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Abstract 

 
Commercial throughput workloads are very 

important and significantly different from SPECcpu 
benchmarks.  We present our study on the simulation 
methodology for one such workload, SPECjbb2000. 
Our result shows that the CPI correlates well with 
transaction throughput, thus can be used as a valid 
performance metric in simulation.  We investigate the 
applicability of SimPoint technique to SPECjbb2000.  
It is shown that cluster analysis of BBV can 
successfully identify phases.  With only a small number 
of clusters we can reap most of the benefits of such 
analysis.  It is observed that a stationary main phase 
dominates the execution of the benchmark.  Employing 
the Standardized Time Series technique in discrete 
event simulation theory, we propose a method to 
accurately measure the CPI for the main phase with 
only one checkpoint.   The error in the result can be 
quantified with a confidence interval.  Moreover, the 
simulation automatically stops when the user’s 
accuracy requirement is met.  
 
1. Introduction 
 

Simulation is the most important tool for computer 
architects to evaluate design trade-offs.  However, 
detailed simulation of modern benchmarks is 
extremely time-consuming. Various methods have 
been proposed to reduce the simulation time.  Most of 
the research has been focusing on SPECcpu benchmark 
suite, which consists of CPU-intensive programs with a 
single thread.  Commercial workloads such as database 
systems are very important in the business world, but 
their simulation methodology has not been studied as 
thoroughly.  Single threaded commercial workloads 
largely resemble SPECcpu benchmarks.  In this paper, 
we focus on commercial workloads that have multiple 
threads (or processes) and whose performance metric is 
throughput.  We refer to them as commercial 
throughput workloads. Many important workloads fall 

into this category, such as web servers and OLTP 
applications. 

These commercial throughput workloads are 
significantly different from SPECcpu benchmarks.  
The performance metric for SPECcpu is based on the 
entire execution time of the program.  The performance 
of commercial throughput workloads, however, is 
measured in the throughput of some high-level 
transactions (e.g. number of database transactions per 
minutes) during the steady state. 

The most important difference between SPECcpu 
and commercial throughput workloads is deterministic 
vs. nondeterministic behavior.   SPECcpu programs are 
deterministic.  Given the same input data set, they 
generate (almost) the same instruction stream in every 
run.  Commercial throughput workloads, on the other 
hand, are nondeterministic.  The instruction stream is 
different in each run on a real machine.  The 
nondeterminism has two sources.  One is the 
sensitivity of multithreaded workloads to the 
variability in the environment.  In each run of the 
benchmark the interrupts of timer may come at slightly 
different time; the disk accesses may exhibit different 
latency.  All these can affect the operating system’s 
scheduling of the threads and change the execution 
path of the code.  The other source of nondeterminism 
in commercial throughput workloads is inherent by 
design.  These workloads are usually driven by a 
sequence of random numbers and the seed of the 
random number generator is different in each run.  For 
instance, the sequence of requests in SPECjbb2000 is 
generated by a random number generator, which is 
seeded with the current system time.  Therefore, the 
benchmark is designed to execute differently in each 
run and the performance metric of steady-state 
throughput only makes statistical sense in a long run. 

Because of the uniqueness of the commercial 
throughput workloads, simulating them poses 
additional problems that do not exist in the simulation 
of SPECcpu programs. First, for SPECcpu benchmarks 
CPI or IPC is a valid performance metric in simulation 
because the instruction stream exhibits little variation 
from run to run.  However, the relationship between 
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throughput of transactions and CPI may be more 
complicated in commercial throughput workloads, 
which raises the question about the validity of using 
CPI as the performance metric in simulation1.   

Second, the SimPoint methodology [3] is popularly 
used to reduce the simulation time for SPECcpu (see 
next section), but its applicability to commercial 
throughput workloads needs further investigation.  
Patil et. al. [10] pointed out the difficulty in applying 
SimPoint methodology to commercial throughput 
benchmarks in actual execution environment due to the 
nondeterminism.  Another shortcoming of SimPoint is 
that it does not give a confidence interval for the final 
result to quantify the error.  We want to investigate the 
applicability of SimPoint and (partially) solve the 
problem of lack of confidence interval. 

The third problem is the high storage requirement in 
simulation.  In SimPoint, predefined chunks of 
instructions in each phase, called simulation points, are 
simulated. There are 3 ways to simulate these 
predefined simulation points.  In one way, the 
simulator can switch between fast forwarding and 
detailed simulation modes.  It only enters detailed 
simulation mode while simulating the simulation 
points and fast-forwards all other instructions in 
between. The second way is to store the trace for each 
simulation point. And the third method is to store the 
state of the whole system at the start of each simulation 
point in a checkpoint file.  The simulator can then start 
from the checkpoint and do an execution-driven 
simulation for each simulation point.  Because 
modification in microarchitecture configuration 
changes the execution path, the first two methods are 
less accurate and checkpointing gives the most valid 
execution path.  However, checkpointing requires large 
storage.  In our experiment, even with compressed 
incremental checkpointing, each checkpoint requires 
10 – 256MB space.  Taking tens of checkpoints can 
easily amount to Gigabytes of disk storage. 

The nondeterminism in commercial throughput 
benchmarks raises challenging problems.  On the other 
hand, it also provides opportunity for designing better 
simulation methodology because the nondeterministic 
behavior makes the simulation amenable to the theory 
in discrete-event simulation.  Research in discrete-
event simulation studies stochastic simulation models, 
in which the simulation is driven by random inputs and 
generates output sequence that is also a stochastic 
process.  The execution of commercial throughput 
workloads is driven by a sequence of random numbers 

                                                           
1 Lepak et. al. published the paper “Redeeming IPC as a performance 
metric for multithreaded programs” [8].  Despite the title, they 
focused on handling the nondeterminism in the workload and did not 
correlate throughput metric to IPC. 

and is affected by randomness in the environment.  
Therefore, they can and should be studied as stochastic 
processes.  Taking advantage of the large body of 
discrete-event simulation theory, we can design better 
experiments and make rigorous statistical inference. 

In this research we use SPECjbb2000 as a case 
study for commercial throughput workloads. 
SPECjbb2000 (Java Business Benchmark) evaluates 
the performance of server-side Java.  It emulates a 
three-tier client/server system with emphasis on the 
middle tier. The multithreaded benchmark models a 
wholesale company with warehouses serving a number 
of districts. The performance metric is based on the 
average number of transactions processed per second.  

In this paper, we make the following contributions: 
• We study the validity of using CPI as the 

performance metric for commercial throughput 
workloads.  We investigate the applicability of 
SimPoint methodology to commercial throughput 
workloads for identifying phases and for selecting 
simulation points. 

• We propose a dynamic stopping rule technique 
based on the output analysis method in discrete-
event simulation, which can quantify the CPI of 
the main phase (over 90% of the total execution) 
with a confidence interval.  Moreover, the 
simulation can automatically stop once the user’s 
specified accuracy requirement is met.  The 
technique reduces storage cost by requiring only 
one checkpoint for the main phase. 

 
2. Related work 
 

Sampling is the most widely used method to reduce 
simulation time while retaining good accuracy.  A 
plethora of sampling techniques has been designed.  In 
this paper, we are interested in a group of sampling 
techniques, which we call representative sampling.  In 
representative sampling, the entire instruction stream is 
divided into chunks of instructions.  Some feature is 
extracted from each chunk, and then cluster analysis 
based on the feature is performed to group the chunks 
into clusters so that the chunks in each cluster are 
similar to each other. One chunk from each cluster, 
called a simulation point, is selected to represent the 
whole benchmark.  SimPoint [3] is the most 
acknowledged representative sampling technique.  In 
SimPoint the Basic Block Vector (BBV) of each chunk 
of instructions is used as the feature for cluster 
analysis.  A basic block is a sequence of instructions in 
a program with a single entry point, single exit point, 
and no internal branches.  The BBV is usually high 
dimensional (thousands to hundreds of thousands), and 
hence random projection is performed on the data to 
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reduce the dimensionality before cluster analysis.  
Variance SimPoint and Early Start SimPoint [2] are 
two improvements to the original SimPoint.  Other 
representative sampling techniques include SPEClite 
[4], RDI [1] and χ2-distance based approach [14]. 

All of the above research focuses on SPECcpu 
benchmark suite.  Patil et. al. [10] applied SimPoint 
methodology to commercial workloads running on 
Intel Itanium machines. They instrumented the code 
with Pin tool to gather the BBV profile of the 
benchmark and select the simulation points. Most of 
their benchmarks were run in single-threaded mode.  
Their result showed that representative sampling works 
well for such benchmarks.  However, they observed 
that it was difficult to apply the same methodology to 
multithreaded commercial benchmarks in their 
experiment.  They executed the benchmarks on real 
machines.  Due to the nondeterminism in the 
multithreaded programs, the simulation points 
identified in one run may not exist in another run. 

Alameldeen and Wood [9] studied the 
nondeterminism in multi-threaded workloads.  They 
showed that because of the nondeterminism a short 
simulation could lead to wrong conclusion in 
evaluating microarchitecture changes.  To deal with the 
nondeterminism caused by the variability in the 
environment, they proposed adding small artificial 
perturbations in memory latency.   

Lepak et. al. [8] also studied nondeterminism in 
multithreaded workloads on multi-processor machines.  
They proposed a method to record synchronization 
events into a trace file on an execution-driven full-
system simulator.  An artifactual determinism-delay is 
injected to introduce the same synchronization event 
into a new simulation. 

 
3. Experiment setup 
 

We use Simics [13], a commercial full system 
simulator, to simulate a SunFire server running Solaris 
9.  The clock frequency of the processor is set to 
1GHz.  Using the microarchitecture model in Simics, 
we modeled two configurations with different cache 
latencies as shown in Table 1. 

We run SPECjbb benchmark with two different 
setups, 2 warehouses and 30 warehouses.  In this way, 
we can see how our simulation methodology performs 
with a wide range of benchmark parameters.  For the 
small setup, the heap size is fixed at 256MB, and for 
the big setup, the heap size is initially 768MB and 
allowed to increase to a maximum of 1.5GB. 

We only study the behavior when the benchmark is 
in steady state.  This can be done by doing cache 
simulation in functional mode until the ramp-up period 

of SPECjbb has ended.  Then we take a checkpoint and 
start Micro Architectural Interface (MAI) mode 
simulation.  Before taking performance measurement, 
we also warm up the microarchitecture structures 
(caches, branch predictor, etc) [5][6][7]. 

Table 1. System configurations 
 Configuration 1 Configuration 2 

Processor Clock frequency 1GHz 
Fetches, executes, retires, and 
commits 4 instructions per cycle 

Organi-
zation 

32 Kbytes, 8-way set associative, 64 
bytes/line 

L1 
instruc-
tion cache Latency 1 cycle 2 cycles 

Organi-
zation 

32 Kbytes, 8-way set associative, 64 
bytes/line 

L1 data 
cache 

Latency 1 cycle 2 cycles 
Organi-
zation 

2 Mbytes, 8-way set associative, 64 
bytes/line 

L2 cache 

Latency 6 cycles 9 cycles 
Memory  2 Gbytes, 85 

cycle latency 
2 Gbytes, 99 
cycle latency 

 
4. Phase identification 
 

In this section we examine the overall behavior of 
SPECjbb and try to answer the questions: 1. Is CPI still 
a valid performance metric? 2. Is SimPoint 
methodology still applicable to simulating SPECjbb? 

We first correlate CPI to the high level throughput.  
The throughput we use is number of transactions per 
million cycles.  We measure the throughput and CPI 
for the two configurations.  We then calculate the 
speedup in throughput and in CPI and compute the 
difference in the two speedups.  If the difference is 
zero, then CPI will be a performance metric equivalent 
to throughput.  The result is shown in Table 2.  The 
difference is small, about 1.68% for 30-warehouse 
setup and 1.06% for 2-warehouse setup.  Therefore, we 
would conclude that CPI and throughput correlate well 
in the simulation of SPECjbb, the difference between 
speedup in throughput and speedup in CPI is very 
small and can probably be ignored in most practical 
uses.  In the rest of our paper, we use CPI as our main 
performance metric.  One caveat here is that SPECjbb 
has almost no I/O activity.  If a benchmark exhibits 
significant I/O activity such as disk accesses, then a 
faster processor may spend (relatively) more time 
waiting for I/O, and CPI may be a poor indicator for 
throughput. 

We then get an overview of the CPI graph of the 
benchmark.  We measure the CPI for every chunk of 1 
million instructions.  Figure 1a and 1b show 
respectively the CPI graph for 30-warehouse setup and 
for 2-warehouse setup running on configuration 1.  Our 
simulation is too long to display clearly so only part of 
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the result is shown.  The results running on 
configuration 2 are very similar thus not shown here. 

Table 2. Speedup for throughput and CPI for 
configure 1 vs. configuration 2. 

Warehouses 30 2 
Configuration 2 1 2 1 
Transactions 112572 112429 143560 135104 
Cycles (106) 33374 20474 36893 215305 
Throughput 
(trans/106cycles) 

3.3730 5.4913 3.8912 6.27490 

Speedup in 
throughput 

1.628 1.613 

CPI 3.3031 2.6352 3.0804 1.9307 
Speedup in CPI 1.601 1.595 
Difference 
between speedups 

1.68% 1.06% 

 
 
 
 
 
 
 
 
 
Figure 1a. CPI of every 1 million instructions for 

30-warehouse setup on configuration 1. 
 
 
 
 
 
 
 
 
 
 
Figure 1b. CPI of every 1 million instructions for 

2-warehouse setup on configuration 1. 
On the first order, the execution can be viewed as a 

stationary phase interrupted periodically by some 
unusual activity with very high CPI.  We call that 
stationary phase the main phase. We suspect that the 
high CPI activity is the garbage collection, so we 
develop a profiler through Java Virtual Machine 
Profiler Interface (JVMPI).  Upon the start and stop of 
the garbage collection, the profiler generates marks in 
our trace file.   The short vertical lines in Figure 1a and 
1b mark the boundary of the garbage collection 
activity.  As we can see, the high CPI activity is 
aligned with the garbage collection.  Further 
instrumentation of the benchmark shows that during 
the garbage collection period, no transactions are 
completed.  Therefore, the execution of SPECjbb 
consists of the main phase of transaction processing 
and periodical garbage collection.   

We then examine the effectiveness of applying a 
methodology similar to SimPoint.  The BBV for each 1 
million-instruction chunk is collected.  K-means cluster 
analysis is performed to group them into clusters of 
similar chunks.  Each cluster corresponds to a phase.  
For SimPoint technique to work well, the CPI values of 
the chunks in the same cluster/phase should be very 
close to each other.  In other words, the CPI values in 
each cluster/phase should be homogeneous.  To 
evaluate the homogeneity of the clustering result, we 
use Normalized Standard Deviation (NSD), defined as 

SS
n

n
NSD i

k

i

i /)( 2

1
∑

=
= , 

where ni is the size of cluster i. Si is the standard 
deviation of CPI in cluster i.  n is the total number of 
chunks and S is the standard deviation of CPI for all 
chunks.  The lower NSD, the more homogeneous the 
phases are.  NSD is a statistically sound metric.  It 
shows how much we have gained from taking the extra 
effort to do the clustering compared to simple random 
sampling2.  If NSD is close 1, then the CPI in each 
cluster is as varied as in the whole benchmark. It is like 
randomly grouping data points into clusters and no 
reduction in variance is achieved in each phase.  On the 
other hand, if NSD is close to 0, then the CPI remains 
almost constant in each phase and our result will be 
much more accurate than simple random sampling. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Normalized standard deviation for CPI 

for different number of clusters. 
We vary the number of clusters from 2 to 20.  The 

NSD result is shown in Figure 2.  Many of the values 
are much smaller than 1.  Therefore, doing clustering 
can significantly improve the accuracy of the sampling 
result.  We also observe that NSD drops quickly at the 
beginning of the curve and then decreases slowly.  This 
means that by dividing the benchmark into a small 
number (3-5) of clusters/phases, we can capture most 
of the benefit of doing clustering analysis.  This is 

                                                           
2 More formally, NSD2 is the ratio of the variation in the sample 
mean for proportional stratified sampling to the variation in the 
sample mean of simple random sampling with the same sample size. 
See [17] for detail. 

Normalized Standard Deviation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

number of clusters

st
d

ev

30 w arehouse config 2

30 w arehouse config 1

2 w arehouse config 2

2 w arehouse config 1



 5

consistent with the CPI graphs in Figure 1, which does 
not exhibit a large number of phases visually.   

The clustering is done with microarchitecture 
independent BBVs whereas the phases we see in 
Figure 1 are for CPI, which is microarchitecture 
dependent.  It has been demonstrated that for SPECcpu 
programs clusters correspond well with CPI phases [3].  
We would like to verify it for SPECjbb.  With a small 
number of clusters, this can be inspected visually.  
Figure 3a shows the CPI for each chunk of instructions 
and Figure 3b shows the cluster number each chunk 
belongs to.  To make the figure legible, only a small 
part of the total clustering result is shown.  Figure 4 
shows the same result for 30-warehouse setup on 
configuration 1.  The cluster analysis generally 
identified the main phase and the garbage collection 
phase correctly.  Compared with marking the garbage 
collection activity with JVMPI, the cluster analysis has 
certain advantages.  First, it can further identify the 
phases within garbage collection.  It is clear in Figure 
4a that there are phases within garbage collection, and 
the cluster analysis identified them as shown in Figure 
4b.  Second, cluster analysis can identify sporadic 
outliers in the main phase as we can see in both Figure 
3 and Figure 4.  However, as shown in Figure 4, 
clustering result is not 100% correct.  It mistakes part 
of the garbage collection as the main phase.   

One problem with SimPoint is that it does not give a 
confidence interval for the final result.  Thus it is hard 
for the user to quantify the error.  One way to solve this 
problem is to use stratified sampling [17][18].  
However, stratified sampling requires multiple data 
points from each cluster to generate an accurate 
estimation of confidence interval, resulting in large 
storage cost for checkpoints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3  CPI and cluster number for each chunk 

of instructions for 2-warehouse setup on 
configuration 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  CPI and cluster number for each chunk 

of instructions for 30-warehouse setup on 
configuration 1. 

In the next section, we propose a solution based on 
output analysis techniques in discrete event simulation 
theory.  Our goal is to 1) put a confidence interval on 
the simulation result and make the simulation 
automatically stop based on the user’s accuracy 
requirement, and 2) store as few checkpoints as 
possible. 
 
5. Dynamic stopping rule for simulating 
throughput benchmarks 
 
In discrete-event driven simulation theory, the 
commercial throughput workloads belong to 
nonterminating simulation, where there is no natural 
event to specify the length of the simulation and where 
the user only cares about the steady state performance. 
Nonterminating processes are usually stationary. 

Looking at Figure 1a and 1b, we can see that there 
is no steady state distribution in CPI because of the 
periodical garbage collection activity.  However, if we 
ignore the garbage collection and focus only on the 
main phase, it is a stationary process.  In the main 
phase the program processes the transaction requests, 
which are generated by a sequence of random numbers.  
The sequence of random numbers is stationary and 
thus the characteristic of the output CPI process driven 
by the random numbers is also in a state of statistical 
equilibrium. 

To identify the main phase, we first use the cluster 
analysis.  We group the BBVs into 3 clusters, from 
which we can identify the main cluster.  However, as 
shown in Figure 4, some garbage collection activity 
can be misclassified into the main cluster, so we also 
use JVMPI to mark the beginning and the end of 
garbage collection.  In this way we get the main phase 
after removing the garbage collection and some 
outliers.  Table 3 shows the percentage of the main 
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phase in the whole benchmark execution.  In all cases, 
more than 90% of the instructions executed are in the 
main phase.  Therefore, from now on, we focus only on 
the main phase and try to design a simulation 
methodology for it. 

Table 3. Percentage of instructions executed in 
the main phase 

Warehouses Configuration Percentage 
in main 
phase 

2 1 95.6% 
2 2 95.3% 
30 1 92.6% 
30 2 92.0% 

Constructing the confidence interval for the mean 
performance metric is a tricky problem because the 
CPI values have autocorrelation.  There are usually 
three ways to do it.  In the first method, the benchmark 
is run once for such a long period of time that in any 
practical use the mean CPI from the long run is 
deemed the true mean.  Because the user cannot really 
afford such a long run, sampling is done within the run.  
Confidence interval can be constructed from the 
sampling result.  The second method is to do multiple 
relative short runs of the benchmark.  In each run a 
different sequence of random numbers is used.  Not 
only the random number driving the artificial 
variability in memory latency should be changed, the 
random seed in the benchmark that generates the 
sequence of transaction requests must also be varied.  
Because the multiple runs are statistically independent, 
the confidence interval can be constructed with 
classical statistics for independent data.  These two 
methods suffer from the problem of requiring many 
checkpoints.  The third method is to try constructing a 
confidence interval from just one simulation of 
moderate length.  Unlike the previous two methods, 
only one checkpoint is needed.  The length of a single 
simulation run is sequentially increased until an 
“acceptable” confidence interval can be constructed, 
thus it is often called sequential procedure.   There are 
several techniques for deciding when to stop the 
simulation run. 

Different techniques make different assumptions 
about the autocorrelation, so a technique usually works 
well only in situations where its assumptions are valid. 
We use the dynamic stopping rule based on 
Standardized Time Series (STS) proposed by Schruben 
[11].  The assumption of STS is weak.  The main 
assumption is phi-mixing. An intuitive explanation is 
that a phi-mixing process is random enough so that the 
distant future is essentially independent of the past or 
present.  This is consistent with our observation of 
temporal locality.  With temporal locality, the behavior 
of the program (e.g. address of memory accesses) in 

the near future will be similar to the present.  As the 
distance increase, the temporal locality becomes 
weaker. And two chunks of instructions far away 
should be independent.  In fact, Schruben demonstrated 
that almost all stationary finite state discrete-event 
computer simulations satisfy the assumptions for STS 
[11]. 

In STS all data points are divided into b batches 
each containing m consecutive data points, so that the 
total number of data points are n=b*m.  The confidence 
interval can be calculated as follows. 

n
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with Yi,j=jth observation of the ith batch, and Ai(0)=0 
Based on the above discussion, we propose the 

following procedure to measure the CPI for the main 
phase of commercial throughput workloads. 

1. Use cluster analysis of BBVs and profiling to 
identify the main phase.  Find a long consecutive part 
of the phase and dump a checkpoint at the beginning.  

2. Starting from the checkpoint, warm up the 
microarchitecture and simulate m0*b chunks of 
instructions. 

3. Calculate the confidence interval.  If it meets 
the user’s accuracy requirement, stop. 

4. Continue simulating additional ∆m*b chunks 
of instructions (i.e. m=m+∆m), go to step 3. 

We need a long consecutive part of the main phase 
in step 1 because the changes in microarchitecture can 
affect the execution path.  A long consecutive part 
makes it very unlikely that our simulation will stray to 
a different phase on a different microarchitecture 
configuration.  We start with batch size m0.  It is not 
advisable to set m0=1 because the confidence interval 
from STS is not very accurate when the simulation is 
too short. ∆m is a tradeoff between calculation and 
simulation.  If ∆m is very small, the simulation can 
stop as soon as the result meets the user’s accuracy 
requirement, but the calculation of confidence interval 
may be done many times along the way.  On the other 
hand, if ∆m is large, we may do more simulations than 
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necessary but we don’t need to do as many calculations 
of confidence interval. 

This method has several advantages. First, it gives 
the confidence interval to quantify the simulation result 
of the main phase.  Second, the simulation can stop 
when it meets the user’s accuracy requirement.  Third, 
it needs only one checkpoint for the entire main phase. 

We conduct an experiment to evaluate the dynamic 
stopping rule in the simulation of SPECjbb.  The chunk 
size is reduced to 1000 instructions because STS 
requires many chunks to give an accurate result.  We 
set b=15 following [12].  Figure 5 shows the relative 
error limit (i.e. half confidence interval divided by the 
mean) at 95% confidence level for different simulation 
lengths.  The confidence interval generally becomes 
narrower as the simulation length increases.  Different 
setups show different decreasing rate but within 10 
million instructions, all the errors reach or go below 
2%.  As an example, suppose that the user chooses an 
accuracy requirement of 3% relative error with 95% 
confidence.  Table 3 shows the simulation length 
required as well as the real error.  (When calculating 
the real error we assume that the mean CPI of the main 
phase of the whole simulation is the true mean.) By 
simulating a few million instructions, the relative error 
limit can be reduced to within 3%, and the real error is 
indeed within the specified limit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Relative error limit for the main phase 

at 95% confidence level for different simulation 
length. 

The above result shows the accuracy of our method 
for the main phase, which is the major part of the 
benchmark execution.  Next, we evaluate the overall 
accuracy.  To get the overall mean CPI, we use cluster 
analysis of BBV on the remaining part of the 
benchmark execution.  Analysis similar to previous 
section shows that about 3 clusters should reap most of 
the benefit of clustering.  Therefore, a total of 4 
checkpoints are needed, 1 for the main phase, and 3 for 
the remaining part.  Checkpoints for the main phase are 
simulated for the length listed in Table 4.  The other 
checkpoints are simulated for 1 million instructions 

each.  Table 5 gives the result for the overall accuracy.  
For comparison, the result based on SimPoint 2.0 is 
also shown. Even with simulating fewer instructions 
our relative error is much smaller. The errors are 
smaller than those in Table 4, which indicates that the 
error in main phase and error in the remaining part 
happened to cancel each other in the experiment.  To 
remove this “good luck”, in column 4 we show the 
maximum error if the two errors would add to each 
other.  This maximum error is still smaller than 
SimPoint.  The benefit comes from the accurate 
estimation of the CPI for the main phase, which 
comprises over 90% of the total instructions. 

 
Table 4. Simulation length to achieve 3% relative 

error limit at 95% confidence level, and the real 
error in CPI. 

Warehouses Configu-
ration 

Simulation length 
(106 instructions) 

Real 
error 

2 1 1.65 1.2% 
2 2 1.65 0.7% 

30 1 5.55 1.4% 
30 2 2.85 1.3% 

Table 5. Comparing the overall simulation length 
and accuracy with SimPoint 

Dynamic stopping rule SimPoint Ware-
houses 

Config-
uration Simulation 

length (106 
instr) 

Max 
relative 
error 

True 
relative 
error 

Simulation 
length (106 

instr) 

True 
relative 
error 

2 1 4.65 2.4% 0.82% 13 3.9% 
2 2 4.65 3.2% 0.20% 20 5.1% 

30 1 8.55 2.9% 0.85% 10 3.2% 
30 2 5.85 4.0% 0.31% 15 5.5% 

 
6. Conclusions and future work 
 

Commercial throughput workloads are very 
important in the business world.  They differ 
significantly from SPECcpu benchmarks.  Because of 
multithreading, the execution of the benchmark is 
nondeterministic. However, the simulation 
methodology for them has not been well studied as for 
SPECcpu benchmarks.   

We have studied one commercial throughput 
workload, SPECjbb2000.  It is observed that CPI 
correlates well with transaction throughput.  Therefore, 
CPI is a valid performance metric in the simulation.  
We applied SimPoint methodology to SPECjbb2000.  
BBV can be used successfully to identify the phases of 
the benchmark.  Our result shows that a small number 
of phases can capture most of the benefit.  The main 
phase, which consists of transaction processing, 
dominates the execution.  Therefore, to get accurate 
final results, accuracy for the CPI in main phase is 
most important.   

We propose a method based on the Standardized 
Time Series technique to simulate the main phase.  The 
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chunk size should be set such that the main phase is 
stationary.  The stationary main phase is identified 
using a combination of code profiling and cluster 
analysis of BBV. With only one checkpoint, the user 
can get very accurate estimation of the CPI for the 
main phase.  The simulation can give a confidence 
interval to quantify the error in the result.  Moreover, 
the simulation automatically stops when it has met the 
user’s accuracy requirement. 

This paper presents our pilot study on the 
simulation methodology for commercial throughput 
workloads.  SPECjbb2000 is simple compared to other 
server workloads.  It does not have disk accesses or 
network I/O activity.  We are applying our proposed 
technique on more complex workloads such TPC-C.  
Furthermore, in most situations, the user cares more 
about the performance improvement (i.e. speedup) 
resulting from the microarchitecture change than the 
absolute value of CPI.  It has been shown that 
measuring speedup may require shorter simulation 
time than measuring CPI [15][16].  We plan to extend 
our method to measure speedup with confidence 
interval and to further reduce the simulation time. 
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