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Abstract—Deep Neural Networks (DNN) are crucial compo-
nents of machine learning in the big data era. Significant effort
has been put into the hardware acceleration of convolution and
fully-connected layers of neural networks, while not too much
attention has been put on the Softmax layer. Softmax is used in
terminal classification layers in networks like ResNet, and is also
used in intermediate layers in networks like the Transformer. As
the speed for other DNN layers keeps improving, efficient and
flexible designs for Softmax are required. With the existence of
several ways to implement Softmax in hardware, we evaluate
various softmax hardware designs and the trade-offs between
them. In order to make the design space exploration more
efficient, we also develop a parameterized generator which can
produce softmax designs by varying multiple aspects of a base
architecture. The aspects or knobs are parallelism, accuracy,
storage and precision. The goal of the generator is to enable
evaluation of tradeoffs between area, delay, power and accuracy
in the architecture of a softmax unit. We simulate and synthesize
the generated designs and present results comparing them with
the existing state-of-the-art. Our exploration reveals that the
design with parallelism of 16 can provide the best area-delay
product among designs with parallelism ranging from 1 to 32.
It is also observed that look-up table based approximate LOG
and EXP units can be used to yield almost the same accuracy as
the full LOG and EXP units, while providing area and energy
benefits. Additionally, providing local registers for intermediate
values is seen to provide energy savings.

Index Terms—Softmax, DNN, Machine LearningDesign Space
Exploration

I. INTRODUCTION

Deep Neural Networks (DNN) have become one of the most

important technologies for machine learning. There has been

a rapid development of hardware for accelerating inference or

training process of DNNs. While most architectures focus on

speeding up the convolution and fully-connected layers, there

are only a few researchers who have proposed optimizations in

hardware for softmax layer, which serves as a key component

in DNNs. Therefore, more research is required to explore

efficient architectures for softmax.

Softmax is usually used for multi-category classification as

the last layer in neural networks like ResNet or MobileNet.

It is also used as an activation layer in intermediate layers

in some networks, for example in Transformer and Capsule

network.

The major challenge of the softmax hardware is to im-

plement efficient exponential units and division units. The

naive implementation is not very hardware friendly because

it easily causes overflow, requires large amounts of storage,

and includes divider and exponential units which are gen-

erally costly. Some researchers have proposed architectures

for softmax [6] [4] [8] [5] [12]. However, most of these

designs can only support a fixed number of inputs and the

hardware required increases proportional to the number of

inputs, and they generally support only one precision. Hence,

these designs are not flexible. The focus of many prior designs

is on providing efficient implementations of the exponent unit,

e.g. LUT based [6] or FSM based [5]. Geng et al. [4] uses

bit-shifts for division. The design in [12] is not pipelined. Li et

al. [8] uses FIFOs to store all input values increasing the area

significantly. Not all designs support fixed point and floating

point data types, limiting their application to either training or

inference.

Although existing designs may perform well with one

particular accuracy or parallelism in one scenario, the per-

formance may not remain when architects want to tune the

design. Additionally, tuning the existing hardware design may

be time-consuming and requires lots of extra work. There are

several limitations in the existing softmax hardware designs:

• The support for different parallelism values is poor, which

makes the performance of their designs not scale well

with increasing input data sizes.

• They do not support various precisions which limits their

design to machine learning training or inference.

• Designs may consume large area while the trade-offs

between area and accuracy is not clear.

There exist signification trade-offs in the aspects mentioned

above. Different DNNs have different number of inputs for the

softmax layer. Different accelerators have different budgets for

area and delay of softmax layer. Different applications have

different tolerance for classification accuracy. A one-size-fits-

all softmax architecture can not satisfy all the requirements in

a space with such diversity. Adhoc methods of exploration

can leave out efficient architectures leading to inefficient

accelerators. So, we believe a tunable generator that can

generate multiple designs with different architectures can be

very valuable to perform design space exploration. To the best

of our knowledge, no such tool exists in the open source

community. Our contributions in this paper are summarized



   

Fig. 1: (a) Naive softmax architecture (as shown in [4] (on the left) (b) softmax architecture proposed in [13] with the required

EXP units (on the right)

as follows:

• We propose a base architecture that is amenable to ad-

justment based on various parameters such as parallelism,

accuracy and precision. This architecture can support any

number of input values and can work for the forward pass

of softmax for both inference and training.

• We develope a generator called SoftGen that generates

softmax designs. The generator is a software to generate

softmax verilog code. This generator is controlled by

various knobs - parallelism, accuracy, storage, precision

- that can take multiple values. Based on the values of

the knob, the generator dumps a design and a testbench.

• We perform design space exploration using our developed

generator and proposed base architecture. We evaluate the

various generated softmax designs and discuss the trade-

offs between area, delay, power and accuracy.

Our design space exploration reveals observations from

three aspects. For the parallelism ranging from 1 to 32,

the energy-delay product of the design decreases with the

increasing parallelism until the parallelism reaches 16. It is

also observed that the approximate LUT-based LOG and EXP

units yield almost the same accuracy but are more energy and

area efficient compared to the full accurate implementations.

Additionally, local registers used to store the intermediate

results can reduce the number of memory accesses, therefore,

provide energy savings, however, extra area overhead is re-

quired.
The rest of paper is organized as follows: Section II gives

the backgound information of the softmax hardware design.

In Section III, we describe the details of the base architecture

used by our generator. Section IV introduces how we automate

the designs generation and tools used for evaluation.V presents

the various exploration experiments we conducted along with

the results observed from these experiments. Section VI con-

cludes this paper and points out the future work.

II. BACKGROUND

The formula to calculate the M-th neuron in a softmax layer

is described as below:

P(Mth category) =
eXM

∑N
L=1 eXL

(1)

where XL is the output of the L-th neuron and N is

the number of categories. The most straightforward way to

implement it is shown in Figure 1(a). However, several prob-

lems exist in such a design: first of all, this kind of design

requires significant amount of storage to store the exponential

results because the number of classification outputs can be

in thousands or millions. Secondly, such a design includes

expensive division units. Normal division unit can consume

large area and requires significant amounts of time to execute

which increases the power consumption and cause difficulties

to the further pipeline the design. Thirdly, it cannot leverage

the parallelism existing in softmax calculation, therefore, it

performs poorly when the number of inputs increases.

Researchers have tried several approaches to tackle the

above problems, Kouretas et al. [6] uses LUT to approximate

the exponential calculation. Hu et al. [5] leverage the stochastic

computing to conduct the softmax execution.

Yuan [13] introduced an efficient hardware architecture for

softmax layer as shown in Figure 1(b). Equation 1 is adapted

into a more hardware friendly form:

P(Mth category) = e(XM−Xmax)−ln(∑N
L=1 e(XL−Xmax)) (2)

This avoids large silicon area consumption and accuracy

loss caused by division units, and down-scaling technique is

applied to exponential units to overcome the potential overflow

problem. However, several problems remain. For DNNs with

large number categories, this design will require large number

of exponential units, which is not realistic. Additionally, the

architecture modifies the meaning of outputs; it generates the

magnitude of each classification rather than the probability

(the last exponential stage is missing). Lastly, no quantitative

evaluation of the design is provided in the paper.

Du et al. [3] optimized Yuan’s architecture [13] to process

the data serially so that it can perform classification of infinite

categories. But the total cycles to accomplish the softmax

operation increases exponentially with the number of input

values. FIFOs are utilized to store intermediate data. The

depth of these FIFOs increases proportionally to the input size

indicating a large area requirement. The authors take advantage

of the distribution of inputs in softmax layers to avoid some

calculations for input values that are out of range, but that

does not work in all cases, e.g. training.

We create our base architecture based on Yuan’s design due

to its scalability and pipelining features.
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Fig. 2: Baseline Architecture used for design exploration. Softmax generator allows knobs: PA: Parallelism, PR: Precision,

AC: Accuracy, ST: Storage. The diagram shows the hardware with PA=4. The value of ST controls the presence of buffer and

dotted path.

III. ARCHITECTURE

Our baseline architecture allows the generator Softgen to

create various designs based on the knobs. This architecture

is shown in Fig. 2. The architecture is logically divided into

3 stages and physically divided into 7 blocks:

• Stage 1: This stage includes block 1 (max). It finds the

largest value from all the input values. Xmax
• Stage 2: This stage includes blocks 2, 3, 4.

– Block 2 (subtraction) finds the difference between each

input value and the max value. XL −Xmax
– Block 3 (exponent) generates the exponential of the

results from Block 2. e(XL−Xmax)

– Block 4 (adder tree) adds all the exponential values up.

∑N
L=1 e(XL−Xmax)

• Stage 3: This stage includes blocks 5, 6, 7.

– Block 5 (log) calculates the natural logarithm of the

result from Block 4. ln(∑N
L=1 e(XL−Xmax)). Let’s call this

XLOG.

– Block 6 is composed of two sets of subtractors (called

presub and logsub) to calculate XM −Xmax −XLOG
– Block 7 calculates the final result. eXM−Xmax−XLOG

Stage 2 can only be triggered once the max value is found

by Stage 1. Stage 3 can be triggered only when Stage 2 is

finished (i.e. the Adder tree has finished adding all values).

The timeline for a design generated by SoftGen can be seen

in Fig. 3. Within each stage, operations are pipelined to reduce

the latency significantly. In other words, blocks within a stage

start before the previous block is finished (e.g. ADD in stage

2 starts before SUB in stage 2 is finished). There are latches

after each block in the design. Some blocks like the adder tree,

max block, exponential unit are pipelined internally as well.

Note that the number of inputs for softmax operation can

be different than the amount of parallelism in the design. For

example, a design could have a parallelism of 4 (4 values read

and processed together in the design, 4 subtractors in block 2,

4 exponential units in block 3, etc.), but still process a tensor

logsublllogs bbub
presubMAX SUB

EXP
ADD

g
EXP

Stage 1 Stage 2 Stage 3log

0 16 19 32 37 39 5653

Fig. 3: Timeline for the architecture (Parallelism=4, Number

of input values=64, Storage=mem)

with, say, 512 input values. In these cases, the control unit

orchestrates the data movement such that all 512 values are

processed in groups, with 4 values entering the design at a

time.

The following sections provide details of how the designs

of various blocks in the architecture are modified to enable

the knobs of the generator:

A. Max block (block 1) and Adder tree (block 4)

The Parallelism and Precision knobs affect the architecture

of the Max block. Based on the precision, floating point or

fixed point comparators are instantiated in this block. In a

fully serial implementation, the Max block only requires 1

comparator. For Parallelism >= 2, the generated Max block

is composed of a comparator tree. The number of levels of

comparators in the Max block = log2(N)+1, where N is the

value of the Parallelism knob. The +1 is required to handle

the cases where the number of inputs values is larger than

the parallelism of the design. For the Parallelism=4 and input

values=512 case mentioned above, the max value from 4 input

values is stored in a buffer and is compared with the max

value from the next 4 values by this additional comparator.

The comparator tree is pipelined. Based on the delays of the

various blocks in the library we used [10] (more details can

be found in section IV) we add pipeline registers after every 3

comparator levels. The Adder tree is similar to the comparator

tree, except that we add pipeline registers in this tree after

every adder.



B. Subtractors (block 2 and block 6)

The value of the Parallelism knob governs the number of

subtractors needed in these blocks. The type of the subtractors

(floating point or fixed point) depends on the value of the

Precision knob. Block 6 is divided into two parts: logsub and

presub. For each input, the value XL −Xmax is calculated by

block 2 and is required again by block 6 logsub (to calculate

XM −Xmax −XLOG). In [3], the authors save the temporary

values XL −Xmax in FIFOs in the design. In our architecture,

we add additional subtractors (block 6 presub) to calculate the

difference again. This saves significant area (for FIFOs), but

adds 1 cycle of latency and requires additional subtractor(s).

C. Exponential units (block 3 and block 7)

There are multiple ways for designing hardware to compute

exponent [14][4][12][5][8][3]. In our generator, we provide

the Accuracy knob to choose between two implementations

of the exponential unit. The first one is the exponential unit

provided by the DesignWare library ([10]). We provide a

second reduced-area, low-accuracy option that uses LUT-based

Piecewise Linear Function (PLF) approach from [4]. The

architecture utilizing PLF technique for 16-bit floating point

EXP unit is shown in Fig. 4. A user may also choose a fixed-

point data format using the Precision knob. For that, LUT-

based fixed-point EXP units have been implemented as well

that follow a similar architecture with LUTs storing fixed point

values and excludes the fixed to floating point converter.

Floating point 
to Fixed Point 

Converter

Input x LUT-PLF with 
depth = 6416

m my a x

a x6

16

a
16
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Fig. 4: Architecture of the float16 EXP unit used by the

generator

PLF is generally used to approximate non-linear functions

with a small number of linear pieces [2]. PLF technique ap-

proximates the computation of ex by using the linear equation

in N continuous intervals uniformly defined over a finite range

of x ∈ [x1
m,x

N
p ], with each interval having a slope an.

f n(x) = an × (x− xn
m)+ yn

m = an × x+(yn
m −an × xn

m) (3)

where x ∈ [xn
m,x

n
p], yn

m = exn
m , n ∈ [1,N]

Following the implementation in [3], input data in the range

of [-8, 0] is considered as valid and data less than -8 is mapped

to the last entry in the Look up Table (LUT-PLF). There are

two reasons for this. 1) Values input to EXP unit will always

be either zero or negative because the maximum input value

is subtracted from each input in block 2. 2) Since e0/e−8 ≈
2980.958 and e−8 = 0.000335, it is deemed safe to ignore this

small value.

For the 16-bit floating point exponential unit, the LUT-PLF

is built to store the 16-bit floating point value of the slope an

and the pre-computed (yn
m − an × xn

1) for 64 equally divided

intervals in the data range of [-8, 0]. An input x is converted

from floating point to fixed point format that is used to select

the PLF-LUT entry closest to x. That is further followed by

a multiplication (an ×x) and an addition to compute f n(x) as

per equation 3.

D. Natural logarithm unit (block 5)

There are multiple ways for designing hardware to compute

natural log [12][3][11]. For the natural logarithm (LOG) unit,

we provide the Accuracy knob to choose between two imple-

mentations from our generator. The first one is the LOG unit

provided by the DesignWare library ([10]). We also provide

a second reduced-area, low-accuracy option that follows the

ICISLog algorithm mentioned in [11]. For the 16-bit floating

point LOG unit, we use a modified LUT-based architecture

of the ICISLog algorithm implementation in [1]. A user may

also choose a fixed-point data format using the Precision knob.

For that, fixed-point LOG units have been implemented as well

that follow a similar architecture with LUTs storing fixed point

values and includes a floating to fixed point converter. Since

real valued logarithm is only defined for positive numbers, a

positive floating point number can be represented as:

val = 2exp × (1.mantissa)

Using the multiplicative property of the logarithm function,

we get:

ln(val) = ln(2)× exp+ ln(1.mantissa) (4)

Sign Exponent Mantissa
LUT-EXP with 

depth =32

LUT-MANT 
with depth = 64

5

6

16

16

16

ln(1.mantissa)

exp  ln(2)

Fig. 5: Architecture of the float16 LOG unit used by the

generator

In Fig. 5 we provide the block diagram of the LOG unit

based on Eq. 4. All the exponent bits and the first 6 mantissa

bits are used to select the ln(2)×exp and ln(1.mantissa) 16-bit

floating point values from look up tables LUT-EXP and LUT-

MANT respectively. The outputs from the look up tables are

added to obtain the final output ln(x).

E. Comparison with existing architectures

Table I compares various attributes of our architecture with

existing designs. Our architecture overcomes many limitations

that are present in other architectures and through the gener-

ator, we provide exploration of various attributes to allow a

DNN hardware architect to make informed decisions within

the constraints of an application.

IV. EXPERIMENTAL METHODOLOGY

In this section, we discuss the tools we used to conduct

the experiment. The flow to conduct the experiment can be

summarized in the following steps:



Feature Ours [3] [13] [6] [4] [12] [5] [8]

Support for any number of input values Y Y N N Y N N Y

Hardware increases proportional to input size G N Y Y N Y Y N

Needs costly/accurate division unit N N N N N N N Y

Uses LOG based modified softmax formula Y Y Y N N Y Y N

Uses LUT based EXP or LOG units G Y Y Y Y N Y Y

Uses internal storage to store input values for reuse G Y N N Y N N Y

Supports fixed and floating point values G N N N N Y N N

Is completely serial and hence has high latency G Y N N Y N N Y

Is completely parallel and hence has high area G N Y Y N N Y N

Redoes subtraction instead of storing temp results Y N N N N N N N

Down scaling for EXP (”max - val”) Y Y Y Y N Y N N

Adder tree used for additions Y N Y N N Y N N

Uses stochastic computing methods N N N N N N Y N

Applicable to both training and inference Y N Y N N Y N N

TABLE I: Comparing the features of various softmax architectures (Y=Yes, N=No, G=Provided through generator for trade-off

analysis)

• prepare the blocks of basic arithmetic

• synthesize, simulate and verify the blocks

• use the generator SoftGen to generate softmax designs

• synthesize, simulate and verify the softmax models

The circuit designs of the first step are already mentioned

in III. We used Synopsys tools for synthesis. All synthesis is

performed under 45nm technology with FreePDK45 academic

library [9]. The area values in our results are post-synthesis

and pre-placement/pre-routing areas. We used CACTI [7] to

analyze the energy consumption of memory accesses. A single

port on-chip memory is assumed to contain the input values

required by softmax. Each memory location is wide enough to

store the input values required in one memory read, based on

the parallelism knob. We also assume that read/write latency

for read/write from the on-chip memory is 1 clock.

A. SoftGen
Figure 6 provides an overview of the flow and architecture

of the generator. The inputs to the generator are values of

various knobs that control different aspects of the softmax

architecture described in Section III. The outputs of the

generator are a set of Verilog design files including module

definitions of each block and the top-level module. The top-

level module puts all the blocks together, along with the

control logic. The generator also produces a simple testbench

that can be used to verify the sanity of the design. The

Makefile available with the generator dumps the design and

the testbench, compiles and simulates the code, and generates

a CSV file that lists the observed output values from the

softmax Verilog design, the expected output values from a

Python based CPU model and the difference between the two.
The generation is composed of two components: Verilog

templates and python scripts. The Verilog templates contains

the skeleton design and testbench corresponding to our archi-

tecture with various tags present in it at various locations to

Fig. 6: Flow and architecture of the softmax generator

customize the design. The Python scripts process the template,

replace the tags with Verilog code based on the knobs specified

when running the generator and dump Verilog files during the

process.

The Python scripts are organized hierarchically to make the

generator modular and easily changeable. There are separate

generator scripts for the adder tree and the max block. The

utility scripts generate inputs for the simulation, expected

outputs and the CSV containing the difference.

B. Design spaces of softmax

With the knob support of the SoftGen, we explore the

hardware implementation trade-offs of softmax in 4 different

aspects:

1) Parallelism: This knob controls the amount of paral-

lelism in the generated design. Currently, this knob can

take a value of any power of 2 (including 20=1). A value

of 1 implies a fully serial design. Such a design has



one compute unit in each block, and consumes the least

amount of area. But it takes the most amount of clock

cycles. As the value of this knob increases, the design’s

parallelism increases. That means more compute blocks

are added, increasing the area and power consumption.

As an example, a value of 4 will generate a design which

has more area but smaller latency. This knob is useful to

study the trade-off between area, power and delay.

2) Accuracy: This knob controls which EXP and LOG

implementations are used in the softmax design. All the

blocks in the design, except the EXP and LOG blocks,

have full accuracy. For EXP and LOG blocks, we support

choosing between a highly accurate implementation from

the Synopsys DesignWare [10] library, or a less accurate

implementation using LUTs (as described in the sections

III-C and III-D). The LUT based implementations are

more area efficient. This knob can be used to study the

trade-off between accuracy of results and the area of the

design.

3) Precision: This knob controls the precision (data type)

for all the compute units used by the design. We currently

support 4 data types: int8, int32, float16, float32. This

knob is driven by system requirements. For example, it

has been shown that for inference, int8 is sufficient, but

float16 is more optimal for training. This knob mainly

changes the compute blocks in the design. The control

logic remains the same. So, the area of the design and

the clock frequency is affected by this knob, but not the

latency in clock cycles.

4) Storage: As can be seen from the architecture described

in Section III, input values stored in the on-chip memory

are required 3 times during the softmax operation - for

calculating the max value, for calculating difference of

inputs from the max value and for finally calculating the

probabilities. These values can either be read from the

on-chip memory whenever required (consuming SRAM

access delay and energy every time), or they could be read

once from the on-chip memory and stored in registers

internal to the softmax unit (consuming area and static

power) and used directly. This knob is used to select

between these two choices (NOREG or REG), to study

the trade-off between delay, area, energy and power.

Internal storage is used by the design in [3].

C. Implementation of the baseline design

We chose the design from Du et al. [3] as our baseline

since their design gives the best implementation of [13] to

our knowledge. However, we can not directly compare our

designs with the results their papers because they use a

different technology node (65 nm) and a different design

library. We instead use their architecture and our design blocks

and library to estimate various metrics for their design. An

approximation of the baseline design can be generated by

our generator with the settings: Parallelism=1, Accuracy=LUT,

Precision=fixed32, Storage=REG, except for one main differ-

ence. The authors of [3] take advantage of the distribution of

inputs in softmax layers to avoid some calculations for input

values that are out of range, but that limits their circuit’s use

for training. Instead we support the full range of input values.

V. RESULTS AND DISCUSSION

In this section, we discuss the observations from the ex-

periments when we sweep the configurations of parallelism,

accuracy and storage in the first three subsections. We also

compared our generated designs with the state-of-the-art ar-

chitecture and the discussion is in the last subsection.

A. Exploration with the Parallelism knob

For this experiment, we varied the values of the Paral-

lelism knob across 1,2,4,8,16,32. The other knobs were kept

fixed (Accuracy=LUT, Storage=mem, Precision=float16). The

number of input values used in this experiment was fixed

at 1024. The normalized post-synthesis area and the number

of cycles consumed by each generated design are plotted in

Figure 7. Also plotted is the area-delay product. As expected,

with increasing parallelism, the number of cycles reduces,

but the area increases. We see the area delay product value

reduces and then starts to increase, implying the design with

Parallelism=16 is the best. However, designs with Parallelism

values of 8, 16 have very similar values of area-delay product

and hence are good choices. For larger values of Parallelism,

the power consumption of the design can also be expected to

increase, because more compute units are working in parallel.
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Fig. 7: Trade-off between area and number of cycles with

varying values of the Parallelism knob (1024 input values,

Accuracy=LUT, Storage=mem, Precision=float16))

B. Exploration with the Accuracy knob

To see the effect of the Accuracy knob, we generated two

designs - one with LUT based implementations of EXP and

LOG blocks, and another with DesignWare [10] implemen-

tations of these blocks. Other knobs were kept fixed (Par-

allelism=4, Storage=NOREG, Precision=float16). We chose

various ranges of inputs and generated random values in those

ranges and fed them to the two designs. We then compared

the results against the results obtained from a simple Python

based CPU model. Table II shows the comparison. LUT

based implementations are less accurate, but this is generally

acceptable for DNNs.



Range Max error
with DW

Max error
with LUT

Avg error
with DW

Avg error
with LUT

-0.1 to 0.1 8.80E-06 5.04E-05 7.21E-06 3.55E-05

-1 to 1 2.40E-06 2.90E-04 5.31E-07 8.38E-05

-10 to 5 5.70E-06 4.31E-03 3.11E-07 1.69E-03

5 to 10 1.22E-03 1.23E-03 2.45E-04 4.93E-04

-8 to -4 5.70E-06 7.60E-04 6.69E-07 2.29E-04

-8 to 8 3.77E-03 4.65E-03 2.45E-04 2.05E-03

TABLE II: Accuracy evaluation for DesignWare and LUT-based im-
plementations (512 input values, Parallelism = 8, Storage=NOREG,
Precision=float16) LUT based implementations are less accurate but
generally still acceptable for DNNs

Table III shows the variation of area and delay of the whole

softmax design with these two Accuracy options. We can

see from the first two rows of the table that the LUT based

design has a smaller area, but delay is higher with the design

using DesignWare blocks because the DesignWare blocks are

not pipelined (our LUT based EXP unit has a pipeline stage

in it) and so the design could only run at a reduced clock

frequency. Since they are available as IP blocks, we could

not modify them. We also synthesized the design using LUTs

at the max frequency at which the design using DesignWare

could be synthesized. The area reduced significantly with this

optimization and the power reduced as well.

Design Cycles Delay
(us)

Power
(mW )

Energy
(nJ)

Area
(um2)

Design with
LUT, max freq
(294MHz)

201 0.67 10.19 6.82 279711

Design with
DW, max freq
(250MHz)

199 0.79 8.38 6.67 283300

Design with
LUT, iso freq
(250MHz)

201 0.80 6.87 5.52 220178

TABLE III: Trade-off between various metrics with different values
of the Accuracy knob (512 input values, Parallelism = 8, Stor-
age=NOREG, Precision=float16). Power/Energy numbers are from
Synopsys Design Vision.

C. Exploration with the Storage knob

There are two values of the Storage knob - NOREG and

REG - as described in Section IV. For this experiment, we

fix the Parallelism knob to 4, Accuracy knob to LUT and

Precision knob to float16. We vary the number of inputs from

32 to 1024, and generate two designs for each case - one that

re-reads inputs from on-chip memory whenever required and

another that stores the input values in registers after reading

them once. The resulting chart is shown in Figure 8. Registers

cause the area of the design to increase significantly with

increasing number of input values. But for the design with on-

chip memory re-reads, the area does not change as we increase

number of input values. We calculated energy consumed by

the additional registers in the design with Storage=REG and

the energy consumed by additional on-chip memory re-reads

in the design with Storage=NOREG. The energy consumed

for re-reading inputs from on-chip memory is higher than the

energy consumed for reading/writing to/from internal storage

registers. Since the on-chip memory re-read latency can be

hidden behind other operations, the delay for the design with

on-chip memory re-reads is not different from the delay for the

design with registers. For the design with registers, the number

of registers required to store inputs is equal to the number of

input values, and so the design becomes less flexible. So, there

is a tradeoff between area, energy and flexibility.

Fig. 8: Area and energy evaluation with different values of the

Storage knob with various number of input values (Parallelism

= 4, Accuracy=LUT, Precision=float16)

D. Comparison with the state-of-the-art
Table IV compares various metrics of the design from [3]

with some variations of the designs generated by our generator.

The ”Add. energy” column refers to the additional energy con-

sumed because of internal storage registers in the designs with

Storage=REG, and the additional energy consumed because of

memory re-reads in the designs with Storage=NOREG. We can

see that a design with Parallelism=1, Storage=NOREG (second

row in the table) is much more area efficient, but consumes

more energy. Changing Parallelism=2 and Storage=NOREG

(fourth row) results in a faster design, but with more area

consumption.

Design Area
(mm2)

Cycles Add. en-
ergy (pJ)

Design in [3] 0.807 1542 830.24

Design with PA=1, ST=NOREG 0.059 1542 4351.48

Design with PA=2, ST=REG 0.828 775 830.24

Design with PA=2, ST=NOREG 0.085 775 4351.48

Design with PA=4, ST=REG 0.835 392 830.24

Design with PA=4, ST=NOREG 0.138 392 4351.48

TABLE IV: Comparing various metrics for some designs generated
by the generator with the design in [3]. PA=Parallelism, ST=Storage,
PR=Precision, AC=Accuracy. All designs were synthesized for a
clock frequency of 250 MHz, processed 512 input values, have the
same precision (fixed32) and have the same accuracy (LUT).

One of the important issues mentioned in [3] is that in

their design, as the number of input values increases, the total



  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048 4096

Parallelism = 1 
Stage 1 Stage 2 Stage 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048 4096

Parallelism = 4
Stage 1 Stage 2 Stage 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048 4096

Parallelism = 8
Stage 1 Stage 2 Stage 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048 4096

Parallelism = 16
Stage 1 Stage 2 Stage 3

Fig. 9: Cycle consumption in each stage of the generated design with various values of the Parallelism knob (x-axis: number

of input values, y-axis: percentage of cycles consumed) Stages defined in Section III-E.

computing time increases exponentially, and the time taken by

the Max block dominates the total computing time because

of the poor scalability of sorting logic in the Max block.

Figure 9 shows the results from a similar study we conducted

using various designs generated by our generator. In this

case, the other knobs were Storage=NOREG, Accuracy=LUT,

Precision=float32. We can see that these designs are easily

pipelineable to handle multiple data sets during Training since

we can keep each stage busy at the same time. For larger

input sizes, the designs are very balanced. We spend almost

equal time in each stage. For smaller input sizes, stage 2 does

consume relatively more time especially with high values of

Parallelism, but these scenarios are not very common.

VI. CONCLUSION

There are many tradeoffs in the design of softmax, the

multi-category classification layer in neural networks. In this

paper, we perform design tradeoff evaluation of softmax using

SoftGen, an open-source tool1 that we created that generates

softmax designs by controlling the values of parallelism,

accuracy, precision and storage. The architecture used by our

generator eliminates the shortcomings in existing designs such

as limited parallelism, limited precision options, etc. We show

the results of trade-off analysis using these knobs in the paper.

In terms of parallelism, it is found that the architecture with

parallelism of 16 can provide the best area-delay product

among all the parallelism ranging from 1 to 32. It is also

observed that LUT-based EXP and LOG units can help to

make the design more energy and area efficient with almost

the same accuracy. Additionally, providing local registers to

store the intermediate results are seen to yield energy savings.

This work can be extended in many ways. Currently, we

only support input sizes that are a power-of-2 (including

20 = 1). We plan to add support for other knobs and other

values of the existing knobs. While variations of LOG and

EXP units, and bfloat16 or other precision settings can be

added to the framework, this paper presents several important

insights on softmax designs and demonstrates a methodology

for parameterizable design generation and design space explo-

ration of softmax.

1The tool is available at https://github.com/georgewzg95/softmax
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