

1

Measuring Benchmark Similarity Using Inherent Program Characteristics

Ajay Joshi
†
, Aashish Phansalkar

†
, Lieven Eeckhout

‡
, and Lizy K. John

†

{ajoshi, aashish, ljohn}@ece.utexas.edu, leeckhou@elis.ugent.be

†
The University of Texas at Austin

‡
Ghent University, Belgium

Abstract: This paper proposes a methodology for measuring the similarity between

programs based on their inherent microarchitecture-independent characteristics, and

demonstrates two applications for it: (i) finding a representative subset of programs from

benchmark suites and (ii) studying the evolution of four generations of SPEC CPU benchmark

suites. Using the proposed methodology we find a representative subset of programs from three

popular benchmark suites - SPEC CPU2000, MediaBench, and MiBench. We show that this

subset of representative programs can be effectively used to estimate the average benchmark

suite IPC, L1 data cache miss-rates, and speedup on 11 machines with different ISAs and

microarchitectures – this enables one to save simulation time with little loss in accuracy. From

our study of the similarity between the four generations of SPEC CPU benchmark suites, we find

that other than a dramatic increase in the dynamic instruction count and increasingly poor

temporal data locality, the inherent program characteristics have more or less remained

unchanged.

Index Terms: measurement techniques, modeling techniques, performance of systems, and

performance attributes.

1. Introduction

Modern day benchmark suites are typically comprised of a number of application

programs where each benchmark consists of hundreds of billions of dynamic instructions.

Therefore, a technique that can select a representative subset of programs from a benchmark

2

suite can translate into large savings in simulation time with little loss in accuracy.

Understanding the similarity between programs is important when selecting a subset of programs

that are distinct, but are still representative of the benchmark suite. A typical approach to study

the similarity between programs is to measure program characteristics and then use statistical

data analysis techniques to group programs with similar characteristics.

Programs can be characterized using microarchitecture-dependent characteristics such as

cycles per instruction (CPI), cache miss-rate, and branch prediction accuracy, or

microarchitecture-independent characteristics such as temporal data locality and instruction level

parallelism. Techniques that have been previously proposed to find similarity between programs

primarily use microarchitecture-dependent characteristics of programs (or at least a mix of

microarchitecture-dependent and microarchitecture-independent characteristics) [12] [36]. This

involves measuring program performance characteristics such as instruction and data cache miss

rate, branch prediction accuracy, CPI, and execution time across multiple microarchitecture

configurations. However, the results obtained from these techniques could be biased by the

idiosyncrasies of a particular microarchitecture configuration. Therefore, conclusions based on

performance characteristics such as execution time and cache miss-rate could categorize a

program with unique characteristics as insignificant, only because it shows similar trends on the

microarchitecture configurations used in the study. For instance, a prior study [36] ranked

programs in the SPEC CPU2000 benchmark suite using the SPEC peak performance rating (a

microarchitecture-dependent characteristic). The program ranks were based on their uniqueness

i.e., the programs that exhibit different speedups on most of the machines were given a higher

rank as compared to other programs in the suite. In this scheme of ranking programs, the gcc

benchmark ranks very low, and seems to be less unique. However, this result contradicts with

what is widely believed in the computer architecture community – the gcc benchmark has

3

distinct characteristics as compared to the other programs and, therefore, is an important

benchmark. This indicates that an analysis based on microarchitecture-dependent characteristics

(such as the SPEC peak performance rating and speedup) could undermine the importance of a

program that is really unique.

We believe that by measuring similarity using inherent characteristics of a program it is

possible to ensure that the results will be valid across a wide range of microarchitecture

configurations. In this paper we propose a methodology to find groups of similar programs

based on their inherent characteristics, and apply it to study the similarity between programs in

three popular benchmark suites. More specifically, we make the following contributions:

1) We motivate and present an approach that can be used to measure the similarity between

programs in a microarchitecture-independent manner.

2) We use the proposed methodology to find a subset of representative programs from the

SPEC CPU2000, MiBench, and MediaBench benchmark suites, and demonstrate their

usefulness in predicting the average performance metrics of the entire suite.

3) We demonstrate that the subset of SPEC CPU2000 programs formed using

microarchitecture-independent characteristics is representative across a wide range of

machines with different instruction set architectures (ISAs), compilers, and

microarchitectures.

4) We provide an insight into how the program characteristics of four generations of SPEC

CPU benchmark suites have evolved.

The paper is organized as follows. Section 2 describes our characterization methodology.

Section 3 describes the results from applying the proposed methodology to find subsets of

4

programs from the SPEC CPU2000 [16], MediaBench [23], and MiBench [14] benchmark

suites. Section 4 presents validation experiments to demonstrate that the subsets of programs are

indeed representative of the entire benchmark suite. Section 5 uses the presented methodology

to study the similarity between characteristics of programs across four generations of SPEC CPU

benchmark suites. Section 6 describes the related work, and Section 7 summarizes the

conclusions from this study.

2. Characterization Methodology

This section describes our methodology to measure the similarity between benchmark

programs. It includes a description of the microarchitecture-independent characteristics, an

outline of the statistical data analysis techniques, the benchmarks used, and the tools developed

for this study.

2.1 Microarchitecture-Independent Characteristics

Microarchitecture-independent characteristics allow for a comparison between programs

based on their inherent properties that are isolated from features of a particular machine

configuration. As such, we use a gamut of microarchitecture-independent characteristics that

affect overall program performance. The characteristics that we use in this study are a subset of

all the microarchitecture-independent characteristics that can be potentially measured, but we

believe that our characteristics cover a wide enough range of program characteristics to make a

meaningful comparison between the programs; the results in this paper in fact show that this is

the case. The microarchitecture-independent characteristics that we use in this study relate to the

instruction mix, control flow behavior, instruction and data stream locality, and instruction-level

parallelism. These characteristics are described below.

2.1.1 Instruction Mix

5

The instruction mix of a program measures the relative frequency of various operations

performed by a program; namely, the percentage of computation instructions, data memory

accesses (load and store instructions), and branch instructions in the dynamic instruction stream

of a program.

2.1.2 Control Flow Behavior

We use the following set of metrics to characterize the branch behavior of programs.

Basic Block Size: A basic block is a section of code with one entry and one exit point. We

measure the basic block size as the average number of instructions between two consecutive

branches in the dynamic instruction stream of the program. A larger basic block size is useful in

exploiting instruction level parallelism (ILP) in an out-of-order superscalar microprocessor.

Branch Direction: Backward branches are typically more likely to be taken than forward

branches. This characteristic computes the percentage of forward branches out of the total

branch instructions in the dynamic instruction stream of the program.

Fraction of taken branches: This characteristic is the ratio of the number of taken branches to

the total number of branches in the dynamic instruction stream of the program.

Fraction of forward-taken branches: This characteristic is the fraction of the forward branches

in the dynamic instruction stream of the program that are taken.

2.1.3 Inherent Instruction Level Parallelism

Register Dependency Distance: We use a distribution of dependency distances as a measure of

the inherent ILP in the program. Dependency distance is defined as the total number of

instructions in the dynamic instruction stream between the production (write) and consumption

(read) of a register instance [8] [26]. While techniques such as value prediction reduce the impact

of these dependencies on ILP, information on the dependency distance is very useful in

6

understanding the inherent ILP of the program. The dependency distance is classified into six

categories: percentage of total dependencies that have a distance of 1 instruction, and the

percentage of total dependencies that have a distance of up to 2, 4, 8, 16, 32, and greater than 32

instructions. Programs that have a higher percentage of large dependency distances are likely to

exhibit a higher inherent ILP.

2.1.4 Data locality

Data Temporal Locality: Several locality characteristics have been proposed in the past [5] [6]

[18] [22] [32] [33] [34], however, the algorithms for calculating them are computation and

memory intensive. We selected the average memory reuse distance characteristic proposed by

Lafage et al. [22] since it is more computationally feasible than the other characteristics that have

been proposed. The data temporal locality is quantified by computing the average distance (in

terms of the number of data memory accesses) between two consecutive accesses to the same

address, for every unique address in the program that is executed at least twice. For every

program, we calculate the data temporal locality for window sizes of 16, 64, 256 and 4096 bytes

– these windows are to be thought of as cache blocks i.e., the data temporal locality counts the

number of access between two consecutive access to the same window. The choice of these

particular window sizes is based on the experiments conducted by Lafage et al. [22]. Their

experimental results showed that these four window sizes were sufficient to accurately

characterize the locality of the data reference stream with respect to a wide range of data cache

configurations.

Data Spatial Locality: Caches exploit spatial locality through the use of cache blocks i.e.,

programs that have a good spatial locality will benefit from a large cache block. Therefore, a

program that exhibits good spatial locality will show a significant reduction in the value of the

7

temporal data locality characteristic, i.e., average memory reuse distance, as the window size is

increased. In contrast, for a program with poor spatial locality, the value of the temporal data

locality characteristic will not reduce significantly as the window size is increased. We capture

the spatial locality of a program by computing the ratio of the data temporal locality

characteristic for window sizes of 64, 256, and 4096 bytes, to the data temporal locality

characteristic for a window size of 16 bytes. The values of these three ratios characterize the

spatial locality of the program. A smaller ratio for a higher window size indicates that the

program exhibits good spatial locality.

2.1.5 Instruction locality

Instruction Temporal Locality: The instruction temporal locality is quantified by computing

the average distance (in terms of the number of instructions) between two consecutive accesses

to the same static instruction, for every unique static instruction in the program that is executed

at least twice. Similar to the data temporal locality characteristic, we calculate the instruction

temporal locality characteristic for window sizes of 16, 64, 256, and 4096 bytes.

Instruction Spatial Locality: Spatial locality of the instruction stream is characterized by the

ratio of the instruction temporal locality for window sizes of 64, 256, and 4096 bytes, to the

instruction temporal locality characteristic for a window size of 16 bytes – this is similar to how

the data spatial locality characteristic is computed.

2.2 Statistical Data Analysis

There are several variables (29 microarchitecture-independent characteristics) and many

cases (benchmarks) involved in our study. It is humanly impossible to simultaneously look at all

the data and draw meaningful conclusions from them. Therefore, we use multivariate statistical

data analysis techniques, namely Principal Component Analysis and Cluster Analysis, to

8

compare and discriminate programs based on the measured characteristics, and understand the

distribution of the programs in the workload space.

Principal components analysis (PCA) [10] is a classic multivariate statistical data analysis

technique that is used to reduce the dimensionality of a data set while retaining most of the

original information. We use PCA to remove the correlation between the measured variables

and reduce the dimensionality of the data set. After performing PCA we use clustering

algorithms to find groups of programs with similar characteristics. There are two very popular

clustering algorithms, k-means and hierarchical clustering [17]. In this paper, we use both the

clustering approaches. We now give an overview of the PCA and clustering techniques that we

use in this paper.

Principal Components Analysis: Principal components analysis (PCA) [10] is a classic

multivariate statistical data analysis technique that is used to reduce the dimensionality of a data

set while retaining most of the original information. It builds on the assumption that many

variables (in our case, microarchitecture-independent program characteristics) are correlated.

PCA computes new variables, so called principal components, which are linear combinations of

the original variables, such that all the principal components are uncorrelated. PCA transforms p

variables X1, X2......Xp into p principal components (PC) Z1, Z2…Zp such that:

∑
=

=

p

j jiji XaZ
0

 This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥ Var [Zp] which means that 1Z

contains the most information and Zp the least. Given this property of decreasing variance of the

principal components, we can remove the components with the lower values of variance from the

analysis. This reduces the dimensionality of the data set while controlling the amount of

9

information that is lost. In other words, we retain q principal components (q << p) that explain at

least 75% to 90 % of the total information. In the next step of our methodology, cluster analysis

uses these q PCs as a set of variables.

Cluster Analysis: There are two very popular clustering algorithms, K-means and hierarchical.

We will demonstrate the use of both these techniques in our paper. We use K-means clustering

[17] in earlier part of our analysis and then demonstrate the use of hierarchical clustering on a

combined pool of SPEC CPU2000 and media programs in the later section.

K-means clustering groups all cases (programs) into exactly K distinct clusters which show

maximum difference in their characteristics (workload characteristics in our case). Obviously,

not all values of K fit the data set well. As such, we explore various values of K in order to find

the optimal clustering for the given data set. Also, it is a well-known fact that the result of K-

means clusters depends a lot on the initial placement of cluster centers. So, we do clustering for

hundred different random seeds to find the best initial placement of centers. We use the BIC

(Bayesian Information Criterion) explained in [29] to find the best fit of K. For every value of K

with random placement of initial centres of the cluster we compute the BIC score. The higher the

value of BIC score better is the probability of having good fit for K. So we select the result that

shows the highest score for BIC, as optimal value of K.

Hierarchical clustering algorithm uses a bottom to top approach to find groups of similar

cases. Given a set of N cases to be clustered, the hierarchical clustering technique starts with

each case in a separate cluster and then combines the clusters sequentially, reducing the number

of clusters at each step until all cases are grouped into one cluster. When there are N cases, this

involves N-1 clustering steps, or fusions. We use the complete linkage distance measure as the

distance measure between two clusters; the complete linkage distance is the distance between the

10

farthest data points in two clusters. The hierarchical clustering process can be represented as a

tree, or dendrogram, where each step in the clustering process is illustrated by a join of the tree.

Unlike K-means, the hierarchical clustering algorithm does not group the cases into K clusters. It

is up to the user to decide the number of clusters based on the linkage distance. Smaller linkage

distance means that the two data cases are closer and hence similar to each other.

2.3 Benchmarks

We use programs from the SPEC CPU [16], MediaBench [23], and MiBench [14]

benchmark suites in this study. Due to the differences in libraries, data type definitions, pointer

size conventions, and known compilation issues on 64-bit machines, we were unable to compile

some programs (mostly from old suites - SPEC CPU89 and SPEC CPU92). The programs were

compiled on a Compaq Alpha AXP-2116 processor using the Compaq/DEC C, C++, and the

FORTRAN compiler. The details of the programs and the input sets that we used in this study

are listed in Table 1 & 2. Although the characteristics that we measure are microarchitecture-

independent, they are dependent on the instruction set architecture (ISA) and the compiler.

However, in section 4.2 we show that the subsets are reasonably valid across various compilers

and ISAs.

2.4 Tools

SCOPE: The workload characteristics were measured using a custom-grown analyzer called

SCOPE. SCOPE was developed by modifying the sim-safe functional simulator from the

SimpleScalar v3.0 tool set [1]. SCOPE analyzes the dynamic instruction stream and generates

statistics related to the instruction mix, instruction and data locality, branch predictability, basic

block size, and ILP. Essentially, the back-end of sim-safe is interfaced with custom developed

analyzers to obtain the various microarchitecture-independent characteristics.

11

Table 1. List of SPEC CPU benchmarks used in our study

Program Input INT/
FP

Dynamic
Inst

Count (In
Billions

of
Instructio

ns)
SPEC CPU89

espresso bca.in INT 0.5

li li-input.lsp INT 7

eqntott * INT *

gcc * INT *

spice2g6 * FP *

doduc doducin FP 1.03

fpppp Natoms FP 1.17

matrix300 - FP 1.9

nasa7 - FP 6.2

tomcatv - FP 1

SPEC CPU92

 espresso bca.in INT 0.5

li li-input.lsp INT 6.8

eqntott * INT *

compress In INT 0.1

sc * INT *

gcc * INT *

spice2g6 * FP *

doduc doducin FP 1.03

mdljdp2 input.file FP 2.55

mdljsp2 input.file FP 3.05

wave5 - FP 3.53

hydro2d hydro2d.in FP 44

swm256 swm256.in FP 10.2

alvinn In_pats.txt FP 4.69

ora Params FP 4.72

ear * FP *

su2cor su2cor.in FP 4.65

fpppp natoms FP 116

nasa7 - FP 6.23

tomcatv - FP 0.9
SPEC CPU95

 go null.in INT 18.2

li *.lsp INT 75.6

m88ksim ctl.in INT 520.4

compress bigtest.in INT 69.3

ijpeg penguin.pp
m

INT 41.4

gcc expr.i INT 1.1

perl perl.in INT 16.8

vortex * INT *

wave5 wave5.in FP 30

hydro2d Hydro2d.in FP 44

swim swim.in FP 30.1

applu applu.in FP 43.7 billion

mgrid mgrid.in FP 56.4

turb3d turb3d.in FP 91.9

su2cor su2cor.in FP 33

fpppp natmos.in FP 116

apsi apsi.in FP 28.9

tomcatv tomcatv.in FP 26.3

SPEC CPU2000

 gzip input.graphic INT 103.7

vpr route INT 84.06

gcc 166.i INT 46.9

mcf inp.in INT 61.8

crafty crafty.in INT 191.8

parser ref INT 546.7

eon cook INT 80.6

perlbmk * INT *

vortex lendian1.raw INT 118.9

gap * INT *

bzip2 input.graphic INT 128.7

twolf ref INT 346.4

swim swim.in FP 225.8

wupwise wupwise.in FP 349.6

mgrid mgrid.in FP 419.1

mesa mesa.in FP 141.86

galgel gagel.in FP 409.3

art c756hel.in FP 45.0

equake inp.in FP 131.5

ammp ammp.in FP 326.5

lucas lucas2.in FP 142.4

fma3d fma3d.in FP 268.3

apsi apsi.in FP 347.9

applu applu.in FP 223.8

facerec * FP *

sixtrack * FP *

12

Table 2. List of the benchmarks from MiBench and MediaBench suites used in our study

MiBench

Application Type Dynamic Instruction Count
(In Millions of Instructions)

basicmath Automotive 1520

bitcount Automotive 688.3

qsort Automotive 513.8

susan –input1 Automotive 327.33

susan –input2 Automotive 76.06

susan –input3 Automotive 31.06

cjpeg Consumer 1180

djpeg Consumer 26.86

typeset Consumer 0.48

dijkstra Network 257.78

patricia Network 399.30

ghostscript Office 872.97

rsynth Office 878.83

stringsearch Office 3.45

sha Security 107.79

crc32 Telecomm 692.20

fft Telecomm 238.89

invfft Telecomm 218.26

gsm Telecomm 2100

MediaBench

Application Type Dynamic Instruction Count
(In Millions of Instructions)

 adpcm Compression 7.09

adpcm Decompression 8.86

epic Compression 58.37

epic Decompression 10.25

g.721 Encoder 381.84

g.721 Decoder 399.82

ghostscript - 877.77

jpeg Compression 18.65

jpeg Decompression 4.75

mesa 3D graphics 127.95

mpeg2 Decoder 161.62

mpeg2 Encoder 1550

rasta - 24.86

13

Statistical data analysis: We use STATISTICA software version 6.1 for performing PCA and

hierarchical clustering. For k-means clustering we use the SimPoint software [30]. However, we

do not apply random projection before applying k-means clustering as done by default in the

SimPoint software. Instead, we perform clustering in the transformed PCA space.

3. Subsetting benchmark suites

In order to find a subset of representative benchmark programs from a suite, we first

measure the microarchitecture-independent characteristics, as described in section 2, for all the

benchmark programs. We then apply the PCA technique to remove correlation between the

measured characteristics and to reduce the dimensionality of the data set, and then use the k-

means clustering algorithm and the Bayesian Information Criterion (BIC) to group the programs

into k distinct clusters. A subset of representative programs is then composed by selecting one

program from each cluster. In our study we select the program that is closest to the center of its

cluster as a representative of that group. For clusters with just two programs, any program can

be chosen as the representative. We apply the subsetting methodology to the SPEC CPU2000,

MiBench, and MediaBench benchmark suites. For each benchmark suite we compose two

subsets of programs, the first based on their overall characteristics and the second just based on

their data locality characteristics.

3.1 Subsetting of SPEC CPU2000 programs using overall program characteristics

In this section we find a subset of representative programs from the SPEC CPU2000

benchmark suite based on the similarity between the overall characteristics of the programs. All

the 29 microarchitecture-independent program characteristics for 21 programs from the SPEC

CPU2000 benchmark suite are used as input to the data analysis. After performing PCA and

using BIC with k-means clustering, we obtain 8 clusters as the best fit for the measured data set.

14

Table 3 shows the 8 clusters and their members. The programs in boldfaced font are chosen to be

the representatives (closest to the center of the cluster) of that particular group.

Citron [4] presented a survey on the use of SPEC CPU2000 benchmark programs in

papers from four recent ISCA conferences. He observed that some programs are more popular

than the others among computer architecture researchers. The list of popular integer benchmarks

in their decreasing order of popularity is: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2, crafty,

perlbmk, gap, and eon. For the floating point benchmarks, the list in decreasing order of

popularity is: art, equake, ammp, mesa, applu, swim, lucas, apsi, mgrid, wupwise, galgel,

sixtrack, facerec, and fma3d. The clusters that we obtained in Table 3 suggest that the most

popular programs in the listing provided by Citron [4] do not form a truly representative subset

of the benchmark suite (based on their inherent characteristics). For example, subsetting SPEC

CPU2000 integer programs using gzip, gcc, parser, vpr, mcf, vortex, twolf, and bzip2 will result

in three uncovered clusters, namely 1, 3 and 7. We also observe that there is a lot of similarity in

the characteristics of the popular programs. The three popular benchmarks parser, twolf, and

vortex belong to the same cluster, Cluster 6, and hence are not likely to provide any additional

information. The results from Table 3 suggest that using applu, gzip, gcc, equake, fma3d, mcf,

mesa, and twolf as a representative subset of the SPEC CPU2000 benchmark suite would be a

better practice.

We observe that gcc is in a separate cluster by itself, and hence has characteristics that are

significantly different from other programs in the benchmark suite. After inspecting the

characteristics we observe that gcc has a peculiar instruction temporal locality behavior (large

reuse distance for the instruction stream) and hence stands out from the rest of the programs.

However, in the ranking scheme used in a prior study [36], gcc is ranked very low and does not

15

seem to be a very unique program. Their study uses a microarchitecture-dependent

characteristic, namely the SPEC peak performance rating, and hence a program, such as gcc that

shows similar speedup on most of the machines will be ranked lower. This example shows that

the results from analyzing microarchitecture-independent characteristics can identify redundancy

more effectively.

Table 3. Optimal clusters for SPEC CPU2000 programs based on the overall program characteristics.

3.2 Subsetting of embedded programs using the overall program characteristics

 MiBench and MediaBench benchmark suites represent the typical workloads used in

embedded computing. MiBench suite consists for benchmarks that are representative of the

workloads used in automotive, consumer devices, network, security, office automation, and

telecommunications applications. The benchmarks in the MediaBench suite are representative of

embedded multimedia and communication workloads. In this section we compose a subset of

representative embedded programs from MiBench and MediaBench benchmark suites, based on

their overall program characteristics. We use the same procedure as described in the previous

section i.e., performing PCA on all 29 microarchitecture-independent characteristics followed by

k-means clustering, to divide benchmarks into groups of similar programs. Using BIC with k-

Cluster 1 applu, mgrid

Cluster 2 bzip2, gzip

Cluster 3 crafty, equake

Cluster 4 fma3d, ammp, apsi, galgel, swim, vpr, wupwise

Cluster 5 mcf

Cluster 6 twolf , lucas, parser, vortex

Cluster 7 mesa, art, eon

Cluster 8 gcc

16

means clustering we found 5 clusters as the best fit for this data.

Table 4 shows the 5 different groups of embedded benchmark programs. The program-

input pairs marked in boldfaced font are the cluster representatives. We observe that although

MiBench and MediaBench are two different suites, they still have three common programs,

namely cjpeg, djpeg, and ghostscript. Although the cjpeg and djpeg benchmarks from MiBench

and MediaBench suites have different input sets they reside in the same cluster (Cluster 1 and 3).

This suggests that the input set does not affect the program behavior of the jpeg

compression/decompression benchmarks. Also, the ghostscript benchmarks from MiBench and

MediaBench suites exhibit similar program characteristics.

Interestingly, the 6 automotive benchmarks from the MiBench suite show very little

similarity between each other, and are distributed in 4 out of 5 clusters. However, the

benchmarks from the telecommunication and networking application domains are relatively very

similar to each other. The bitcount automotive benchmark forms a singleton cluster (Cluster 5),

and is therefore the most unique program in the two benchmark suites. The encoder and decoder

versions of the MediaBench programs g.721, adpcm, and mpeg2 are also very similar to each

other. From these observations we can conclude that a large number of programs from MiBench

and MediaBench suites show very similar program behavior, and only 5 benchmarks, namely

cjpeg, rasta, invFFT, adpcm, and bitcount are required to represent the 32 embedded benchmark

programs from the two suites.

17

Table 4. Optimal clusters for embedded programs based on the overall characteristics.

3.3 Subsetting of SPEC CPU2000 programs using the data locality characteristics

In section 3.1 we selected a representative subset of SPEC CPU2000 programs based on

their overall program characteristics. However, architects and researchers often use cache

simulations when performing studies related to the data memory hierarchy of a microprocessor.

In order to select a representative subset of programs for such studies, one needs to understand

the similarity between programs just based on their data locality characteristics.

In this analysis we find a subset of the SPEC CPU2000 benchmark suite by only

considering the 7 characteristics of SPEC CPU2000 programs that are related to their temporal

and spatial data locality. We use the same methodology, i.e., PCA followed by k-means and

BIC, to group the programs into an optimal number of clusters. Table 5 shows the groups of

SPEC CPU2000 programs that have similar data locality characteristics. We observe that a large

number (9 out of 21) of SPEC CPU2000 programs are grouped together in one cluster (Cluster

Cluster 1 mediabench_cjpeg, mediabench_unepic, mediabench_ghostscript,

mibench_consumer_cjpeg, mibench_office_ghostscript, mibench_office_rsynth

Cluster 2 mediabench_rasta, mediabench_mesa, mibench_automotive_qsort,

mibench_network_dijkstra, mibench_network_patricia, mibench_office_stringsearch,

mibench_security_sha, mibench_telecomm_CRC32

Cluster 3 mibench_telecomm_invFFT, mediabench_epic, mediabench_g721_decoder,

mediabench_g721_encoder, mediabench_djpeg, mediabench_mpeg2_decoder,

mediabench_mpeg2_encoder, mibench_automotive_basicmath,

mibench_automotive_susan2, mibench_automotive_susan3, mibench_consumer_djpeg,

mibench_consumer_typeset, mibench_ telecomm_FFT, mibench_telecomm_gsm

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder,

mibench_automotive_susan1

Cluster 5 mibench_automotive_bitcount

18

3), and hence exhibit very similar data locality characteristics. Surprisingly, the floating point

benchmarks art, ammp, applu, and mgrid have similar temporal and spatial data locality

characteristics as the integer benchmarks crafty, eon, parser, twolf, vortex, and vpr. Also, the

floating point benchmark mesa shows similar data locality characteristics as the integer

benchmark gcc. We conclude that only 3 integer programs gzip, mcf, and bzip2, and 6 floating

point programs ammp, equake, mesa, fma3d, galgel, and wupwise, are representative of the data

locality characteristics exhibited by programs in the SPEC CPU2000 benchmark suite.

Table 5. Optimal clusters for SPEC CPU2000 programs based on data locality characteristics.

3.4 Subsetting embedded benchmarks using data locality characteristics

We now select a subset of representative embedded programs from MiBench and

MediaBench benchmark suites based on their similarity in data locality characteristics. Table 6

shows the 8 groups of media programs that differ in their data locality behavior.

Cluster 1 gzip

Cluster 2 mcf

Cluster 3 ammp, applu, crafty, art, eon, mgrid, parser, twolf, vortex, vpr

Cluster 4 equake

Cluster 5 bzip2

Cluster 6 mesa, gcc

Cluster 7 fma3d, swim, apsi

Cluster 8 galgel, lucas

Cluster 9 wupwise

19

Table 6. Optimal number of clusters for embedded programs based on the data locality
characteristics.

We observe that all the automotive benchmarks from the MiBench benchmark suite,

susan, bitcount, basicmath, and qsort reside in different clusters, suggesting that they have very

different data locality characteristics. Particularly, the benchmark susan exhibits different data

locality characteristics depending on the input set used. Also, susan forms a singleton cluster for

inputs sets 1 and 2 and therefore has the most unique data locality characteristics of all the

embedded programs. Interestingly, except for the epic benchmark, all the other pairs of

compress/decompress and encoder/decoder benchmarks, namely adpcm, g.721, jpeg, and

mpeg2, show very similar data locality. One key conclusion that we can draw is that the

combined set of embedded benchmark programs from MiBench and MediaBench suites can be

represented by 6 programs from the MiBench suite, namely susan (input sets 1 and 2), djpeg,

sha, qsort, ghostscript, and 1 program from the MediaBench suite, namely adpcm. In other

words, expect for the adpcm program, the data locality characteristics of MediaBench programs

Cluster 1 mibench_automotive_susan1

Cluster 2 mibench_automotive_susan3

Cluster 3

mibench_ consumer_djpeg, mediabench_epic, mediabench_cjpeg, mediabench_djpeg,

mediabench_mpeg2_decode, mediabench_mpeg2_encoder, mibench_consumer_cjpeg,

mibench_consumer_typeset, mibench_telecomm_FFT, mibench_telecomm_invFFT

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder

Cluster 5
mibench_security_sha_large ,mediabench_mesa, mediabench_rasta,mibench_

automotive_susan2, mibench_network_dijkstra, mibench_office_stringsearch,

Cluster 6 automotive_basicmath_large, network_patricia_large

Cluster 7

mibench_automotive_qsort, mediabench_unepic, mediabench_g721_decoder,

ediabench_g721_encoder, mibench_automotive_bitcount, mibench_office_rsynth,

mibench_telecomm_CRC32, mibench_telecomm_gsm

Cluster 8 mediabench_office_ghostscript, mibench_office_ghostscript

20

are a subset of the data locality characteristics exhibited by programs from the MiBench suite.

4. Validating the representativeness of benchmark subsets

It is important to understand whether the subsets of programs we have created are

meaningful and are indeed representative of the original benchmark suite. Therefore, we use the

subset of programs, composed using our proposed methodology, to estimate the average

benchmark suite IPC, L1 data cache miss-rate, and speedup. We then compare our results to

those obtained by using the entire benchmark suite.

4.1 Estimating IPC through subsetting

Using the subset of programs based on overall program characteristics from the SPEC

CPU2000, MiBench, and MediaBench benchmark suites we estimated the average IPC of the

entire suite for two different superscalar configurations. For the SPEC CPU2000 benchmark

programs we used an 8-way and a 16-way issue superscalar microprocessor configuration, where

as, for the MiBench and MediaBench programs we used a 2-way and a 4-way issue

configuration. The details of the configurations are listed in Table 7 & 8. From Tables 3 and 5

we observe that each cluster has a different number of programs, and hence the weight assigned

to each representative program should depend on the number of programs that it represents i.e.,

the number of programs in its cluster. For example, from Table 3, the weight for fma3d (Cluster

4) is 7. Similarly, we assign a weight to each representative program, and using these weights

we calculate the weighted harmonic mean of the IPC for the entire suite.

Figure 1(a) shows the weighted average (harmonic mean) IPC of the entire SPEC

CPU2000 benchmark suite, the estimated IPC from the subset of programs from Table 3, and the

average (harmonic mean) IPC calculated using the list of popular programs published by Citron

[4]. We obtained the IPC performance data for an 8-wide and 16-wide superscalar out-of-order

21

microarchitecture for every program in the SPEC CPU2000 benchmarks from Wenisch et. al.

[38].

(a) SPEC CPU2000 benchmark suite

(b) Embedded programs from MiBench and MediaBench benchmark suites

Figure 1. Estimating average IPC using a subset of programs from the (a) SPEC CPU2000 and

(b) MiBench and MediaBench benchmark suites.

0

0.5

1

1.5

2

2.5

8-way 16-way

Micro-architecture Configuration

A
v
e

ra
g

e
 I
P

C

Subset of Program s All Program s Popular Program s

0

0.5

1

1.5

2

2.5

3

2-way 4-way

Microarchitecture Configuration

A
v
e

ra
g

e
 I
P

C

Subset of Program s All Programs

0.67%

3.9%

22

Table 7. Configurations of machines for which IPC of SPEC CPU2000 suite is estimated using

subsetting.

Parameter 8-way 16-way

RUU/LSQ 128/64 entries 256/128 entries

Memory
System

32KB 2way L1 I/D, 1M
4way L2

64KB 2-way L1 I/D, 2M 8way L2

ITLB/DTLB
4-way 128 entries/ 4-
way 256 entries, 200

cycle misses

4-way 128 entries/ 4-way 256 entries, 200
cycle misses

L1/L2/mem
latency

1/12/100 cycles 2/16/100 cycles

Functional
Units

4 I-ALU, 2 I-MUL/DIV,
2FP-ALU, 1 FP-

MUL/DIV

16 I-ALU, 8 I-MUL/DIV, 8FP-ALU, 4 FP-
MUL/DIV

Branch
Predictor

Combined 2k tables,
7cycles mispred penalty

Combined 8k tables, 10 cycle mispred penalty

Table 8. Configurations of machines for which IPC of MiBench and MediaBench suites is estimated

using subsetting.

Parameter 2-way 4-way

RUU/LSQ 32/16 entries 64/32 entries

Memory System
8KB 2-way L1 I/D,

256K 4-way L2
16KB 2-way L1 I/D, 512K 4-way L2

ITLB/DTLB
4-way 16 entries/ 4-
way 32 entries 30

cycle misses

4-way 16 entries/ 4-way 32 entries 30
cycle misses

L1/L2/mem latency 1/6/36 cycles 2/8/36 cycles

Functional Units
2 I-ALU, 1 I-MUL/DIV,

2FP-ALU, 2 FP-
MUL/DIV

4 I-ALU, 2 I-MUL/DIV, 4 FP-ALU, 2 FP-
MUL/DIV

Branch Predictor
Combined 2k tables 4

cycle misprediction
penalty

Combined 2k tables 4 cycle misprediction
penalty

The error in weighted average IPC computed using the subset of programs in Table 3 for

both 8-way and 16-way issue widths is less than 5%. We observe that the average IPC

calculated using the list of popular programs published by Citron in [4] shows high errors (-15%

and -23.4% respectively for the 8-way and 16-way issue configurations, respectively). The two

23

main reasons why we see a higher error from the subset of popular programs are: (i) the popular

subset of programs is not selected by using a formal methodology to find similarity/dissimilarity

with the rest of the programs, and (ii) there is no method to assign weights to the programs in the

subset.

Figure 1(b) shows the average IPC (harmonic mean) of all the embedded programs from

the MiBench and MediaBench benchmark suites, and the estimated average IPC (weighted

harmonic mean) using the subset of programs shown in Table 4. We find that the error in

estimating the average IPC using the subset of programs is very small for both the configurations

(-0.67% for 2-way issue and -3.9% for 4-way issue).

Since the IPC of the entire suite can be estimated with reasonable accuracy using the

subsets formed using our methodology, we feel that it is a good validation for the usefulness of

the subsets.

4.2 Estimating speedup of SPEC CPU2000 benchmarks through subsetting

In the previous section we evaluated the usefulness of the subset to accurately estimate

the overall IPC in a single design point. However, in early stages of the design cycle, relative

accuracy, i.e., the ability to predict speedup, is even more important. We now demonstrate the

usefulness of the subset of programs from the SPEC CPU2000 suite to estimate the speedup of

11 machines from different vendors with respect to the base machine (Sun Ultra5_10 with

300MHz processor) that SPEC uses to calculate the SPEC CPU rating. Figure 2 shows the

estimated weighted average (geometric mean) speedup of the entire suite using the subset based

on overall program characteristics, and the average speedup (geometric mean) of the entire suite,

for computers from various manufacturers.

The speedup numbers for SPEC CPU2000 programs were directly obtained from their

24

execution times published by SPEC [42]. The maximum error in the speedup estimated using

the subset is 9.1%. Since the machines used in this experiment have different ISAs,

microarchitecture, and compiler settings, we can conclude that the subset of programs composed

using inherent program characteristics is valid across different microarchitectures, ISAs, and

compilers.

Figure 2. Estimating average speedup using a subset of programs from the SPEC CPU2000

benchmark suite.

4.3 Estimating average data cache miss-rate through subsetting

In this section we evaluate the usefulness of the subset of programs, formed using the

data locality characteristics, in estimating the average data cache miss-rate of the entire suite.

Similar to the procedure described in the earlier section we assign a weight to every

representative program. Figure 3(a) shows the weighted average (harmonic mean) L1 data cache

miss-rate of the SPEC CPU2000 benchmark suite estimated using the subset of programs shown

in Table 5 (based on data locality characteristics), the estimated average (harmonic mean) L1

0

2

4

6

8

10

12

14

16

18

A
M

D
 A

S
U

S
 S

K
8

N

D
e

ll

P
o

w
e

rE
d

g
e

2
6

5
0

In
te

l
D

8
7

5
P

B
Z

A
M

D
 A

S
U

S
 S

K
8

V

IB
M

 x
3

0
6

IB
M

 e
S

e
rv

e
r

3
2

5

H
P

 P
ro

L
ia

n
t

D
L

3
6

0

S
u

p
e

rm
ic

ro

X
6

D
A

8
-G

2

H
P

 A
lp

h
a

S
e

rv
e

r

D
S

1
5

/1
0

0
0

F
u

ji
ts

u
 S

ie
m

e
n

ts

C
E

L
S

IU
S

 V
8

1
0

S
u

n
-S

u
n

F
ir

e

V
6

5
x

Vendor-Com puter Model

S
p

e
e

d
u

p

Subset of Program s All Programs

25

data cache miss-rate using the entire benchmark suite, and the estimated average L1 data cache

miss-rate using the list of popular programs published by Citron in [4]. We obtained the miss-

rates for 9 different L1 data cache configurations from Cantin et al. [3]. The average absolute

error in estimating the L1 data cache miss-rate of the entire suite using the subset of programs

shown in Table 5 is 0.8%. The average absolute error in estimating the L1 data cache miss-rate

using the set of popular programs is 3%. From these results we can conclude that the program

subset derived in Table 5 is indeed representative of the data locality characteristics of programs

in the SPEC CPU2000 benchmark suite.

(a) SPEC CPU2000 programs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1
-w

a
y

4
-w

a
y

F
A

1
-w

a
y

4
-w

a
y

F
A

1
-w

a
y

4
-w

a
y

F
A

1
-w

a
y

4
-w

a
y

F
A

4K, 64B 8K, 64B 16K, 64B 64K, 64B

Cache Configuration

A
v
e

ra
g

e
 m

is
s
-r

a
te

Subset (data locality) Subset(overall) All Program s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1-way 4-way FA 1-way 4-way FA 1-way 4-way FA

8K, 64B 64K, 64B 512K, 64B

Cache Configuration

A
v
e

ra
g

e
 m

is
s
-r

a
te

Subset of Program s All Programs Popular Program s

26

(b) Embedded programs from MiBench and MediaBench suites

Figure 3. Estimating the average data cache miss rate using a subset of programs from the (a) SPEC

CPU2000 and (b) MiBench and MediaBench suites.

Figure 3(b) shows the average (harmonic mean) L1 data cache miss-rate of the entire set

of embedded programs, and the estimated weighted average (harmonic mean) L1 data cache

miss-rate using the subset of programs shown in Table 4 (all characteristics) and Table 6 (only

data locality characteristics). We use 12 different cache configurations (sizes of 4KB, 8KB,

16KB, and 64KB, each with a direct-mapped, 4-way set associative and fully-associative

configurations) to validate the representativeness of the subset of programs. The average

absolute error in estimating L1 data cache miss-rate using the subset based on overall program

characteristics is 0.6%, and using the subset based on data locality characteristics is 0.5%.

Again, our results show that the subset of programs is very effective in estimating the data cache

miss-rate of the entire suite.

5. Similarity across four generations of SPEC CPU benchmark suites

We now use the methodology presented in this paper for analyzing how benchmark

programs evolve with time. The Standard Performance Evaluation Corporation (SPEC) CPU

benchmark suite which was first released in 1989 as a collection of 10 computation-intensive

benchmark programs (average size of 2.5 billion dynamic instructions per program), is now in its

fourth generation and has grown to 26 programs (average size of 230 billion dynamic

instructions per program). So far, SPEC has released four CPU benchmark suites: in 1989, 1992,

1995 and 2000.

In this section, we use our collection of microarchitecture-independent characteristics,

described in section 2, to characterize the generic behavior of four generations of SPEC CPU

benchmark programs. In these experiments we use the same compiler to compile programs from

27

all the four suites. The data is analyzed using PCA and cluster analysis to understand the changes

in the CPU workloads over time. First, we use all the characteristics and perform k-means

clustering to find optimal number of clusters for all the four generations of SPEC CPU

benchmarks. In the subsequent sections, we analyze each important characteristic separately for

all the generations. In order to visualize the workload space we plot the scores for the first two

PCs for sixty programs on a two dimensional graph, and also plot a dendrogram showing the

similarity between the programs.

5.1 Overall Characteristics

In order to understand the (dis)similarity between programs across SPEC CPU

benchmark suites we perform a cluster analysis in the PCA space as described in section 3.

Table 9. Optimum number of clusters for the four generations of SPEC CPU benchmark programs using

the overall program characteristics.

Clustering all the 60 benchmarks yields 12 optimum clusters, which are shown in Table

9; the benchmarks in boldfaced font are the cluster representatives.

Cluster 1 gcc(95), gcc(2000)

Cluster 2 mcf(2000)

Cluster 3 turbo3d (95), applu (95), apsi(95), swim(2000), mgrid(95), wupwise(2000)

Cluster 4 hydro2d(95), hydro2d(92), wave5(92), su2cor(92), succor(95), apsi(2000),

tomcatv(89), tomcatv(92), crafty(2000), art(2000), equake(2000), mdljdp2(92)

Cluster 5 perl(95), li (89), li(95), compress(92), tomcatv(95), matrix300(89)

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92), galgel(2000), wave5(95), alvinn(92)

Cluster 7 applu(2000), mgrid(2000)

Cluster 8 doduc(92), doduc(89), ora(92)

Cluster 9 mdljsp2(92), lucas(2000)

Cluster 10 parser(2000), twolf(2000), espresso(89), espresso(92), compress(95), go(95),

ijpeg(95), vortex(2000)

Cluster 11 fppp(95), fppp(92), eon(2000), vpr(2000), fppp(89), fma3d(2000), mesa(2000),

ammp(2000)

Cluster 12 bzip2(2000), gzip(2000)

28

A detailed analysis of Table 9 gives us several interesting insights. First, out of all the

benchmarks, gcc (2000) and gcc (95) are together in a separate cluster. We observe that

instruction locality for gcc is worse than any other program in all 4 generations of SPEC CPU

suite. Because of this, the gcc programs from the SPEC CPU 95 and 2000 suites reside in their

own separate cluster. Due to its peculiar data locality characteristics, mcf (2000) resides in a

separate cluster (cluster 2), and bzip2 (2000) and gzip (2000) form one cluster (cluster 12).

SPEC CPU2000 programs exist in 10 out of 12 clusters, as opposed to SPEC CPU95 in 7

clusters, SPEC CPU92 in 6 clusters, and SPEC CPU89 in 5 clusters. This shows that SPEC

CPU2000 benchmark suite is more diverse than its ancestors.

5.2 Instruction Locality

We perform PCA on the raw data measured for the instruction locality characteristics,

which yields two principal components explaining 68.4 % and 28.6 % of the total variance.

Figure 4 shows the benchmarks in the PCA space. In order to visualize the relative positions of

the benchmarks in the workload space we also present a tree, or dendrogram, using hierarchical

clustering. Figure 5 shows the dendrogram obtained from applying hierarchical clustering to the

data set in the PCA space. The horizontal scale of the dendrogram lists the benchmarks, and the

horizontal scale corresponds to the linkage distance obtained from the hierarchical clustering

analysis. The shorter the linkage distance the closer, i.e., more similar, the benchmarks are to

each other in the workload space.

29

Figure 4. PCA space built from the instruction locality characteristics.

Figure 5. Dendrogram showing the linkage distance between programs based on the instruction locality

characteristics.

For example, in Figure 5, the gcc (2000) and gcc (95) benchmarks combine into a cluster

at a linkage distance of 0.2, and the cluster containing the two gcc benchmarks combines into a

30

cluster containing all the other programs at a linkage distance of 6.2. This means that the gcc

benchmarks from SPEC CPU95 and SPEC CPU2000 benchmark suites are more similar to each

other than with all the other programs.

PC1 represents the instruction temporal locality and PC2 represents the instruction spatial

locality of the benchmarks, i.e., the benchmarks with a higher value along PC1 show poor

temporal locality for the instruction stream, and the benchmarks with a higher value along PC2

show good spatial locality in the instruction stream. Figures 4 and 5 show that programs from

all the SPEC CPU generations overlap. The biggest exception is gcc in SPECint2000 and

SPECint95 (the two dark points on the plot on the extreme right). The gcc benchmark from the

SPECint2000 and SPECint95 suites exhibits poor instruction temporal locality. It also shows

very low values for PC2 due to poor spatial locality. The floating point program matrix300 from

SPEC CPU89 suite and compress from SPEC CPU92 show very good temporal and spatial

locality. The benchmark program applu from SPEC CPU2000 shows a very high value for PC2

and would therefore benefit a lot from an increase in block size. The fppp benchmarks from

SPEC CPU89, SPEC CPU92, SPEC CPU95 suites, and the bzip2 and gzip benchmarks from the

SPEC2000 suite show similar instruction locality.

In general, we observe that although the average dynamic instruction count of the

benchmark programs has increased by a factor of x100, the static instruction count has remained

more or less constant. This suggests that the dynamic instruction count of the SPEC CPU

benchmark programs have simply been scaled – more iterations through the same instructions.

5.3 Branch characteristics

For studying the branch behavior we include the following characteristics in our analysis:

the percentage of branches in the dynamic instruction stream, the average basic block size, the

31

percentage forward branches, the percentage taken branches, and the percentage forward-taken

branches. From PCA analysis, we retain 2 principal components explaining 62% and 19% of the

total variance, respectively. Figure 6 plots the various SPEC CPU benchmarks in this PCA

space and Figure 7 is a dendrogram showing the linkage distance between the programs based on

the branch characteristics.

We observe that the integer benchmarks are clustered in an area. We also observe that the

floating-point benchmarks typically have a positive value along the first principal component

(PC1), whereas the integer benchmarks have a negative value along PC1. The reason is that

floating-point benchmarks typically have fewer branches, and thus have a larger basic block size;

also, floating-point benchmarks typically are very well structured, and have a smaller percentage

of forward branches, and fewer forward-taken branches.

Figure 6. PCA space built from the branch characteristics.

32

Figure 7. Dendrogram showing linkage distance between programs based on the branch

characteristics.

In other words floating point benchmarks tend to spend most of their time in loops. The

two prominent outliers in the top right corner of this graph are SPEC 2000’s mgrid and applu

programs due to their extremely large average basic block sizes, 273 and 318 instructions,

respectively. The two outliers on the right are swim benchmarks from SPEC92 and SPEC95

suites, due to their large percentage taken branches and small percentage forward branches. On

the extreme left of the PCA space is vortex from SPEC2000 which shows a very low average

basic block size. Due to a significant overlap seen in the plot we can conclude that the branch

characteristics of the SPEC CPU programs did not significantly change over the past four

generations of SPEC CPU programs. Figure 7 also suggests that the branch behavior of

programs has not significantly changed for the last four generations – doduc, espresso, fppp,

33

hydro2d, li, and tomcatv are examples of programs whose branch characteristics have not

changed across generations of SPEC CPU benchmark suites.

5.4 Instruction-level parallelism

In order to study the instruction-level parallelism (ILP) of the SPEC CPU suites we used

the inter-instruction register dependency characteristic. This characteristic is closely related to

the intrinsic ILP available in an application. Long dependency distances generally imply a high

ILP. The first two principal components explain 96% of the total variance. The PCA space is

plotted in Figure 8, and Figure 9 shows the dendrogram with the linkage distance between the

programs based on their ILP characteristics.

We observe that the integer benchmarks typically have a high value along PC1, which

indicates that these benchmarks have a higher percentage of short dependency distances. The

floating-point benchmarks typically have larger dependency distances. We observe no real trend

in this graph. The intrinsic ILP did not change over the 4 benchmark suites except for the fact

that several floating-point programs from SPEC CPU89 and SPEC CPU92 suites (and no SPEC

CPU95 or SPEC CPU2000 benchmarks) exhibit relatively short dependencies compared to other

floating-point benchmarks; these overlap with integer benchmarks in the range -0.1 < PC1 < 0.6.

Figure 8. PCA space built from the ILP characteristics.

34

Figure 9. Dendrogram showing the linkage distance between programs based on the ILP

characteristics.

In the top left corner we can see two outliers, mgrid and applu, that are quite far from a

lot of other programs and show large dependency distances, which implies better ILP. The

program swim from the SPEC CPU2000 suite also shows large dependency distances. The

majority of the programs on the right side of the PCA space are integer programs with vortex

from SPEC 2000 being the one with the largest number of short dependency distances. In Figure

9 we observe that a lot of floating point programs across various generations, e.g., fppp, tomcatv,

nasa7, li, and doduc, form a tight cluster. Hence we can conclude that there is a lot of similarity

between the ILP characteristics exhibited by the floating point programs across all four

generations of the SPEC CPU suites.

5.5 Data Locality

35

For studying the temporal and spatial locality behavior of the data stream we used the

locality characteristics described in section 2. Recall that the characteristics by themselves

quantify temporal locality whereas the ratios between them are a measure for the spatial locality.

Figure 10 shows a plot of the benchmarks in the PCA space built from these data locality

characteristics, and Figure 11 shows the linkage distance between various programs.

In Figure 10 the first principal component measures temporal locality, i.e., a more

positive value along PC1 indicates poorer temporal locality. The second principal component

measures spatial locality. Therefore, benchmarks with a high value along PC2 will thus benefit

more from an increased cache line size. From this figure we conclude that several SPEC

CPU2000 and CPU95 benchmark programs, namely bzip2, gzip, mcf, and wupwise, from

CPU2000, and gcc, turbo3d, applu, and mgrid from CPU95, exhibit a temporal locality that is

significantly worse than the other benchmarks. Concerning spatial locality, most of these

benchmarks exhibit a spatial locality that is relatively higher than that of the remaining

benchmarks, i.e., increasing the window sizes improves performance of these programs more

than they do for the other benchmarks.

Programs like gzip, bzip2 and mcf show poor spatial locality. There are a lot of programs

in all the four generations of SPEC CPU suites that overlap. This indicates that although the

objective of SPEC is to worsen the data stream locality behavior of subsequent CPU suites,

several benchmarks in recent suites exhibit a locality behavior that is similar to older versions of

SPEC CPU. Moreover, several CPU95 benchmarks like wave, perl, compress, apsi and

CPU2000 benchmarks like equake, galgel, lucas and swim that show a temporal locality

behavior that is better than some CPU89 and CPU92 benchmarks.

36

Figure 10. PCA space built from the data locality characteristics.

Figure 11. Dendrogram showing the linkage distance between programs based on the data locality

characteristics.

6. Related Work

Weicker [37] used characteristics such as statement distribution in programs, distribution

of operand data types, and distribution of operations, to study the behavior of several stone-age

benchmarks. Saveedra and Smith [28] characterized FORTRAN applications in terms of the

37

number of various fundamental operations, and predicted their execution time. They also

developed a measure for program similarity that makes it possible to classify benchmarks with

respect to a large set of characteristics.

Prior work in studying benchmark characteristics has typically taken the approach of

measuring microarchitecture-dependent characteristics e.g., cycles per instruction, cache miss

rate, branch prediction accuracy etc., on various microarchitecture configurations that offer a

different mixture of bottlenecks [11][12][36][41]. The variation in these characteristics is then

used to infer the generic program behavior.

There has been prior research to find redundancy in benchmark suites. Dujmovic and

Dujmovic [9] developed a quantitative approach to evaluate benchmark suites. They used the

execution time of a program on several machines to calculate measures that quantify the size,

completeness, and redundancy of the benchmark space. Vandierendonck and De Bosschere [36]

analyzed the SPEC CPU2000 benchmark suite peak results on 340 different machines

representing eight ISAs, and used PCA to identify the redundancy in the benchmark suite. In

[36], the authors quantify redundancy as the ability of a program to show different speedup on

two different machines. The programs that do not show very different speedups are considered

redundant. They conclude that only a subset of programs from SPEC CPU2000 benchmark

programs are required to accurately predict the ranks of these 340 machines.

There has been some research on microarchitecture-independent locality and ILP

characteristics. For example, locality models researched in the past include working set models,

least recently used stack models, independent reference models, temporal density functions,

spatial density functions, memory reuse distance, locality space etc., [5] [6] [18] [22] [32] [33]

[34]. Generic measures of parallelism were used by Noonburg et al. [26] and Dubey et al. [8]

38

based on a profile of dependency distances in a program. Microarchitecture-independent

characteristics such as true computations versus address computations, and overhead memory

accesses versus true memory accesses, have been proposed by several researchers [15] [19]. The

methodology presented in this paper can benefit from more microarchitecture-independent

characteristics, but we believe that the characteristics we have used cover a wide enough range of

the program characteristics to make a meaningful comparison between the programs.

Another stream of work reduces simulation time of benchmarks by finding representative

phases within a program [29] [30] [40]. These techniques are orthogonal to the one presented in

this paper and can be used to further reduce the simulation time of the subset of programs

selected from the suite.

7. Conclusion

In this paper we proposed a method to measure the similarity between programs based on

their inherent microarchitecture-independent characteristics and we demonstrated the use of this

technique to subset programs from the SPEC CPU2000, MiBench, and MediaBench benchmark

suites. We validated the usefulness of the subsets obtained using our methodology by

demonstrating that the average IPC, data cache miss rate, and speedup of the entire suite could be

estimated with a reasonable accuracy by just simulating the subset of programs. Based on our

results and validation experiments we recommend that if the time required to simulate the entire

SPEC CPU benchmark suite is prohibitively high, the following set of programs should be used

as a representative subset: applu, equake, fma3d, gcc, gzip, mcf, mesa, and twolf.

From our study on the similarity between the four generations of SPEC CPU benchmark

suites we find that no single characteristic has changed as dramatically as the dynamic

instruction count. Our analysis shows that the branch and ILP characteristics have not changed

39

much over the last four generations, but the temporal data locality of programs has become

increasingly poor.

The methodology presented in this paper can be used to select representative programs

for the characteristics of interest, should the cost of simulating the entire suite be prohibitively

high. This technique can also be used during the benchmark design process to compose a

benchmark suite from a group of candidate program.

8. Acknowledgment

 This paper is an extended version of [27], published at the International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2005. This research is supported in

part by NSF grants 0113105, 0429806, IBM and Intel corporations. Lieven Eeckhout is a

Postdoctoral Fellow of the Fund for Scientific Research – Flanders (Belgium) (F.W.O

Vlaanderen).

9. References
[1] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer System

Modeling,” IEEE Computer, pp. 59-67, Feb 2002.

[2] L. Barroso, K. Ghorachorloo, and E. Bugnion, “Memory System Characterization of

Commercial Workloads,” in Proceedings of the International Symposium on Computer

Architecture, 1998, pp. 3-14.

[3] J. Cantin, and M. Hill, “Cache Performance for SPEC CPU2000 Benchmarks,”

http://www.cs.wisc.edu/multifacet/misc/spec2000cache-data/.

[4] D. Citron, “MisSPECulation: Partial and Misleading Use of SPEC CPU2000 in Computer

Architecture Conferences,” in Proceedings of International Symposium on Computer

Architecture, 2003, pp. 52-61.

[5] T. Conte, and W. Hwu, “Benchmark Characterization for Experimental System Evaluation,” in

Proceedings of Hawaii International Conference on System Science, vol. I, Architecture Track,

pp. 6-18, 1990.

[6] P. Denning, “The Working Set Model for Program Behavior,” Communications of the ACM,

vol 2(5), pp. 323-333, 1968.

[7] K. Dixit, “Overview of the SPEC benchmarks”, The Benchmark Handbook, Ch. 9, Morgan

Kaufmann Publishers, 1998.

[8] P. Dubey, G. Adams, and M. Flynn, “Instruction Window Size Trade-Offs and

Characterization of Program Parallelism,” IEEE Transactions on Computers, vol. 43(4), pp.

431-442, 1994.

[9] J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of SPEC benchmarks,” ACM

SIGMETRICS Performance Evaluation Review, vol. 26, no. 3, pp. 2-9, 1998.

[10] G. Dunteman, Principal Component Analysis, Sage Publications, 1989.

40

[11] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Designing computer architecture

research workloads,” IEEE Computer, vol. 36(2), pp. 65-71, Feb 2003.

[12] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quantifying the impact of input data

sets on program behavior and its applications,” Journal of Instruction Level Parallelism, vol 5,

pp. 1-33, 2003.

[13] R. Giladi and N. Ahituv, “ SPEC as a Performance Evaluation Measure,” IEEE Computer, pp.

33-42, Aug 1995.

[14] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown, “MiBench: A Free,

Commercially Representative Embedded Benchmark Suite,” in Proceedings of 4
th
 Annual

Workshop on Workload Characterization, 2001.

[15] D. Hammerstrom and E. Davdison, “Information content of CPU memory referencing

behavior,” in Proceedings of International Symposium on Computer Architecture, 1997, pp.

184-192.

[16] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millenium,” IEEE

Computer, pp. 28-35, July 2000.

[17] A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.

[18] L. John, P. Vasudevan and J. Sabarinathan, "Workload Characterization: Motivation, Goals

and methodology," in L. K. John and A. M. G. Maynard (Eds), Workload Characterization:

Methodology and Case Studies, IEEE Computer Society, 1999.

[19] L. John, V. Reddy, P. Hulina, and L. Coraor, “Program Balance and its impact on High

Performance RISC Architecture,” in Proceedings of the International Symposium on High

Performance Computer Architecture, pp.370-379, Jan 1995.

[20] A. Joshi, A. Phansalkar, L. Eeckhout, L. John, “Measuring Program Similarity Using Inherent

Program Characteristics,” Laboratory of Computer Architecture Technical Report TR-060201-

01, The University of Texas at Austin, February 2006.

[21] AJ KleinOswoski, D. Lilja, “MinneSPEC: A New SPEC Benchmark Workload for Simulation-

Based Computer Architecture Research,” Computer Architecture Letters, pp. 10-13, 2002.

[22] T. Lafage and A. Seznec, “Choosing Representative Slices of Program Execution for

Microarchitecture Simulations: A Preliminary Application to the Data Stream,” Workshop on

Workload Characterization (WWC-2000), Sept 2000.

[23] C. Lee, M. Potkonjak, W.H Mangione-Smith “MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communication Systems,” in Proceedings Of International

Symposium on Microarchitecture, 1997

[24] N. Mirghafori, M. Jacoby, and D. Patterson, “Truth in SPEC Benchmarks,” Computer

Architecture News vol. 23 (5), pp. 34-42, Dec 1995.

[25] S. Mukherjee, S. Adve, T. Austin, J. Emer, and P. Magnusson, “Performance Simulation

Tools,” IEEE Computer, Feb 2002.

[26] D. Noonburg and J. Shen, “A Framework for Statistical Modeling of Superscalar Processor

Performance,” in Proceedings of International Symposium on High Performance Computer

Architecture,1997, pp. 298-309.

[27] A. Phansalkar, A. Joshi, L. Eeckhout, L. John, “Measuring Program Similarity – Experiments

with SPEC CPU benchmark suites,” in Proceedings of International Symposium on

Performance Analysis of Systems and Software, 2005.

[28] R. Saveedra and A. Smith, “Analysis of benchmark characteristics and benchmark performance

prediction,” in Proceedings of ACM Transactions on Computer Systems, vol. 14 (4), pp. 344-

384, 1996.

[29] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution analysis to find periodic

behavior and simulation points in applications,” in Proceedings of the International

Conference on Parallel Architectures and Complication Techniques, 2000, pp. 3-14.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing Large

41

Scale Program Behavior,” in Proceedings of International Conference on Architecture Support

for Programming Languages and Operating Systems, 2002, pp. 45-57.

[31] K. Skadron, M. Martonosi, D.August, M.Hill, D.Lilja, and V.Pai. "Challenges in Computer

Architecture Evaluation," IEEE Computer, pp. 30-36, Aug. 2003.

[32] E. Sorenson and J.Flanagan, “Cache Characterization Surfaces and Prediction of Workload

Miss Rates,” in Proceedings of International Workshop on Workload Characterization, Dec

2001,pp. 129-139.

[33] E. Sorenson and J.Flanagan, “Evaluating Synthetic Trace Models Using Locality Surfaces,” in

Proceedings of the Fifth IEEE Annual Workshop on Workload Characterization, November

2002, pp. 23-33.

[34] J. Spirn and P. Denning, “Experiments with Program Locality,” The Fall Joint Conference, pp.

611-621, 1972.

[35] Standard Performance Evaluation Corporation, http://www.spec.org/benchmarks.html.

[36] H. Vandierendonck, K. De Bosschere, “Many Benchmarks Stress the Same Bottlenecks,” in

Proceedings of the Workshop on Computer Architecture Evaluation using Commerical

Workloads (CAECW-7), 2004, pp. 57-71.

[37] R. Weicker, “An Overview of Common Benchmarks,” IEEE Computer, pp. 65-75, Dec 1990.

[38] T. Wenisch, R. Wunderlich, B. Falsafi, and J.Hoe, “Applying SMARTS to SPEC CPU2000,”

CALCM Technical Report 2003-1, Carnegie Mellon University, June 2003

[39] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs:

Characterization and Methodological Considerations,” in Proceedings of International

Symposium on Computer Architecture, June 1995, pp. 24-36.

[40] J. Wunderlich, R. Wenisch, B. Falfasi, and J. Hoe, “SMARTS: Accelerating microarchitecture

simulation via rigorous statistical sampling,” in Proceedings of International

Symposium on Computer Architecture, 2003, pp. 84-95.

[41] J. Yi, D. Lilja, and D.Hawkins, "A Statistically Rigorous Approach for Improving Simulation

Methodology," Proc. of International Conference on High-Performance Computer

Architecture, 2003, pp. 281-291.

[42] “All published SPEC CPU200 results” web page:

http://www.spec.org/cpu2000/results/cpu2000.html.

