
 1

FOUR GENERATIONS OF SPEC CPU BENCHMARKS:

WHAT HAS CHANGED AND WHAT HAS NOT

Aashish Phansalkar♣, Ajay Joshi♣, Lieven Eeckhout♠, and Lizy John♣

♣The University of Texas at Austin ♠Ghent University, Belgium

 Abstract

Standard Performance Evaluation Corporation (SPEC) CPU benchmark suite which was first released in 1989

as a collection of 10 computation-intensive benchmark programs (average size of 2.5 billion dynamic instructions per

program), is now in its fourth generation and has grown to 26 programs (average size of 230 billion dynamic

instructions per program). In order to keep pace with the architectural enhancements, technological advancements,

software improvements, and emerging workloads, new programs were added, programs susceptible to compiler

attacks were retired, program run times were increased, and memory activity of programs was increased in every

generation of the benchmark suite. The objective of this paper is to understand how the inherent characteristics of

SPEC benchmark programs have evolved over the last 1.5 decades – which aspects have changed and which have not.

We measured and analyzed a collection of microarchitecture-independent metrics related to the instruction mix, data

locality, branch predictability, and parallelism to understand the changes in generic workload characteristics with the

evolution of benchmark suites. Surprisingly, we find that other than a dramatic increase in the dynamic instruction

count and increasingly poor temporal data locality, the inherent program characteristics have pretty much remained

unchanged. We also observe that SPEC CPU2000 benchmark suite is more diverse than its ancestors, but still has a

over 50% redundancy in programs. Based on our key findings and learnings from this study: (i) we make

recommendations to SPEC that will be useful in selecting programs for future benchmark suites, (ii) speculate about

the trend of future SPEC CPU benchmark workloads, and (iii) provide a scientific methodology for selecting

representative workloads should the cost of simulating the entire benchmark be prohibitively high.

1. Introduction

The Standard Performance Evaluation Corporation (SPEC), since its formation in 1988, has served a long way

in developing and distributing technically credible, portable, real-world application-based benchmarks for computer

 2

designers, architects, and consumers. While often criticized for inadequacies and vulnerabilities[10][13], SPEC has

strived to create credible and objective benchmarks. In order to keep pace with the architectural enhancements,

technological advancements, software improvements, and emerging workloads, new programs were added, programs

susceptible to compiler attacks were retired, program run times were increased, and memory activity of programs was

increased in every generation of the benchmark suite. The initial CPU benchmark suite which was first released in

1989 as a collection 10 computation-intensive benchmark programs (average size of 2.5 billion dynamic instruction

per program), is now in its fourth generation and has grown to 26 programs (average size of 230 billion dynamic

instructions per program).

Designing, understanding, and validating benchmarks is as serious an issue as designing the computers

themselves. In order to reach good computer designs in shorter time, it is important to have benchmarks that cover the

program space well. It is desired that these benchmarks are uniformly distributed over the program space (rather than

clustered in specific areas). Ofcourse, it is best to have fewer benchmarks in the suite if they meet the requirement of

covering the program space.

As the SPEC benchmarks evolved through years, some aspects of the benchmarks have changed, and some

aspects have not. The static instruction count of the programs in their binaries has not significantly grown from SPEC

CPU89 to SPEC CPU2000. Have the basic program control flow aspects really changed as the benchmark suites have

evolved? There was a conscious effort to increase run-times and to avoid getting contained in the growing data caches;

what is the impact when the static count has not changed? How diverse are the different programs in the different

suites? Do the 26 programs in SPEC CPU2000 model a more vast region of program space compared to what the 10

programs from SPEC89 suite did? Some programs appear in multiple suites. How did these program evolve between

suites? Four generations of CPU benchmarks and 1.5 decades since the release of the first suite, our objective in this

paper is to understand the trends in the evolution of the SPEC benchmarks and their implications.

Computer architects and computer performance analysts have some insight into the changes in the benchmark

suites during the last 15 years, however, no past research has tried to study all the suites with a common perspective.

Most of the insights from the past are from what performance analysts and designers might have done on specific

microarchitectural components. The instruction set architecture (ISA) and compilers might have been different and the

results might have been closely tied to specific microarchitectural elements in the evaluation. We perform this study

using a collection of microarchitecture-independent metrics related to the instruction mix, data locality, branch

 3

predictability, and instruction level parallelism (ILP), to characterize the generic behavior of the benchmark programs.

The same compiler is used to compile the four suites. The data is analyzed to understand the changes in workload

characteristics with the evolution of benchmark suites, the workload space that is covered by each generation of the

benchmark suites, and the redundancy in each benchmark suite. The contributions of this work are multifold:

understand current benchmarks, provide useful insight for selecting programs for the next generation of benchmarks,

and help in interpreting micro-architecture level performance measurements

This paper is organized as follows. We first detail our methodology in section 2 after which we present our

results in section 3. Section 4 then discusses the implications of these results in detail. We present related work in

section 5 and finally conclude in section 6.

2. Methodology

This section presents our methodology: the microarchitecture-independent metrics, the statistical data analysis

techniques, the tools, and the benchmarks that are used in this paper.

2.1 Metrics

In this research work we selected microarchitecture-independent metrics to characterize the behavior of the

instruction and data stream of every benchmark program. Microarchitecture-independent metrics allow for a

comparison between programs by understanding the inherent characteristics of a program isolated from features of

particular microarchitectural components. As such, we use a gamut of microarchitecture-independent metrics which

we feel affect overall program performance. We provide an intuitive reasoning to illustrate how the measured metrics

can affect the manifested performance. The metrics measured in this study are a subset of all the microarchitecture-

independent characteristics that can be potentially measured, but we believe that they cover a wide enough range of the

program characteristics to make a meaningful comparison between the programs.

We have identified the following microarchitecture-independent metrics:

Instruction Mix: Instruction mix of a program measures the relative frequency of various operations performed by a

program. We measured the percentage of computation, data memory accesses (load and store), and branch instructions

in the dynamic instruction stream of a program. This information can be used to understand the control flow of the

program and/or to calculate the ratio of computation to memory accesses which gives us an idea of whether the

program is computation bound or memory bound.

 4

Basic Block Size: A basic block is a section of code with one entry and one exit point. We measure the basic block

size which quantifies the average number of instructions between two consecutive branches in the dynamic instruction

stream of the program. Programs with a larger basic block size will take a relatively smaller performance hit due to

branch misprediction rate, as compared to programs with smaller basic block sizes.

Branch Direction: Backward branches are typically more likely to be taken than forward branches. This metric

computes the percentage of forward branches out of the total branch instructions in the dynamic instruction stream of

the program. Obviously, hundred minus this percentage is the percentage of backward branches.

Taken Branches: We measured the number of taken branches as a fraction of the total number of branches in the

dynamic instruction stream.

Forward-taken Branches: We also measure the fraction of taken forward branches in the dynamic instruction stream.

Dependency Distance: We use a distribution of the dependency distances in a program as a measure of the inherent

ILP in the program. Dependency distance is defined as the total number of instructions in the dynamic instruction

stream between the production (a write) and the consumption (a read) of a register instance [3][22]. While techniques

such as value prediction reduce the impact of these dependencies on ILP, information on the dependency distance is

very useful in understanding ILP inherent to a program. The dependency distance is classified into six categories:

percentage of total dependencies that have a distance of 1, and the percentage of total dependencies that have a

distance of up to 2, 4, 8, 16, 32, and greater than 32. Programs that have a higher percentage of true dependencies

greater than 32 are likely to exhibit a higher ILP than a program that has a higher percentage of true dependencies with

a dependency distance less than 32 (provided control flow is not the limiting factor).

Data Temporal Locality: Temporal locality of a program’s data stream is a measure of how soon recently accessed

data items tend to be accessed in the near future. Several locality metrics have been proposed in the past

[4][5][11][18][21][30][31], however, many of them are computation and memory intensive. We picked the average

memory reuse distance metric from [31] since it is more computationally feasible than other metrics. In this metric,

locality is evaluated by counting the number of memory accesses between two accesses to the same address, for every

unique address in the program. The evaluation is performed in restricted window sizes analogous to cache block sizes.

The data temporal locality (tlocality) metric is defined as the weighted (based on the number of times each unique data

address is accessed) average memory reuse distance. The tlocality metric is calculated for window sizes of 16, 64, 256

and 4096.

 5

Data Spatial Locality: Cache memories exploit spatial locality through the use of cache lines. In order to measure

spatial locality we computed the above mentioned tlocality metric, or the weighted average memory reuse distance, for

four different window sizes: 16, 64, 256, and 4096. Spatial locality information is characterized by the difference

between the tlocality metric for the various line sizes. The choice of the window sizes is based on the experiments

conducted by Lafage et. al.[31]. Their experimental results showed that the above set of window sizes was sufficient to

characterize the locality of the data reference stream with respect to a wide range of data cache configurations.

2.2 Statistical Data Analysis

Obviously, the amount of data in the analysis is huge. There are many variables (18 microarchitecture-

independent characteristics) and many cases (60 benchmarks). It is humanly impossible to simultaneously look at all

the data and draw meaningful conclusions from them. We thus use multivariate statistical data analysis techniques,

namely Principal Component Analysis and Cluster Analysis, to compare and discriminate programs based on the

measured characteristics, and understand the distribution of programs in the workload space. Cluster Analysis is used

to group n cases in an experiment (benchmark programs) based on the measurements of the p principal components.

The goal is to cluster programs that have the same intrinsic program characteristics.

Principal Components Analysis: Principal components analysis (PCA) [6] is a classic multivariate statistical data

analysis technique that is used to reduce the dimensionality of the data set while retaining most of the original

information. It builds on the assumption that many variables (in our case, microarchitecture-independent program

characteristics) are correlated. PCA computes new variables, called principal components, which are linear

combinations of the original variables, such that all the principal components are uncorrelated. PCA transforms p

variables X1, X2,...., Xp into p principal components Z1,Z2,…,Zp such that:

 This transformation has the property Var [Z1] > Var [Z2] >…> Var [Zp] which means that 1Z contains the most

information and Zp the least. Given this property of decreasing variance of the principal components, we can remove

the components with the lower values of variance from the analysis. This reduces the dimensionality of the data set

while controlling the amount of information that is lost. In other words, we retain q principal components (q << p) that

explain at least 80% to 90 % of the total information; in this paper q varies between 2 and 4. By examining the most

 6

important principal components, which are linear combinations of the original program characteristics, meaningful

interpretations can be given to these principal components in terms of the original program characteristics.

Cluster Analysis: There exist two flavours of clustering techniques, linkage clustering and K-means clustering [1].

In linkage clustering, cases (or benchmarks) are grouped iteratively in a multi-dimensional space (the PCA space in

this paper) until all cases are in one single group (cluster). A dendrogram is used to graphically present the cluster

analysis by showing the linkage distance (Euclidean distance) between each of the clusters. The dendrogram is a tree

representation of the clusters; elements of a cluster and their merging can be visualized in this representation. The

distance from a node to the leaves indicates the distance between the merging clusters. Based on the results of the

dendrogram it is up to the user to decide how many clusters to consider. K-means clustering on the other hand, tries to

group all cases into exactly K clusters. Obviously, not all values for K fit the data set well. As such, we will explore

various values of K in order to find the optimal clustering for the given data set.

2.3 Tools

Compilers: The programs from the four SPEC CPU benchmark suites were compiled on a Compaq Alpha AXP-2116

processor using the Compaq/DEC C, C++, and the FORTRAN compiler. The programs were statically built under

OSF/1 V5.6 operating system using full compiler optimization.

SCOPE: The various workload characteristics were measured using a custom-grown analyzer called SCOPE. SCOPE

was created by modifying the sim-safe functional simulator from the SimpleScalar 3.0 [29] tool set. SCOPE analyzes

the dynamic instruction stream and generates statistics related to instruction mix, data locality, branch predictability,

basic-block size, ILP etc. Essentially, the front-end of sim-safe is interfaced with home-grown analyzers to obtain

various locality and parallelism metrics. We also used ATOM to measure the static instruction count of the benchmark

programs.

Statistical data analysis: We use STATISTICA version 6.1 for performing PCA as well as for linkage clustering.

For K-means clustering, we use the SimPoint software [32].

2.4 Benchmarks

The different benchmark programs and their dynamic instruction counts are shown in Tables 1-4. Due to the

differences in libraries, data type definitions, pointer size conventions, and known compilation issues on 64-bit

 7

Table 1: SPEC CPU 89. Table 2: SPEC CPU 92.

Program Input INT/FP Dynamic
Instrn Count

espresso bca.in INT 0.5 billion
li li-input.lsp INT 7 billion

eqntott * INT *
gcc * INT *

spice2g6 * FP *
doduc doducin FP 1.03 billion
fpppp natoms FP 1.17 billion

matrix300 - FP 1.9 billion
nasa7 - FP 6.2 billion

tomcatv - FP 1 billion

 Table 3: SPEC CPU 95. Table 4: SPEC CPU 2000.

Program Input INT/FP Dynamic
Instrn Count

espresso bca.in INT 0.5 billion
li li-input.lsp INT 6.8 billion

eqntott * INT *
compress in INT 0.1 billion

sc * INT *
gcc * INT *

spice2g6 * FP *
doduc doducin FP 1.03 billion

mdljdp2 input.file FP 2.55 billion
mdljsp2 input.file FP 3.05 billion
wave5 - FP 3.53 billion

hydro2d hydro2d.in FP 44 billion
Swm256 swm256.in FP 10.2 billion

alvinn In_pats.txt FP 4.69 billion
ora params FP 4.72 billion
ear * FP *

su2cor su2cor.in FP 4.65 billion
fpppp natoms FP 116 billion
nasa7 - FP 6.23 billion

tomcatv - FP 0.9 billion

Program Input INT
/FP

Dynamic
Instrn Count

Gzip input.graphic INT 103.7 billion
vpr route INT 84.06 billion
gcc 166.i INT 46.9 billion
mcf inp.in INT 61.8 billion
crafty crafty.in INT 191.8 billion
parser INT 546.7 billion
eon chair.control.cook

chair.camera
chair.surfaces
chair.cook.ppm

INT 80.6 billion

perlbmk * INT *
vortex lendian1.raw INT 118.9 billion
gap ref.in INT 269.0 billion
bzip2 input.graphic INT 128.7 billion
twolf ref INT 346.4 billion
swim swim.in FP 225.8 billion
wupwise wupwise.in FP 349.6 billion
mgrid mgrid.in FP 419.1 billion
mesa mesa.in FP 141.86 billion
galgel gagel.in FP 409.3 billion
art C756hel.in FP 45.0 billion
equake inp.in FP 131.5 billion
ammp ammp.in FP 326.5 billion
lucas lucas2.in FP 142.4 billion
fma3d fma3d.in FP 268.3 billion
apsi apsi.in FP 347.9 billion
applu applu.in FP 223.8 billion
facerec * FP *
sixtrack * FP *

Program Input INT/FP Dynamic
Instrn Count

go null.in INT 18.2 billion
li *.lsp INT 75.6 billion
m88ksim ctl.in INT 520.4 billion
compress bigtest.in INT 69.3 billion
ijpeg penguin.ppm INT 41.4 billion
gcc expr.i INT 1.1 billion
perl perl.in INT 16.8 billion
vortex * INT *
wave5 wave5.in FP 30 billion
hydro2d hydro2d.in FP 44 billion
swim swim.in FP 30.1 billion
applu applu.in FP 43.7 billion
mgrid mgrid.in FP 56.4 billion
Turb3d turb3d.in FP 91.9
Su2cor su2cor.in FP 33 billion
fpppp natmos.in FP 116 billion
apsi apsi.in FP 28.9 billion
tomcatv tomcatv.in FP 26.3 billion

 8

machines, we were unable to compile some programs (mostly from old suites - SPEC CPU 89 and SPEC CPU 92).

The instruction counts of these programs are therefore missing from the tables.

3. Results

In this section, we present our results. Before presenting overall behavioral characteristics, we first focus on

particular benchmark characteristics: dynamic instruction count, branch characteristics, data stream locality and

instruction-level parallelism. The raw data is presented in Appendix A while the paper focuses on insights and

observations. The raw data shows that no single characteristic has changed as dramatically as the dynamic instruction

count.

3.1 Dynamic and static instruction count

Due to the increasing microprocessor performance, SPEC also has to increase the dynamic instruction count of

their CPU benchmark suites. The dynamic instruction count has grown 100 times on the average from SPEC CPU89

to SPEC CPU2000. This is to enable performance measurement during a sufficiently long time window. We observe

that although the average dynamic instruction count of the benchmark programs has increased by a factor of x100, the

static count has remained more or less constant. This suggests that the dynamic instruction count of the SPEC CPU

benchmark programs could have simply been scaled – more iterations through the same instructions. This could be a

plausible reason for the observation that instruction locality of programs has more or less remained the same across the

four generations of benchmark suites.

3.2 Branch characteristics

For studying the branch behavior we have included the following metrics: the percentage branches in the

dynamic instruction stream, the average basic block size, the percentage forward branches, the percentage taken

branches, and the percentage forward-taken branches. From PCA analysis, we retain 2 principal components

explaining 62% and 19% of the total variance, respectively. Figure 1 plots the various SPEC CPU benchmarks in this

PCA space. The integer benchmarks are observed to be much clustered. We also observe that the floating-point

benchmarks typically have a positive value along the first principal component (PC1), whereas the integer benchmarks

have a negative value along PC1. The reason is that floating-point benchmarks typically have fewer branches, and

thus have a larger basic block size; floating-point benchmarks also typically have a smaller percentage of forward

 9

branches, and fewer percentage forward-taken branches. In other words, floating-point benchmarks tend to spend most

of their time in loops. The two outliers in the top corner of this graph are SPEC2000’s mgrid and applu programs due

to their extremely large basic block sizes, 273 and 318, respectively. The two outliers on the right are SPEC92 and

SPEC95 swim due to its large percentage taken branches and small percentage forward branches.

We conclude from this graph that branch characteristics did not significantly change over the past 1.5 decades.

Indeed, all SPEC CPU suites overlap in this graph.

3.3 Data stream locality

For studying the temporal and spatial locality behavior of the data stream we used the locality metrics as

proposed by Lafage et. al. [31] for four different window sizes: 16, 64, 256, and 4096. Recall that the metrics by

themselves quantify temporal locality whereas the differences between them is a measure for spatial locality. Since

PCA is a linear transformation, PCA will be able to extract the spatial locality from the raw data. From the PCA

analyses of raw data, we concluded that several SPEC CPU2000 and CPU95 benchmark programs: bzip2, gzip, mcf,

vortex, vpr, gcc, crafty, applu, mgrid, wupwise, and apsi from CPU2000, and gcc, turbo3d, applu, and mgrid from

CPU95 exhibit a temporal locality that is significantly worse than the other benchmarks. Concerning spatial locality,

most of these benchmarks exhibit a spatial locality that is relatively higher than that of the remaining benchmarks, i.e.

increasing window sizes improves performance of these programs more than they do for the other benchmarks. The

only exceptions are gzip and bzip2 which exhibit poor spatial locality. Obviously, we expected temporal locality of the

data stream to get worse for newer generations of SPEC CPU given one of the objectives of SPEC which is to increase

the working set size along the data stream for subsequent SPEC CPU suite generations.

On the remaining benchmarks we perform PCA which yields us two principal components explaining 57.2%

and 38.6% of the total variance, respectively. The first principal component basically measures temporal locality, i.e. a

more positive value along PC1 indicates poorer temporal locality. The second principal component basically measures

spatial locality. Benchmarks with a high value along PC2 will thus benefit more from an increased line size.

Figure 2 plots the benchmarks in this PCA space. This graph shows that for these benchmarks, all SPEC CPU

generations overlap. This indicates that although SPEC’s objective is to worsen the data stream locality behavior of

subsequent CPU suites, several benchmarks in recent suites exhibit a locality behavior that is similar to older versions

 10

of SPEC CPU. Moreover, several CPU95 and CPU2000 benchmarks show a temporal locality behavior that is better

than most CPU89 and CPU92 benchmarks.

3.4 Instruction-level parallelism

In order to study the instruction-level parallelism (ILP) of the SPEC CPU suites we used the dependency

metrics as well as the basic block size. Both metrics are closely related to the intrinsic ILP available in an application.

Long dependency distances and large basic block sizes generally imply a high ILP. Basic block related and

dependency related limitations can be overcome by branch prediction and value prediction respectively. However, both

these metrics can be used to indicate the ILP or to motivate the use of better branch and value predictors. The first two

principal components explain 96% of the total variance. The PCA space is plotted in Figure 3. We observe that the

integer benchmarks typically have a high value along PC1 which indicates that these benchmarks have more short

dependencies. The floating-point benchmarks typically have larger dependency distances. We observe no real trend in

this graph. The intrinsic ILP did not change over the past 1.5 decades - except for the fact that several floating-point

SPEC89 and SPEC92 benchmarks (and no SPEC CPU95 or SPEC CPU2000 benchmarks) exhibit relatively short

dependencies compared to other floating-point benchmarks; these overlap with integer benchmarks in the range -0.1 <

PC1 < 0.6.

3.5 Overall characteristics

When considering all our metrics together in a single analysis, we retain four principal components explaining

82.8% of the total variance. The first principal component (47.6%) basically measures ILP, the second PC (14%)

measures temporal data stream locality, the third PC (11.2%) measures the memory intensiveness, and the fourth PC

(10%) quantifies branch behavior. We thus conclude that the larger variability among the SPEC CPU benchmarks is

due to (in decreasing order) ILP, temporal data stream locality, memory intensiveness, and branch behavior.

Figure 4 shows a projection of the PCA space on its first two principal components; Figure 5 does the same for

the third and fourth principal components. We can make several interesting observations from these graphs. First, we

observe several outliers in Figure 4, namely bzip2, gzip, mcf, wupise, apsi and turbo3d. This is due to poor temporal

locality in the data stream. Second, Figure 5 shows that there is more diversity in the floating-point benchmarks than

in the integer benchmarks. This was also apparent from the previous subsections when discussing the individual

metrics.

 11

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3
 PC1

 P
C

2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
 PC1

 P
C

2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

Figure 1: PCA space built up from the branch characteristics. Figure 2: Data stream locality for the SPEC

CPU benchmarks after excluding the SPEC95
and SPEC2000 benchmarks with poor locality.

-2

-1

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
 PC1

 P
C

2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

-6

-5

-4

-3

-2

-1

0

1

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
 PC1

 P
C

2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

Figure 3: Parallelism in SPEC CPU. Figure 4: The PCA space built by all the

 characteristics: PC1 Vs PC2.

 12

-2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5

2
2.5

-3 -2 -1 0 1 2 3 4

 PC3

 P
C

4

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

Figure 5: The PCA space built up by all the characteristics: PC3 versus PC4.

4. Discussion

This section discusses the implications of the results presented in the previous section.

4.1 Selecting representative benchmarks

The research done in the computer architecture community typically uses SPEC CPU benchmarks and

simulation [14]. An important consequence of this practice is that it is difficult to compare results published in 1999

using SPEC CPU95 versus results published in 2001 using SPEC CPU2000. The reason is that the benchmarks and

their inputs in the various suites change over time, as pointed out earlier in this paper. One solution is to better

understand how (dis)similar the various benchmarks are from different CPU suites. In order to detect cross CPU suite

(dis)similarity we perform a cluster analysis in the PCA space. We use K-means clustering using the SimPoint

software [29]. The SimPoint software identifies the best ‘K’ so that the clustering in K clusters fits the data well

according to the Bayesian Information Criterion (BIC). The BIC is a measure of the goodness of fit of a clustering to a

data set. Unlike SimPoint we do not use random projection before applying K-means clustering; we use the

transformed PCA space instead as the projected space. SimPoint identifies the best ‘K’ by trying a number of K’s and

selecting the minimal K for which the BIC is near optimal (within 90% of the best BIC). Using the SimPoint software,

we obtain 10 clusters as a good fit for the given data set.

These 10 clusters are shown in Table 5. The benchmarks in bold are the benchmarks closest to the centroid of the

cluster and can thus be considered the representatives for that cluster. An analysis of Table 5 gives us several

interesting insights. First, these results confirm our previous statement that the integer benchmarks show less diversity

over the various CPU suites than the floating point benchmarks. This is reflected here by the fact that nearly all integer

benchmarks reside in 5 of the 10 clusters; the floating point benchmarks reside in the remaining 6 clusters. There are

 13

two clusters containing the outliers, mcf and bzip2/gzip, respectively. All other integer benchmarks are in clusters 2

and 5, except for ijpeg which is in cluster 3. Second, this clustering in conjunction with the results from the previous

section can give us meaningful interpretations to observed (dis)similarities between the different CPU suites. There

are three clusters containing benchmarks with a poor temporal data stream locality, namely clusters 4 (mgrid and

applu), 6 (gzip and bzip2) and 8 (mcf). The integer cluster 2 differs from cluster 5 due to its relatively low percentage

memory operations. Concerning the floating-point clusters, cluster 1 seems to have the highest value along PC4

followed by cluster 7 and cluster 9. In other words, the benchmarks in cluster 1 generally have more taken branches

and less forward branches than the benchmarks from clusters 7 and 9. They thus spend most of their time in tight

loops without conditional branches inside the loop; the floating-point benchmarks in cluster 9 on the other hand, tend

to have more conditional branches inside loops. The two remaining floating-point clusters 3 and 10 also have more

conditional branches inside loops. The only difference however is that cluster 3 has a relatively lower percentage of

memory operations as compared to cluster 10.

4.2 Subsetting benchmark suites

Citron [2] presented a survey on the use of SPEC CPU2000 benchmarks by researchers in the computer

architecture community. He observed that some benchmarks are more popular than others. For the integer CPU2000

benchmarks, the list in decreasing order of popularity is: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2, crafty,

perlbmk, gap and eon. For the floating-point CPU2000 benchmarks, the list is art, equake, ammp, mesa, applu, swim,

lucas, apsi, mgrid, wupwise, galgel, sixtrack, facerec and fma3d. Table 5 suggests that these subsets might not be well

chosen for two reasons: (i) some parts of the workload space might be uncovered by the subset and (ii) there might be

significant redundancy within the subset. For example, subsetting CINT2000 using gzip, gcc, parser, vpr, mcf and

vortex will result in two uncovered clusters, namely 2 and 10 in Table 5; at the same time, this subset contains

significant redundancy since four benchmarks in the subset come from the same cluster. The results from Table 5

suggest that subsetting CINT2000 using twolf, gcc, gzip, mcf and eon would be better practice.

Another observation made by Citron is that several researchers dealing with data cache performance do not or

insufficiently consider floating-point benchmarks in their analyses. To address this issue we have computed a

representative clustering on the data stream locality metrics from section 3.4. The results are given in Table 6 and

suggest indeed that not using or only using a random subset of CPU2000 floating-point benchmarks might not be

representative for studying data stream behavior. Several clusters in this analysis do not contain CPU2000 integer

 14

benchmarks; as such, not using representatives from those clusters might lead to a distorted result when doing

memory hierarchy design optimizations. Similarly, only using CPU2000 floating-point benchmarks and no

CPU2000 integer benchmarks might also be unrepresentative.

4.3 Similarity of common benchmarks among different suites

Several benchmarks appear in various versions of the SPEC CPU suites. The results from the previous section

on cross CPU suite (dis)similarity will allow us to identify which benchmarks did change significantly over different

CPU suite generations and which did not. To further support this observation, we also provide a dendrogram as

obtained through linkage clustering. This is shown in Figure 6. In this dendrogram, benchmarks that are connected

through small linkage distances are similar, whereas benchmarks connected through large linkage distances are

dissimilar. The benchmarks that did not significantly change over time are nasa7 (89/92), swim (92/95), espresso

(89/92), li (89/92/95), gcc (95/2000), tomcatv (89/92/95), hydro2d (92/95), wave5 (92/95), doduc (89/92) and fpppp

(89/92/95). It is surprising to see gcc included in this list because it is known that gcc (2000) performs aggressive

inlining and other optimizations and is significantly different from gcc (95) [10]. In Table 6 which provides clustering

results for data memory access behavior, gcc2k is very uniquely positioned compared to gcc(95), however, in the

clustering based on overall characteristics, gcc does not exhibit significant changes. Since architectural changes

sometimes affect only one specific aspect of the program, it is important to use a clustering based on individual

features as opposed to overall characteristics. For a number of other benchmarks that did change significantly over

time we can point to behavioral differences, for example swim (the CPU2000 version has more conditional branches

inside loops than its ancestors), applu (the CPU2000 version has a significantly worse temporal locality in its data

stream than its ancestors), and compress (the CPU95 version has a higher branch taken rate and a smaller number of

forward branches than the CPU92 version.

4.4 Redundancy

As pointed out by previous research [7] [9], there is a lot of redundancy in benchmark suites. That is, benchmarks

might exhibit similar behavioral characteristics questioning the need to include all those redundant benchmarks in the

suite. Redundancy in benchmark suites is especially a problem for simulation purposes. Simulating benchmarks with

similar behavioral characteristics will add to the overall simulation time without providing any additional insight. The

purpose of this section is to quantify how redundancy has changed over the past 1.5 decades in SPEC CPU. To this

 15

end, we define the redundancy of a CPU suite as 1 – (number of similarity clusters / number of benchmarks in the

suite). As such, a benchmark suite with as much clusters as benchmarks, will have a redundancy of zero. A

benchmark suite on the other hand with several benchmarks in the same cluster will have a redundancy greater than

zero. Obviously, smaller is better. We use the clustering from Table 5 to calculate the redundancy of the various CPU

suites: 14.3% for CPU89, 53.3% for CPU92, 56.2% for CPU95 and 54.5% for CPU2000. We thus conclude that

CPU89 has the lowest redundancy and that from then on the redundancy remained more or less constant in subsequent

generations of SPEC CPU.

4.5 Should experimentation using older suites be condemned?

Often researchers and reviewers get upset with the use of benchmarks from SPEC CPU95 or older suites. It is

however interesting to observe that in the clustering based on overall characteristics (Table 5) and data memory access

characteristics (Table 6), several programs from the older suites appear clustered with newer programs. While vendors

should use newest suites for the SPECmark numbers, an occasional use of an older, shorter benchmark by a researcher

to reduce simulation time with complex cycle-accurate simulators is not that sinful, especially if the relative position of

the used benchmark in the benchmark space is known. We hope that data in Tables 5 and 6 will be very useful to the

research community for such analysis.

 16

linkage distance

2k_mcf
2k_gzip

2k_bzip2
2k_mgrid
2k_applu
92_alvinn

89_matrix300
95_mgrid
95_swim

92_swm256
2k_galgel
92_nasa7
89_nasa7

2k_gcc
2k_crafty

95_perl
2k_parser

95_gcc
95_go

92_compress
2k_vortex

95_li
92_li
89_li

95_applu
95_tomcatv

95_wave5
92_su2cor
95_su2cor
95_hydro
92_hydro

95_apsi
92_wave5
2k_fma3d

2k_equake
2k_art

92_tomcatv
89_tomcatv

2k_mesa
2k_vpr

2k_eon
2k_ammp
92_fpppp
95_fpppp
89_fpppp
2k_swim
2k_apsi

95_turb3d
2k_wupwise

92_ora
92_doduc
89_doduc
2k_lucas

92_mdljsp2
92_mdljdp2

95_ijpeg
95_compress

2k_twolf
92_espresso
89_espresso

0 2 4 6 8 10

Figure 6: Dendrogram obtained through complete linkage clustering in the PCA space.

4.6 Speculations about future SPEC CPU suites

We believe that the results from this paper are also useful for the designers of future computer systems.

Indeed, designing a new microprocessor is extremely time-consuming taking up to seven years [26]. As a result of

that, a future computer system will be designed using yesterday’s benchmarks. This might lead to a suboptimal design

if the designers do not anticipate future program characteristics. The results from this paper suggest that the temporal

locality of future benchmarks will continue to get worse.

 17

cluster 1 nasa7 (89) cluster 6 gzip (2000)
 matrix300 (89) bzip2 (2000)
 alvinn (92)
 swm256 (92) cluster 7 tomcatv (89)
 nasa7 (92) wave5 (92)
 swim (95) tomcatv (92)
 mgrid (95) su2cor (92)
 galgel (2000) hydro2d (92)
 tomcatv (95)
cluster 2 espresso (89) su2cor (95)
 espresso (92) hydro2d (95)
 compress (95) applu (95)
 twolf (2000) apsi (95)
 wave5 (95)
cluster 3 mdljsp2 (92) equake (2000)
 mdljdp2 (92) fma3d (2000)
 ijpeg (95) art (2000)
 lucas (2000)
 cluster 8 mcf (2000)
cluster 4 mgrid (2000)
 applu (2000) cluster 9 doduc (89)
 doduc (92)
cluster 5 li (89) ora (92)
 li (92) turbo3d (95)
 compress (92) apsi (2000)
 go (95) swim (2000)
 li (95) wupwise (2000)
 perl (95) ammp (2000)
 gcc (95)
 crafty (2000) cluster 10 fpppp (89)
 gcc (2000) fpppp (92)
 parser (2000) fpppp (95)
 vortex (2000) eon (2000)
 vpr (2000) mesa (2000)

Table 5: Clustering the SPEC CPU benchmarks using the overall characteristics.

 18

Indeed, from our detailed analysis of the temporal data stream locality we observed that several CPU95 and CPU2000

benchmarks exhibit poor temporal locality compared to CPU89 and CPU92. As such, we anticipate that this will

continue to be the fact in future benchmarks and we thus recommend computer designers to design well performing

memory subsystems in future microprocessors to deal with the increasingly poor temporal locality of computer

applications.

cluster 1 bzip2 (2000) cluster 11 doduc (89)
 fpppp (89)
cluster 2 gcc (2000) doduc (92)
 mdljdp2 (92)
cluster 3 gzip (2000) wave5 (92)
 ora (92)
cluster 4 mcf (2000) mdljsp2 (92)
 swm256 (92)
cluster 5 wupwise (2000) su2cor (92)
 hydro2d (92)
cluster 6 applu (2000) nasa7 (92)
 vortex (2000) fpppp (92)
 vpr (2000) tomcatv (95)
 mgrid (2000) swim (95)
 su2cor (95)
cluster 7 mgrid (95) hydro2d (95)
 applu (95) apsi (95)
 crafty (2000) fpppp (95)
 wave5 (95)
cluster 8 li (89) eon (2000)
 li (92) galgel (2000)
 li (95) lucas (2000)
 ijpeg (95) swim (2000)
 compress (95)
 go (95) cluster 12 espresso (89)
 ammp (2000) alvinn (92)
 espresso (92)
cluster 9 turb3d (95) perl (95)
 apsi (2000) equake (2000)
 art (2000)
cluster 10 nasa7 (89)
 matrix300 (89) cluster 13 parser (2000)
 tomcatv (89) twolf (2000)
 tomcatv (92) gcc (95)
 fma3d (2000) compress (92)
 mesa (2000)

Table 6: Clustering the SPEC CPU benchmarks based on data stream locality metrics.

 19

4.7 Recommendations to SPEC

We believe that the results from this paper suggest several recommendations to SPEC for the design of future

CPU suites. In general, the static instruction count of any commerical software application binary tends to increase

with every generation as the software application evolves with increase in new features and functionality. However,

we observe that the static instruction count in SPEC CPU benchmark binaries has not significantly increased during

the last four generations. We therefore recommend that SPEC should select programs with higher static instruction

count in binaries when designing next generation of benchmark suites. Another important recommendation we make

to SPEC is to reduce the redundancy in the CPU suites. According to the results of the previous section, around 50%

of the most recent CPU suites were redundant. This suggests that SPEC can build an equally well representative

benchmark suite with 50% less benchmarks. We believe that the methodology as used in this paper could be used by

SPEC in its search for representative, non-redundant next generation CPU benchmark suites. Another

recommendation we make to SPEC is to broaden the scope of applications. Our results indicate that SPEC was

successful in this respect when designing CPU2000; the CPU2000 benchmarks reside in all 10 clusters from Table 5,

whereas previous CPU suites only resided in 6 or 7 clusters.

5. Related Work

Weicker [25] used characteristics such as statement distribution in programs, distribution of operand data

types, and distribution of operations, to study the behavior of several stone age benchmarks. Saveedra et al. [24]

characterized Fortran applications in terms of number of various fundamental operations, and predicted their execution

time. They also develop a metric for program similarity that makes it possible to classify benchmarks with respect to a

large set of characteristics. Source code level characterization has not gained popularity due to the difficulty in

standardizing and comparing the characteristics across various programming languages. Moreover, nowadays,

programmers rely on compilers to perform even basic optimizations, and hence source code level comparison may be

unfair.

The majority of ongoing work in studying benchmark characteristics involves measuring microarchitecture

level metrics such as cycles per instruction, cache miss rate, branch prediction rate etc. on various microarchitecture

configurations that offer a different mixture of bottlenecks [12][15][16][17][27]. The variation in the

microarchitecture metrics is then used to infer the generic program behavior. These inferred program characteristics,

 20

although seemingly microarchitecture-independent, may be biased by the idiosyncrasies of a particular configuration,

and therefore may not be generally applicable.

Past attempts to understand benchmark redundancy used microarchitecture dependent metrics such as

execution time or SPECmark. Vandierendonck et. al. [7] analyzed the SPEC CPU2000 benchmark suite peak results

on 340 different machines representing eight architectures, and used PCA to identify the redundancy in the benchmark

suite. Dujmovic and Dujmovic [9] developed a quantitative approach to evaluate benchmark suites. They used the

execution time of a program on several machines and used this to calculate metrics that measure the size,

completeness, and redundancy of the benchmark space. The shortcoming of these two approaches is that the inferences

are based on the measured performance metrics due the interaction of program and machine behavior, and not due to

the generic characteristics of the benchmarks. Ranking programs based on microarchitecture dependent metrics can be

misleading for future designs because a benchmark might have looked redundant in the analysis merely because all

existing architectures did equally well (or worse) on them, and not because that benchmark was uninteresting. The

relatively lower rank of gcc in [7] and its better position in this work (Tables 5 and 6) is an example of such

differences that become apparent only with microarchitecture-independent studies.

There has been some research on microarchitecture-independent locality and ILP metrics. For example,

locality models researched in the past include working set models, least recently used stack models, independent

reference models, temporal density functions, spatial density functions, memory reuse distance, locality space etc.

[4][5][11][18][21][30][31]. Generic measures of parallelism were used by Noonburg et. al. [3] and Dubey et. al. [22]

based on a profile of dependency distances in a program. Sherwood et. al. [32] proposed basic block distribution

analysis for finding program phases which are representative of the entire program. Microarchitecture-independent

metrics such as true computations versus address computations and overhead memory accesses versus true memory

accesses have been proposed by several researchers [8][19]. This paper can benefit from more microarchitecture-

independent metrics, but we believe that the metrics we have used cover a wide enough range of the program

characteristics to make a meaningful comparison between the programs.

6. Conclusion

With the objective of understanding the SPEC CPU benchmarks since the inception of SPEC, we characterized

18 different microarchitecture-independent features of 60 SPEC CPU programs from SPEC89 to SPEC2000 suites.

Analyzing the executables generated by compiling these programs on state of the art compilers with full optimization

 21

levels, we put the programs into a common perspective and examined the trends. Instruction mix, control flow, data

locality, and parallelism characteristics were studied. No single characteristic has changed as dramatically as the

dynamic instruction count. We observe that the dynamic instruction count of the programs has grown 100X on an

average, and this trend will continue to meet the increasing processor performance. Surprisingly, the static instruction

count in the binary has remained more or less constant and we feel that there should be an effort to increase it in the

future generation of benchmark suites. Our analysis shows that the branch and ILP characteristics have not changed

much over the last 1.5 decades, but the temporal data locality of programs has become increasingly poor, and we

expect that the trend will continue. Although the diversity of newer generations of SPEC CPU benchmarks has

increased, about half of the programs in SPEC CPU 2000 are redundant. While researchers in the past have picked

subsets of suites based on convenience, we have presented results of clustering analysis based on several innate

program characteristics and our results should be useful to select representative subsets (should experimentation with

the whole suite be prohibitively expensive). We have also put program from four different suites into a common

perspective, in case anyone wanted to compare results of particular programs from past suites with the newest

programs.

Our recommendations to SPEC would be to continue broadening the diversity of programs in the future

generation of benchmark suites while at the same time reduce the redundancy in programs, and increase the static

instruction count in the program binaries. We also recommend that computer architects and researchers should

concentrate on designing well performing memory hierarchies in anticipation of increasingly poor temporal data

locality in future generation of SPEC CPU benchmark programs.

References

[1] A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.
[2] D. Citron, “MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in Computer Architecture

Conferences”, Proc. of International Symposium on Computer Architecture, pp. 52-61, 2003.
[3] D. Noonburg and J. Shen, “A Framework for Statistical Modeling of Superscalar Processor Performance”, Proc.

of International Symposium on High Performance Computer Architecture, 1997, pp. 298-309.
[4] E. Sorenson and J.Flanagan, “Cache Characterization Surfaces and Prediction of Workload Miss Rates”, Proc.

of International Workshop on Workload Characterization, pp. 129-139, Dec 2001.
[5] E. Sorenson and J.Flanagan, “Evaluating Synthetic Trace Models Using Locality Surfaces”, Proceedings of the

Fifth IEEE Annual Workshop on Workload Characterization, pp. 23-33, November 2002.
[6] G. Dunteman, Principal Component Analysis, Sage Publications, 1989.
[7] H. Vandierendonck, K. Bosschere, “Many Benchmarks Stress the Same Bottlenecks”, Proc. of the Workshop on

Computer Architecture Evaluation using Commerical Workloads (CAECW-7), pp. 57-71, 2004.
[8] Hammerstrom, Davdison, “Information content of CPU memory referencing behavior”, Proc. of International

Symposium on Computer Architecture, pp. 184-192, 1977.

 22

[9] J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of SPEC benchmarks”, ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 3, pp. 2-9, 1998.

[10] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millenium”, IEEE Computer, pp. 28-
35, July 2000.

[11] J. Spirn and P. Denning, “Experiments with Program Locality”, The Fall Joint Conference, pp. 611-621, 1972.
[12] J.Yi, D. Lilja, and D.Hawkins, "A Statistically Rigorous Approach for Improving Simulation Methodology",

Proc. of International Conference on High-Performance Computer Architecture, pp. 281-291,2003.
[13] K. Dixit, “Overview of the SPEC benchmarks”, The Benchmark Handbook, Ch. 9, Morgan Kaufmann

Publishers, 1998.
[14] K. Skadron, M. Martonosi, D.August, M.Hill, D.Lilja, and V.Pai. "Challenges in Computer Architecture

Evaluation." IEEE Computer, Aug. 2003.
[15] L. Barroso, K. Ghorachorloo, and E. Bugnion, “Memory System Characterization of Commercial Workloads”,

Proc. of the International Symposium on Computer Architecture, pp. 3-14, 1998.
[16] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Designing computer architecture research workloads”,

IEEE Computer, 36(2), pp. 65-71, Feb 2003.
[17] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quantifying the impact of input data sets on program

behavior and its applications”, Journal of Instruction Level Parallelism, vol 5, pp. 1-33, 2003.
[18] L. John, P. Vasudevan and J. Sabarinathan, "Workload Characterization: Motivation, Goals and methodology",

In L. K. John and A. M. G. Maynard (Eds), Workload Characterization: Methodology and Case Studies, IEEE
Computer Society, 1999.

[19] L. John, V. Reddy, P. Hulina, and L. Coraor, “Program Balance and its impact on High Performance RISC
Architecture”, Proc. of the International Symposium on High Performance Computer Architecture, pp.370-379,
Jan 1995.

[20] N. Mirghafori, M. Jacoby, and D. Patterson, “Truth in SPEC Benchmarks”, Computer Architecture News vol.
23,no. 5, pp. 34-42, Dec 1995.

[21] P. Denning, “The Working Set Model for Program Behavior”, Communications of the ACM, vol 2, no. 5, pp.
323-333, 1968.

[22] P. Dubey, G. Adams, and M. Flynn, “Instruction Window Size Trade-Offs and Characterization of Program
Parallelism”, IEEE Transactions on Computers, vol. 43, no. 4, pp. 431-442, 1994.

[23] R. Giladi and N. Ahituv, “ SPEC as a Performance Evaluation Measure”, IEEE Computer, pp. 33-42, Aug 1995.
[24] R. Saveedra and A. Smith, “Analysis of benchmark characteristics and benchmark performance prediction”,

Proc. of ACM Transactions on Computer Systems, vol. 14, no.4, pp. 344-384, 1996.
[25] R. Weicker, “An Overview of Common Benchmarks”, IEEE Computer, pp. 65-75, Dec 1990.
[26] S. Mukherjee, S. Adve, T. Austin, J. Emer, and P. Magnusson, “Performance Simulation Tools” , IEEE

Computer, Feb 2002.
[27] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization and

Methodological Considerations”, Proc. of International Symposium on Computer Architecture, pp. 24-36, June
1995.

[28] Standard Performance Evaluation Corporation, http://www.spec.org/benchmarks.html.
[29] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer System Modeling”, IEEE

Computer, pp. 59-67, Feb 2002.
[30] T. Conte, and W. Hwu, “Benchmark Characterization for Experimental System Evaluation”, Proc. of Hawaii

International Conference on System Science, vol. I, Architecture Track, pp. 6-18, 1990.
[31] T. Lafage and A. Seznec, “Choosing Representative Slices of Program Execution for Microarchitecture

Simulations: A Preliminary Application to the Data Stream”, Workshop on Workload Characterization (WWC-
2000), Sept 2000.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing Large Scale Program
Behavior”, Proc. of International Conference on Architecture Support for Programming Languages and
Operating Systems, pp. 45-57, 2002.

 23

Appendix A – Measured value of Microarchitecture Independent Metrics for SPEC CPU benchmarks

Static Instruction Count Branch Metrics

From Binary Instr executed at least once %Memory %Branches Computation:Memory Basic Block Size %Fwd %taken %Fwd-T-of total br %Back-T-of-total br Tlocality16 Tlocality64 Tlocality256Tlocality4096 1 Upto 2 Upto 4 Upto 8 Upto 16 Upto 32 > 32
espresso_89 106,416 20,913 26.66 15.92 2.15 5.28 0.63 0.64 0.47 0.53 313.00 103.00 31.00 6.00 28.25 40.94 54.92 65.36 76.79 83.64 16.36
li_89 70,164 10,074 41.13 16.74 1.02 4.98 0.66 0.65 0.63 0.37 138.00 63.00 36.00 7.00 27.71 39.01 48.88 62.15 77.33 88.73 11.27
doduc_89 221,660 26,006 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 499.00 628.00 201.00 28.00 7.38 13.95 24.38 36.87 50.31 64.44 35.56
nasa7_89 205,053 17,463 46.24 2.47 1.11 39.56 0.26 0.84 0.14 0.86 338.00 593.00 182.00 25.00 3.38 6.46 14.79 31.49 44.51 60.90 39.10
matrix300_89 194,397 9,308 35.15 3.13 1.76 30.94 0.05 0.95 0.01 0.99 21312.00 1771.00 236.00 24.00 9.41 16.95 32.05 60.26 73.30 77.13 22.87
fpppp_89 210,524 20,457 43.36 1.29 1.28 76.73 0.82 0.51 0.72 0.28 2418.00 850.00 230.00 30.00 1.11 2.39 5.09 16.61 32.24 45.80 54.20
tomcatv_89 194,517 9,375 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 603.00 171.00 21.00 2.71 3.67 6.47 15.32 33.71 49.89 50.11
doduc_92 221,660 26,007 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 505.00 631.00 201.00 28.00 7.37 14.16 24.97 37.40 50.98 67.23 35.56
mdljdp2_92 215,667 16,396 24.72 12.65 2.53 6.91 0.86 0.84 0.83 0.17 1230.00 656.00 208.00 33.00 18.94 22.90 35.34 42.83 55.07 63.31 36.69
wave5_92 238,629 22,934 35.75 4.63 1.67 20.62 0.49 0.73 0.34 0.66 1020.00 576.00 184.00 27.00 5.07 10.12 18.91 32.31 44.30 57.15 42.85
tomcatv_92 194,517 9,375 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 605.00 172.00 22.00 2.71 3.67 6.47 15.32 33.71 49.89 50.11
ora_92 198,304 10,303 29.64 6.88 2.14 13.54 0.78 0.57 0.63 0.37 393.00 622.00 206.00 34.00 7.61 20.17 35.77 45.72 55.98 69.15 30.85
alvinn_92 60,521 6,034 36.48 10.32 1.46 8.69 0.04 0.98 0.02 0.98 54.00 33.00 15.00 2.00 12.10 23.28 34.55 55.94 70.06 70.95 29.05
mdljsp2_92 215,695 16,532 23.05 3.52 3.18 27.39 0.53 0.66 0.30 0.70 502.00 649.00 210.00 32.00 7.70 14.52 27.17 38.03 48.23 61.88 38.12
swm256_92 200,721 12,673 37.43 0.63 1.65 157.91 0.05 0.95 0.02 0.98 458.00 637.00 207.00 32.00 1.22 2.33 5.16 12.07 27.98 42.69 57.31
su2cor_92 219,179 22,779 38.84 2.81 1.50 34.64 0.46 0.78 0.32 0.68 2397.00 971.00 300.00 36.00 2.71 5.27 12.26 23.77 39.04 51.08 48.92
hydro2d_92 216,278 24,337 36.84 6.00 1.55 15.66 0.54 0.75 0.41 0.59 1294.00 672.00 217.00 35.00 3.63 8.04 13.83 26.70 42.76 58.54 41.46
nasa7_92 213,052 21,133 46.15 2.57 1.11 37.86 0.28 0.83 0.16 0.84 406.00 616.00 191.00 27.00 3.67 5.77 12.76 29.99 42.64 57.51 42.49
fpppp_92 210,523 20,452 44.96 2.05 1.18 47.82 0.79 0.61 0.75 0.25 3167.00 1161.00 273.00 30.00 2.35 4.40 8.76 21.30 36.00 48.89 51.11
espresso_92 102,483 19,843 27.85 17.10 1.98 4.85 0.63 0.64 0.47 0.53 309.00 106.00 37.00 6.00 45.47 59.11 65.88 70.40 77.95 82.85 17.15
li_92 68,660 9,494 42.53 17.65 0.94 4.67 0.67 0.65 0.63 0.37 139.00 61.00 34.00 8.00 36.83 44.47 53.38 65.42 79.15 89.57 10.43
compress_92 46,080 3,418 33.97 12.05 1.59 7.30 0.77 0.52 0.58 0.42 10178.00 1693.00 100.00 4.00 21.53 36.54 51.02 61.76 71.85 80.82 19.18
tomcatv_95 203,525 13,269 37.56 1.82 1.61 53.98 0.39 0.75 0.20 0.80 477.00 221.00 221.00 26.00 1.68 3.18 5.35 17.06 34.31 49.44 50.56
swim_95 204,144 12,876 37.40 0.62 1.66 160.73 0.03 0.97 0.01 0.99 461.00 643.00 210.00 33.00 1.25 2.52 5.63 13.82 28.15 43.46 56.54
su2cor_95 218,311 25,086 37.70 3.62 1.56 26.62 0.57 0.70 0.39 0.61 4175.00 910.00 291.00 33.00 4.26 7.81 14.87 26.58 41.32 52.97 47.03
hydro2d_95 214,881 23,525 36.55 5.82 1.58 16.20 0.54 0.78 0.41 0.59 1607.00 698.00 218.00 31.00 3.99 9.20 14.93 27.30 43.10 59.09 40.91
applu_95 * * 34.76 3.68 1.77 26.20 0.32 0.62 0.27 0.73 93989.00 720.00 207.00 32.00 1.94 5.98 9.52 21.53 36.45 47.82 52.18
turb3d_95 213,613 21,290 37.88 3.30 1.55 29.28 0.49 0.60 0.35 0.65 1113236.00 124651.00 1078.00 38.00 3.14 7.66 13.10 19.58 35.58 50.36 49.64
apsi_95 235,175 32,446 35.71 3.31 1.71 29.23 0.43 0.72 0.31 0.69 1155.00 705.00 222.00 34.00 3.24 6.97 11.70 21.32 37.20 53.88 46.12
fpppp_95 215,569 21,188 43.86 1.40 1.25 70.37 0.80 0.54 0.72 0.28 3166.00 804.00 204.00 32.00 1.30 2.79 5.70 17.66 33.50 47.00 53.00
wave5_95 241,194 26,677 39.67 3.35 1.44 28.84 0.42 0.76 0.25 0.75 465.00 659.00 221.00 33.00 4.54 8.53 18.59 30.60 42.04 55.51 44.49
mgrid_95 * * 36.73 0.82 1.70 120.55 0.19 0.83 0.11 0.89 81269.00 693.00 214.00 28.00 0.46 2.16 5.03 16.00 33.23 43.60 56.40
go_95 129,840 68,562 36.95 13.04 1.35 6.67 0.76 0.66 0.70 0.30 2856.00 548.00 69.00 9.00 21.34 33.31 46.90 57.76 69.62 79.89 20.11
li_95 44,316 9,607 41.36 18.05 0.98 4.54 0.65 0.64 0.62 0.38 1369.00 278.00 103.00 10.00 37.60 45.49 54.28 66.53 78.39 88.75 11.25
perl_95 137,680 17,219 40.80 16.72 1.04 4.98 0.85 0.67 0.79 0.21 153.00 81.00 42.00 5.00 24.01 35.24 48.12 59.64 72.34 83.13 16.87
gcc_95 372,848 143,153 37.92 14.91 1.24 5.70 0.75 0.62 0.66 0.34 7157.00 3412.00 730.00 5.00 24.64 35.38 46.98 58.24 72.03 82.26 17.74
compress_95 59,983 1,556 32.59 11.52 1.71 7.68 0.59 0.79 0.54 0.46 109.00 49.00 27.00 7.00 18.01 29.98 45.74 62.28 76.04 86.06 13.94
ijpeg_95 108,404 20,199 28.35 5.45 2.33 17.33 0.59 0.75 0.50 0.50 1700.00 195.00 34.00 9.00 14.40 24.37 37.88 50.60 62.18 79.48 20.52
bzip2_2k 38,479 9,633 39.50 12.29 1.22 8.14 0.63 0.70 0.56 0.44 337042.00 100375.00 69024.00 1875.00 31.42 35.46 57.57 73.12 86.49 90.60 9.40
crafty_2k 116,296 34,073 36.60 11.20 1.43 8.93 0.83 0.67 0.80 0.20 31962.00 7635.00 294.00 21.00 13.80 24.51 38.62 52.66 64.37 72.75 27.25
eon_2k 189,016 43,503 48.15 11.18 0.84 8.94 0.67 0.63 0.59 0.41 3622.00 707.00 229.00 28.00 6.75 11.89 21.40 31.91 48.05 62.04 37.96
gcc2k 446,281 180,588 53.26 10.68 0.68 9.36 0.58 0.71 0.43 0.57 26246.00 7112.00 2705.00 307.00 22.81 29.63 44.87 51.53 68.92 75.86 24.14
gzip_2k 42,079 9,338 32.17 10.44 1.78 9.58 0.72 0.70 0.62 0.38 3484076.00 296272.00 120821.00 2579.00 22.12 33.67 43.96 61.23 69.05 74.19 25.81
mcf_2k 33,221 8,026 37.27 21.10 1.12 4.74 0.63 0.64 0.53 0.47 6384474.00 801795.00 309.00 8.00 19.47 34.29 46.45 58.32 68.91 72.19 27.81
parser_2k 65,607 25,345 34.84 15.48 1.43 6.46 0.65 0.65 0.50 0.50 24700.00 1816.00 175.00 9.00 20.47 32.34 49.97 61.18 74.00 83.41 16.59
twolf_2k 98,360 35,318 32.28 12.08 1.72 8.28 0.62 0.57 0.48 0.52 21792.00 1240.00 102.00 6.00 21.94 38.78 62.77 80.11 87.12 90.09 9.91
vortex_2k 163,748 69,692 40.53 17.29 1.04 5.78 0.83 0.52 0.69 0.31 315137.00 27783.00 1419.00 60.00 41.77 49.78 60.82 73.40 83.80 91.69 8.31
vpr_2k 73,791 29,901 44.08 10.65 1.03 9.39 0.68 0.52 0.44 0.56 524568.00 15223.00 1829.00 4.00 11.51 13.20 15.32 44.36 65.44 71.24 28.76
applu_2k 241,202 76,864 38.17 0.31 1.61 317.61 0.26 0.69 0.04 0.96 557233.00 3638.00 218.00 34.00 1.22 2.49 5.23 13.12 28.24 40.80 59.20
apsi_2k * * 37.22 3.60 1.59 27.80 0.55 0.55 0.39 0.61 1621949.00 106372.00 202.00 25.00 1.96 6.04 10.95 22.26 36.95 49.38 50.62
equake_2k * * 44.29 4.15 1.16 24.08 0.52 0.87 0.50 0.50 42.00 25.00 11.00 4.00 6.21 9.24 14.09 26.57 40.10 49.49 50.51
fma3d_2k * * 43.99 4.10 1.18 24.39 0.54 0.71 0.43 0.57 1225.00 661.00 202.00 19.00 1.69 3.21 7.63 20.22 34.74 48.42 51.58
galgel_2k 238,133 47,073 43.66 5.24 1.17 19.07 0.07 0.87 0.00 1.00 462.00 641.00 207.00 33.00 3.44 9.46 14.45 19.18 44.14 56.25 43.75
lucas_2k * * 22.13 1.43 3.45 69.91 0.36 0.62 0.02 0.98 382.00 597.00 191.00 30.00 4.07 5.99 12.18 21.90 36.33 47.99 52.01
mesa_2k * * 38.54 17.59 1.14 5.69 0.76 0.62 0.68 0.32 1337.00 442.00 142.00 17.00 7.97 15.33 20.86 28.23 37.82 52.71 47.29
mgrid_2k 178,553 18,349 36.72 0.37 1.71 273.37 0.41 0.65 0.19 0.81 689344.00 1349.00 247.00 34.00 1.77 3.65 9.51 28.76 40.90 48.61 51.39
swim_2k 181,467 20,283 32.92 1.30 2.00 76.66 0.41 0.59 0.01 0.99 1163.00 622.00 201.00 30.00 0.85 1.48 3.67 5.32 26.59 33.57 66.43
wupwise_2k 180,263 18,037 30.78 9.76 1.93 10.24 0.67 0.37 0.56 0.44 768641.00 192694.00 48236.00 36.00 0.74 5.25 17.95 27.46 37.66 47.08 52.92
art_2k * * 34.72 13.09 1.50 7.64 0.50 0.86 0.46 0.54 10102.00 25.00 13.00 7.00 7.28 12.24 16.49 28.90 36.68 45.75 54.25
ammp_2k * * 38.34 7.49 1.41 13.36 0.71 0.35 0.32 0.68 8928.00 196.00 79.00 9.00 9.07 16.23 27.00 37.49 46.27 56.03 43.97

* These are long running programs & their results are awaited

Data Locality Metrics Dependecy Distance Metrics

