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Abstract into this category, such as web servers and OLTP
applications.

Commercial throughput workloads are very These commercial throughput workloads are
important and significantly different from SPECcpu significantly different from SPECcpu benchmarks.
benchmarks. We present our study on the simulationThe performance metric for SPECcpu is based on the
methodology for one such workload, SPECjbb2000. entire execution time of the program. The perfaraea
Our result shows that the CPI correlates well with Of commercial throughput workloads, however, is
transaction throughput, thus can be used as a valid measured in the throughput of some high-level
performance metric in simulation. We investigate t  transactions (e.g. number of database transactiens
applicability of SimPoint technique to SPECjbb2000. minutes) during the steady state.

It is shown that cluster analysis of BBV can The most important difference between SPECcpu
successfully identify phases. With only a smathiner and commercial throughput workloads is determiaisti
of clusters we can reap most of the benefits oh suc Vs. nondeterministic behavior. SPECcpu prograras a
analysis. It is observed that a stationary mairaggn ~ deterministic. ~ Given the same input data set, they
dominates the execution of the benchmark. Empjoyin generate (almost) the same instruction stream émyev
the Standardized Time Series technique in discretefun. Commercial throughput workloads, on the other
event simulation theory, we propose a method tohand, are nondeterministic. The instruction stresm
accurately measure the CPI for the main phase with different in each run on a real machine. The
only one checkpoint. The error in the result dsn nondeterminism has two sources. One is the
quantified with a confidence interval. Moreoveret  Sensitivity of multithreaded workloads to the
simulation automatically stops when the user's Variability in the environment. In each run of the

accuracy requirement is met. benchmark the interrupts of timer may come at #iygh
different time; the disk accesses may exhibit défife
1. Introduction latency. All these can affect the operating sy&em

scheduling of the threads and change the execution

Simulation is the most important tool for computer path of the code. The other source of nondetesmini

architects to evaluate design trade-offs. However in qommercial throughput workloads is inherent by
- 'design. These workloads are usually driven by a

detailed simulation of modern benchmarks is ¢ d b q th d of th
extremely time-consuming. Various methods have séquence of random numbers and thé seed ot the
been proposed to reduce the simulation time. Mbst _random number generator Is d|fferen_t In each_rEnr :
the research has been focusing on SPECcpu benchmaﬂ?smnce’dthbe sequencj:e of reqll;ests In SPECJbbf_OgO_'
suite, which consists of CPU-intensive programs it gencejrz(ajte 'thytha ran OT nu;n ert_gener_?';]or, ]YV N thls
single thread. Commercial workloads such as databa seeded with the current system time. erefore,
systems are very important in the business world, b benchmark is designed to execute_ differently inheac
their simulation methodology has not been studied a r;]m aﬂd thel perfkormanc_e_ mletrlc O.f stleady-state
thoroughly. Single threaded commercial workloads t r%ug put on¥mr? es ;tatlstlca ser;sehm almgr |
largely resemble SPECcpu benchmarks. In this paper h ecr?use 0 tkle éjmque_nesls 0 t E;] commercia
we focus on commercial workloads that have multiplet roughput  workloads, ~simulating them  poses
additional problems that do not exist in the sirtiata

thread d wh f Tgetri :
reads (or processes) and whose performance reric of SPECcpu programs. First, for SPECcpu benchmarks

throughput.  We refer to them asommercial CPl or IPC i id verf tric in simidat
throughput workloadsMany important workloads fall or IS a valid perlormance metric in Simiia
because the instruction stream exhibits little atéon

from run to run. However, the relationship between



throughput of transactions and CPI may be more
complicated in commercial throughput workloads,
which raises the question about the validity ofngsi
CPI as the performance metric in simulation

Second, the SimPoint methodology [3] is popularly

used to reduce the simulation time for SPECcpu (see

next section), but its applicability to commercial
throughput workloads needs further investigation.
Patil et. al. [10] pointed out the difficulty in plying
SimPoint methodology to commercial throughput
benchmarks in actual execution environment dueo t
nondeterminism. Another shortcoming of SimPoint is
that it does not give a confidence interval for timal
result to quantify the error. We want to investigthe
applicability of SimPoint and (partially) solve the
problem of lack of confidence interval.

The third problem is the high storage requirement i
simulation.  In SimPoint, predefined chunks of
instructions in each phase, calithulation pointsare
simulated. There are 3 ways to simulate these
predefined simulation points. In one way, the
simulator can switch between fast forwarding and
detailed simulation modes. It only enters detailed
simulation mode while simulating the simulation
points and fast-forwards all other instructions in
between. The second way is to store the tracedoh e
simulation point. And the third method is to stohe
state of the whole system at the start of eachlaiion
point in a checkpoint file. The simulator can trstart
from the checkpoint and do an execution-driven
simulation for each simulation point. Because
modification in  microarchitecture  configuration
changes the execution path, the first two methods a
less accurate and checkpointing gives the most vali
execution path. However, checkpointing requiregda
storage.
incremental checkpointing, each checkpoint requires
10 — 256MB space. Taking tens of checkpoints can
easily amount to Gigabytes of disk storage.

The nondeterminism in commercial throughput
benchmarks raises challenging problems. On theroth
hand, it also provides opportunity for designingtdre

and is affected by randomness in the environment.
Therefore, they can and should be studied as stticha
processes. Taking advantage of the large body of
discrete-event simulation theory, we can desigtebet
experiments and make rigorous statistical inference

In this research we use SPECjbb2000 as a case
study for commercial throughput workloads.
SPECjbb2000 (Java Business Benchmark) evaluates
the performance of server-side Java. It emulates a
three-tier client/server system with emphasis oa th
middle tier. The multithreaded benchmark models a
wholesale company with warehouses serving a number
of districts. The performance metric is based oa th
average number of transactions processed per second
In this paper, we make the following contributions:
We study the validity of using CPl as the
performance metric for commercial throughput
workloads. We investigate the applicability of
SimPoint methodology to commercial throughput
workloads for identifying phases and for selecting
simulation points.
We propose a dynamic stopping rule technique
based on the output analysis method in discrete-
event simulation, which can quantify the CPI of
the main phase (over 90% of the total execution)
with a confidence interval. Moreover, the
simulation can automatically stop once the user’s
specified accuracy requirement is met. The
technique reduces storage cost by requiring only
one checkpoint for the main phase.

2. Related work

Sampling is the most widely used method to reduce
simulation time while retaining good accuracy. A

In our experiment, even with compressedpethora of sampling techniques has been desigired.

this paper, we are interested in a group of samplin
techniques, which we calépresentative samplingin
representative sampling, the entire instructioaastr is
divided into chunks of instructions. Some featige
extracted from each chunk, and then cluster arslysi
based on the feature is performed to group thekshun

simulation methodology because the nondeterministicnio clusters so that the chunks in each cluster ar

behavior makes the simulation amenable to the yheor
in discrete-event simulation. Research in diserete
event simulation studies stochastic simulation ngde
in which the simulation is driven by random inpatxl

similar to each other. One chunk from each cluster,
called a simulation point, is selected to repreghat
whole benchmark. SimPoint [3] is the most
acknowledged representative sampling technique. In

generates output sequence that is also a stochastigimpoint the Basic Block Vector (BBV) of each chunk

process. The execution of commercial throughput

of instructions is used as the feature for cluster

workloads is driven by a sequence of random ””mbersanalysis. A basic block is a sequence of instonstin

! Lepak et. al. published the paper “Redeeming IP& performance
metric for multithreaded programs” [8]. Despiteethitle, they
focused on handling the nondeterminism in the vearitland did not
correlate throughput metric to IPC.

a program with a single entry point, single exiinpo
and no internal branches. The BBV is usually high
dimensional (thousands to hundreds of thousandd), a
hence random projection is performed on the data to



reduce the dimensionality before cluster analysis. of SPECjbb has ended. Then we take a checkpaiht an
Variance SimPoint and Early Start SimPoint [2] are start Micro Architectural Interface (MAI) mode

two improvements to the original SimPoint. Other simulation. Before taking performance measurement,
representative sampling techniques include SPECIitewe also warm up the microarchitecture structures

[4], RDI [1] andx?*-distance based approach [14]. (caches, branch predictor, etc) [5][6][7].

All of the above research focuses on SPECcpu Table 1. System configurations
benchmark suite. Patil et. al. [10] applied Sinm®oi Configuration 1 | Configuration 2
methodology to commercial workloads running on [Processor Clock frequency 1GHz

Fetches, executes, retires, and

Intel Itanium machines. They instrumented the code -S> ;
commits 4 instructions per cycle

with Pin tool to gather the BBV profile of the

benchmark and select the simulation points. Most of L1 Organi- | 32 Kbytes, 8-way set associative, b4
. . . instruc- |zation bytes/line
their benchmarks were run in single-threaded mode.ion cach
Latency | 1 cycle 2 cycles

Their result showed that representative samplingksvo
well for such benchmarks. However, they observed|_1 datgOrgani- | 32 Kbytes, 8-way set associative, p4
that it was difficult to apply the same methodoldgy  |cache |zation | bytes/line

multithreaded commercial benchmarks in their Latency | 1 cycle | 2cycles

experiment. They executed the benchmarks on realL2 cache |Organi- | 2 Mbytes, 8-way set associative, 64

machines. Due to the nondeterminism in the zation | bytes/line

multithreaded programs, the simulation points Latency | 6 cycles 9 cycles

identified in one run may not exist in another run. Memory 2 Gbytes, 832 Gbytes, 99
Alameldeen and Wood [9] studied the cycle latency | cycle latency

nondeterminism in multi-threaded workloads. They . o

showed that because of the nondeterminism a short. Phaseidentification

simulation could lead to wrong conclusion in

evaluating microarchitecture changes. To deal thith In this section we examine the overall behavior of

nondeterminism caused by the variability in the SPECjbb and try to answer the questions: 1. IstiiPl

environment, they proposed adding small artificial @ valid performance metric? 2. Is SimPoint

perturbations in memory latency. methodology still applicable to simulating SPECjbb?
Lepak et. al. [8] also studied nondeterminism in  We first correlate CPI to the high level throughput

multithreaded workloads on multi-processor machines The throughput we use is number of transactions per

They proposed a method to record synchronizationmillion cycles. We measure the throughput and CPI

events into a trace file on an execution-driveri-ful for the two configurations. We then calculate the

system simulator. An artifactual determinism-delgy  speedup in throughput and in CPl and compute the

injected to introduce the same synchronization even difference in the two speedups. If the differense

into a new simulation. zero, then CPI will be a performance metric equmal
to throughput. The result is shown in Table 2.eTh
3. Experiment setup difference is small, about 1.68% for 30-warehouse

setup and 1.06% for 2-warehouse setup. Therefare,
We use Simics [13], a commercial full system would conclude that CPI and throughput correlaté we
simulator, to simulate a SunFire server runninga8sl N the simulation of SPECjbb, the difference betwee

9. The clock frequency of the processor is set to SP€edup in throughput and speedup in CPI is very
1GHz. Using the microarchitecture model in Simics, SMall and can probably be ignored in most practical
we modeled two configurations with different cache US€S- In the rest of our paper, we use CPI asnaim
latencies as shown in Table 1. performance metric. One caveat here is that SRECjb
We run SPECjbb benchmark with two different h_as_a_llmost no I/Q _activity. If a_benchmark extgbit
setups, 2 warehouses and 30 warehouses. In this wa significant I/O activity such as disk accessesnthe
we can see how our simulation methodology performs faster processor may spend (relatively) more time
with a wide range of benchmark parameters. For theWaiting for I/O, and CPI may be a poor indicator fo
small setup, the heap size is fixed at 256MB, and f throughput. _
the big setup, the heap size is initially 768MB and e then get an overview of the CPI graph of the
allowed to increase to a maximum of 1.5GB. benchmark. We measure the CPI for every chunk of 1
We only study the behavior when the benchmark is Million instructions.  Figure la and 1b show
in steady state. This can be done by doing cache'espectively the CPI graph for 30-warehouse setup a

simulation in functional mode until the ramp-upipdr ~ fOr 2-warehouse setup running on configuratiorOLir
simulation is too long to display clearly so onlgripof



CPI

the result is shown. The results running on
configuration 2 are very similar thus not showneher
Table 2. Speedup for throughput and CPI for

configure 1 vs. configuration 2.
Warehouses 30 2
Configuration 2 1 2 1
Transactions 112572 112429 143560 135104
Cycles (16) 33374 20474 36893 215301
Throughput 3.3730 5.4913 3.8912 6.2749
(trans/18cycles)

Speedup in 1.624 1.613
throughput

CPI 3.3031 2.6352 3.0804 1.9307
Speedup in CPI 1.601 1.595
Difference 1.689 1.069
between speedup

CPI
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Figure la. CPI of every 1 million instructions for
30-warehouse setup on configuration 1.
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Figure 1b. CPI of every 1 million instructions for
2-warehouse setup on configuration 1.

On the first order, the execution can be viewed as
stationary phase interrupted periodically by some
unusual activity with very high CPIl. We call that
stationary phase thmain phase We suspect that the
high CPI activity is the garbage collection, so we
develop a profiler through Java Virtual Machine
Profiler Interface (JVMPI). Upon the start andpstaf
the garbage collection, the profiler generates mank
our trace file. The short vertical lines in Figura and
1b mark the boundary of the garbage collection
activity. As we can see, the high CPI activity is
aligned with the garbage collection. Further

instrumentation of the benchmark shows that during of the benefit of doing clustering analysis.
the garbage collection period, no transactions are

the execution of SPECjbb, More formally, NSD is the ratio of the variation in the sample

completed. Therefore,
consists of the main phase of transaction procgssin
and periodical garbage collection.

We then examine the effectiveness of applying a
methodology similar to SimPoint. The BBV for edch
million-instruction chunk is collected. K-meansister
analysis is performed to group them into clusters o
similar chunks. Each cluster corresponds to aghas
For SimPoint technique to work well, the CPI valoés
the chunks in the same cluster/phase should be very
close to each other. In other words, the CPI aloe
each cluster/phase should be homogeneous.
evaluate the homogeneity of the clustering reswut,
use Normalized Standard Deviation (NSD), defined as

NSD= /(ﬁ%sf)/s,

where n; is the size of cluster. S is the standard
deviation of CPI in cluster. n is the total number of
chunks andS is the standard deviation of CPI for all
chunks. The lower NSD, the more homogeneous the
phases are. NSD is a statistically sound metiic.
shows how much we have gained from taking the extra
effort to do the clustering compared to simple mand
sampling. If NSD is close 1, then the CPI in each
cluster is as varied as in the whole benchmaiik.like
randomly grouping data points into clusters and no
reduction in variance is achieved in each phaseth®
other hand, if NSD is close to 0, then the CPI iiema
almost constant in each phase and our result will b
much more accurate than simple random sampling.

To
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Figure 2. Normalized standard deviation for CPI
for different number of clusters.

We vary the number of clusters from 2 to 20. The
NSD result is shown in Figure 2. Many of the value
are much smaller than 1. Therefore, doing clusteri
can significantly improve the accuracy of the santpl
result. We also observe that NSD drops quicklthat
beginning of the curve and then decreases sloWhys
means that by dividing the benchmark into a small
number (3-5) of clusters/phases, we can capturd mos
Thes

mean for proportional stratified sampling to theriaton in the
sample mean of simple random sampling with the ssangple size.
See [17] for detall.
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consistent with the CPI graphs in Figure 1, whices
not exhibit a large number of phases visually.

The clustering is done with microarchitectures
independent BBVs whereas the phases we see
Figure 1 are for CPI, which is microarchitecture
dependent. It has been demonstrated that for SRECc
programs clusters correspond well with CPI pha3gs [ e retnetens
We would like to verify it for SPECjbb. With a stha
number of clusters, this can be inspected visually *
Figure 3a shows the CPI for each chunk of instomsti
and Figure 3b shows the cluster number each chui
belongs to. To make the figure legible, only a kma
part of the total clustering result is shown. Fed ‘ , ‘ ‘ ‘
shows the same result for 30-warehouse setup ¢

millian instructions

configuration 1. The cluster analysis generally Figure 4. CPIl and cluster number for each chunk
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identified the main phase and the garbage collectio of instructions for 30-warehouse setup on
phase correctly. Compared with marking the garbage configuration 1. _
collection activity with JVMPI, the cluster analydias In the next section, we propose a solution based on

certain advantages. First, it can further identifip ~ OUtPUt analysis techniques in discrete event sifiouia
phases within garbage collection. It is clear igufe theory: Our_goal is to 1) put a confidence mtéma_

4a that there are phases within garbage collectiod, ~ the simulation result and make the simulation
the cluster analysis identified them as shown gupg ~ automatically stop based on the users accuracy
4b. Second, cluster analysis can identify sporadic'eduirement, and 2) store as few checkpoints as
outliers in the main phase as we can see in bafiwr&i possible.

3 and Figure 4. However, as shown in Figure 4, _ _ _ _
clustering result is not 100% correct. It mistakest 5. Dynamic stopping rule for simulating

of the garbage collection as the main phase. throughput benchmarks
One problem with SimPoint is that it does not give
confidence interval for the final result. Thussithard In discrete-event driven simulation theory, the

for the user to quantify the error. One way tosedhis commercial throughput workloads belong to
problem is to use stratified sampling [17][18]. nonterminating simulation, where there is no ndtura
However, stratified sampling requires multiple data event to specify the length of the simulation artkre
points from each cluster to generate an accuratethe user only cares about the steady state perfuena
estimation of confidence interval, resulting ingar  Nonterminating processes are usually stationary.
storage cost for checkpoints. Looking at Figure 1a and 1b, we can see that there
is no steady state distribution in CPI becausehef t
periodical garbage collection activity. Howevédrwie
ignore the garbage collection and focus only on the
main phase, it is a stationary process. In thenmai
phase the program processes the transaction request
. which are generated by a sequence of random numbers
The sequence of random numbers is stationary and
e et thus the characteristic of the output CPI procesed
by the random numbers is also in a state of stalst
equilibrium.
7 To identify the main phase, we first use the cluste
ER - analysis. We group the BBVs into 3 clusters, from
. which we can identify the main cluster. Howeves, a
R : . . . ‘ ‘ shown in Figure 4, some garbage collection activity
can be misclassified into the main cluster, so 8e a
e use JVMPI to mark the beginning and the end of
Figur_e 3 CPI_and cluster number for each chunk garbage collection. In this way we get the maiageh
of instructions for 2-warehouse setup on after removing the garbage collection and some
configuration 1. outliers. Table 3 shows the percentage of the main

B - ¥




phase in the whole benchmark execution. In aksas the near future will be similar to the present. the
more than 90% of the instructions executed ardén t distance increase, the temporal locality becomes
main phase. Therefore, from now on, we focus only = weaker. And two chunks of instructions far away
the main phase and try to design a simulation should be independent. In fact, Schruben demdasdtra

methodology for it. that almost all stationary finite state discretemyv
Table 3. Percentage of instructions executed in computer simulations satisfy the assumptions fos ST
the main phase [11].

Warehouses | Configuration | Percentage In STS all data points are divided inbbbatches
in  main each containingn consecutive data points, so that the
phase total number of data points ameb*m. The confidence

2 1 95.6% interval can be calculated as follows.

2 2 95.3% ol =7+t g

30 1 92.6% Toralzat

30 2 92.0% where

Constructing the confidence interval for the mean 713y :EZDZV
performance metric is a tricky problem because the ng ' bg ™"

CPI values have autocorrelation. There are usuallyy = average of théh batch of sizen; t=value of the

three ways to do it. In the first method, the enark ) istribution: a=sianifi level- d

is run once for such a long period of time thagity Student t distribution; a.—5|gn| icance level, an
. . df=degrees of freedomb2i;

practical use the mean CPI from the long run is . ) ] ~

deemed the true mean. Because the user canrigt real ¢ =€stimate of0 , given by 0 =A/(2b-1)

afford such a long run, sampling is done within tine. where A:i[(leZ)/(ma_m)+m(\7_?im)2]

Confidence interval can be constructed from the it )

sampling result. The second method is to do nialtip A can be computed by the recursion

relative short runs of the benchmark. In each aun _ _ k=1, ..,m

different sequence of random numbers is used. NotA(k+1) = Al +12(kY ;Y”)

only _the _ random number driving the artificial \yip Y,;=jth observation of thith batch, and\(0)=0
variability in memory latency should be changed th Based on the above discussion, we propose the
random seed in the benchmark that generates thgg|iowing procedure to measure the CPI for the main
sequence of transaction requests must also bedvarie phase of commercial throughput workloads.

Because the multiple runs are statistically indejpei, 1.  Use cluster analysis of BBVs and profiling to
the confidence interval can be constructed with jgentify the main phase. Find a long consecutiag p
classical statistics for independent data. _ Thm U of the phase and dump a checkpoint at the beginning
methods suffer from the problem of requiring many o Starting from the checkpoint, warm up the

checkpoints. The third method is to try constngta microarchitecture and simulateng*b chunks of
confidence interval from just one simulation of ,stryctions.

moderate length. Unlike the previous two methods, 3 calculate the confidence interval. If it meets
only one checkpoint is needed. The length of glein e yser's accuracy requirement, stop.

simulation run is sequentially increased untl an  ,  continue simulating addition@im*b chunks
“acceptable” confidence interval can be constructed i« ctions (i.em=m+Am), go to step 3.

thus it is often calledequential procedure There are We need a long consecﬂtive part of the main phase

several techniques for deciding when to stop the i, gion 1 pecause the changes in microarchitecame

smg_lf?tmn trup hni ke diff i i affect the execution path. A long consecutive part
Iiferent techniques make differént assumplions .,y jt very unlikely that our simulation will ayr to

abcl)lut tlhe_aut_(t)cotr_relatlorr:, SO _? techmqus_ usuaﬂg(ds:v a different phase on a different microarchitecture
well only in situations where 1t assumptions aa configuration. We start with batch size. It is not

We use the dynamic stopping rule based on isabl -1 h fi : |
Standardized Time Series (STS) proposed by Schrube advisable to sefry=1 because the confidence interva

[11]. The assumption of STS is weak. The mai from STS is not very accurate when the simulat®n i
assumption is phi-mixing. An intuitive explanatiés
that a phi-mixing process is random enough sottiet
distant future is essentially independent of thst [
present. This is consistent with our observatién o
temporal locality. With temporal locality, the tzafior

of the program (e.g. address of memory accesses) ifand:

" too short.Am is a tradeoff between calculation and
simulation. IfAm is very small, the simulation can
stop as soon as the result meets the user’s agcurac
requirement, but the calculation of confidence rivaé
may be done many times along the way. On the other
ifAmis large, we may do more simulations than



necessary but we don’t need to do as many calonkti
of confidence interval.

each. Table 5 gives the result for the overalleacy.
For comparison, the result based on SimPoint 2.0 is

This method has several advantages. First, it givesalso shown. Even with simulating fewer instructions

the confidence interval to quantify the simulatresult
of the main phase.
when it meets the user’s accuracy requirementrdT hi
it needs only one checkpoint for the entire maiaggh

We conduct an experiment to evaluate the dynamic
stopping rule in the simulation of SPECjbb. Thardh

size is reduced to 1000 instructions because STSother.

requires many chunks to give an accurate resule W
setb=15 following [12]. Figure 5 shows the relative
error limit (i.e. half confidence interval dividday the
mean) at 95% confidence level for different simolat
lengths. The confidence interval generally becomes
narrower as the simulation length increases. Biffe
setups show different decreasing rate but within 1

our relative error is much smaller. The errors are

Second, the simulation can stopsmaller than those in Table 4, which indicates that

error in main phase and error in the remaining part
happened to cancel each other in the experiment. T
remove this “good luck”, in column 4 we show the
maximum error if the two errors would add to each
This maximum error is still smaller than
SimPoint. The benefit comes from the accurate
estimation of the CPI for the main phase, which
comprises over 90% of the total instructions.

Table 4. Simulation length to achieve 3% relative
error limit at 95% confidence level, and the real
error in CPI.

million instructions, all the errors reach or godve

2%. As an example, suppose that the user chooses

accuracy requirement of 3% relative error with 95%

confidence. Table 3 shows the simulation length

required as well as the real error. (When caloujat

Warehouses | Configu- | Simulation length | Real
a ration (10%instructions) | error
i 2 1 1.65 1.2%
2 2 1.65 0.7%
30 1 5.55 1.4%
30 2 2.85 1.3%

the real error we assume that the mean CPI of #ia m
phase of the whole simulation is the true mean.) By
simulating a few million instructions, the relatieeror
limit can be reduced to within 3%, and the reabers
indeed within the specified limit.

Relative Error Limit

12%

—e— 2 warehouses config 2

10% —=a— 2 warehouses config 1

—a— 30 warehouses config 1
8% L

—%— 30 warehouses config 2

6% -

4% -

2%

0%

4000 6000 8000

1000 instructions

2000 10000

Figure 5. Relative error limit for the main phase
at 95% confidence level for different simulation
length.

The above result shows the accuracy of our method

for the main phase, which is the major part of the
benchmark execution. Next, we evaluate the overall
accuracy. To get the overall mean CPI, we usderus
analysis of BBV on the remaining part of the
benchmark execution. Analysis similar to previous
section shows that about 3 clusters should reap afios
the benefit of clustering. Therefore, a total of 4
checkpoints are needed, 1 for the main phase, dod 3
the remaining part. Checkpoints for the main plzase
simulated for the length listed in Table 4. Thaeot
checkpoints are simulated for 1 million instrucgon

Table 5. Comparing the overall simulation length
and accuracy with SimPoint

Ware-| Config- Dynamic stopping rule SimPoint
houseguration| Simulation| Max True |Simulation| True
length (16| relative | relative | length (16 |relative
instr) error | error instr) error
2 1 4.65 2.49% 0.82% 13| 3.9%
2 2 4.65 3.29%9 0.20% 20| 5.1%
30 1 8.55 2.99% 0.85% 10| 3.2%
30 2 5.85 4.0% 0.31% 15| 5.5%
6. Conclusions and future work
Commercial throughput workloads are very
important in the business world. They differ

significantly from SPECcpu benchmarks. Because of
multithreading, the execution of the benchmark is
nondeterministic. However, the simulation
methodology for them has not been well studiedoas f
SPECcpu benchmarks.

We have studied one commercial throughput
workload, SPECjbb2000. It is observed that CPI
correlates well with transaction throughput. Tlere,

CPl is a valid performance metric in the simulation
We applied SimPoint methodology to SPECjbb2000.
BBV can be used successfully to identify the phades
the benchmark. Our result shows that a small numbe
of phases can capture most of the benefit. The mai
phase, which consists of transaction processing,
dominates the execution. Therefore, to get aceurat
final results, accuracy for the CPI in main phase i
most important.

We propose a method based on the Standardized
Time Series technique to simulate the main phase



chunk size should be set such that the main plsase i[6] L. Eeckhout, S. Eyerman, B. Callens, and K. De
stationary. The stationary main phase is identifie Bosschere. Accurately warmed-up trace sampleshéor t
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