Physical

Write Queue is decreased, so the Cache Cleaner refills the Physical Write Queue to

the target level. The Cache Cleaner will search the last-level cache Virtual Write

Queue region for write operations to the desired DRAM resource. This DRAM

resource is chosen in two ways: 1) If the memory controller attempts a burst of

operations to a specific rank, an operation mapping to that rank will be sent; 2)

alternately, if no burst is in progress, the Physical Write Queue will be rebalanced

by choosing the rank with the fewest operations pending. This maintenance of

an even mix of operations to various DRAM resources enables opportunistic write

execution, in that a write is always available to any DRAM resource that becomes

idle.

As part of the Cache Cleaner function, additional writes are harvested which

map to the same DRAM page as the write selected by the Cache Cleaner for
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writeback. This is accomplished via queries to cache sets which map to the same

DRAM page (Section 7.3). In the evaluated system, groups are defined from cache

sets based on the cache and DRAM address translation algorithms. In the evaluation

it was found that groups of four cache sets are the ideal size.

Upon completion of the Scheduled Writebacks, the Physical Write Queue

once again contains an ideal mix of operations to be scheduled. While a linear

sequence is described, in practice, the structure can concurrently operate on all

steps, accommodating periods of high utilization.

7.2 Physical Write Queue Allocation

As previously described, a large barrier to efficient utilization of a main store

(whether DRAM or future technologies) is the transition between read and write

operations. In addition to write-to-read turnaround, alternating between different

ranks on the same bus can introduce wasted bus cycles. To have good efficiency,

DRAM banks must additionally be managed such that operations to the same bank,

but to different pages, are avoided. These characteristics motivate creation of long

bursts of reads or writes to ranks, while avoiding bank conflicts. The Physical Write

Queue allocation scheme addresses the formation of write bursts.

A key aspect of the Virtual Write Queue solution is its two-level design.

Since writes can only be executed from the Physical Write Queue, the Scheduled

Writebacks must expose parallelism of the Virtual Write Queue into the Physical

Write Queue to achieve the highest value from last-level cache buffering. This is

accomplished by maintaining the best possible mix of operations in the Physical
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Write Queue, given what is visible in the entire Virtual Write Queue structure.

This is accomplished in two ways. First, the capability is created to

opportunistically execute write operations to any rank. In this way, the scheduler

can react to a temporarily idle rank with a burst of writes at any moment. Extending

this idea, several writes are maintained to each rank which can be executed without

idle cycles. Ideally, many writes are maintained to the same DRAM pages. When

it is not possible to maintain accesses targeting the same rank and page, operations

are selected to the same rank, but a different bank. For a write burst to a rank

that is longer than what can be stored in the Physical Write Queue, Scheduled

Writebacks are directly generated in concert with execution of writes, such that

the cache writeback latency is overlapped with the Physical Write Queue transfers

to memory. Once the initial latency of the first cache writeback has passed, the

cache has the required bandwidth to maintain a busy DRAM bus.

An example timing diagram for this Virtual Write Queue function is shown

in Figure 7.3. In this example, the Physical Write Queue initially contains four

cachelines which map to a target rank (cachelines 0 to 3 in the first column). At

t0, the scheduler initiates an eight cacheline write burst. While the initial four

cachelines of data are available in the write buffer, the remaining lines must be

transferred from the last-level cache using the Scheduled Writeback mechanism. In

this case, a request is made at t1 to the Cleaner logic coincident with the initiation

of the writes to memory. To maintain back-to-back transfers on the DRAM bus,

the Cache Cleaner must be able to provide data within the delay of the transfer

of all of the data blocks in the Physical Write Queue for the given rank to main
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Figure 7.3: Virtual Write Queue timing diagram of operation

memory. Note, the Cleaner latency essentially determines the required number of

cachelines required in the PWQ to maintain a burst transfer. For example, in the

system using DDR3 1066 memory with a burst length (BL) of 8, each cacheline

requires ≈8ns to be transferred (i.e., ≈32 CPU cycles). Thus the Cleaner must be

able to provide a cache line within 32ns, assuming four cachelines stored in the

Physical Write Queue. The design analysis shows that this is easily achieved for

typical last-level cache latencies (10 ns measured on the Intel I7 965 [14]). In the

example of Figure 7.3, it is shown that the first writeback data, cacheline 4, arrives at

time t2. At this point, the Physical Write Queue has been depleted of lines 0-3, and

data is streamed from the last-level cache. As the eight-line write burst completes

at time t3, the remaining lines from the last-level cache transfer are used to refill the

Physical Write Queue. At time t4, the physical queue is once again full, and ready

to execute another write burst.
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7.3 The Cache Cleaner

To qualify as an efficient implementation, the scheme must (1) not interfere

with the mainline cache controller; (2) be power-efficient; and (3) be timely.

Specifically, the Cache Cleaner (shown in Figure 7.2) must not affect hit rates or

cause excessive access to cache directory and data arrays; it must avoid excess

reads of cache directory arrays for power efficiency reasons; and cache lines to be

cleaned must be located in a timely manner. The Cleaner uses a Set State Vector to

accomplish these goals.

7.4 The Set State Vector (SSV)

While the cache lines in the Virtual Write Queue are contained within the

state information of the cache directory itself, direct access is problematic. Specif-

ically, cache directory structures are optimized for efficient CPU-side interaction.

As such, directories are organized such that the cache tags, state bits, and LRU array

are read together in a cache access.

This CPU-centric directory organization conflicts with the access require-

ments of the Cache Cleaner. The Cache Cleaner would like to efficiently search

across many sets, in search of dirty cache lines to be scheduled for writeback to the

DRAM. This efficient search is enabled with the addition of the Set State Vector

(SSV). As shown in Figure 7.4, each entry in the SSV represents the set state from

the perspective of the Virtual Write Queue. The SSV is stored in a dense SRAM,

where a single read access contains information across many sets. Each SSV entry
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Figure 7.4: Set State Vectors (SSVs): directory set map to SSV entries

contains the dirty data criticality of each set. For the system, sets are defined with

dirty data in the oldest 1/4 of the cache as critical. Evaluation of multiple critical

indications in the SSV (2bit: empty, low, medium, high) but found a single bit to be

adequate (future work).

7.5 Cleaner SSV Traversal

Adjacent entries in the SSV are not necessarily adjacent sets in the cache.

The dense packing is based upon the mapping of the system address into the

physical mapping on the DRAM’s channel/rank/bank resources. Adjacent entries

in the SSV all map to the same channel/rank/bank resource.

A mapping example is shown in Figure 7.5. In this example a closed-
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Figure 7.5: Set State Vectors (SSVs): mapping of cache sets to SSVs

page mapping for four ranks, each with 8 banks is used. In this case, every 32nd

cache line maps to the same SSV. In general the mapping logic must be configured

to match the DRAM mapping function; this is not a significant constraint, since

mappings are known at system boot time. The scheme requires all bits that feed

the DRAM mapping function to be contained within the set selection bits of the

cache. This enables not only the SSV mapping function, but also page mode

harvesting. This restriction does not produce significant negative effects, since

all bits above the system page size are effectively random, and large last-level

cache sizes have several higher order bits available for more sophisticated mapping

functions (which avoid power of two conflicts that are common in simple lower-

order bit mappings) [62].
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The SSV is then subdivided into regions for each channel/rank/bank

configured in the system. The Cache Cleaner maintains a working pointer for each

of these configured regions. As the Cache Cleaner receives writeback requests from

the memory controller, the associated working pointer reads a section of the SSV

(with the matching Next Ptr in Figure 7.5). A set is selected, which will determine

the specific set with which a writeback request will be generated. This request is

sent to the cache controller to initiate the actual cache cleaning operation.

7.6 Write Page Mode Harvester Logic

The cache eviction mechanism is augmented to query adjacent lines in

the directory, such that groups of requests within the same memory page can be

detected and sent as a group for batch execution to the DRAM. When a line is

pulled out of the cache array, the associated sets of the cache that contain possible

page mode addresses are searched. If the corresponding page mode addresses are

found, these will be sent as a group to the memory controller, to be processed as a

burst page-write command sequence. In the evaluation it was found that three look-

ups associated with a block of four cachelines provided significant gains without

excessive directory queries.

While the design was evaluated used a static search criteria, dynamic

policies are possible. Since the static proposal always searches three locations

for page hits, power is wasted when page hits are infrequent. For workloads with

greater opportunities, three lookups may not exploit all of the page hits that are

possible. The primary difficulty in a dynamic proposal is detecting when to attempt
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larger searches. It is certainly known when a search was unsuccessful, but knowing

in which situations to search a larger region is more difficult. A sampled approach

may be effective. This area could be expanded in future work.

7.7 Prevention of Extra Memory Writebacks

Since the system speculatively writes dirty data back to memory, there is

some chance that extra memory write traffic is introduced. Specifically, if a store

occurs to the data after it is cleaned, the cleaning operation is wasted. As a solution

to this problem lines, state information is added to each line in the cache to indicate

the line has been cleaned. If a cleaned line receives a store, this indicates an extra

write was produced. As the line is listed as previously cleaned, future cleans to the

line are inhibited.

In an effort to reduce storage overhead to track this marker state, additional

cache states are added to the unused state encodes of MOESI to indicate a line was

once dirty, but has been cleaned. Lines in Cleaned states are excluded from being

cleaned a second time. A complete extension to the MOESI protocol would require

Cleaned version of all four valid states. This presents additional overhead in that the

total number of states would reach nine. Since MOESI systems require three state

bits of encoding, three unused state encodes are available. To avoid the overhead

of adding a fourth state bit, the Shared Cleaned state was excluded, maintaining

the same state overhead as standard MOESI. The justification for the exclusion of

Shared Cleaned is best explained through the state transitions shown in Table 7.1.

In the table, the Cleaned states are represented with a lowercase c, e.g. Modified
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Cleaned as Mc.

Table 7.1: Extra coherence protocol transitions introduced to prevent extra memory
writebacks

# Initial
State Event Next

State Comment

1 M Clean Ec Scheduled Writeback

2 S Store M M If no Oc in system

3 S Store Mc Mc If Oc in system

4 Mc Snooped Read Oc

5 Oc Store Mc

6 Oc Snooped Read Oc

7 Ec Store Mc

8 O Clean S Disallowed due to lack
of Sc

9 Ec Snooped Read S Loss of cleaned
Information

There are two cases of potential transitions into the Shared Cleaned state

(Sc). In row 8 of Table 7.1, the case of an Owned (O) line that if cleaned would

transition to Shared Cleaned is shown. In the simulations Owned lines are not

cleaned thus this case is avoided. In row 9 the case of a line in Exclusive Cleaned

state (Ec) where a read operation is snooped is shown. Here the Exclusive Cleaned

line must transition to an Shared state. Since the Cleaned modifier is not required

for coherence, the traditional Shared state is used in this case. In the analysis no

degradation was observed due to this policy.

7.7.1 Overall Overhead Analysis of Virtual
Write Queue

The actual storage overhead of the proposed Virtual Write Queue is limited

to the overhead for the SSVs. The rest of the scheme primarily reuses existing
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structures in the last-level cache and memory controller of a typical CMP system.

All of the remaining structures added to the last-level cache controller and memory

controller are negligible in size compared to the storage required for the SSVs.

The overhead of the SSV can be evaluated by comparing it to the cache directory.

For a 16MB 8-way associative cache used in the analysis, each cache set requires

346 bits (see Figure 7.4: 8 ∗ 32bits Tag bits, 8 ∗ 3bits State Bits, 28 LRU bits

and 38 ECC bits). Since the proposal adds only one SSV bit per cache set, the

overhead is approximately 1/346≈ 0.3% (4Kbytes of storage for the SSV compared

to 1384Kbytes for the cache directory).

7.8 Results

To evaluate the effectiveness of the proposed Virtual Write Queue, Simics

[38] extended with the GEMS toolset [39] was used to simulate cycle-accurate

out-of-order processors and a detailed memory subsystem. The toolset was

configured to simulate an 8-core SPARCv9 CMP with 8GB of main memory. The

memory subsystem model includes an inter-core last-level cache network that uses

a directory-based MOESI cache coherence protocol along with a detailed memory

controller. Both the last-level cache and the memory controller were augmented

to support a baseline memory controller and the proposed Virtual Write Queue.

The baseline implementation simulates a First-Ready, First-Come-First-Served

(FR FCFS) [51] memory controller with the addition of Eager writebacks [32],

referred to as FR FCFS+EW in the evaluation. The SPEC CPU2006 Rate scientific

benchmark suite [12] was used, compiled to the SPARC ISA with full optimizations
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Table 7.2: Core and memory-subsystem parameters used for cycle-accurate
simulations

Core Characteristics
Clock Frequency Pipeline Reorder Buffer

/Scheduler
Branch

Predictor

4 GHz 30 stages / 4-wide fetch
/ decode 128/64 Entries

Direct YAGS /
indirect 256

entries

L1 Data & Inst.
Cache L2 Cache Outstanding

Requests
Memory

Bandwidth

Memory Subsystem

64 KB, 2-way
associative, 3 cycles

access time, 64 Bytes
block size, LRU

16 MB, 8 ways
associative, 12 cycles
bank access, 64 Bytes

block size, LRU

16 Requests per
Core 16.6 GB/s

Controller
Organization DRAM Controller

Resources
Virtual Write

Queue
2 Memory Controllers
1, 2, and 4 Ranks per

Controller
8 DRAM chips per

Rank

8GB DDR3-1066 7-7-7
32 Read Queue &
32 Write Queue

Entries

2 LRU ways
4096 High &

4064 Low
Watermark

(peak flags). Each benchmark is fast-forwarded for 4 billion instructions to reach

its execution steady-state phase. The next 100M instructions are then simulated to

warm up the last-level cache and the memory controller structures; followed by a

final 100M instructions used in the evaluation. Table 7.2 includes the basic system

parameters.

7.8.1 System Throughput Speedup Analysis

Cycle-accurate simulations of SPEC CPU2006 Rate showed that the Virtual

Write Queue enables significant throughput gains for workloads with high memory

bandwidth requirements. These gains over the baseline FR FCFS+EW [51][32]

system is shown in Figure 7.6. Speedups for three memory bus configurations (1, 2,
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and 4 DRAM ranks per channel) are shown. SPEC workloads not listed in the figure

did not show any measurable change in performance. As expected, workloads

with high memory utilization showed benefits due to reduction in bus penalties

by forming long back-to-back write bursts. The largest speedup is observed on the

single rank system. In this case, the controller does not have other ranks to which

to send requests, and the ”write-to-read-same-rank” penalty is incurred at every bus

turnaround. For the 2-rank system, smaller gains are shown, since the baseline

system is able to schedule around ”write-to-read-same-rank” penalties in many

cases. In that case, delays due to rank-to-rank transitions become more important.

The performance of the 4-rank system is very close to that of the 2-rank since

for this case the controller incurs fewer ”write-to-read-same-rank” penalties, but

generates more frequent rank-to-rank transitions. Overall, the Virtual Write Queue

achieved average improvements of 10.9% in throughput when configured with 1

rank, while for the cases of 2 and 4 ranks the IPC improvements were found to be

6.4% and 6.7%, respectively.

7.8.2 Page Mode Analysis

Using the Virtual Write Queue significant increases the amount of page

mode write operations executed over the baseline FR FCFS+EW [51][32] system.

The full-system simulation shows an average of 3.2 write accesses per page – this

contributes to throughput system gains (as observed in Section 5.1) and memory

power reduction. While the throughout gains are only observed in high bandwidth

workloads, the power reductions are more universal. In Figure 7.7 the memory
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Figure 7.6: IPC improvements of Virtual Write Queue over prior work (FR FCFS
+ Eager) [51][32]

power reduction for each workload is estimated using the Micron power estimator

[42]. Overall, an average DRAM power reduction of 8.7% is observed. As shown

in [50], main memory can be a significant portion of total system power. For stream,

Rajamani, et al. indicate that memory power can be 48% of high performance

system power, even after accounting for supply losses. The 11-15% power saved

for half of the workloads through the page mode write scheduling of Virtual Write

Queue would thus result in a 5-7% system-level savings.

To further evaluate the page mode behavior of the Virtual Write Queue a set

of simulations were performed using three diverse commercial workloads. Due

to the complexity and size of the commercial workloads, a detailed evaluation

using a cycle-accurate, full system simulator is prohibitively expensive. As a

solution, for commercial workloads trace-based cache simulations were utilized.

The first workload is an On-Line Transaction Processing (OLTP) workload driven

by hundreds of simulated individual clients generating remote transactions against
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Figure 7.7: DRAM power reductions achieved by Virtual Write Queue for SPEC
CPU2006 Rate

a large database. The second workload represents a typical Enterprise Resource

Planning (ERP) workload. As with the OLTP workload, the ERP workload was

driven by simulated users who sent remote queries and updates to the database.

Finally, the third workload is SPECjbb2005 benchmark [12] that targets the

performance of a three-tier client/server system with emphasis on the middle

tier. Trace-based simulations were performed using an in-house cache simulator

augmented to model the Virtual Write Queue.

The cache simulator was augmented to monitor the total page mode writes

that were possible when varying the number of cache ways that were allocated to

the Virtual Write Queue. The simulation results are shown in Figure 7.8. Whenever

a dirty line was evicted from the cache, the last N ways of the cache were checked

for other dirty lines that mapped to the same DRAM page. As expected, there

is a steady increase in page mode opportunity as the number of ways considered

is increased, with significant increases in 2 ways, and diminishing returns after

considering more than 4 ways, or half the cache. The increased performance
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Figure 7.8: The Virtual Write Queue exploits the LRU ways of the last-level cache
to virtually expand the write queue.

from considering more ways of the set must be balanced against the overhead

of additional writes introduced by the cleaning. Though not shown, it is worth

noting the implied difference in performance results across the three workloads.

The OLTP workload sees limited benefit, while the ERP and SPECjbb see much

larger opportunities.

7.8.3 Prevention of Extra Memory Writeback Analysis

As described in Section 7.7, the Virtual Write Queue mechanisms has the

potential to generate additional writeback traffic for cases where a cleaned line

is modified after its speculative writeback to the memory. In this section the

magnitude of the problem and the avoidance mechanism presented in Section 7.7
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Figure 7.9: Extra Writeback avoidance for SPEC CPU2006

are evaluated. Through cycle-accurate simulations, the writebacks to memory

are classified into the following categories: a) Inherent: normal bandwidth that

is not created by speculative writebacks, b) Extra: bandwidth created through

speculative writeback that is not removed though the cache state enhancements,

and c) Avoidable: Speculative bandwidth that is avoided with the addition of the

proposed cache state enhancements. In Figure 7.9 the write memory bandwidth

is shown, in MB/sec, as was collected from the simulations. As shown, certain

workloads, such as sjeng, see significant extra bandwidth that is eliminated using

the cache state enhancements of Section 7.7. Note, the power estimates in Section

7.8.2 assume these cache state enhancements. In all cases, the power savings

achieved at the DRAM using page mode offset the increase from extra traffic (since

most of the extra traffic contains no bank activates). In addition, a limited evaluation

of commercial workloads was performed to gauge how problematic this behavior

is. Again, there are significant differences between the workloads. Using the
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lower 2-ways of LRU in the Virtual Write Queue, SPECjbb showed 1% increase

in writebacks compared to an increase of 6% for ERP and 9% for OLTP.

7.8.4 Summary

This chapter proposes a novel approach towards coordinating last-level

cache and DRAM policies by expanding the memory controller’s visibility and

providing awareness of the physical main memory layout. The work demonstrates

that the Virtual Write Queue scheme is able to achieve significant raw system

throughput improvements (10.9%) and power consumption reductions (8.7%)

with very low hardware overhead (≈0.3%). Overall, the Virtual Write Queue

demonstrates that co-optimizations of multiple system components enables low-

cost, high-yield improvements over traditional, isolated to each resource, designing

approaches.

77



Chapter 8

Elastic Refresh

High density memory is becoming more important as many execution

streams are consolidated onto single chip many-core processors. DRAM is

ubiquitous as a main memory technology, but while DRAM’s per-chip density

and frequency continue to scale, the time required to refresh its dynamic cells has

grown at an alarming rate. This chapter shows how currently-employed methods to

schedule refresh operations are ineffective in mitigating the significant performance

degradation caused by longer refresh times. Current approaches are deficient – they

do not effectively exploit the flexibility of DRAMs to postpone refresh operations.

This work proposes dynamically reconfigurable predictive mechanisms that exploit

the full dynamic range allowed in the JEDEC DDRx SDRAM specifications. The

proposed mechanisms are shown to mitigate much of the penalties seen with dense

DRAM devices. The overall scheme is titled Elastic Refresh, in that the refresh

policy is stretched to fit the currently executing workload, such that the maximum

benefit of the DRAM flexibility is realized.

The JEDEC DDRx standards allow flexibility in the spacing of refresh

operations. Delaying a specific command for small numbers of tREFI periods does

not result in loss of data, assuming the overall average refresh rate is maintained
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(i.e., all bits of the DRAM are touched within their retention time). For this

reason, commodity DRAMs allow deferral of some number of refresh operations,

presuming that the memory controller then “catches up” when the maximum

deferral count is reached. For the current DDR3 standard, this maximum refresh

deferral count is eight [22]. In this work the term postponed is used to describe

the number of tREFI intervals across which a refresh operation was deferred.

Exploiting this elasticity in the scheduling of refresh operations is the key focus

of this chapter.

8.1 Baseline Refresh Scheduling

Figure 8.1 shows the queue structure of the memory controller used in

this work. The read and write operations accepted by the controller from the

CPUs (via the cache controller) are first placed in the Input Queue. Operations

are moved to the appropriate Bank Queue as space is available. The analysis in

Section 8.6.1 specified 32 entries for each of these queues. The memory controller

must also execute refresh operations; these are created as the tREFI counter

expires, and stored in the Refresh Queue until they are executed. Selection between

the various operations in the Bank Queues and the Refresh Queue is managed by

the overall memory scheduler, of which only the Refresh Scheduler is shown. The

Refresh Scheduler is explicitly shown, as the focus of this work explores the policy

and priority with which refresh operations are intersperse with read and write

requests.
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Figure 8.1: Refresh Control Logic

8.2 Typical Approach to Refresh Scheduling

As previously suggested, most memory controllers have paid little attention

to the scheduling of refresh commands, as the penalties have not warranted

the complexity of a sophisticated algorithm. In this section, current policies are

examined, referring to the memory controller logic which decides when to issue

refresh commands as the refresh scheduler (shown in Figure 8.1).

The most straight-forward refresh scheduling algorithm simply forces a

refresh operation to be sent as soon as the tREFI interval expires. This approach

is commonplace due to the simplicity of the required hardware control logic.

Historically, tRFC penalties were low enough to not warrant additional complexity.

This algorithm can be found in readily-available memory simulators, such as

DRAMsim [63] and GEMS [39]. In addition, even work dealing in sophisticated

operation schedulers have employed this method [17]. This work refers to this

common policy as Demand Refresh (DR).
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In a more sophisticated policy that exploits the ability to postpone refresh

commands [60], refresh operations are treated as low priority (never chosen over

read or write traffic) until the postponed count reaches seven refresh operations.

At this point, refreshes become higher priority than all other operations, to ensure

the maximum deferral limit (eight) is not reached. Deferral-based designs do enable

bursts of operations to proceed without refresh penalties, but as described in the next

section, they fall short of isolating refresh penalties in several important scenarios.

This policy is referred to as Defer Until Empty (DUE).

8.3 Examples of Where Typical Approaches Break Down

In the following sections several examples in which current refresh schedul-

ing approaches fail to isolate refresh operations are described, including cases

where ample idle DRAM cycles are available.

8.3.1 Low Memory-Level-Parallelism Workloads

Traditional approaches behave poorly while running low-memory-level-

parallelism (low-MLP) workloads. In low-MLP workloads, memory utilization

is often quite light, but each reference to memory is critical to the workload’s

execution progress. A classic example of such an algorithm/workload is the

traversal of pointer-based large data structures. For these applications, each

execution thread generates only one miss to memory at a time. As such, there

are many periods of time where the memory controller Bank Queues are empty. In

these cases, the refresh scheduler will often execute refreshes immediately when
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the tREFI counter expires. The problem is that even though the scheduler is often

empty, memory traffic is still present. This, combined with the very long refresh

completion delay of high-density DRAMs (300 ns+), results in large penalties for

operations received by the memory controller in the interval after the refresh was

scheduled.

The magnitude of this effect is significantly larger than expected when

only considering the fraction of time the DRAM is executing the refresh. In

Figure 8.2(a), the magnitude of the delay experienced by a read received just after

a 300ns refresh operation of 4Gbit DRAM is graphical shown, compared to the

typical closed page access latency of 26ns to accomplish a typical read operation. In

Figure 8.2(b), the fraction of time the DRAM bus is executing refresh operations

over a tREFI interval is shown. DRAM read operations are shown to give a scale

of the relative bus busy time. This disproportionate busy time drives the very

significant latency penalties.

Table 8.2 shows the first-order refresh-associated performance penalties

across DRAM types. Bandwidth overhead is calculated by taking the refresh time

(tRFC) over the refresh interval (tREFI). This gives the fraction of time that a

DRAM chip is off-line from mainline traffic to execute refresh operations. This

grows to over a 9% bandwidth tax in the densest DDR3 technology.

The latency overhead of refresh is more disruptive. To illustrate this, the

first-order latency overhead, as shown in the fourth and sixth columns of Table 8.2,

is calculated assuming an idle system. In an idle system, a read request would incur

a latency penalty if the DRAM scheduler had recently sent a refresh request to the
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(a)

(b)

Figure 8.2: Refresh Latency Penalty Example
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needed DRAM device. Note that, in general, the scheduler would delay a refresh

if a read operation was queued; the values shown represent the case where the read

is unlucky. In this case, the latency penalty is on average one-half the tRFC time.

The rate at which this higher effective read latency event occurs is indicated by

the bandwidth overhead calculation. As Table 8.2 illustrates, this latency penalty

can be very significant. For example, a modern processor might achieve a baseline

memory latency of∼50ns. For 8Gb DRAM, the penalty of 15.7ns represents a 31%

memory latency increase due to refresh. Beyond the sheer magnitude of a 31%

latency penalty, the cost in performance is higher in modern, speculative, out-of-

order processors than the average latencies implies [56]. While in general memory

latency can be hidden through hardware features such as prefetch and out-of-order

execution, the reach of such mechanisms is limited by total hardware capacity. As

such, designing for high latency events requires much larger structures than needed

when latency is more uniform.

Table 8.1: Refresh penalty as density increases

DDR3
DRAM
capacity

tRFC
bandwidth
overhead

(85◦C)

latency
overhead

(85◦C)

bandwidth
overhead

(95◦C)

latency
overhead

(95◦C)

512Mb 90ns 1.3% 0.7ns 2.7% 1.4ns

1Gb 110ns 1.6% 1.0ns 3.3% 2.1ns

2Gb 160ns 2.5% 2.4ns 5.0% 4.9ns

4Gb 300ns 3.8% 5.8ns 7.7% 11.5ns

8Gb 350ns 4.5% 7.9ns 9% 15.7ns
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8.3.2 Medium to High Utilization Workloads

The general problem of refresh penalties due to scheduler inefficiencies

also applies to workloads with high DRAM bus utilization. While the refresh

timer may expire when the operation queues are not empty, in many cases the

memory controller becomes idle for at least some period of time relatively soon

compared to the tREFI interval. Though the bus may be idle, new operations

could arrive shortly after the refresh is sent, incurring the large refresh penalty.

Current designs do nothing to judge how long the controller will be empty, and are

ineffective at avoiding these penalties. The analysis indicates that traditional refresh

deferral solutions reach significant backlogs only in workloads with saturated

memory buses. In these cases, the refresh scheduler is constantly forcing refresh

operations, since there are never free intervals to hide the refresh.

8.4 Refresh Beyond DDRx SDRAM

In addition to the emerging tRFC penalties identified for dense commodity

DRAM, there has been much interest in non-DRAM memory technologies which

may come to market in the next 10 years. Examples include Phase-change-

Memory (PCM), Resistive-random-access-memory (RRAM), and Spin-transfer-

random-access-memory (STT-RAM). Many recent works have assumed a primary

advantage of these technologies is their non-volatility. While these are indeed “non-

volatile” technologies at traditional Flash temperatures (≤ 55◦C), several of these

suffer from accelerated drift effects at temperatures in the range of server main

memory (≤ 95◦C) [28]. Drift causes a change in the memory cell’s resistance
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value. While drift may be manageable in the initial single-bit-per-cell PCM

implementations which are currently on the market, dense multi-level cell PCM

relies on storing and sensing finer resistance granularities, and drift will become

more of an issue. Dense, multi-bit implementations which are currently envisioned

for hybrid and tiered memory systems, are thus likely to require a refresh-like

command to combat drift in high-temperature server environments. The length

of such an operation may be similar to these technologies’ write/programming

times (much longer than DRAM, generally). For one leading emerging memory

contender, phase-change memory, its write time could result in a drift-compensating

tRFC easily 3x that currently specified for DRAMs. From the above, it is clear that

simple refresh scheduling mechanisms will not be sufficient for future memory.

Also shown in Table 8.2 are the first order refresh overhead penalties across

DRAM types. The bandwidth overhead is calculated by taking the refresh time

(tRFC) over the refresh interval (tREFI). This gives the fraction of time that a

DRAM chip is off-line from mainline traffic to execute refresh operations. This

grows to over a 10% tax in the densest ddr3 technology. Potentially more invasive

is the latency overhead. This best case latency overhead is calculated assuming an

idle system. In an idle system, a read request would incur a latency penalty if the

DRAM scheduler had recently sent a refresh request to the needed DRAM device.

Note in general the scheduler would delay a refresh if a read operation was queued,

this represents the case where the read is unlucky. In this case, the latency penalty is

on average half the tRFC time. The rate at which this latency event occurs matches

the bandwidth overhead calculation. As shown, this latency penalty can be very
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significant. For example, a modern processor achieves an unloaded latency of 5̃0ns.

For 8Gb DRAM, the penalty of 24.7ns represents a 50% latency increase due to

refresh.

Table 8.2: Refresh penalty as density increases

DRAM type tRFC bw overhead
(85c)

latency
overhead (85c)

bw overhead
(95c)

latency
overhead (95c)

256Mb 75ns 1.0% 0.4ns 1.9% 0.7ns

512Mb 105ns 1.3% 0.7ns 2.7% 1.4ns

1Gb 127.5ns 1.6% 1.0ns 3.3% 2.1ns

2Gb 195ns 2.5% 2.4ns 5.0% 4.9ns

4Gb(est) 292.5ns 3.8% 5.5ns 7.5% 11.0ns

8Gb(est) 438.75ns 5.6% 12.3ns 11.3% 24.7ns

8.5 Elastic Refresh Scheduling

The behavior observed in current refresh scheduling algorithms is addressed

by decreasing the aggressiveness with which refresh operations are scheduled.

In being less aggressive, the proposed mechanisms more effectively exploit the

available refresh deferral dynamic range. This is accomplished by waiting to issue

a refresh command, even when the bus is idle. At the most fundamental level,

predictive mechanisms are used to decrease the probability of a read or write’s

collision with a recently issued refresh operation.

The Elastic Refresh algorithm proposed differs from the best existing

approach (DUE) in the mechanism used to issue low priority refresh operations.
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Current mechanisms consider low priority refresh operations eligible to be sent

when all Bank Queues for a rank are empty (structure in Figure 8.1). In the proposed

method, the refresh command is delayed an additional period of time for the rank

to be idle. The usage of this additional delay, effectively lowering refresh priority

further, exploits typical system behavior where memory operations arrive in bursts.

Using this assumption, as the time since a prior operation increases, the probability

of receiving future memory operations decreases. This reduces the likelihood that

a new operation will collide with an executing refresh. This idea is extended with

the following observation: at low postponed refresh counts, the prediction can

aggressively choose to not send an operation. As the postponed refresh count

increases, this bias is reduced by decreasing the idle delay period.

8.5.1 Idle Delay Function

The idle delay is expressed as a function of the refresh postponed count.

The general form of this function, referred to as the Idle Delay Function (IDF),

is shown in Figure 8.3. Note, in this proposal, the parameters of the IDF are

dynamically adjusted based on the workload characteristics. Three regions of delay

characteristics are defined:

1. Constant: Analysis of simulations showed that many workloads have a charac-

teristic idle delay period, where the probability of receiving a future command in

the tRFC interval is very low. The constant region effectively sets the maximum

IDF at this value.
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Figure 8.3: Idle Delay Function (IDF)

2. Proportional: This region represents the area where the postponed refresh count

approaches the maximum allowed value where the scheduler transitions to more

aggressive issuing of refresh operations. The slope of the proportional region

is tuned such that the full dynamic range of postponed operations is exploited.

3. High Priority: As the number of postponed requests approaches the maximum,

the delay strategy must be abandoned, as the refresh must be issued within one

additional tREFI interval. From this perspective, the High Priority region has

two phases, both with an idle delay of zero. At a count of seven, the scheduler

will send the refresh as the bank queue becomes empty. At a count of eight,

the refresh will be sent before any other commands, as soon as the DRAM bus

parameters allow.

8.5.2 Idle Delay Function Control

As the optimal characteristics of the idle delay function are workload-

dependent, a set of parameters is defined to configure the delay equation. These

are listed in Table 8.3. The Max Delay and Proportional Slope parameters are
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Table 8.3: Idle Delay Function Parameters

Parameter Units Description

Max Delay Memory
Clocks

Sets the delay in the
constant region

Proportional
Slope

Memory
Clocks

Postponed
Step

Sets slope of the
proportional region

High Priority
Pivot

Postponed
Step

Point where the idle
delay goes to zero

determined with the use of two hardware structures that profile the references. The

High Priority Pivot (the transition from Proportional to High Priority) is fixed at

seven postponed refreshes, as this was effective to prevent forcing High Priority

unnecessarily.

8.5.2.1 Max Delay Control

Analysis found that delays greater than some threshold were counter-

productive in exploiting the full dynamic range of the DRAM postponed refresh

capability. Through manual exploration of a range of delays, the average delay of all

idle periods was found to be an effective value across a range of workloads. As such,

a circuit was devised to estimate the average delay value. This is accomplished

without the logic complexity of a true integer divide circuit. The circuit maintains

a 20-bit accumulator and a 10-bit counter. As every idle interval ends, the counter

increments by one, while the number of idle cycles in the interval are added to
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the accumulator. The average is calculated every 210 = 1024 idle intervals with a

simple shift-left of 10 bits. If the accumulator overflows, a maximum average value

of 1024 is used.

8.5.2.2 Proportional Slope Control

The goal of the proportional region is to dynamically center the distribution

of refresh operations in the postponed spectrum. This is accomplished by tracking

the relative frequency of refresh operations across a postponed pivot point. This

postponed point is the target average refresh execution point. A postponed count

threshold of four was used in this system, reflecting the midpoint of the deferral

range.

The hardware structure to implement this function is shown in Figure 8.4.

The structure maintains two counters containing the frequency of operations that

fall on the low and high sides of the pivot threshold. When either of the counters

overflow, all related counters (the Low and High counters of Figure 8.4(a), in this

case) are divided in half by right-shifting each register by one. The scheme operates

over profiling intervals, which are followed by adjustments at the end of each

interval. At each adjustment interval, the logic subtracts the values of the High

and Low counters. The value is applied to a Proportional Integral (PI) (shown in

Figure 8.4(b)) control circuit to update the Proportional Slope parameter for the

subsequent interval. Not shown in Figure 8.4 is the reset of the High and Low

counters after each adjustment interval.

For this analysis, the following parameters were used, which were deter-
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(b) Proportional Slope control circuit

Figure 8.4: Proportional Slope Control Circuit

mined to be effective through simulation analysis. The High, Low, and Integral

counters are 16 bits in width. A relatively short adjustment interval of 128k memory

clocks is used, since the profiling structure has a fairly small amount of state and

stabilizes quickly. The Proportional Slope value is a 7-bit register, which represents

the slope of the proportional region (units of decrease in delay cycles per postponed

step). The w(p) and w(i) weighting functions of the PI controller use simple power-

of-two division accomplished by truncating the value to largest 5-bit value (shifting

off up to 11 leading zeros).
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8.5.3 Cache Read Miss Prediction

The accuracy with which refresh operations are scheduled to avoid mem-

ory read operations can be enhanced with the usage of history-based prediction

structures. A predictor can be used to detect situations where the probability of a

request to a given rank is low. This prediction can be used to adjust the idle count

to a lower value, biasing a refresh to that rank.

A per-core history based-approach was found to be effective. For each CPU

on the CMP, a history is maintained for each of the memory ranks accessed on the

previous N cache misses. These history vectors are used to index a prediction array.

Each entry in the prediction array contains a relative count amongst the memory

ranks, which is used to predict the least likely rank to be accessed next by a given

core. A history vector per CPU was utilized to capture the behavior of an executing

thread. If each CPU executed multiple threads concurrently, a history vector for

each thread within the CPU is suggested.

8.5.3.1 Prediction Structure

The primary structures and logical flow of the predictor are shown in Fig-

ure 8.5(a): the History Vector, Predictor Array, and the surrounding combinatorial

logic. Figure 8.5(b) shows the contents of each entry of the Predictor Array.

Prediction of the next rank to be accessed is based on the “path” of rank accesses

leading up to an access. For each path, the history of which rank was accessed next

is stored in a predictor array. This predictor array is indexed with the history vector.
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Figure 8.5: Rank Access Prediction
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8.5.3.2 Next Rank Probability

Logically, the predictor maintains a Next Rank access count for each

inbound path. Considering each History Vector value as a node in a Markov model,

the probability of each outbound link is estimated using the recent history of prior

traversals. To model this behavior, a counter for each outbound link (Next Rank Cnt

in Figure 8.5(b)) is utilized. Whenever a new request is seen, the Next Rank Cnt for

the rank of the new request is updated in the node referenced by the current History

Vector. As the width of the Next Rank counters drive the storage requirements

of the predictor, the design uses counters as small as possible. With these small

counters, the rollover behavior of each counter is critical to the design. Elastic

Refresh employs the following mechanism: as any counter generates a carry (i.e.,

would typically wrap back to zero), all counters are divided by 2 (shift-right by 1).

To select the rank with the lowest probability, the combinatorial block “Find Lowest

Count” in Figure 8.5(a) determines the lowest counter value (in a tie, an arbitrary

rank is chosen).

8.5.3.3 Predictor Capacity

The width of the History Vector has a direct effect on the size of the predictor

array. This size equates to,

Number Ranks∗Next Rank Cnt Width∗2History Length∗log2(Number Ranks)

A predictor table with a modest history of four requests would require a 28

= 256 entry table. With 4-bit next-rank counters (representing the four ranks in the

baseline system), each entry is 16 bits in size, giving a total of 4096 bits of storage.
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Figure 8.6: Idle Delay Function Enhanced With Explicit Prediction

Section 8.6.2 contains details on the accuracy of the predictor relative to various

geometries.

8.5.3.4 Predictor Result Integration into Rank Idle Delays

This mechanism integrates the next rank predictor by decreasing the

required idle delay for ranks which are not expected to be accessed next. The

idle delay function modification is shown in Figure 8.6. This is estimated

through two criteria. First, the rank with the lowest transition probability is

selected. Secondly, the transition probability must be below a threshold which was

determined experimentally.

8.5.4 Elastic Refresh Queue Overhead

Table 8.4 shows a summary of all the components of the Elastic Refresh

scheduler. The overhead of the Elastic Refresh Queue can be divided into the basic

static control mechanism (FD) and the additional hardware to dynamically tune
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Table 8.4: Refresh Scheduling Mechanisms

Name Description Dynamic Control

Fixed Delay
Sets the maximum delay
value of the Idle Delay

Function

Detection of average delay
of workload

Proportional
Delay

Idle Delay which scales
based on number of
deferred refresh

operations

Adjust with PI based
control of Figure 8.4 to

exploit full deferral
capability

Predictive Delay History-based next rank
prediction Prediction confidence

the parameters (DD). For the FD system, each memory rank requires a 10 bit idle

counter. In addition, the max delay, proportional slope, and high priority pivot

parameters require 10, 7, and 3 bit registers. In total this overhead is negligible (an

8 rank memory control would gain 100 register bits). The hardware to dynamically

adjust the Max Delay parameter requires the addition of a 20 bit wide, 10 bit input

accumulator and a 10 bit counter. The Proportional Slope logic consist of two 16 bit

High/Low counters, a 16 bit Integral accumulator, and a 7 bit two input accumulator

for the Proportional Slope term generation. All of these components are negligible

compared to the size of a typical memory controller which would contain this logic.

8.6 Evaluation
8.6.1 Simulation Configuration

To evaluate the proposed Elastic Refresh policies, the GEMS toolset [39]

built on top of the Simics [38] functional simulator was utilized. GEMS provides
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a cycle-based out-of-order processor model. This was enhanced with a detailed

memory subsystem. GEMS was configured to simulate from 1 to 8 aggressive

out-of-order cores. The memory subsystem model uses a directory-based MOESI

cache coherence protocol and a detailed memory controller. The GEMS default

memory controller was augmented to simulate a First-Ready, First-Come-First-

Served (FR FCFS) [51] memory controller that supports two separate baseline

refresh policies: a) Demand Refresh (DR) and b) Defer Until Empty (DUE) (see

Section 8.2) along with the proposed Elastic Refresh policies. Table 8.5 includes

the basic system parameters.

For the memory refresh parameters, a configuration representing what tRFC

could be in the 16Gbit DRAM time-frame was evaluated. The exact value of tRFC

is difficult to narrow down due to the irregularities between DDR3 values for 4

GBit and 8 GBit devices (described in Section 5.3.2). Based on this, a value of

550ns for tRFC was selected. For tREFI, the 95◦C interval of 3.9µs was utilized,

as this reflects usage in dense server environments, where CMP systems and large

memory configurations are common [16, 43].

The SPEC CPU2006 benchmark suite [12] was compiled to the SPARC ISA

with full optimizations (peak flags). To estimate representative average behavior,

for each experiment eight segments of 100M instructions were simulated, selected

evenly along the whole execution of the benchmark. To do so, each benchmark

was fast-forwarded to the beginning of each segment; the next 100M instructions

were used to warm up the last-level cache and memory controller structures; and

finally the following 100M instructions were used to evaluate the Elastic Refresh
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Table 8.5: Core and memory-subsystem parameters used for cycle-accurate
simulations

CPU
Frequency Pipeline Branch Predictor

4 GHz 30 stages / 4-wide
fetch / decode

Direct YAGS /
indirect 256 entries

L1 Data & Inst.
Cache L2 Cache Memory Bandwidth

Memory

64 KB, 2-way
associative, 3 cycles

access time, 64 Bytes
block size, LRU

8 MB, 8 ways
associative, 12 cycles

bank access, 64
Bytes block size,

LRU

21.33 GB/s

DRAM Controller
Organization

Controller Queue
Sizes

8GB DDR3-1333
8-8-8

2 Memory
Controllers
2 Ranks per
Controller

8 DRAM chips per
Rank

32 Read Queue & 32
Write Queue Entries

policies. The performance of each experiment is estimated based on the average

behavior along the eight 100M instructions segments. In simulations involving

multiple cores, each processor’s instruction count can drift, though this effect is

extremely small in the homogeneous SPEC Rate benchmarks. In any case, the total

IPC across all cores was measured in the interval in which core 0 executed 100M

instructions.

8.6.2 Cache Read Miss Rank Predictor

The predictor structure outlined in Section 8.5.3 was evaluated across a

range of possible configurations to determine the ideal geometry. The cache miss
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Figure 8.7: Prediction rate for a range of history vector sizes.

reference stream produced through single core executions of the SPEC CPU 2006

benchmark suite was used. This stand-alone evaluation enabled targeted evaluation

of the predictor accuracy across many configuration options. For this analysis a

four-rank system was simulated. The prediction accuracy is defined as the fraction

of time when the actual next rank requested is different than the predicted rank. As

such, prediction results are best compared against the 75% result achieved with a

random guess. With this analysis a reasonable predictor structure was found, which

was then integrated into the refresh scheduler used in the detailed simulations. The

following parameters were explored in the analysis:

1. History Vector Length: Simulations for History Vector lengths of the previous

eight, six, four, and two requests were run. The prediction accuracy is shown

in Figure 8.7. In general, this shows that longer histories are beneficial, but

this must be balanced with the reality that each additional history bit grows the

predictor array by a factor of two.
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Figure 8.8: Prediction rate for a range of predictor entry counter sizes.

2. Next Rank Probability Counter: Simulations for the Next Rank counter sizes

of 8, 4, 3, and 2 bits were also run. The results are shown in Figure 8.8. These

results show relatively gradual degradation across the range of sizes.

3. Predictor Array Size Vs. Accuracy: To cover the range of predictor options,

all the combinations of History Vector and Next Rank Counter sizes listed above

were simulated. Figure 8.9 contains a plot of the average accuracy for the integer

and floating point benchmark suites, sorted with respect to the overall number

of bits contained in the prediction array. A number of sizes that would be

prohibitive to implement in hardware were included, in order to gage the limits

of the overall scheme. Note that the “Bits” data series increases beyond the

scale of the plot. Based on this analysis a predictor with a History Vector of four

request, and 4-bit Next Rank counters was selected for the detailed analysis. This

represents a 4k bit structure, which is reasonable given the potential performance

improvements.
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Figure 8.9: Prediction rate for a range of history vector sizes.

8.6.3 Performance of Refresh Mitigation Policies

The net performance benefit of the Elastic Refresh scheme are analyzed in

this section. All results are relative to the best known algorithm DUE. Single core

SPEC Speed [12] results are shown in Figure 8.10; four core SPEC Rate [12] results

in Figure 8.11; and eight core SPEC Rate results in Figure 8.12. In general, the most

significant throughput gains are observed on workloads that exhibit high levels of

memory traffic. Interestingly, these workloads include the classic high memory

bandwidth workloads libquantum and bwaves, but also include more moderate

bandwidth workloads that exhibit low MLP, such as omnetpp and xalancbmk. This

indicates that the refresh problem is more tied to latency penalties rather than simply

bandwidth overhead.

8.6.3.1 Fixed Delay Results

For the Fixed Delay runs static values were selected for each of the

parameters that seemed to be effective for most workloads (an exhaustive search
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Figure 8.10: IPC improvement of proposed refresh policy techniques over baseline
refresh policy on 1 core
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Figure 8.11: Relative IPC improvement of proposed refresh policy techniques over
baseline refresh policy on 4 cores
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Figure 8.12: Relative IPC improvement of proposed refresh policy techniques over
baseline refresh policy on 8 cores

would be prohibitive, considering the number of simulation cycles required). These

values were a Constant region value of 400 memory clocks and a Proportional Slope

value of 40 memory clocks per deferral. On average, performance improvements of

Integer (5.9%, 4.1%, 3.7%) and Floating-Point (6.5%, 2.8%, 1.6%) across one, four,

and eight CPUs were observed. These improvements are quite significant given the

very simple mechanism and extremely low logic required. That said, as the delay

intervals present in high bandwidth workloads (more pervasive as the core count

is increased) are inherently shorter, a a static setting simply cannot work across all

cases. Note the most effective static settings favored lower bandwidth workloads as

the improvements were larger in these cases. This biased the selection of the static

parameters for the single core runs.
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8.6.3.2 Dynamic Delay Results

The Dynamic Delay results show greater gains across the different work-

loads and system sizes with improvements of Integer (9.8%, 10.3%, 11.2%) and

Floating-Point (10.2%, 7.0%, 7.9%) across one, four, and eight CPUs simulations.

As expected, the improvements for high bandwidth single core workloads such

as libquatum, bwaves, and milc are significant with Dynamic Delay. The

improvement using dynamic parameters is very significant in the 8 core simulations,

increasing the meager 3% fixed delay to a 9% gain. These results are particularly

impressive considering the trivial logic area overhead of the mechanisms.

8.6.3.3 Prediction Results

The inclusion of the Explicit Miss predictor was most significant for a subset

of the single core Speed [12] benchmark runs. The most notable improvements

were seen on libquantum, astar, bwaves, milc, soplex, GemsFDTD, and lbm

benchmarks. The largest improvement of these workloads was 16% observed on

libquantum, with an average improvement across the suite of (12%,10%,10%) for

one, four, and eight CPUs. The improvements were generally found on the memory

intensive benchmarks, with the notable exceptions of mcf and omnetpp. To help in

understanding the access patterns of these workloads, plots of the memory accesses

over time were created. In this analysis, very irregular references for these two

workloads were found. Tracing this back to the source code, the traversal of large

tree like structures in mcf was found to be the culprit. In omnetpp the source of

the irregular access was the usage of a priority heap, where timestamps of events
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are stored and sorted as part of the event simulation (omnetpp is a network event

simulation).

Initially, any throughput increases were not expected with usage of the Read

Miss prediction circuit for multi-core environments. Intuition predicts that the

superposition of the prediction for which rank each core will not visit next will

result in no ranks that are not expected to have a reference. While this was true for

most of the workloads, there were a handful of exceptions. One notable exception

is the libquantum benchmark, a ∼13% throughput increase is observed for multi-

core rates runs. In this workload, the program consumes a large (32 MB) vector

sequentially. As such, the next rank prediction is ∼100% correct. The interesting

behavior observed in the simulations is that the copies “sync” up in the traversal

of memory. That is, all the CPUs to be generating cache misses to the same ranks

in unison. This synchronization was due to the refresh commands themselves, as

all of the CPUs would be stalled waiting for read data behind a refresh operation.

When the refresh of the rank completed, all CPUs would be in the same location

of the repeated rank traversal order. As all the CPUs maintain the same long lived

traversal order, they would stay in sync, thus enabling an accurate prediction of

which rank to refresh.

8.6.4 Summary

This work has shown that Elastic Refresh mechanisms are effective in

mitigating much of the increasing penalty of DRAM refresh, providing a ∼10%

average performance improvement across the SPEC CPU suite on one, four, and
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eight core simulations. These gains were achieved using very low overhead

mechanisms, that are easily incorporated into existing memory schedulers, and are

effective on commodity JEDEC DDRx SDRAM memory devices.

The relatively large gains compared to the very small logic overhead

highlight the importance of the memory interface in multi-core designs, and

particularly “background” operations such as memory refresh. As memory

technologies become more complex, operations beyond typical reads and writes

will become more important. These future memories include both future DDRx

memories (and more complex 3D packagings), but also non-DRAM memories such

as PCM, RRAM, and STT-RAM.
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Chapter 9

Conclusions

As many-core based computer systems demand higher performance mem-

ory systems, operational complexity is introduced. As this operational complexity

is rooted in the fundamental behavior of DRAM devices, mechanisms to mitigate

these complexities is of high importance. This work presents a set of low overhead

system enhancement that are able to substantially improve memory performance in

light of these system behaviors. In many senses, this work focuses on non-critical

operations such that critical reads can be executed with lower latency.

9.1 Summary

This work describes three contributions towards mitigating DDRx DRAM

complexities for many threaded systems. While the target of this research is

standard DDRx SDRAM, the concepts can be extended into other memory devices

and coordinated policies in general.

The concept of Minimalist Open-page policy is introduced. This counter-

intuitive policy policy challenges the traditional viewpoint that page-mode should

be exploited as much as possible [35]. The reduction in page-mode prevents

row-buffer induced starvation identified by Moscibroda et. al [45], without more
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complex priority schemes. This enables the priority schemes to serve other

optimizations.

The Virtual Write Queue demonstrates cross unit optimizations within the

now integrated components of CMP systems. The work targets efficient operations

of writes through more optimal burst of write operations. This largely mitigates

the effectively longer write to read device turn around penalty of higher frequency

DDRx DRAM. In addition, page mode writes are made possible in shared writeback

caches. These page mode writes increase utilization while decreasing energy

consumption. These improvements are realized with very little hardware overhead.

This work also identifies the rapidly growing penalty of refresh in DRAM

memory as device density increases. Elastic refresh scheduling is introduced, which

greatly reduces the penalty of these refresh operations. As research in memory

refresh scheduling is limited, this work represents a first step in attempting to scale

DRAM to even higher densities.

9.2 Future Work

While the combined contributions of this work make significant steps in

increased memory performance, several opportunities for future work exist. These

are organized specific enhancements for each of the three major contribution areas,

followed by more general future research directions.
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9.2.1 Enhancements to the VWQ

Several design details of the Virtual Write Queue could potentially be

extended. Specifically, a simple threshold based on VWQ fullness was used

to switch to high priority writes. While this worked well for SPEC CPU

2006, other workloads could potentially benefit from more sophisticated write

priority mechanisms. Along similar lines, the page mode harvester executed a

simple search of the three adjacent potential page mode hits. A mechanism that

abandoned searching for workloads without any hits could save directory power

and bandwidth. Conversely, searches beyond three lines are possible. Note, the

group of four hashing of the minimalist policy does not prevent greater searches,

as the harvest logic can skip over the lower order bank bits. For long streams this

could be effective.

Beyond these policy enhancements, future work could be address scaling

the design beyond the single chip, shared cache evaluated in this work. Work could

also investigate more complex cache hierarchies.

9.2.2 Refresh Enhancements

While the Basic Elastic policies provide very good gains for very low

area overheads, the more complex prediction methods are less effective. More

sophisticated prediction may be possible, which could enable greater gains. In

addition, the work focuses primarily on low to medium bandwidth workloads.

Mechanisms targeting higher bandwidth workloads are possible. In addition, work

investigating the limits of density based around refresh penalties could be useful.
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At these limits, changes to the basic mechanism may be more palatable.

9.2.3 Future Memory Devices

As memory beyond DDR3 is released, new bottlenecks are inevitable.

Evaluation of the DDR4 standard should be an area of focus. Interestingly, this

work would suggest smaller DRAM row-buffers should be utilized. The power

saving from a future DRAM device with this attribute would be a useful extension

of this work.

In addition to DDRx memory, other memory technologies such as Phase-

change memory (PCM) are becoming more highly studied. An extension of

this work directed towards non-DDRx SDRAM memory could provide important

insights.
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