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Abstract 
 

The time required to simulate a complete benchmark program using the cycle-accurate 

model of a microprocessor can be prohibitively high.  One of the proposed methodologies, 

representative sampling, addresses this problem by simulating only a   group of unique phases in 

a program called simulation points. The methodology selects simulation points by characterizing 

each fixed chunk of instructions in the program using a feature called Basic Block Vector (BBV), 

clusters them into groups of similar chunks of instructions, and then selects a representative 

chunk of instructions from each cluster.  The accuracy of this technique is highly dependent on 

the choice of the feature, clustering technique, and the distance measurement used for clustering. 

Previous research does not completely address all these aspects. 

In this paper, we propose a set of statistical metrics for making a comprehensive and fair 

evaluation of features, clustering algorithms, and distance measurements in representative 

sampling. These metrics give more insight into the sampling result. We use them to evaluate two 

different clustering algorithms, three distance measurements, and a new micro-architecture 

independent feature that we propose for representative sampling.  

We compared a k-medoid clustering algorithm, CLARANS, with the popular k-means 

algorithm for different distance measurements (projected Euclidean, Euclidean, and cosine).  Our 

results show that for the eight programs we used from the SPEC CPU2000 benchmark suite, 

CLARANS clustering algorithm results in better quality clusters in the feature space as compared 

to the k-means algorithm. CLARANS also produces phases that are more homogeneous for CPI. 

We propose a new micro-architecture independent data locality based feature, Reuse Distance 

Distribution (RDD), for finding phases in programs.  We show that the RDD feature consistently 

results in more homogeneous phases than Basic Block Vector (BBV) for many SPEC CPU2000 

benchmark programs simulated on three different processor configurations.  
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1. Introduction 
 

Cycle-accurate microarchitecture simulation is one of the most important tools in 

computer architecture research. However, simulating standard benchmarks in a cycle-accurate 

simulator is often prohibitively time-consuming.  For example, SPEC CPU2000 [1] is a widely 

used CPU-intensive benchmark suite for evaluating processor designs. Simulating one program 

from this suite takes days to weeks in a cycle-accurate model in SimpleScalar[2], the most 

popular simulator today among academic researchers. Quite often researchers can only run a few 

billion instructions, which may not be representative of the actual benchmark program and could 

result in large errors.  Many techniques have been proposed that reduce simulation time, while 

retaining good accuracy.  One class of such techniques takes advantage of the phase behavior in 

program execution. 

It has been well observed that programs show phase behavior. A phase can be defined as 

a portion of dynamic execution of a program most of the performance metrics such as Cycle Per 

Instruction (CPI), show very little variance.  As per this definition, parts of a program that are 

disjoint in time may belong to the same phase as long as they show similar values for 

performance metrics. Since the performance metrics remains stable in a phase, simulating only 

one chunk of instructions in the phase can give fairly accurate estimation of the performance for 

the entire phase.  If one chunk of instructions from every phase is selectively simulated, the 

simulation time can be greatly reduced with little loss of simulation information in the whole 

program.  Since the instruction chunks are carefully selected to represent the execution of the 

whole program, we call this type of technique phase based representative sampling, or 

representative sampling hereafter.  Three recently proposed schemes fall into this category 

[3][4][5].  These techniques estimate some target metric (e.g. CPI, energy per instruction, or 

cache miss rate) by taking advantage of the phase behavior.  To identify phases, they divide the 

dynamic instruction stream into chunks of instructions, and for each chunk, measure the feature 

that is distinguishable between phases. We refer to such a feature as a phase classification 

feature, or simply a feature as it is often referred to in the data mining community. Then, cluster 

analysis is performed to group the chunks into clusters.  Each cluster corresponds to a phase 

because the chunks in the same cluster exhibit very similar phase feature.  The major 

characteristics of the three representative sampling techniques are summarized in Table 1.  

Readers are referred to section 3 for a detailed description.  Out of the three techniques, SimPoint 

[3] is the most popular.  SimPoint uses Basic Block Vector (BBV) as the phase classification 

feature. BBV is a vector built with frequencies of dynamic execution of static basic blocks in a 
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code. Unlike performance counters in SPEClite [4], BBV is microarchitecture-independent.  

Thus, the phases identified from BBV are valid across different microarchitecture configurations.  

In addition, SimPoint uses only a few chunks of a relatively large size (100 million instructions), 

which makes it very easy to implement and does not need explicit warm-up.  Because of its 

advantage and popularity, we base our study mainly on the approach of SimPoint1.  

 

 

Technique Target 
Metric 

Phase 
classification 

feature 

Clustering 
algorithm 

Chunk size 
(million 

instructions) 
SimPoint IPC BBV k-means 100 
SPEClite 29 

Performance 
Metrics 

Performance 
Counter Data 

k-means 1 

Lafage and 
Seznec [5] 

Data Cache 
Miss-Rate 

Data Reuse 
Distance 

Hierarchical 1 

 

Table 1. Recently proposed phase based representative sampling techniques 
 

Although representative sampling is becoming popular for microprocessor simulation, the 

design space has not been well explored and many questions are still unanswered.  This research 

addresses some of the important questions.  In the next section, we describe three such problems.  

After reviewing the related work in Section 3, we address each of these problems in subsequent 

sections.  Our evaluation methodology is proposed in Section 4.   Different clustering algorithms 

and distance measure are evaluated in Section 5.  In Section 6, we propose our new phase feature, 

RDD, and compare it with BBV.  In Section 7, we draw conclusions from this study. 

 

2.  Problem Statement  
In this section, we describe the problems we address in this paper and specify our 

contributions. 

2.1  Choice of clustering algorithms and distance measures 

It is well known in the data mining community that no single clustering algorithm is well 

suited for all applications. Various algorithms have been proposed for different applications.  

There has been no study to search for the best clustering algorithm for representative sampling. It 

                                                 
1 Variance SimPoint and Early SimPoint are extensions to the original SimPoint.  These methods use many 
small chunks of instructions making it impractical and difficult to use. So, these methods are not as popular 
as the original SimPoint.  In this paper we focus on the original SimPoint, but our methodology is 
applicable to all representative sampling techniques. 
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is not known whether the choice of algorithm affects the accuracy of clustering.  The k-means 

clustering method [6] used in SimPoint is simple and fast.  However, k-means clustering performs 

well only on clusters that are spherical and have the same variance.  Phase classification features 

such as BBV are characteristics of benchmark programs.  Some programs show very regular 

execution patterns whereas others show unpredictable behavior. It is unlikely that the features 

from benchmark simulation will satisfy the requirements of k-means algorithm.   In addition, k-

means algorithm is very sensitive to outliers, which may severely distort the clustering result. 

Hierarchical clustering, used in [5], does not have a provision for relocating data points that have 

been incorrectly grouped at an early stage in the clustering process.  Another problem with the 

two clustering algorithms lies in finding a data point to represent a cluster.  The representative for 

a cluster should correspond to a real data point.  In k-means, a cluster is represented by the 

centroid of the cluster, which is very unlikely to coincide with a real data point.  In hierarchical 

clustering, there is no inherent representative data point for a cluster.  We therefore feel that other 

clustering techniques could give better quality clusters and help in selecting a better cluster 

representative.  In this study, we choose a k-medoid method and compare it with k-means.  Our 

reason for choosing this method and the evaluation result is detailed in Section 5. 

All three proposed representative sampling techniques used Euclidean distance to 

measure the dissimilarity of chunks of instructions in their clustering analysis.  Just like the 

choice of the best clustering algorithm, it is well known that no single distance measure is the best 

for all types of data.  Other distance measures such as the Manhattan distance and cosine distance 

have been applied in different applications.  However, no previous research has aimed at finding 

the best distance measure for identifying simulation points.  In this paper, we study a carefully 

selected distance measure, the cosine distance and evaluate its effectiveness in representative 

sampling. 

 

2.2  Evaluation methodology 

How to fairly evaluate the effectiveness of new clustering algorithms, new distance 

measures, and new phase features in representative sampling is another question that has not been 

studied previously.  Of course, the final error in target metric can be used to compare different 

approaches.  However, as we will show in Section 4 this is not a reliable method because chance 

can often play a big role in the sampling error.  We propose a methodology for comprehensive 

evaluation by including statistically sound metrics such as the normalized standard deviation, and 

we examine them in both the phase classification and target metric space.  Our methodology, 
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unlike the final sampling error, can not only enable a fairer evaluation but also provide a deeper 

understanding of representative sampling. 

 

2.3  Choice of phase classification feature 

The third question we study is what phase classification feature to use in representative 

sampling. A microarchitecture independent feature, such as BBV in SimPoint, is preferable 

because it gives the user more confidence that the clustering result will be correct across different 

microarchitectures.  A good feature should be strongly corrected with the target metric (e.g. CPI).  

For modern microprocessors, the data access latency is one of the most important factors that 

determine the performance.  Data access latency is a function of data locality.  Therefore, we 

focus on microarchitecture independent phase features based on data locality.  In this paper, we 

propose a new data locality based phase classification feature, the Reuse Distance Distribution 

(RDD).   We show that it results in more homogeneous phases than BBV for many benchmarks.  

More importantly, we show that for these benchmarks, this advantage holds on different 

microarchitecture configurations. 

The contribution of the paper is three-fold: 

1. We propose a systematic method to fairly evaluate new clustering algorithms, new distance 

measures, and a new phase classification features for representative sampling.  Our 

methodology also helps the user to gain better understanding of the sampling method. 

2. We investigate the effectiveness of using different clustering algorithms and different 

distance metrics.  We show that the effectiveness varies between the phase feature space and 

the target metric (CPI) space. 

3. We propose a new microarchitecture-independent data locality based Reuse Distance 

Distribution for identifying phases in a program.  We show that for a set of benchmarks it 

consistently produces more homogenous phases than BBV. 

 

3.   Related Work 

In this section, we survey  recently proposed research using clustering based sampling of 

intervals to reduce simulation time of benchmarks.  

Sherwood et.al. [15] proposed a methodology called Basic Block Distribution Analysis to 

find a single simulation point in benchmarks. Basic block is a sequence of instructions in a 

program with a single entry point, single exit point, and no internal branches.   Basic Block 

Vector (BBV) is a vector of length equal to the number of static basic blocks in the code. Each 

interval (a chunk of 100 million dynamic instructions in sequence) is characterized by a BBV 
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with each element of the vector showing the frequency of occurrence of a particular static basic 

block. A BBV is derived for the whole program, called the target BBV, and each entry in the 

BBV is normalized to total basic blocks, so that sum of all the entries in a BBV is one. Similarly, 

BBVs are derived for each interval of 100 million instructions and then compared with the target 

BBV. The comparison is directly made by subtracting one BBV from the other and adding up the 

absolute values of the difference of each element. The number lies between 0 and 2. The 

difference of 0 indicates perfect match and 2 indicates a perfect miss-match. A single simulation 

point is selected by finding the interval with the lowest difference.  

Sherwood et.al [3] proposed the SimPoint methodology. In this method, instead of 

selecting one simulation point to represent the whole program [15], they select multiple 

simulation points to cover all possible phases in the program. SimPoint also uses BBV for phase 

classification. BBV is usually high dimensional (thousands to hundreds of thousands), and hence 

random projection  is performed on the data to reduce the dimensionality to 15 before using k-

means clustering to form interval clusters with similar BBVs. The clustering algorithm forms 

clusters for different values of k and picks the best solution, determined by BIC (Bayes 

Information Criterion) [16][17]. The simulation point that is closest to the centroid of a cluster is 

selected as the cluster representative.  The cluster representatives (intervals) together form the 

simulation points of the programs. After selecting the simulation points, the CPI of whole 

program can be calculated as a weighted average of CPI values from each of the representative 

intervals weighted by the cluster size. 

.  Perelman et.al [14] proposed a method, Early SimPoint, to find early simulation points 

to reduce the time required for fast-forwarding where check-pointing is not possible. This method 

tries to find simulation points early in the program’s execution without compromising the 

accuracy. Perelman et.al [14] also proposed Variance SimPoint to use statistical analysis to guide 

the choice of number of clusters for a user specified confidence interval and probabilistic error 

bound for CPI.   Although Variance SimPoint improves accuracy, it is more difficult to use.  One 

of the main issues is that it uses a sample size of 1 million instructions and assumes a perfect 

warm-up, which is impractical. 

Lau et.al [7] explored various other microarchitecture-independent features (structures) 

that can be used for phase classification with SimPoint. They used a weighted average of 

Coefficient of Variation (CoV) of all clusters in each phase to compare these structures. This is 

similar to our NS metric. They experiment with various features that profile memory strides for 

phase classification. They conclude that BBV is more accurate than the memory stride profiles. 
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All these metrics are based on the memory access signatures, but, unlike our RDD feature, are 

weakly correlated to data locality. 

 Lafage and Seznec [5] proposed an approach to select representative slices of program 

execution based on a microarchitecture-independent feature, reuse distance expressed in terms of 

instructions executed between two accesses to the same address. They used hierarchical 

clustering to classify program slices of 1 million instructions. Their results show an average 

relative error of 1.52% in data cache miss-rate for the SPEC95 suite. 

Todi [4] proposes a method for selecting and executing representative intervals, for  

SPEC2000 benchmarks, which reduces the simulation time and maintains the accuracy of 

simulated result. The approach in this methodology is based on collecting performance metrics 

using the performance monitoring counters for every interval of 1 million instructions and then 

using clustering to find representative intervals for phases. The main drawback of this technique 

is that since the measured phase classification features are for a particular machine, the clusters 

may not be valid for other microarchitecture configurations. 

4.   Evaluation Methodology 
 
 We need a good methodology to compare various representative sampling techniques.  

The error in the sampled simulation is the final result that one probably cares most.  However, it 

is the result of several factors lumped together, and provides little insight into the relative 

advantages and disadvantages of each technique.  Moreover, because the error is the result of 

several factors that may exhibit different trends, the error curves cross each other and make it 

difficult to compare different techniques. Therefore, we only use final error as one of the metrics 

in our evaluation methodology.  We will discuss this in detail when we examine the sampling 

error in this section. 

 In order to design a comprehensive and fair evaluation methodology, we need to 

understand the rationale of representative sampling, and discern the different factors that affect 

the quality of the result.   Representative sampling starts with selecting and measuring the phase 

classification feature and performing cluster analysis based on it.  This is done entirely in the 

phase feature space.  We expect the instruction chunks inside each cluster to be similar to each 

other. Since the distance between two phase feature values reflects the dissimilarity between two 

chunks of instructions, it is desirable that the data points within the same cluster be very close to 

each other. A better clustering algorithm will result in more cohesive clusters in the phase 

classification feature space.  Nevertheless, we also want homogeneous phases in the target metric 

space.  If the phase feature is strongly correlated with the target metric, then a cohesive cluster 
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will map to a homogeneous phase.  On the other hand, if the correlation is weak, then the phases 

will not be homogenous despite the better cohesiveness in the phase classification feature space 

(from using a better clustering algorithm).  The accuracy of the sampling result is also impacted 

by the choice of the data point to represent a phase.  Usually, if the homogeneity in a phase is 

improved, then randomly selecting any data point to represent this phase should result in smaller 

error.  However, as in SimPoint, the representative data point is not selected randomly.  Instead, 

the one closest to the center of the cluster in the phase classification feature space is selected.  It is 

possible that, even though the target metric in the phase is not homogeneous, the data point 

picked happens to exhibit a target metric value equal to the mean target metric value of the phase, 

resulting in zero error.   

Therefore, our evaluation methodology consists of three components in the feature and 

target metric space.  First, we examine the cohesiveness of clusters in the phase classification 

feature space.  Then, we measure the homogeneity of target metric in each phase.  Lastly, we look 

at the final sampling error.  The last two metrics are in the target metric space. Another difficulty 

in representative sampling is how to determine the optimal number of clusters/phases - an open 

problem in data mining research.  In representative sampling the optimal number of clusters 

usually depends on an optimization criterion e.g. BIC score threshold used in SimPoint.  In this 

study, we present results for all cluster numbers between 4 and 10, which covers the range of the 

number of clusters used in SimPoint. 

In the phase feature space, the cohesiveness of clusters can be measured by the Average 

Distance (AD) from each data point to the representative data point of the cluster it belongs to. 

ncxdistanceAD i
x

/),(∑= , 

where x is a data point and ci is the representative data point for the cluster that x belongs to and n 

is total number of data points.  This metric can be used to compare different clustering algorithms 

with the same phase classification feature and the same distance measure.  We want the program 

behavior in each phase to be as homogeneous as possible.  A better algorithm will give tighter 

clusters and thus a smaller average distance. 

 We use the Normalized Standard Deviation (NS) metric, defined as follows, to evaluate 

the homogeneity of phases in the target metric space.  

SS
n

n
NS i

k

i

i /)( 2

1
∑

=

= , 

where ni is the size of cluster i. Si is the standard deviation of the target metric in cluster i, n is the 

total number of data points, and S is the standard deviation of the target metric for all data points. 
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NS reflects the tightness of the cluster in the target metric space. The lower the normalized 

standard deviation, the more homogeneous the phases are. NS is determined by the quality of 

clustering in the phase classification feature space as well as by the correlation between the 

feature and the target metric.   Since the calculation of NS only involves target metric, it can be 

used to compare different clustering algorithms, different distance measures, and different phase 

features. 

 Lau et. al. used weighted average of Coefficient of Variation (COV) to evaluate different 

phase classification features [7].  The average COV is similar to NS.  One major difference is that 

in NS the denominator is the total standard deviation while in COV it is the mean target metric 

value.  Average COV can also be used to measure the homogeneity of phases, but NS possess one 

advantage: it also reflects the benefit of stratified sampling.  Stratified sampling is a sampling 

method well studied in statistical sampling theory.  It has the same rationale as the representative 

sampling discussed above.  In stratified sampling, the population is divided into homogeneous 

groups called strata, which corresponds to our term phases or clusters. Unlike in the 

representative sampling where the data point closest to the center is selected, multiple data points 

are randomly sampled from each stratum2.  In proportional stratified sampling, the number of 

data points sampled in each stratum is proportional to the total number of data points in the 

stratum.  The accuracy of a sample design is measured by the variance of its sample mean.  A 

more complex sampling design is often compared to the simple random sampling, where data 

points are just randomly picked from the whole population.  The design effect (deff) of a 

sampling plan is the ratio of the variance of the estimate obtained from the (more complex) 

sample to the variance of the estimate obtained from a simple random sample of the same number 

of data points.  It measures the benefit of using more complex sample designs.  From [8] it can be 

shown that  

stratifiedrandomstratified deffVVNS == /2 , 

where, Vstratified is the variance of sample means in proportional stratified sampling, and Vrandom is 

the variance in simple random sampling.  Therefore, NS shows us how much we have gained 

compared to simple random sampling, or how much variance we have reduced by taking the extra 

effort to cluster.  If NS is close 1, then the target metric in each cluster is as varied as in the whole 

benchmark. It is similar to randomly grouping data points into clusters and not achieving any 

reduction in variance within a phase. We will get similar accuracy just by random sampling.  On 

                                                 
2 Stratified sampling has the advantage that it gives a confidence interval after the sampling to quantify the 
accuracy of the result.  It is not used in representative sampling mainly because it requires far more chunks 
of instructions to be simulated. 
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the other hand, if NS is close to 0, then the target metric remains almost constant in each phase 

and our result will be much more accurate than simple random sampling. 

 We also examine the final Relative Error (RE) in target metric compared to full cycle-

accurate simulation, which is defined as, 

yyy
n

n
RE

k

i
i

i /
1
∑

=

−= , 

where yi is the target metric of the representative data point in cluster i. y is the true target metric 

of the benchmark.  The relative error is determined not only by the quality of the clustering and 

the correlation between the feature and target metric, but also by how close the target metric for 

the representative data point is to the mean target metric of a cluster.  It is the final metric that the 

user cares about.  However, unlike NS, which is calculated from all n data points, the relative 

error is affected by only k representative data points.  Since k<<n, it is far less stable than NS.  

Consider, for example, bzip2-source from SPEC CPU2000 benchmark suite.  Figure 1b shows 

NS in CPI for two distance measures, Euclidean distance with random projection and cosine 

distance.  As expected, when we divide the data points into more clusters, the overall 

homogeneity improves.  In contrast, Figure 1a shows the relative error for CPI of the simulation 

using representative sampling.  The error curve does not have a clear trend.  Sometimes the error 

even goes up significantly with more clusters, which is clearly not expected, and this indicates the 

unreliability of the error metric.  In addition, projected Euclidean distance gives more 

homogeneous phases for all cluster numbers between 4 and 10.  However, result for the relative 

error is much more “messy”.  The curves cross each other so neither of the two distance measures 

consistently gives smaller error, which makes comparison very difficult.   To show the usefulness 

of the NS metric, the relative error of using stratified sampling is shown in Figure 1c.  The result 

is the average of 2000 repetition of the experiment.  In each experiment, a total of 200 chunks are 

selected.  It is clear that the error in stratified sampling follows the NS and the projected 

Euclidean distance shows smaller errors; just as we would have expected from its better NS 

result.  Based on the above analysis, we use NS as our main evaluation metric in the space of the 

target metric. 

All three metrics (AD, NS, and RE) are needed to evaluate a representative sampling 

technique, and every metric provides a different insight.  Improving one metric may not 

automatically make other metrics better.  Suppose, we use a better clustering algorithm and get 

smaller average distances, but NS does not improve, then we know it is because the correlation 

between the phase classification feature and the target metric is not strong enough.  We need to 

search for a better phase classification feature.  If we get more homogeneous CPI in each phase 
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(i.e. smaller NS) but the final error remains large, then it indicates that the error introduced by 

picking the central data point dwarfs our improvement in homogeneity.  If longer simulation time 

is affordable, then one can also resort to classic stratified sampling. 
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Figure 1.  Comparing projected Euclidean distance with cosine distance for bzip2-source. 
 

5.   Evaluation and analysis of clustered sampling using BBV 

5.1   Comparing clustering algorithms and distance measures 
 

Although k-means clustering algorithm is popular in representative sampling, it has 

serious limitations, as discussed in Section 2.1.  There has not been any study on how different 

clustering algorithms affect the quality of representative sampling.  Therefore, we would like to 

evaluate a different algorithm against the k-means algorithm.  We choose k-medoid method [4] 

because it overcomes the limitations of k-means.  Firstly, k-medoid methods are less strict about 

(a) Normalized standard deviation for CPI (b) Relative error in CPI for representative 
sampling 

(c) Relative error in CPI for proportional stratified sampling 
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the distribution of the data points and are robust to the existence of outliers.  Secondly, in k-

medoid methods, the medoid, which is a real data point, naturally represents the cluster.   

 There are several k-medoid methods such as Partitioning Around Medoid (PAM) and 

Clustering LARge Applications (CLARA) [9].  The problem with these methods is that they have 

a high computational requirement.  The time complexity for PAM is O(k(n-k)2), where k is the 

number of clusters and n is the number of data points. CLARA algorithm exhibits a time 

complexity of O(k(40+k)2+k(n-k)).  We choose to use CLARANS (Clustering Large Applications 

based on RANdomized Search) algorithm, proposed by Ng and Han [10][11], because of its 

lower computation cost, which is basically linearly proportional to the number of data points. 

 CLARANS algorithm can be viewed as a search through a graph Gn,k, where n is the 

number of data points and k is the number of clusters.  In this graph, a node is represented by a set 

of k data points {Om1, Om2, … Omk}.  Each data point is a selected medoid.  Once k medoids have 

been determined the remaining nodes can be assigned to the medoid that is the closest.  Thus a 

node in the graph (i.e. a set of medoids) corresponds to a clustering solution.  Two nodes are 

neighbors (i.e. connected by an arc) if their sets differ by only one data point.  CLARANS 

searches the graph neighbor by neighbor for a node with minimum cost.  Each node has k(n-k) 

neighbors.  Examining all k(n-k) neighbors of a node is time consuming when n and k are large. 

To limit the cost of searching, CLARANS limits the maximum number of neighbors examined to 

a user specified parameter, maxneighbor.  CLARANS algorithm proceeds as follows. 

1. Input parameters numlocal and maxneighbor.  Initialize i to 1, and mincost to a large 

number. 

2. Set current to an arbitrary node in Gn,k. 

3. Set j to 1. 

4. Consider a random neighbor S of current, and calculate the cost differential of the two 

nodes. 

5. If S has a lower cost, set current to S, and go to Step (3). 

6. Otherwise, increment j by 1.  If j <= maxneighbor, go to Step (4). 

7. Otherwise, when j > maxneighbor, compare the cost of current with mincost.  If the 

former is less than mincost, set mincost to the cost of current, and set bestnode to current. 

8. Increment i by 1.  If i > numlocal, output bestnode and halt.  Otherwise, go to Step (2). 

In all three representative sampling techniques we reviewed, Euclidean distance between 

the phase classification features is used to measure the dissimilarity between the chunks of 

instructions.  It is well known that no single distance measure is the best for all clustering 
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applications.  Other distance measurements such as the Manhattan distance and cosine distance 

have been applied to different applications.   

In this study the cosine distance is of special interest.  It has been successfully used in 

automatically clustering documents into different topics.  Documents are often represented as 

vectors, where each element is the frequency with which a particular term occurs in the 

document.  If we compare BBV with a text document vector, we can see their similarity. An 

element in BBV is the number of times a specific static basic block is executed, which is similar 

to the number of times a specific word occurs in a document.  In addition, both are very high 

dimension vectors (thousands to more than a hundred thousand dimensions).  Because of the 

similarity between BBV and the document vector, and the success of cosine distance in document 

clustering, it is very interesting to see whether cosine distance can be applied to representative 

sampling.  If p and q are two vectors, then cosine distance is defined as  

cosine_distance(p, q)=
qp

qp

.
1

•− , 

where •  indicates vector dot product, and p is the length of vector p.  Because the result is 

divided by the norm of the vectors, the cosine distance is really a measure of the angle between p 

and q.  If the angle is 0°, then the two vectors are the same except for the magnitude.  The cosine 

distance will be 0, which is the minimum value.  If the angle is 90°, then the two vectors do not 

share any elements. In other words, the code in the two chunks of instructions are complete 

different because they do not share any basic blocks.  In this case, the cosine distance reaches the 

maximum value of 1. 

5.2  Experiment Setup 
 

 We use 8 programs with the reference data set from the SPEC CPU2000 benchmark 

suite.  The programs and the number of instructions are listed in Table 2.  Following SimPoint, 

we divide the instruction stream of each program into intervals of 100 million instructions.  In all 

our experiments we use CPI as the target metric because it is the most commonly used 

performance metric.  To evaluate the result in the target space, we simulate all 8 benchmarks in 

sim-outorder [2] to collect CPI for each chunk.   
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Table 2.  Number of instructions and simulation time of selected SPEC CPU 2000 benchmarks   

               with reference data set.  The data set name is appended to the benchmark name. 

 

Pipeline 
Issue Width 
Decode Width 
Register Update Unit 
Load-Store Queue 
Commit Width 

8 instructions/cycle 
8 instructions/cycle 

128 entries 
32 entries 

8 instructions/cycle 
Cache Hierarchy 

L1 Data 
L1 Instruction 
L2 Unified 
Memory Access Latency 

16KB; 4-way assoc., 32B lines, 2-cycle hit 
8KB; 2-way assoc., 32B lines, 2-cycle hit 

1MB; 4-way assoc., 64B lines, 20-cycle hit 
151 cycles 

Combined Branch Predictor 
Bimodal 
PAg 
Return Address Stack 
Branch Target Buffer 
Misprediction Latency 

8192 entries 
8192 entries 

64 entries 
2048 entries; 4-way assoc. 

14 cycles 
 

Table 3.  Processor Configuration 

 

The processor configuration used in the simulation is shown in Table 3.  The same configuration 

has been used in study on cache warm-up [12] and in validation of SimPoint [13]. K-means and 

CLARANS clustering algorithms were each evaluated using projected Euclidean and cosine 

distance measures.  Because clustering algorithms are less effective at high dimensional 

Euclidean space, the dimensionality of BBV is reduced to 15 through random projection just as in 

SimPoint. Thus it is given the name “projected Euclidean distance”. 

 
 The number of clusters evaluated is from 4 to 10, which covers most of the range of 

number of clusters used in SimPoint.  Both k-means and CLARANS may give different result 

with different random seeds.  In k-means, a random seed is used to choose the initial centroids 

Benchmark-
Input Pair 

Number of instructions 
(million) 

art-110 41,798 
bzip2-source 108,878 

equake 131,518 
gcc-166 46,917 

lucas 142,398 
mcf 61,867 

vortex-1 118,976 
vpr-route 84,068 
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while in CLARANS a random seed controls the random search.  Therefore, we run each 

experiment 5 times with different random seeds and the data shown below is the average result. 

5.3   Experiment result 
 
 Following the evaluation methodology proposed in Section 4, we first evaluate the two 

clustering algorithms in the BBV space.  Figure 2 compares the average distance of k-means and 

CLARANS algorithms for project Euclidean distance.  The graphs for cosine distance are in 

Appendix A.  Since average distance metric cannot be compared between different distances, the 

result for projected Euclidean distance and cosine distance are drawn separately.  CLARANS 

clearly produces tighter clusters than k-means in most cases.  For some benchmarks, such as 

equake and gcc-166 the reduction in average distance is significant.  At 10 clusters, for projected 

Euclidean distance, CLARANS reduces the distance by over 50%, while for cosine distance the 

reduction is almost 90%. 
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Figure 2. Average distance for different clustering algorithms and distance measures. 

 

 We then examine the normalized standard deviation, which is shown in Figure 3.  The 

NS shows a downward trend.  Therefore, as we increase the number of phases, the CPI in each 

phase shows lesser variance.  Because CLARANS has improved the quality of the clusters in the 

BBV space, it is expected that it will produce more homogeneous phases than k-means.  

However, this is not always true.  The curves for CLARANS and k-means sometimes cross each 

other.  For example, for benchmark lucas, CLARANS shows an advantage over k-means in the 

projected Euclidean space for all number of clusters.  But, for normalized standard deviation, the 

picture is mixed.  The two curves cross each other twice.  CLARANS is better for 4 and 5 clusters 

but k-means wins for 6, 7 and 8 clusters.  CLARANS overcomes k-means again at 9 clusters and 

they finally tie at 10 clusters.  This type of behavior indicates that the correlation between BBV 

and CPI is not strong enough for the reduction in distance in the BBV space to translate into 

better homogeneity in CPI for each phase.  Nevertheless, CLARANS algorithm produces more 

homogeneous CPI phases in most cases.  Table 5 shows the clustering algorithm and distance 

measure with the overall lowest normalized standard deviation.  In 5 (or 6) out of 8 benchmarks, 

CLARANS is better than k-means.  The cosine distance we experimented with, on the other hand, 

does not seem to perform better than the projected Euclidean distance.  Cosine distance is the best 

for only vortex-1. 
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Figure 3. Normalized standard deviation for different clustering algorithms and distance measures  

 

Benchmark Best clustering algorithm and distance measure 
art-110 Kmeans with projected Euclidean distance 

bizp2-source CLARANS with projected Euclidean distance 
equake CLARANS with projected Euclidean distance 
gcc-166 CLARANS with projected Euclidean distance 

lucas No clear winner 
mcf CLARANS with projected Euclidean distance 

vortex-1 CLARANS with cosine distance 
vpr-route Tie between k-means and CLARANS with 

projected Euclidean distance 

 

Table 4. Best clustering algorithm and distance measure for different benchmarks 
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Figure 4 shows the relative error of representative sampling using different clustering algorithms 

and distance metrics.  Since the normalized standard deviation decreases as more phases are 
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Figure 4. Relative error in the CPI from representative sampling for different clustering algorithms   

                and distance measures. 
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identified, the errors are expected to follow suite.  However, they do not show a general trend and 

vary a lot, crossing each other multiple times.  If it is sometimes difficult to pinpoint the 

algorithm with the best NS, then it is almost impossible to identify the one with consistently 

lowest error.  If we only focus on projected Euclidean distance (used in SimPoint), then 

CLARANS consistently results in smaller error for equake and vortex-1.  For the remaining 6 

benchmarks, they are comparable. 

 To conclude, better clustering algorithms such as CLARANS can definitely produce 

tighter clusters in the BBV space.  However, as we are moving further away from BBV space and 

toward the final error, the benefit of better algorithms diminishes because more factors come to 

play a role.  In occasional cases k-means produces less variation in CPI in the phases, but 

CLARANS generally result in more homogeneous CPI phases.  The final simulation error 

depends not only on the homogeneity in the phases, but also on whether the data point closest to 

the cluster center in BBV space exhibits CPI value equal to the mean CPI of the phase.  This adds 

more uncertainty to the result and makes it difficult to evaluate different algorithms with error. 

Nevertheless, CLARANS shows smaller error for two benchmarks and gives comparable result 

for the rest. 

 

7.  Reuse Distance Distribution - A new feature for phase classification 
 

Due to the gap between processor and memory performance, data access latency is one of 

the most important factors that determine program performance in modern day microprocessors.  

Data access latency is a function of the inherent locality in the data address stream of a program.  

Therefore, we feel that a feature based on the data locality of a program will be able to find 

phases in a program that have similar data locality, and hence show similar performance.  It is 

important that the locality feature should be microarchitecture independent.  This increases the 

confidence that the phases identified by the feature will be valid across different 

microarchitectures. 

BBV feature, used in SimPoint, is based on the intuition that the performance of a 

program at a given time is directly related to the code it is executing at that time. The BBV 

feature does not capture the properties of the data locality of the program.   However, it is 

possible that a static section of code in a program has different memory reference patterns at 

different points of time in its execution.  A feature based on the temporal and spatial data locality 

in a program will be able to capture this behavior, and may therefore perform better than BBV in 

finding phases that are more homogeneous. 
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There has been some previous research work to explore the design space for finding such 

a feature based on the data locality of the program.    Lau et. al. [7] extensively examined 

different phase features that are based on data accesses, including local stride (with and without 

PC hash), global stride (with and without PC hash), loops with local stride, memory working set 

size, working set bit vector, and memory access frequency vectors.  They conclude that the BBV 

feature is better than the data accesses based features that they studied.  The features used in their 

study are related to the access pattern of the data address stream, but do not directly measure the 

data locality.   Since data locality impacts program performance, these phase features may not be 

a strong enough indicator of the program performance.   

Lafage et. al. [5] used average memory reuse distance (RDI) feature for finding phases in 

a program that are homogeneous with reference to data cache miss-rate.  We implemented a 

feature similar to RDI to understand whether the phases identified by RDI are also homogeneous 

in CPI.  For the 8 program-input sets we used from SPEC CPU2000 benchmark suite, we found 

that BBV performs significantly better than RDI for finding phases in a program that are 

homogeneous with reference to the CPI.   

 

7.1 Reuse Distance Distribution (RDD) Definition  

A reuse pair of memory accesses is a pair of addresses in the data memory stream of a program 

that map to the same memory line, without any intermediate accesses to the same memory line.  

A memory line is analogous to a cache block.  Reuse distance is the number of memory addresses 

that are accessed between the accesses to the two addresses in the reuse pair.  We define the RDD 

feature as the relative frequencies of the different reuse distances of all the reuse pairs in the data 

address stream of a program.  The reuse distances can have a large number of unique values 

(theoretically ranging from 0 to the total number of data memory references made by a program 

minus two).  Therefore, in order to make the distribution more easily manageable, we use a 

grouped frequency approach to represent the relative frequency of reuse distances. The width of 

each interval in the histogram is exponentially distributed – i.e. a reuse distance of r is classified 

into interval 
┌  log e r 

┐
 (ceiling of natural log of the reuse distance).  In general, interval n consists 

of reuse distances from en-1 to en.  By definition, a reuse distance of zero is classified into the first 

interval.  We can represent the RDD feature as a vector with n elements, where element i (i 
≤

 n) is 

the relative frequency of the number of reuse distances for interval i.  

For a given memory line size, the RDD feature characterizes the temporal locality of the 

data memory address stream.  Information about the spatial locality of a memory address stream 

can also be characterized by measuring the RDD feature for a range of different memory line 
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sizes.  The RDD feature is able to discriminate the execution slices from each other based on the 

temporal and spatial locality of their data access stream.   

The following example is a simple illustration of how the RDD feature is calculated for 

an address stream.   

Example: 

Consider the following data memory address stream (address, access #): 

0x2004 (#1), 0x2022 (#2), 0x300c (#3), 0x2108 (#4), 0x3204(#5), 0x200a (#6), 0x2048 (#7), 

0x3108(#8), 0x3002(#9), 0x320c (#10), 0x2040(#11), 0x202f (#12) 

For a memory line of 16 bytes, the memory lines to which these addresses maps is 

calculated by masking the least significant 4 bits in the address i.e. addresses 0x0000 to 0x000f 

will map to memory line 0, 0x0010 to 0x001f will map to memory line 1 etc. Therefore, the 

address in the data stream, 0x2004, will map to memory line 0x200, address 0x2022 to 0x202, 

etc. The sequence of memory lines accessed by this address stream is:  

0x200 (#1), 0x202 (#2), 0x300 (#3), 0x210 (#4), 0x320(#5), 0x200(#6), 0x204(#7), 0x310(#8), 

0x300(#9), 0x320(#10), 0x204(#11), 0x202(#12) 

Addresses for reference #1 and #6 are different, but they map to the same memory line, 

0x200, and therefore form a reuse pair (#1, #6).  Similarly, reference #3 and #9 map to the same 

memory line, 0x300.  The list of all the reuse pairs in the example address stream is (#1, #6), (#2, 

#12), (#3, #9), (#5, #10), (#7, #11), For reuse pair (#1, #6), the reuse distance is the number of 

memory lines accessed between the reference #1 and #6, which is 4. According to the logarithmic 

scheme used for classifying reuse distance into intervals, a reuse distance of 4 is classified into 

interval 2 (
┌
log e 4

┐
).   Following is a list of the reuse distances, and the intervals they are 

classified into for all the reuse pairs in the example address stream, (reference #, reference #, 

reuse distance, interval):  

(#1, #6, 4, 2), (#2, #12, 9,  3),  (#3, #9, 5, 2),  (#5, #10, 4,  2),  (#7, #11, 3,  2),   

We observe that out of the 5 reuse pairs of memory accesses, 4 reuse pairs are classified 

into the 2nd interval, and 1 reuse pair is classified into the 3rd.  The RDD feature (for n=5 

intervals) for the example memory address stream can be represented by the following vector: 

RDD16 = <0, 0.8, 0.2, 0, 0> i.e. 80% of the reuse distances are in the 2nd interval and 20% of the 

reuse distances are in the 3rd interval. 

 

7.2   Comparing RDD and BBV features for phase classification 

As described in section 4, normalized standard deviation  is a more reliable and insightful 

metric as compared to the final error in CPI for comparing two features used for phase 
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classification.  We therefore used normalized standard deviation metric for comparing the RDD 

and BBV features.  We used the 8 programs listed in Table 1.  Similar to SimPoint, we divide the 

instruction stream of each program into intervals of 100 million instructions.  RDD feature (for 

memory line sizes of 16, 64, 256, and 4096 bytes) and the BBV features are measured for every 

interval of 100 million instructions.  The different clustering algorithms and distance measures 

that were used for clustering points in the BBV feature space are listed in Table 4.  For clustering 

the points in the RDD feature space, we used the CLARANS and k-means clustering algorithm 

each with Euclidean and cosine distance measures.  To evaluate the result in the target metric 

space (CPI), we gathered CPI data for the processor configuration described in Table 2.  The 

same configuration was used for validating SimPoint [3].   

In order to make a meaningful comparison between the two features, for every program, 

we selected the best (smallest normalized standard deviation in CPI) algorithm-distance pair for 

the RDD feature, and compared it with the best algorithm-distance pair for the BBV feature.  

Figure 5 shows a plot of the best algorithm-distance pair for RDD and BBV features for the 8 

program-input pairs used in this study.  

From these graphs we observe that, irrespective of the number of clusters, the RDD 

feature gives lower normalized standard deviation in CPI than the BBV feature for gcc-166, 

lucas, mcf, vpr-route, and art-110 programs. For gcc-166, the normalized standard deviation for 

BBV and RDD features are almost the same if 4 clusters are selected.  However, for 5 to 7 

clusters, the RDD feature shows a smaller normalized standard deviation as compared to the BBV 

feature (0.45 for RDD compared to 0.61 for BBV for 5 clusters).  For cluster sizes of 9 and 10, 

the normalized standard deviation for RDD feature is smaller than BBV feature by 11%.    For 

lucas, the normalized standard deviation for 4 clusters formed using the RDD feature is smaller 

than the normalized standard deviation from forming 10 clusters using the BBV feature.  This 

shows that lucas significantly benefits from the RDD feature as compared to the BBV feature. 

Forming more than 4 clusters using the BBV feature does not significantly benefit mcf.  The 

normalized standard deviation given by the BBV feature for 4 to 10 clusters is not very different, 

showing that the benefit from increasing the number of clusters is not very significant.  However, 

the normalized standard deviation for mcf using RDD feature is not only smaller than that of 

BBV, but also reduces from 0.45 to 0.33 when the number of cluster are respectively increased 

from 4 to 10.  For vpr-route, the normalized standard deviation for RDD is significantly smaller 

than BBV for 4 clusters (0.56 for RDD feature compared to 0.8 for BBV).  For all other clusters 

sizes, the normalized standard deviation for RDD feature is smaller by at least 24% than that for 

the BBV feature. The normalized standard deviation for art-110 is very small (0.25 for BBV  
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Figure 5. Normalized standard deviation in CPI for BBV and RDD feature for 8 program-input   

                pairs from SPEC CPU2000 integer benchmark suite. 
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feature and 0.22 for RDD feature) even when just 4 clusters are selected.  This shows that art-110 

substantially benefits from clustering using the BBV or RDD feature.  Although the normalized 

standard deviation for art-110  is small for the BBV feature, the RDD feature improves it by 

approximately 14% irrespective of the number of clusters that are selected.  

 

For bzip2-source, the graphs for both the features cross each other and hence we 

conclude that none of the features clearly outperforms the other. However, for vortex-1 and 

equake, the BBV feature always gives a lower normalized standard deviation in CPI as compared 

to the BBV feature.  
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8192 entries 

64 entries 

2048 entries; 4-way assoc. 

10 cycles 

 

Table 5:  Processor configurations for the additional two microarchitectures used to compare   

                RDD and BBV features 

 

For this processor configuration, the RDD feature is consistently better than the BBV 

feature for 5 out of the 8 benchmark programs. However, it is possible that the RDD feature is 

better than BBV just for the microarchitecture configuration that was selected for this experiment.  

Therefore, we feel that it is important to evaluate RDD and BBV features on microarchitectures 
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that are very different from the one chosen for this experiment.  We therefore selected two 

configurations, same as those used for evaluation of SMARTS sampling methodology [18], as 

additional points to compare BBV and RDD features.  We repeated our experiment with the 8 

benchmark programs for the two microarchitecture configurations. Table 5 shows the 

microarchitecture details of the two configurations.  Figure 6 shows a plot of the best algorithm-

distance pairs (for normalized standard deviation) for RDD and BBV features for the gcc-166 

program on the two microarchitectures.  The graphs for the other 7 programs are in Appendix B 

for the 8-way configuration and in Appendix C for the 16-way configuration.  
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(a) 8-way processor configuration  (b) 16-way processor configuration 

 

Figure 6. Normalized standard deviation in CPI for BBV and RDD features (for gcc-166 program) 

 

We again observe that the RDD feature gives lower normalized standard deviation in CPI 

than the BBV feature for the same five programs, gcc-166, art, lucas, mcf, and vpr-route 

programs.  For bzip2-source, none of the features clearly outperformed the other.  For equake and 

vortex-1 programs, the BBV feature gives a lower normalized standard deviation in CPI as 

compared to the RDD feature.   

In this study, we found that the RDD feature is consistently better than BBV for phase 

classification in 5 out of 8 programs that we used.  The validation using three different 

microarchitecture configurations has increased our confidence that the results are independent of 

the microarchitecture and are generally applicable.  This suggests that the best feature for finding 

phases is program dependent.  However, the best feature for every program often holds true on 

different microarchitecture configurations.  Based on these results, we feel that one can select the 

best feature for a program using one microarchitecture and also use it on similar 

microarchitectures.    
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7.3   Comparing clustering algorithm-distance measure for RDD feature 

 In this section, we compare the quality of CLARANS and K-means clustering algorithms 

for clustering using the RDD feature. We use the Average Distance (AD) metric to compare the 

quality of clusters in the RDD feature space.  Figure 7 shows the graphs for the AD for different 

number of clusters for gcc-166.  The graphs for the other 7 programs are in Appendix D.  We 

observe from the graphs that for all the programs, irrespective of the distance measured used and 

the number of clusters formed, CLARANS clustering algorithm shows a lower AD as compared 

to the k-means algorithm.  On the three different microarchitectures, for the RDD feature, 

CLARANS algorithm produces more homogeneous phases in CPI in most cases than k-means 

algorithms.  This observation with RDD agrees with our previous conclusion with BBV, that, in 

general, CLARANS produces more homogeneous phases in CPI. 
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Figure 7.   Average Distance for different number of clusters in the RDD feature space  

                   (for gcc-166 program) 

8.    Conclusion  
 
In this paper, we proposed to use a set of statistical metrics, and showed that, unlike error 

in target metric space, these metrics are very reliable, insightful, and provide a deeper 

understanding of the quality of clustering in representative sampling.  We used these metrics to 

evaluate the benefit from using CLARANS clustering algorithm and cosine distance measure.  

We proposed and evaluated a new data locality based microarchitecture independent feature, 

RDD, for phase classification in a program.   

Our experiments showed that for BBV and RDD features, for all benchmarks, 

CLARANS produces more cohesive clusters in the feature space as compared to the k-means 

clustering algorithm.  CLARANS algorithm also results in more homogeneous phases in CPI for 

many, but not all, benchmarks. From this we can conclude that a better clustering algorithm can 
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improve the quality of clustering in the feature space, but the benefit obtained in the target metric 

space also depends on the correlation between the feature and the target metric. 

  The new feature that we propose, RDD, is consistently better than BBV for phase 

classification in 5 out of 8 programs on three different microarchitectures. Therefore, the best 

feature for finding phases is program dependent, but often holds true on different 

microarchitecture configurations.  This helps the user to choose the best feature for more efficient 

microprocessor simulation.  The user can select the best feature for a program using one 

microarchitecture, and be confident that the results can be used on different microarchitectures.  
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Appendix A 

Average Distance (AD) Metric for BBV feature using cosine distance measure 
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Appendix B 

Normalized Standard Deviation in CPI for 8-way configuration (RDD feature) 
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Appendix C 

Normalized Standard Deviation in CPI for 16-way configuration (RDD feature) 
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Appendix D 

Average Distance (AD) Metric for RDD feature 
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