
 1

Simulating Java Commercial Throughput Workload: A Case Study

Yue Luo and Lizy K. John
Department of Electrical and Computer Engineering, University of Texas at Austin

luo@ece.utexas.edu, ljohn@ece.utexas.edu

Abstract

Commercial throughput workloads are very

important and significantly different from SPECcpu
benchmarks. We present our study on the simulation
methodology for one such workload, SPECjbb2000.
Our result shows that the CPI correlates well with
transaction throughput, thus can be used as a valid
performance metric in simulation. We investigate the
applicability of SimPoint technique to SPECjbb2000.
It is shown that cluster analysis of BBV can
successfully identify phases. With only a small number
of clusters we can reap most of the benefits of such
analysis. It is observed that a stationary main phase
dominates the execution of the benchmark. Employing
the Standardized Time Series technique in discrete
event simulation theory, we propose a method to
accurately measure the CPI for the main phase with
only one checkpoint. The error in the result can be
quantified with a confidence interval. Moreover, the
simulation automatically stops when the user’s
accuracy requirement is met.

1. Introduction

Simulation is the most important tool for computer
architects to evaluate design trade-offs. However,
detailed simulation of modern benchmarks is
extremely time-consuming. Various methods have
been proposed to reduce the simulation time. Most of
the research has been focusing on SPECcpu benchmark
suite, which consists of CPU-intensive programs with a
single thread. Commercial workloads such as database
systems are very important in the business world, but
their simulation methodology has not been studied as
thoroughly. Single threaded commercial workloads
largely resemble SPECcpu benchmarks. In this paper,
we focus on commercial workloads that have multiple
threads (or processes) and whose performance metric is
throughput. We refer to them as commercial
throughput workloads. Many important workloads fall

into this category, such as web servers and OLTP
applications.

These commercial throughput workloads are
significantly different from SPECcpu benchmarks.
The performance metric for SPECcpu is based on the
entire execution time of the program. The performance
of commercial throughput workloads, however, is
measured in the throughput of some high-level
transactions (e.g. number of database transactions per
minutes) during the steady state.

The most important difference between SPECcpu
and commercial throughput workloads is deterministic
vs. nondeterministic behavior. SPECcpu programs are
deterministic. Given the same input data set, they
generate (almost) the same instruction stream in every
run. Commercial throughput workloads, on the other
hand, are nondeterministic. The instruction stream is
different in each run on a real machine. The
nondeterminism has two sources. One is the
sensitivity of multithreaded workloads to the
variability in the environment. In each run of the
benchmark the interrupts of timer may come at slightly
different time; the disk accesses may exhibit different
latency. All these can affect the operating system’s
scheduling of the threads and change the execution
path of the code. The other source of nondeterminism
in commercial throughput workloads is inherent by
design. These workloads are usually driven by a
sequence of random numbers and the seed of the
random number generator is different in each run. For
instance, the sequence of requests in SPECjbb2000 is
generated by a random number generator, which is
seeded with the current system time. Therefore, the
benchmark is designed to execute differently in each
run and the performance metric of steady-state
throughput only makes statistical sense in a long run.

Because of the uniqueness of the commercial
throughput workloads, simulating them poses
additional problems that do not exist in the simulation
of SPECcpu programs. First, for SPECcpu benchmarks
CPI or IPC is a valid performance metric in simulation
because the instruction stream exhibits little variation
from run to run. However, the relationship between

 2

throughput of transactions and CPI may be more
complicated in commercial throughput workloads,
which raises the question about the validity of using
CPI as the performance metric in simulation1.

Second, the SimPoint methodology [3] is popularly
used to reduce the simulation time for SPECcpu (see
next section), but its applicability to commercial
throughput workloads needs further investigation.
Patil et. al. [10] pointed out the difficulty in applying
SimPoint methodology to commercial throughput
benchmarks in actual execution environment due to the
nondeterminism. Another shortcoming of SimPoint is
that it does not give a confidence interval for the final
result to quantify the error. We want to investigate the
applicability of SimPoint and (partially) solve the
problem of lack of confidence interval.

The third problem is the high storage requirement in
simulation. In SimPoint, predefined chunks of
instructions in each phase, called simulation points, are
simulated. There are 3 ways to simulate these
predefined simulation points. In one way, the
simulator can switch between fast forwarding and
detailed simulation modes. It only enters detailed
simulation mode while simulating the simulation
points and fast-forwards all other instructions in
between. The second way is to store the trace for each
simulation point. And the third method is to store the
state of the whole system at the start of each simulation
point in a checkpoint file. The simulator can then start
from the checkpoint and do an execution-driven
simulation for each simulation point. Because
modification in microarchitecture configuration
changes the execution path, the first two methods are
less accurate and checkpointing gives the most valid
execution path. However, checkpointing requires large
storage. In our experiment, even with compressed
incremental checkpointing, each checkpoint requires
10 – 256MB space. Taking tens of checkpoints can
easily amount to Gigabytes of disk storage.

The nondeterminism in commercial throughput
benchmarks raises challenging problems. On the other
hand, it also provides opportunity for designing better
simulation methodology because the nondeterministic
behavior makes the simulation amenable to the theory
in discrete-event simulation. Research in discrete-
event simulation studies stochastic simulation models,
in which the simulation is driven by random inputs and
generates output sequence that is also a stochastic
process. The execution of commercial throughput
workloads is driven by a sequence of random numbers

1 Lepak et. al. published the paper “Redeeming IPC as a performance
metric for multithreaded programs” [8]. Despite the title, they
focused on handling the nondeterminism in the workload and did not
correlate throughput metric to IPC.

and is affected by randomness in the environment.
Therefore, they can and should be studied as stochastic
processes. Taking advantage of the large body of
discrete-event simulation theory, we can design better
experiments and make rigorous statistical inference.

In this research we use SPECjbb2000 as a case
study for commercial throughput workloads.
SPECjbb2000 (Java Business Benchmark) evaluates
the performance of server-side Java. It emulates a
three-tier client/server system with emphasis on the
middle tier. The multithreaded benchmark models a
wholesale company with warehouses serving a number
of districts. The performance metric is based on the
average number of transactions processed per second.

In this paper, we make the following contributions:
• We study the validity of using CPI as the

performance metric for commercial throughput
workloads. We investigate the applicability of
SimPoint methodology to commercial throughput
workloads for identifying phases and for selecting
simulation points.

• We propose a dynamic stopping rule technique
based on the output analysis method in discrete-
event simulation, which can quantify the CPI of
the main phase (over 90% of the total execution)
with a confidence interval. Moreover, the
simulation can automatically stop once the user’s
specified accuracy requirement is met. The
technique reduces storage cost by requiring only
one checkpoint for the main phase.

2. Related work

Sampling is the most widely used method to reduce
simulation time while retaining good accuracy. A
plethora of sampling techniques has been designed. In
this paper, we are interested in a group of sampling
techniques, which we call representative sampling. In
representative sampling, the entire instruction stream is
divided into chunks of instructions. Some feature is
extracted from each chunk, and then cluster analysis
based on the feature is performed to group the chunks
into clusters so that the chunks in each cluster are
similar to each other. One chunk from each cluster,
called a simulation point, is selected to represent the
whole benchmark. SimPoint [3] is the most
acknowledged representative sampling technique. In
SimPoint the Basic Block Vector (BBV) of each chunk
of instructions is used as the feature for cluster
analysis. A basic block is a sequence of instructions in
a program with a single entry point, single exit point,
and no internal branches. The BBV is usually high
dimensional (thousands to hundreds of thousands), and
hence random projection is performed on the data to

 3

reduce the dimensionality before cluster analysis.
Variance SimPoint and Early Start SimPoint [2] are
two improvements to the original SimPoint. Other
representative sampling techniques include SPEClite
[4], RDI [1] and χ2-distance based approach [14].

All of the above research focuses on SPECcpu
benchmark suite. Patil et. al. [10] applied SimPoint
methodology to commercial workloads running on
Intel Itanium machines. They instrumented the code
with Pin tool to gather the BBV profile of the
benchmark and select the simulation points. Most of
their benchmarks were run in single-threaded mode.
Their result showed that representative sampling works
well for such benchmarks. However, they observed
that it was difficult to apply the same methodology to
multithreaded commercial benchmarks in their
experiment. They executed the benchmarks on real
machines. Due to the nondeterminism in the
multithreaded programs, the simulation points
identified in one run may not exist in another run.

Alameldeen and Wood [9] studied the
nondeterminism in multi-threaded workloads. They
showed that because of the nondeterminism a short
simulation could lead to wrong conclusion in
evaluating microarchitecture changes. To deal with the
nondeterminism caused by the variability in the
environment, they proposed adding small artificial
perturbations in memory latency.

Lepak et. al. [8] also studied nondeterminism in
multithreaded workloads on multi-processor machines.
They proposed a method to record synchronization
events into a trace file on an execution-driven full-
system simulator. An artifactual determinism-delay is
injected to introduce the same synchronization event
into a new simulation.

3. Experiment setup

We use Simics [13], a commercial full system
simulator, to simulate a SunFire server running Solaris
9. The clock frequency of the processor is set to
1GHz. Using the microarchitecture model in Simics,
we modeled two configurations with different cache
latencies as shown in Table 1.

We run SPECjbb benchmark with two different
setups, 2 warehouses and 30 warehouses. In this way,
we can see how our simulation methodology performs
with a wide range of benchmark parameters. For the
small setup, the heap size is fixed at 256MB, and for
the big setup, the heap size is initially 768MB and
allowed to increase to a maximum of 1.5GB.

We only study the behavior when the benchmark is
in steady state. This can be done by doing cache
simulation in functional mode until the ramp-up period

of SPECjbb has ended. Then we take a checkpoint and
start Micro Architectural Interface (MAI) mode
simulation. Before taking performance measurement,
we also warm up the microarchitecture structures
(caches, branch predictor, etc) [5][6][7].

Table 1. System configurations
 Configuration 1 Configuration 2

Processor Clock frequency 1GHz
Fetches, executes, retires, and
commits 4 instructions per cycle

Organi-
zation

32 Kbytes, 8-way set associative, 64
bytes/line

L1
instruc-
tion cache Latency 1 cycle 2 cycles

Organi-
zation

32 Kbytes, 8-way set associative, 64
bytes/line

L1 data
cache

Latency 1 cycle 2 cycles
Organi-
zation

2 Mbytes, 8-way set associative, 64
bytes/line

L2 cache

Latency 6 cycles 9 cycles
Memory 2 Gbytes, 85

cycle latency
2 Gbytes, 99
cycle latency

4. Phase identification

In this section we examine the overall behavior of
SPECjbb and try to answer the questions: 1. Is CPI still
a valid performance metric? 2. Is SimPoint
methodology still applicable to simulating SPECjbb?

We first correlate CPI to the high level throughput.
The throughput we use is number of transactions per
million cycles. We measure the throughput and CPI
for the two configurations. We then calculate the
speedup in throughput and in CPI and compute the
difference in the two speedups. If the difference is
zero, then CPI will be a performance metric equivalent
to throughput. The result is shown in Table 2. The
difference is small, about 1.68% for 30-warehouse
setup and 1.06% for 2-warehouse setup. Therefore, we
would conclude that CPI and throughput correlate well
in the simulation of SPECjbb, the difference between
speedup in throughput and speedup in CPI is very
small and can probably be ignored in most practical
uses. In the rest of our paper, we use CPI as our main
performance metric. One caveat here is that SPECjbb
has almost no I/O activity. If a benchmark exhibits
significant I/O activity such as disk accesses, then a
faster processor may spend (relatively) more time
waiting for I/O, and CPI may be a poor indicator for
throughput.

We then get an overview of the CPI graph of the
benchmark. We measure the CPI for every chunk of 1
million instructions. Figure 1a and 1b show
respectively the CPI graph for 30-warehouse setup and
for 2-warehouse setup running on configuration 1. Our
simulation is too long to display clearly so only part of

 4

the result is shown. The results running on
configuration 2 are very similar thus not shown here.

Table 2. Speedup for throughput and CPI for
configure 1 vs. configuration 2.

Warehouses 30 2
Configuration 2 1 2 1
Transactions 112572 112429 143560 135104
Cycles (106) 33374 20474 36893 215305
Throughput
(trans/106cycles)

3.3730 5.4913 3.8912 6.27490

Speedup in
throughput

1.628 1.613

CPI 3.3031 2.6352 3.0804 1.9307
Speedup in CPI 1.601 1.595
Difference
between speedups

1.68% 1.06%

Figure 1a. CPI of every 1 million instructions for

30-warehouse setup on configuration 1.

Figure 1b. CPI of every 1 million instructions for

2-warehouse setup on configuration 1.
On the first order, the execution can be viewed as a

stationary phase interrupted periodically by some
unusual activity with very high CPI. We call that
stationary phase the main phase. We suspect that the
high CPI activity is the garbage collection, so we
develop a profiler through Java Virtual Machine
Profiler Interface (JVMPI). Upon the start and stop of
the garbage collection, the profiler generates marks in
our trace file. The short vertical lines in Figure 1a and
1b mark the boundary of the garbage collection
activity. As we can see, the high CPI activity is
aligned with the garbage collection. Further
instrumentation of the benchmark shows that during
the garbage collection period, no transactions are
completed. Therefore, the execution of SPECjbb
consists of the main phase of transaction processing
and periodical garbage collection.

We then examine the effectiveness of applying a
methodology similar to SimPoint. The BBV for each 1
million-instruction chunk is collected. K-means cluster
analysis is performed to group them into clusters of
similar chunks. Each cluster corresponds to a phase.
For SimPoint technique to work well, the CPI values of
the chunks in the same cluster/phase should be very
close to each other. In other words, the CPI values in
each cluster/phase should be homogeneous. To
evaluate the homogeneity of the clustering result, we
use Normalized Standard Deviation (NSD), defined as

SS
n

n
NSD i

k

i

i /)(2

1
∑

=
= ,

where ni is the size of cluster i. Si is the standard
deviation of CPI in cluster i. n is the total number of
chunks and S is the standard deviation of CPI for all
chunks. The lower NSD, the more homogeneous the
phases are. NSD is a statistically sound metric. It
shows how much we have gained from taking the extra
effort to do the clustering compared to simple random
sampling2. If NSD is close 1, then the CPI in each
cluster is as varied as in the whole benchmark. It is like
randomly grouping data points into clusters and no
reduction in variance is achieved in each phase. On the
other hand, if NSD is close to 0, then the CPI remains
almost constant in each phase and our result will be
much more accurate than simple random sampling.

Figure 2. Normalized standard deviation for CPI

for different number of clusters.
We vary the number of clusters from 2 to 20. The

NSD result is shown in Figure 2. Many of the values
are much smaller than 1. Therefore, doing clustering
can significantly improve the accuracy of the sampling
result. We also observe that NSD drops quickly at the
beginning of the curve and then decreases slowly. This
means that by dividing the benchmark into a small
number (3-5) of clusters/phases, we can capture most
of the benefit of doing clustering analysis. This is

2 More formally, NSD2 is the ratio of the variation in the sample
mean for proportional stratified sampling to the variation in the
sample mean of simple random sampling with the same sample size.
See [17] for detail.

Normalized Standard Deviation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

number of clusters

st
d

ev

30 w arehouse config 2

30 w arehouse config 1

2 w arehouse config 2

2 w arehouse config 1

 5

consistent with the CPI graphs in Figure 1, which does
not exhibit a large number of phases visually.

The clustering is done with microarchitecture
independent BBVs whereas the phases we see in
Figure 1 are for CPI, which is microarchitecture
dependent. It has been demonstrated that for SPECcpu
programs clusters correspond well with CPI phases [3].
We would like to verify it for SPECjbb. With a small
number of clusters, this can be inspected visually.
Figure 3a shows the CPI for each chunk of instructions
and Figure 3b shows the cluster number each chunk
belongs to. To make the figure legible, only a small
part of the total clustering result is shown. Figure 4
shows the same result for 30-warehouse setup on
configuration 1. The cluster analysis generally
identified the main phase and the garbage collection
phase correctly. Compared with marking the garbage
collection activity with JVMPI, the cluster analysis has
certain advantages. First, it can further identify the
phases within garbage collection. It is clear in Figure
4a that there are phases within garbage collection, and
the cluster analysis identified them as shown in Figure
4b. Second, cluster analysis can identify sporadic
outliers in the main phase as we can see in both Figure
3 and Figure 4. However, as shown in Figure 4,
clustering result is not 100% correct. It mistakes part
of the garbage collection as the main phase.

One problem with SimPoint is that it does not give a
confidence interval for the final result. Thus it is hard
for the user to quantify the error. One way to solve this
problem is to use stratified sampling [17][18].
However, stratified sampling requires multiple data
points from each cluster to generate an accurate
estimation of confidence interval, resulting in large
storage cost for checkpoints.

Figure 3 CPI and cluster number for each chunk

of instructions for 2-warehouse setup on
configuration 1.

Figure 4. CPI and cluster number for each chunk

of instructions for 30-warehouse setup on
configuration 1.

In the next section, we propose a solution based on
output analysis techniques in discrete event simulation
theory. Our goal is to 1) put a confidence interval on
the simulation result and make the simulation
automatically stop based on the user’s accuracy
requirement, and 2) store as few checkpoints as
possible.

5. Dynamic stopping rule for simulating
throughput benchmarks

In discrete-event driven simulation theory, the
commercial throughput workloads belong to
nonterminating simulation, where there is no natural
event to specify the length of the simulation and where
the user only cares about the steady state performance.
Nonterminating processes are usually stationary.

Looking at Figure 1a and 1b, we can see that there
is no steady state distribution in CPI because of the
periodical garbage collection activity. However, if we
ignore the garbage collection and focus only on the
main phase, it is a stationary process. In the main
phase the program processes the transaction requests,
which are generated by a sequence of random numbers.
The sequence of random numbers is stationary and
thus the characteristic of the output CPI process driven
by the random numbers is also in a state of statistical
equilibrium.

To identify the main phase, we first use the cluster
analysis. We group the BBVs into 3 clusters, from
which we can identify the main cluster. However, as
shown in Figure 4, some garbage collection activity
can be misclassified into the main cluster, so we also
use JVMPI to mark the beginning and the end of
garbage collection. In this way we get the main phase
after removing the garbage collection and some
outliers. Table 3 shows the percentage of the main

 6

phase in the whole benchmark execution. In all cases,
more than 90% of the instructions executed are in the
main phase. Therefore, from now on, we focus only on
the main phase and try to design a simulation
methodology for it.

Table 3. Percentage of instructions executed in
the main phase

Warehouses Configuration Percentage
in main
phase

2 1 95.6%
2 2 95.3%
30 1 92.6%
30 2 92.0%

Constructing the confidence interval for the mean
performance metric is a tricky problem because the
CPI values have autocorrelation. There are usually
three ways to do it. In the first method, the benchmark
is run once for such a long period of time that in any
practical use the mean CPI from the long run is
deemed the true mean. Because the user cannot really
afford such a long run, sampling is done within the run.
Confidence interval can be constructed from the
sampling result. The second method is to do multiple
relative short runs of the benchmark. In each run a
different sequence of random numbers is used. Not
only the random number driving the artificial
variability in memory latency should be changed, the
random seed in the benchmark that generates the
sequence of transaction requests must also be varied.
Because the multiple runs are statistically independent,
the confidence interval can be constructed with
classical statistics for independent data. These two
methods suffer from the problem of requiring many
checkpoints. The third method is to try constructing a
confidence interval from just one simulation of
moderate length. Unlike the previous two methods,
only one checkpoint is needed. The length of a single
simulation run is sequentially increased until an
“acceptable” confidence interval can be constructed,
thus it is often called sequential procedure. There are
several techniques for deciding when to stop the
simulation run.

Different techniques make different assumptions
about the autocorrelation, so a technique usually works
well only in situations where its assumptions are valid.
We use the dynamic stopping rule based on
Standardized Time Series (STS) proposed by Schruben
[11]. The assumption of STS is weak. The main
assumption is phi-mixing. An intuitive explanation is
that a phi-mixing process is random enough so that the
distant future is essentially independent of the past or
present. This is consistent with our observation of
temporal locality. With temporal locality, the behavior
of the program (e.g. address of memory accesses) in

the near future will be similar to the present. As the
distance increase, the temporal locality becomes
weaker. And two chunks of instructions far away
should be independent. In fact, Schruben demonstrated
that almost all stationary finite state discrete-event
computer simulations satisfy the assumptions for STS
[11].

In STS all data points are divided into b batches
each containing m consecutive data points, so that the
total number of data points are n=b*m. The confidence
interval can be calculated as follows.

n
tYCI df

σ
α

ˆ
,2/1−±=

where

∑∑
==

==
b

i
mi

n

i
i Y

b
Y

n
Y

1
,

1

11

miY,
= average of the ith batch of size m; t=value of the

Student t distribution; α=significance level; and
df=degrees of freedom=2b-1;
σ̂ =estimate of σ , given by σ̂ =A/(2b-1)
where

∑
=

−+−=
b

i
mii YYmmmAA

1

2
,

32])()/()12[(

Ai can be computed by the recursion

)(2/1)()1(
1

,1, ∑
=

+ −+=+
k

j
jikiii YkYkAkA , k=1, .. , m

with Yi,j=jth observation of the ith batch, and Ai(0)=0
Based on the above discussion, we propose the

following procedure to measure the CPI for the main
phase of commercial throughput workloads.

1. Use cluster analysis of BBVs and profiling to
identify the main phase. Find a long consecutive part
of the phase and dump a checkpoint at the beginning.

2. Starting from the checkpoint, warm up the
microarchitecture and simulate m0*b chunks of
instructions.

3. Calculate the confidence interval. If it meets
the user’s accuracy requirement, stop.

4. Continue simulating additional ∆m*b chunks
of instructions (i.e. m=m+∆m), go to step 3.

We need a long consecutive part of the main phase
in step 1 because the changes in microarchitecture can
affect the execution path. A long consecutive part
makes it very unlikely that our simulation will stray to
a different phase on a different microarchitecture
configuration. We start with batch size m0. It is not
advisable to set m0=1 because the confidence interval
from STS is not very accurate when the simulation is
too short. ∆m is a tradeoff between calculation and
simulation. If ∆m is very small, the simulation can
stop as soon as the result meets the user’s accuracy
requirement, but the calculation of confidence interval
may be done many times along the way. On the other
hand, if ∆m is large, we may do more simulations than

 7

necessary but we don’t need to do as many calculations
of confidence interval.

This method has several advantages. First, it gives
the confidence interval to quantify the simulation result
of the main phase. Second, the simulation can stop
when it meets the user’s accuracy requirement. Third,
it needs only one checkpoint for the entire main phase.

We conduct an experiment to evaluate the dynamic
stopping rule in the simulation of SPECjbb. The chunk
size is reduced to 1000 instructions because STS
requires many chunks to give an accurate result. We
set b=15 following [12]. Figure 5 shows the relative
error limit (i.e. half confidence interval divided by the
mean) at 95% confidence level for different simulation
lengths. The confidence interval generally becomes
narrower as the simulation length increases. Different
setups show different decreasing rate but within 10
million instructions, all the errors reach or go below
2%. As an example, suppose that the user chooses an
accuracy requirement of 3% relative error with 95%
confidence. Table 3 shows the simulation length
required as well as the real error. (When calculating
the real error we assume that the mean CPI of the main
phase of the whole simulation is the true mean.) By
simulating a few million instructions, the relative error
limit can be reduced to within 3%, and the real error is
indeed within the specified limit.

Figure 5. Relative error limit for the main phase

at 95% confidence level for different simulation
length.

The above result shows the accuracy of our method
for the main phase, which is the major part of the
benchmark execution. Next, we evaluate the overall
accuracy. To get the overall mean CPI, we use cluster
analysis of BBV on the remaining part of the
benchmark execution. Analysis similar to previous
section shows that about 3 clusters should reap most of
the benefit of clustering. Therefore, a total of 4
checkpoints are needed, 1 for the main phase, and 3 for
the remaining part. Checkpoints for the main phase are
simulated for the length listed in Table 4. The other
checkpoints are simulated for 1 million instructions

each. Table 5 gives the result for the overall accuracy.
For comparison, the result based on SimPoint 2.0 is
also shown. Even with simulating fewer instructions
our relative error is much smaller. The errors are
smaller than those in Table 4, which indicates that the
error in main phase and error in the remaining part
happened to cancel each other in the experiment. To
remove this “good luck”, in column 4 we show the
maximum error if the two errors would add to each
other. This maximum error is still smaller than
SimPoint. The benefit comes from the accurate
estimation of the CPI for the main phase, which
comprises over 90% of the total instructions.

Table 4. Simulation length to achieve 3% relative

error limit at 95% confidence level, and the real
error in CPI.

Warehouses Configu-
ration

Simulation length
(106 instructions)

Real
error

2 1 1.65 1.2%
2 2 1.65 0.7%

30 1 5.55 1.4%
30 2 2.85 1.3%

Table 5. Comparing the overall simulation length
and accuracy with SimPoint

Dynamic stopping rule SimPoint Ware-
houses

Config-
uration Simulation

length (106
instr)

Max
relative
error

True
relative
error

Simulation
length (106

instr)

True
relative
error

2 1 4.65 2.4% 0.82% 13 3.9%
2 2 4.65 3.2% 0.20% 20 5.1%

30 1 8.55 2.9% 0.85% 10 3.2%
30 2 5.85 4.0% 0.31% 15 5.5%

6. Conclusions and future work

Commercial throughput workloads are very
important in the business world. They differ
significantly from SPECcpu benchmarks. Because of
multithreading, the execution of the benchmark is
nondeterministic. However, the simulation
methodology for them has not been well studied as for
SPECcpu benchmarks.

We have studied one commercial throughput
workload, SPECjbb2000. It is observed that CPI
correlates well with transaction throughput. Therefore,
CPI is a valid performance metric in the simulation.
We applied SimPoint methodology to SPECjbb2000.
BBV can be used successfully to identify the phases of
the benchmark. Our result shows that a small number
of phases can capture most of the benefit. The main
phase, which consists of transaction processing,
dominates the execution. Therefore, to get accurate
final results, accuracy for the CPI in main phase is
most important.

We propose a method based on the Standardized
Time Series technique to simulate the main phase. The

Relative Error Limit

0%

2%

4%

6%

8%

10%

12%

0 2000 4000 6000 8000 10000

1000 instructions

2 warehouses config 2

2 warehouses config 1

30 warehouses config 1

30 warehouses config 2

 8

chunk size should be set such that the main phase is
stationary. The stationary main phase is identified
using a combination of code profiling and cluster
analysis of BBV. With only one checkpoint, the user
can get very accurate estimation of the CPI for the
main phase. The simulation can give a confidence
interval to quantify the error in the result. Moreover,
the simulation automatically stops when it has met the
user’s accuracy requirement.

This paper presents our pilot study on the
simulation methodology for commercial throughput
workloads. SPECjbb2000 is simple compared to other
server workloads. It does not have disk accesses or
network I/O activity. We are applying our proposed
technique on more complex workloads such TPC-C.
Furthermore, in most situations, the user cares more
about the performance improvement (i.e. speedup)
resulting from the microarchitecture change than the
absolute value of CPI. It has been shown that
measuring speedup may require shorter simulation
time than measuring CPI [15][16]. We plan to extend
our method to measure speedup with confidence
interval and to further reduce the simulation time.

References

[1] T. Lafage, and A. Seznec. Choosing representative

slices of program execution for microarchitecture
simulations: A preliminary application to the data
stream. In Proceedings of the Third IEEE Annual
Workshop on Workload Characterization (September
2000), 102-110.

[2] E. Perelman, G. Hamerly, and B. Calder. Picking
statistically valid and early simulation points. In
Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (September
2003), 244-255.

[3] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program
behavior. In Proceedings of the International
Conference on Architectural Support for Programming
Languages and Operating Systems (October 2002), 45-
57.

[4] R. Todi. SPEClite: Using Representative Samples to
Reduce SPEC CPU2000 Workload. IEEE 4th Annual
Workshop on Workload Characterization. 2001.

[5] J. W. Haskins, Jr. and K. Skadron. "Memory Reference
Reuse Latency: Accelerated Warmup for Sampled
Microarchitecture Simulation." In Proceedings of the
International Symposium on Performance Analysis of
Systems and Software, Mar. 2003.

[6] L. Eeckhout, S. Eyerman, B. Callens, and K. De
Bosschere. Accurately warmed-up trace samples for the
evaluation of cache memories. In Proceedings of the
2003 High Performance Computing Symposium (HPC-
2003), pages 267–274, Apr. 2003.

[7] Y. Luo, L. K. John, and L. Eeckhout. Self-Monitored
Adaptive Warm Up. In Proceedings of 16th Symposium
on Computer Architecture and High Performance
Computing. Oct. 2004.

[8] K. Lepak, H. W. Cain, and M. H. Lipasti. Redeeming
IPC as a Performance Metric for Multithreaded
Programs. Proceedings of the 12th International
Conference on Parallel Architectures and Compilation
Techniques. 2003.

[9] A. R. Alameldeen and D. A. Wood. Variability in
Architectural Simulations of Multi-threaded Workloads.
Proceedings of the Ninth International Symposium on
High-Performance Computer Architecture. 2003.

[10] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing Representative Portions of
Large Intel Itanium Programs with Dynamic
Instrumentation. Proceedings of the 37th International
Symposium on Microarchitecture. 2004.

[11] L. Schruben. Confidence Interval Estimation Using
Standardized Time Series. Operations Research. Vol 31,
No. 6, pp 1090-1107. 1983.

[12] R. R. Duersch and L. W. Schruben. An Interactive Run
Length Control for Simulations on PCs. Proceedings of
the 1986 Winter Simulation Conference, pp 866-870.
1986.

[13] P. S. Magnusson, M. Christensson, J. Eskilson, D.
Forsgren, G. Hållberg, J. Högberg, F. Larsson, A.
Moestedt, B. Werner, Simics: A Full System Simulation
Platform, Computer, February 2002.

[14] R. Srinivasan, J. Cook, S. Cooper. Fast, Accurate
Microarchitecture Simulation Using Statistical Phase
Detection. 2005 IEEE International Symposium on
Performance Analysis of Systems and Software. 2005

[15] M. Ekman, P. Stenstrom. Enhancing Multiprocessor
Architecture Simulation Speed Using Matched-Pair
Comparison. 2005 IEEE International Symposium on
Performance Analysis of Systems and Software. 2005.

[16] Y. Luo and L. K. John. Efficiently Evaluating Speedup
Using Sampled Processor Simulation. Computer
Architecture Letters, Volume 3, Sept. 2004.

[17] W. G. Cochran. Sampling Techniques, 3rd ed. John
Wiley & Sons, 1977.

[18] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J.s C.
Hoe. An Evaluation of Stratified Sampling of
Microarchitecture Simulations. IEEE Workshop on
Duplicating, Deconstructing, and Debunking, June
2004.

