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Abstract: This paper proposes a methodology for measuring the similarity between 

programs based on their inherent microarchitecture-independent characteristics, and 

demonstrates two applications for it: (i) finding a representative subset of programs from 

benchmark suites and (ii) studying the evolution of four generations of SPEC CPU benchmark 

suites.  Using the proposed methodology we find a representative subset of programs from three 

popular benchmark suites - SPEC CPU2000, MediaBench, and MiBench.   We show that this 

subset of representative programs can be effectively used to estimate the average benchmark 

suite IPC, L1 data cache miss-rates, and speedup on 11 machines with different ISAs and 

microarchitectures – this enables one to save simulation time with little loss in accuracy.  From 

our study of the similarity between the four generations of SPEC CPU benchmark suites, we find 

that other than a dramatic increase in the dynamic instruction count and increasingly poor 

temporal data locality, the inherent program characteristics have more or less remained 

unchanged. 

Index Terms: measurement techniques, modeling techniques, performance of systems, and 

performance attributes.  

1. Introduction 

Modern day benchmark suites are typically comprised of a number of application 

programs where each benchmark consists of hundreds of billions of dynamic instructions.  

Therefore, a technique that can select a representative subset of programs from a benchmark 
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suite can translate into large savings in simulation time with little loss in accuracy.  

Understanding the similarity between programs is important when selecting a subset of programs 

that are distinct, but are still representative of the benchmark suite.  A typical approach to study 

the similarity between programs is to measure program characteristics and then use statistical 

data analysis techniques to group programs with similar characteristics.   

Programs can be characterized using microarchitecture-dependent characteristics such as 

cycles per instruction (CPI), cache miss-rate, and branch prediction accuracy, or 

microarchitecture-independent characteristics such as temporal data locality and instruction level 

parallelism.  Techniques that have been previously proposed to find similarity between programs 

primarily use microarchitecture-dependent characteristics of programs (or at least a mix of 

microarchitecture-dependent and microarchitecture-independent characteristics) [12] [36].  This 

involves measuring program performance characteristics such as instruction and data cache miss 

rate, branch prediction accuracy, CPI, and execution time across multiple microarchitecture 

configurations.  However, the results obtained from these techniques could be biased by the 

idiosyncrasies of a particular microarchitecture configuration.  Therefore, conclusions based on 

performance characteristics such as execution time and cache miss-rate could categorize a 

program with unique characteristics as insignificant, only because it shows similar trends on the 

microarchitecture configurations used in the study.  For instance, a prior study [36] ranked 

programs in the SPEC CPU2000 benchmark suite using the SPEC peak performance rating (a 

microarchitecture-dependent characteristic).  The program ranks were based on their uniqueness 

i.e., the programs that exhibit different speedups on most of the machines were given a higher 

rank as compared to other programs in the suite.  In this scheme of ranking programs, the gcc 

benchmark ranks very low, and seems to be less unique.  However, this result contradicts with 

what is widely believed in the computer architecture community – the gcc benchmark has 
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distinct characteristics as compared to the other programs and, therefore, is an important 

benchmark. This indicates that an analysis based on microarchitecture-dependent characteristics 

(such as the SPEC peak performance rating and speedup) could undermine the importance of a 

program that is really unique. 

We believe that by measuring similarity using inherent characteristics of a program it is 

possible to ensure that the results will be valid across a wide range of microarchitecture 

configurations.  In this paper we propose a methodology to find groups of similar programs 

based on their inherent characteristics, and apply it to study the similarity between programs in 

three popular benchmark suites.  More specifically, we make the following contributions: 

1) We motivate and present an approach that can be used to measure the similarity between 

programs in a microarchitecture-independent manner.   

2) We use the proposed methodology to find a subset of representative programs from the 

SPEC CPU2000, MiBench, and MediaBench benchmark suites, and demonstrate their 

usefulness in predicting the average performance metrics of the entire suite.   

3) We demonstrate that the subset of SPEC CPU2000 programs formed using 

microarchitecture-independent characteristics is representative across a wide range of 

machines with different instruction set architectures (ISAs), compilers, and 

microarchitectures. 

4) We provide an insight into how the program characteristics of four generations of SPEC 

CPU benchmark suites have evolved.  

The paper is organized as follows.  Section 2 describes our characterization methodology. 

Section 3 describes the results from applying the proposed methodology to find subsets of 
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programs from the SPEC CPU2000 [16], MediaBench [23], and MiBench [14] benchmark 

suites.  Section 4 presents validation experiments to demonstrate that the subsets of programs are 

indeed representative of the entire benchmark suite.  Section 5 uses the presented methodology 

to study the similarity between characteristics of programs across four generations of SPEC CPU 

benchmark suites. Section 6 describes the related work, and Section 7 summarizes the 

conclusions from this study.  

2.    Characterization Methodology 

This section describes our methodology to measure the similarity between benchmark 

programs.  It includes a description of the microarchitecture-independent characteristics, an 

outline of the statistical data analysis techniques, the benchmarks used, and the tools developed 

for this study. 

2.1  Microarchitecture-Independent Characteristics 

Microarchitecture-independent characteristics allow for a comparison between programs 

based on their inherent properties that are isolated from features of a particular machine 

configuration. As such, we use a gamut of microarchitecture-independent characteristics that 

affect overall program performance.  The characteristics that we use in this study are a subset of 

all the microarchitecture-independent characteristics that can be potentially measured, but we 

believe that our characteristics cover a wide enough range of program characteristics to make a 

meaningful comparison between the programs; the results in this paper in fact show that this is 

the case.  The microarchitecture-independent characteristics that we use in this study relate to the 

instruction mix, control flow behavior, instruction and data stream locality, and instruction-level 

parallelism.  These characteristics are described below. 

2.1.1 Instruction Mix 
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The instruction mix of a program measures the relative frequency of various operations 

performed by a program; namely, the percentage of computation instructions, data memory 

accesses (load and store instructions), and branch instructions in the dynamic instruction stream 

of a program.  

2.1.2 Control Flow Behavior 

We use the following set of metrics to characterize the branch behavior of programs.  

Basic Block Size: A basic block is a section of code with one entry and one exit point. We 

measure the basic block size as the average number of instructions between two consecutive 

branches in the dynamic instruction stream of the program.  A larger basic block size is useful in 

exploiting instruction level parallelism (ILP) in an out-of-order superscalar microprocessor. 

Branch Direction: Backward branches are typically more likely to be taken than forward 

branches.  This characteristic computes the percentage of forward branches out of the total 

branch instructions in the dynamic instruction stream of the program.   

Fraction of taken branches:  This characteristic is the ratio of the number of taken branches to 

the total number of branches in the dynamic instruction stream of the program. 

Fraction of forward-taken branches: This characteristic is the fraction of the forward branches 

in the dynamic instruction stream of the program that are taken. 

2.1.3 Inherent Instruction Level Parallelism 

Register Dependency Distance: We use a distribution of dependency distances as a measure of 

the inherent ILP in the program. Dependency distance is defined as the total number of 

instructions in the dynamic instruction stream between the production (write) and consumption 

(read) of a register instance [8] [26]. While techniques such as value prediction reduce the impact 

of these dependencies on ILP, information on the dependency distance is very useful in 



        

6 

 

understanding the inherent ILP of the program.  The dependency distance is classified into six 

categories: percentage of total dependencies that have a distance of 1 instruction, and the 

percentage of total dependencies that have a distance of up to 2, 4, 8, 16, 32, and greater than 32 

instructions.  Programs that have a higher percentage of large dependency distances are likely to 

exhibit a higher inherent ILP. 

2.1.4 Data locality  

Data Temporal Locality: Several locality characteristics have been proposed in the past [5] [6] 

[18] [22] [32] [33] [34], however, the algorithms for calculating them are computation and 

memory intensive. We selected the average memory reuse distance characteristic proposed by 

Lafage et al. [22] since it is more computationally feasible than the other characteristics that have 

been proposed.  The data temporal locality is quantified by computing the average distance (in 

terms of the number of data memory accesses) between two consecutive accesses to the same 

address, for every unique address in the program that is executed at least twice. For every 

program, we calculate the data temporal locality for window sizes of 16, 64, 256 and 4096 bytes 

– these windows are to be thought of as cache blocks i.e., the data temporal locality counts the 

number of access between two consecutive access to the same window.  The choice of these 

particular window sizes is based on the experiments conducted by Lafage et al. [22].  Their 

experimental results showed that these four window sizes were sufficient to accurately 

characterize the locality of the data reference stream with respect to a wide range of data cache 

configurations. 

Data Spatial Locality: Caches exploit spatial locality through the use of cache blocks i.e., 

programs that have a good spatial locality will benefit from a large cache block.  Therefore, a 

program that exhibits good spatial locality will show a significant reduction in the value of the 
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temporal data locality characteristic, i.e., average memory reuse distance, as the window size is 

increased.  In contrast, for a program with poor spatial locality, the value of the temporal data 

locality characteristic will not reduce significantly as the window size is increased.   We capture 

the spatial locality of a program by computing the ratio of the data temporal locality 

characteristic for window sizes of 64, 256, and 4096 bytes, to the data temporal locality 

characteristic for a window size of 16 bytes.  The values of these three ratios characterize the 

spatial locality of the program.  A smaller ratio for a higher window size indicates that the 

program exhibits good spatial locality.  

2.1.5 Instruction locality 

Instruction Temporal Locality: The instruction temporal locality is quantified by computing 

the average distance (in terms of the number of instructions) between two consecutive accesses 

to the same static instruction, for every unique static instruction in the program that is executed 

at least twice. Similar to the data temporal locality characteristic, we calculate the instruction 

temporal locality characteristic for window sizes of 16, 64, 256, and 4096 bytes. 

Instruction Spatial Locality: Spatial locality of the instruction stream is characterized by the 

ratio of the instruction temporal locality for window sizes of 64, 256, and 4096 bytes, to the 

instruction temporal locality characteristic for a window size of 16 bytes – this is similar to how 

the data spatial locality characteristic is computed. 

2.2  Statistical Data Analysis 

There are several variables (29 microarchitecture-independent characteristics) and many 

cases (benchmarks) involved in our study.  It is humanly impossible to simultaneously look at all 

the data and draw meaningful conclusions from them.  Therefore, we use multivariate statistical 

data analysis techniques, namely Principal Component Analysis and Cluster Analysis, to 
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compare and discriminate programs based on the measured characteristics, and understand the 

distribution of the programs in the workload space.   

Principal components analysis (PCA) [10] is a classic multivariate statistical data analysis 

technique that is used to reduce the dimensionality of a data set while retaining most of the 

original information.  We use PCA to remove the correlation between the measured variables 

and reduce the dimensionality of the data set.  After performing PCA we use clustering 

algorithms to find groups of programs with similar characteristics.  There are two very popular 

clustering algorithms, k-means and hierarchical clustering [17].  In this paper, we use both the 

clustering approaches.  We now give an overview of the PCA and clustering techniques that we 

use in this paper.  

Principal Components Analysis:  Principal components analysis (PCA) [10] is a classic 

multivariate statistical data analysis technique that is used to reduce the dimensionality of a data 

set while retaining most of the original information.  It builds on the assumption that many 

variables (in our case, microarchitecture-independent program characteristics) are correlated.  

PCA computes new variables, so called principal components, which are linear combinations of 

the original variables, such that all the principal components are uncorrelated.  PCA transforms p 

variables X1, X2......Xp into p principal components (PC) Z1, Z2…Zp  such that:  

∑
=

=

p

j jiji XaZ
0

 

 This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥ Var [Zp] which means that 1Z  

contains the most information and Zp the least.  Given this property of decreasing variance of the 

principal components, we can remove the components with the lower values of variance from the 

analysis.  This reduces the dimensionality of the data set while controlling the amount of 
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information that is lost.  In other words, we retain q principal components (q << p) that explain at 

least 75% to 90 % of the total information. In the next step of our methodology, cluster analysis 

uses these q PCs as a set of variables.  

Cluster Analysis:  There are two very popular clustering algorithms, K-means and hierarchical. 

We will demonstrate the use of both these techniques in our paper. We use K-means clustering 

[17] in earlier part of our analysis and then demonstrate the use of hierarchical clustering on a 

combined pool of SPEC CPU2000 and media programs in the later section.  

K-means clustering groups all cases (programs) into exactly K distinct clusters which show 

maximum difference in their characteristics (workload characteristics in our case).  Obviously, 

not all values of K fit the data set well.  As such, we explore various values of K in order to find 

the optimal clustering for the given data set. Also, it is a well-known fact that the result of K-

means clusters depends a lot on the initial placement of cluster centers. So, we do clustering for 

hundred different random seeds to find the best initial placement of centers. We use the BIC 

(Bayesian Information Criterion) explained in [29] to find the best fit of K. For every value of K 

with random placement of initial centres of the cluster we compute the BIC score. The higher the 

value of BIC score better is the probability of having good fit for K. So we select the result that 

shows the highest score for BIC, as optimal value of K.  

Hierarchical clustering algorithm uses a bottom to top approach to find groups of similar 

cases.  Given a set of N cases to be clustered, the hierarchical clustering technique starts with 

each case in a separate cluster and then combines the clusters sequentially, reducing the number 

of clusters at each step until all cases are grouped into one cluster.  When there are N cases, this 

involves N-1 clustering steps, or fusions.  We use the complete linkage distance measure as the 

distance measure between two clusters; the complete linkage distance is the distance between the 
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farthest data points in two clusters. The hierarchical clustering process can be represented as a 

tree, or dendrogram, where each step in the clustering process is illustrated by a join of the tree. 

Unlike K-means, the hierarchical clustering algorithm does not group the cases into K clusters. It 

is up to the user to decide the number of clusters based on the linkage distance. Smaller linkage 

distance means that the two data cases are closer and hence similar to each other.   

2.3   Benchmarks 

We use programs from the SPEC CPU [16], MediaBench [23], and MiBench [14] 

benchmark suites in this study.  Due to the differences in libraries, data type definitions, pointer 

size conventions, and known compilation issues on 64-bit machines, we were unable to compile 

some programs (mostly from old suites - SPEC CPU89 and SPEC CPU92).  The programs were 

compiled on a Compaq Alpha AXP-2116 processor using the Compaq/DEC C, C++, and the 

FORTRAN compiler.  The details of the programs and the input sets that we used in this study 

are listed in Table 1 & 2.   Although the characteristics that we measure are microarchitecture-

independent, they are dependent on the instruction set architecture (ISA) and the compiler.  

However, in section 4.2 we show that the subsets are reasonably valid across various compilers 

and ISAs.   

2.4  Tools 

SCOPE: The workload characteristics were measured using a custom-grown analyzer called 

SCOPE.  SCOPE was developed by modifying the sim-safe functional simulator from the 

SimpleScalar v3.0 tool set [1].  SCOPE analyzes the dynamic instruction stream and generates 

statistics related to the instruction mix, instruction and data locality, branch predictability, basic 

block size, and ILP. Essentially, the back-end of sim-safe is interfaced with custom developed 

analyzers to obtain the various microarchitecture-independent characteristics.   
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Table 1. List of SPEC CPU benchmarks used in our study 

 

Program Input INT/
FP 

Dynamic 
Inst 

Count (In 
Billions 

of 
Instructio

ns) 
SPEC CPU89 

 
espresso bca.in INT 0.5  

li li-input.lsp INT 7  

eqntott * INT * 

gcc * INT * 

spice2g6 * FP * 

doduc doducin FP 1.03  

fpppp Natoms FP 1.17  

matrix300 - FP 1.9  

nasa7 - FP 6.2  

tomcatv - FP 1  

    
SPEC CPU92 

 espresso bca.in INT 0.5  

li li-input.lsp INT 6.8  

eqntott * INT * 

compress In INT 0.1  

sc * INT * 

gcc * INT * 

spice2g6 * FP * 

doduc doducin FP 1.03  

mdljdp2 input.file FP 2.55  

mdljsp2 input.file FP 3.05  

wave5 - FP 3.53  

hydro2d hydro2d.in FP 44  

swm256 swm256.in FP 10.2  

alvinn In_pats.txt FP 4.69  

ora Params FP 4.72  

ear * FP * 

su2cor su2cor.in FP 4.65  

fpppp natoms FP 116  

nasa7 - FP 6.23  

tomcatv - FP 0.9  
SPEC CPU95 

 go null.in INT 18.2  

li *.lsp INT 75.6  

m88ksim ctl.in INT 520.4  

compress bigtest.in INT 69.3  

ijpeg penguin.pp
m 

INT 41.4  

gcc expr.i INT 1.1  

perl perl.in INT 16.8  

vortex * INT * 

wave5 wave5.in FP 30  

hydro2d Hydro2d.in FP 44  

swim swim.in FP 30.1  

applu applu.in FP 43.7 billion 

mgrid mgrid.in FP 56.4  

turb3d turb3d.in FP 91.9 

su2cor su2cor.in FP 33  

fpppp natmos.in FP 116  

apsi apsi.in FP 28.9  

tomcatv tomcatv.in FP 26.3  

    
SPEC CPU2000 

 gzip input.graphic INT 103.7  

vpr route INT 84.06  

gcc 166.i INT 46.9  

mcf inp.in INT 61.8  

crafty crafty.in INT 191.8  

parser ref INT 546.7  

eon cook INT 80.6  

perlbmk * INT * 

vortex lendian1.raw INT 118.9  

gap * INT * 

bzip2 input.graphic INT 128.7  

twolf ref INT 346.4  

swim swim.in FP 225.8  

wupwise wupwise.in FP 349.6  

mgrid mgrid.in FP 419.1  

mesa mesa.in FP 141.86  

galgel gagel.in FP 409.3  

art c756hel.in FP 45.0  

equake inp.in FP 131.5  

ammp ammp.in FP 326.5  

lucas lucas2.in FP 142.4  

fma3d fma3d.in FP 268.3  

apsi apsi.in FP 347.9  

applu applu.in FP 223.8  

facerec * FP * 

sixtrack * FP * 
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Table 2. List of the benchmarks from MiBench and MediaBench suites used in our study 

 

MiBench 

Application Type Dynamic Instruction Count    
(In Millions of Instructions) 

basicmath Automotive 1520 

bitcount Automotive 688.3 

qsort Automotive 513.8 

susan –input1 Automotive 327.33 

susan –input2 Automotive 76.06 

susan –input3 Automotive 31.06 

cjpeg Consumer 1180 

djpeg Consumer 26.86 

typeset Consumer 0.48 

dijkstra Network 257.78 

patricia Network 399.30 

ghostscript Office 872.97 

rsynth Office 878.83 

stringsearch Office 3.45 

sha Security 107.79 

crc32 Telecomm 692.20 

fft Telecomm 238.89 

invfft Telecomm 218.26 

gsm Telecomm 2100 

 

MediaBench 

Application Type Dynamic Instruction Count 
(In Millions of Instructions) 

 adpcm Compression 7.09 

adpcm Decompression 8.86 

epic Compression 58.37 

epic Decompression 10.25 

g.721 Encoder 381.84 

g.721 Decoder 399.82 

ghostscript - 877.77 

jpeg Compression 18.65 

jpeg Decompression 4.75 

mesa 3D graphics 127.95 

mpeg2 Decoder 161.62 

mpeg2 Encoder 1550 

rasta - 24.86 
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Statistical data analysis:  We use STATISTICA software version 6.1 for performing PCA and 

hierarchical clustering.  For k-means clustering we use the SimPoint software [30].  However, we 

do not apply random projection before applying k-means clustering as done by default in the 

SimPoint software.  Instead, we perform clustering in the transformed PCA space.   

3.   Subsetting benchmark suites 

In order to find a subset of representative benchmark programs from a suite, we first 

measure the microarchitecture-independent characteristics, as described in section 2, for all the 

benchmark programs.  We then apply the PCA technique to remove correlation between the 

measured characteristics and to reduce the dimensionality of the data set, and then use the k-

means clustering algorithm and the Bayesian Information Criterion (BIC) to group the programs 

into k distinct clusters.  A subset of representative programs is then composed by selecting one 

program from each cluster.  In our study we select the program that is closest to the center of its 

cluster as a representative of that group.   For clusters with just two programs, any program can 

be chosen as the representative.   We apply the subsetting methodology to the SPEC CPU2000, 

MiBench, and MediaBench benchmark suites.  For each benchmark suite we compose two 

subsets of programs, the first based on their overall characteristics and the second just based on 

their data locality characteristics. 

3.1   Subsetting of SPEC CPU2000 programs using overall program characteristics   

In this section we find a subset of representative programs from the SPEC CPU2000 

benchmark suite based on the similarity between the overall characteristics of the programs.  All 

the 29 microarchitecture-independent program characteristics for 21 programs from the SPEC 

CPU2000 benchmark suite are used as input to the data analysis. After performing PCA and 

using BIC with k-means clustering, we obtain 8 clusters as the best fit for the measured data set. 
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Table 3 shows the 8 clusters and their members. The programs in boldfaced font are chosen to be 

the representatives (closest to the center of the cluster) of that particular group.  

Citron [4] presented a survey on the use of SPEC CPU2000 benchmark programs in 

papers from four recent ISCA conferences.  He observed that some programs are more popular 

than the others among computer architecture researchers. The list of popular integer benchmarks 

in their decreasing order of popularity is: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2, crafty, 

perlbmk, gap, and eon.  For the floating point benchmarks, the list in decreasing order of 

popularity is:  art, equake, ammp, mesa, applu, swim, lucas, apsi, mgrid, wupwise, galgel, 

sixtrack, facerec, and fma3d.  The clusters that we obtained in Table 3 suggest that the most 

popular programs in the listing provided by Citron [4] do not form a truly representative subset 

of the benchmark suite (based on their inherent characteristics).  For example, subsetting SPEC 

CPU2000 integer programs using gzip, gcc, parser, vpr, mcf, vortex, twolf, and bzip2 will result 

in three uncovered clusters, namely 1, 3 and 7.  We also observe that there is a lot of similarity in 

the characteristics of the popular programs.  The three popular benchmarks parser, twolf, and 

vortex belong to the same cluster, Cluster 6, and hence are not likely to provide any additional 

information.  The results from Table 3 suggest that using applu, gzip, gcc, equake, fma3d, mcf, 

mesa, and twolf as a representative subset of the SPEC CPU2000 benchmark suite would be a 

better practice.  

We observe that gcc is in a separate cluster by itself, and hence has characteristics that are 

significantly different from other programs in the benchmark suite.  After inspecting the 

characteristics we observe that gcc has a peculiar instruction temporal locality behavior (large 

reuse distance for the instruction stream) and hence stands out from the rest of the programs. 

However, in the ranking scheme used in a prior study [36], gcc is ranked very low and does not 
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seem to be a very unique program.  Their study uses a microarchitecture-dependent 

characteristic, namely the SPEC peak performance rating, and hence a program, such as gcc that 

shows similar speedup on most of the machines will be ranked lower.  This example shows that 

the results from analyzing microarchitecture-independent characteristics can identify redundancy 

more effectively. 

Table 3.  Optimal clusters for SPEC CPU2000 programs based on the overall program characteristics. 

 

 

 

 

 

 

 

 

 

3.2   Subsetting of embedded programs using the overall program characteristics 

 MiBench and MediaBench benchmark suites represent the typical workloads used in 

embedded computing.  MiBench suite consists for benchmarks that are representative of the 

workloads used in automotive, consumer devices, network, security, office automation, and 

telecommunications applications.  The benchmarks in the MediaBench suite are representative of 

embedded multimedia and communication workloads.  In this section we compose a subset of 

representative embedded programs from MiBench and MediaBench benchmark suites, based on 

their overall program characteristics. We use the same procedure as described in the previous 

section i.e., performing PCA on all 29 microarchitecture-independent characteristics followed by 

k-means clustering, to divide benchmarks into groups of similar programs.  Using BIC with k-

Cluster 1 applu, mgrid 

Cluster 2 bzip2, gzip 

Cluster 3 crafty, equake 

Cluster 4 fma3d, ammp, apsi, galgel, swim, vpr, wupwise 

Cluster 5 mcf 

Cluster 6 twolf , lucas, parser, vortex 

Cluster 7 mesa, art, eon 

Cluster 8 gcc 
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means clustering we found 5 clusters as the best fit for this data.   

Table 4 shows the 5 different groups of embedded benchmark programs. The program-

input pairs marked in boldfaced font are the cluster representatives. We observe that although 

MiBench and MediaBench are two different suites, they still have three common programs, 

namely cjpeg, djpeg, and ghostscript.  Although the cjpeg and djpeg benchmarks from MiBench 

and MediaBench suites have different input sets they reside in the same cluster (Cluster 1 and 3).  

This suggests that the input set does not affect the program behavior of the jpeg 

compression/decompression benchmarks.  Also, the ghostscript benchmarks from MiBench and 

MediaBench suites exhibit similar program characteristics.   

Interestingly, the 6 automotive benchmarks from the MiBench suite show very little 

similarity between each other, and are distributed in 4 out of 5 clusters.  However, the 

benchmarks from the telecommunication and networking application domains are relatively very 

similar to each other. The bitcount automotive benchmark forms a singleton cluster (Cluster 5), 

and is therefore the most unique program in the two benchmark suites.  The encoder and decoder 

versions of the MediaBench programs g.721, adpcm, and mpeg2 are also very similar to each 

other.  From these observations we can conclude that a large number of programs from MiBench 

and MediaBench suites show very similar program behavior, and only 5 benchmarks, namely 

cjpeg, rasta, invFFT, adpcm, and bitcount are required to represent the 32 embedded benchmark 

programs from the two suites.  
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Table 4.   Optimal clusters for embedded programs based on the overall characteristics. 

 

3.3  Subsetting of SPEC CPU2000 programs using the data locality characteristics 

In section 3.1 we selected a representative subset of SPEC CPU2000 programs based on 

their overall program characteristics.  However, architects and researchers often use cache 

simulations when performing studies related to the data memory hierarchy of a microprocessor.  

In order to select a representative subset of programs for such studies, one needs to understand 

the similarity between programs just based on their data locality characteristics.   

In this analysis we find a subset of the SPEC CPU2000 benchmark suite by only 

considering the 7 characteristics of SPEC CPU2000 programs that are related to their temporal 

and spatial data locality.  We use the same methodology, i.e., PCA followed by k-means and 

BIC, to group the programs into an optimal number of clusters. Table 5 shows the groups of 

SPEC CPU2000 programs that have similar data locality characteristics. We observe that a large 

number (9 out of 21) of SPEC CPU2000 programs are grouped together in one cluster (Cluster 

Cluster 1 mediabench_cjpeg,  mediabench_unepic,   mediabench_ghostscript,   

mibench_consumer_cjpeg,   mibench_office_ghostscript,   mibench_office_rsynth 

Cluster 2 mediabench_rasta,  mediabench_mesa,  mibench_automotive_qsort, 

mibench_network_dijkstra,  mibench_network_patricia, mibench_office_stringsearch,  

mibench_security_sha,  mibench_telecomm_CRC32 

Cluster 3 mibench_telecomm_invFFT,  mediabench_epic,  mediabench_g721_decoder, 

mediabench_g721_encoder,  mediabench_djpeg, mediabench_mpeg2_decoder, 

mediabench_mpeg2_encoder,  mibench_automotive_basicmath, 

mibench_automotive_susan2,  mibench_automotive_susan3, mibench_consumer_djpeg,  

mibench_consumer_typeset, mibench_ telecomm_FFT,  mibench_telecomm_gsm 

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder, 

mibench_automotive_susan1 

Cluster 5 mibench_automotive_bitcount 
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3), and hence exhibit very similar data locality characteristics.  Surprisingly, the floating point 

benchmarks art, ammp, applu, and mgrid have similar temporal and spatial data locality 

characteristics as the integer benchmarks crafty, eon, parser, twolf, vortex, and vpr.  Also, the 

floating point benchmark mesa shows similar data locality characteristics as the integer 

benchmark gcc.  We conclude that only 3 integer programs gzip, mcf, and bzip2, and 6 floating 

point programs ammp, equake, mesa, fma3d, galgel, and wupwise, are representative of the data 

locality characteristics exhibited by programs in the SPEC CPU2000 benchmark suite.  

Table 5.  Optimal clusters for SPEC CPU2000 programs based on data locality characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Subsetting embedded benchmarks using data locality characteristics 

We now select a subset of representative embedded programs from MiBench and 

MediaBench benchmark suites based on their similarity in data locality characteristics.  Table 6 

shows the 8 groups of media programs that differ in their data locality behavior.   

 

 

 

 

Cluster 1 gzip 

Cluster 2 mcf 

Cluster 3 ammp, applu, crafty, art, eon, mgrid, parser, twolf, vortex, vpr 

Cluster 4 equake 

Cluster 5 bzip2 

Cluster 6 mesa, gcc 

Cluster 7 fma3d, swim, apsi 

Cluster 8 galgel, lucas 

Cluster 9 wupwise 
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Table 6.  Optimal number of clusters for embedded programs based on the data locality 
characteristics. 

We observe that all the automotive benchmarks from the MiBench benchmark suite, 

susan, bitcount, basicmath, and qsort reside in different clusters, suggesting that they have very 

different data locality characteristics.  Particularly, the benchmark susan exhibits different data 

locality characteristics depending on the input set used.  Also, susan forms a singleton cluster for 

inputs sets 1 and 2 and therefore has the most unique data locality characteristics of all the 

embedded programs. Interestingly, except for the epic benchmark, all the other pairs of 

compress/decompress and encoder/decoder benchmarks, namely adpcm, g.721, jpeg, and 

mpeg2, show very similar data locality.  One key conclusion that we can draw is that the 

combined set of embedded benchmark programs from MiBench and MediaBench suites can be 

represented by 6 programs from the MiBench suite, namely susan (input sets 1 and 2), djpeg, 

sha, qsort, ghostscript, and 1 program from the MediaBench suite, namely adpcm.   In other 

words, expect for the adpcm program, the data locality characteristics of MediaBench programs 

Cluster 1 mibench_automotive_susan1 

Cluster 2 mibench_automotive_susan3 

Cluster 3 

mibench_ consumer_djpeg, mediabench_epic, mediabench_cjpeg, mediabench_djpeg, 

mediabench_mpeg2_decode, mediabench_mpeg2_encoder, mibench_consumer_cjpeg,  

mibench_consumer_typeset, mibench_telecomm_FFT, mibench_telecomm_invFFT 

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder 

Cluster 5 
mibench_security_sha_large ,mediabench_mesa, mediabench_rasta,mibench_ 

automotive_susan2, mibench_network_dijkstra, mibench_office_stringsearch,   

Cluster 6 automotive_basicmath_large, network_patricia_large 

Cluster 7 

mibench_automotive_qsort, mediabench_unepic, mediabench_g721_decoder, 

ediabench_g721_encoder, mibench_automotive_bitcount, mibench_office_rsynth, 

mibench_telecomm_CRC32, mibench_telecomm_gsm 

Cluster 8 mediabench_office_ghostscript, mibench_office_ghostscript 
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are a subset of the data locality characteristics exhibited by programs from the MiBench suite.   

4.  Validating the representativeness of benchmark subsets 

It is important to understand whether the subsets of programs we have created are 

meaningful and are indeed representative of the original benchmark suite. Therefore, we use the 

subset of programs, composed using our proposed methodology, to estimate the average 

benchmark suite IPC, L1 data cache miss-rate, and speedup.  We then compare our results to 

those obtained by using the entire benchmark suite. 

4.1   Estimating IPC through subsetting 

Using the subset of programs based on overall program characteristics from the SPEC 

CPU2000, MiBench, and MediaBench benchmark suites we estimated the average IPC of the 

entire suite for two different superscalar configurations.  For the SPEC CPU2000 benchmark 

programs we used an 8-way and a 16-way issue superscalar microprocessor configuration, where 

as, for the MiBench and MediaBench programs we used a 2-way and a 4-way issue 

configuration.  The details of the configurations are listed in Table 7 & 8.  From Tables 3 and 5 

we observe that each cluster has a different number of programs, and hence the weight assigned 

to each representative program should depend on the number of programs that it represents i.e., 

the number of programs in its cluster.   For example, from Table 3, the weight for fma3d (Cluster 

4) is 7.   Similarly, we assign a weight to each representative program, and using these weights 

we calculate the weighted harmonic mean of the IPC for the entire suite.   

Figure 1(a) shows the weighted average (harmonic mean) IPC of the entire SPEC 

CPU2000 benchmark suite, the estimated IPC from the subset of programs from Table 3, and the 

average (harmonic mean) IPC calculated using the list of popular programs published by Citron 

[4].  We obtained the IPC performance data for an 8-wide and 16-wide superscalar out-of-order 
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microarchitecture for every program in the SPEC CPU2000 benchmarks from Wenisch et. al. 

[38].   

 

 

 

 

 

 

 

 

 

(a) SPEC CPU2000 benchmark suite 

 

 

 

 

 

 

 

 

 

 

(b) Embedded programs from MiBench and MediaBench benchmark suites 

Figure 1.  Estimating average IPC using a subset of programs from the (a) SPEC CPU2000 and  

(b) MiBench and MediaBench benchmark suites. 
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Table 7.  Configurations of machines for which IPC of SPEC CPU2000 suite is estimated using 

subsetting. 

Parameter 8-way 16-way 

RUU/LSQ 128/64 entries 256/128 entries 

Memory 
System 

32KB 2way L1 I/D, 1M 
4way L2 

64KB 2-way L1 I/D, 2M 8way L2 

ITLB/DTLB 
4-way 128 entries/ 4-
way 256 entries, 200 

cycle misses 

4-way 128 entries/ 4-way 256 entries, 200 
cycle misses 

L1/L2/mem 
latency 

1/12/100 cycles 2/16/100 cycles 

Functional 
Units 

4 I-ALU, 2 I-MUL/DIV, 
2FP-ALU, 1 FP-

MUL/DIV 

16 I-ALU, 8 I-MUL/DIV, 8FP-ALU, 4 FP-
MUL/DIV 

Branch 
Predictor 

Combined 2k tables, 
7cycles mispred penalty 

Combined 8k tables, 10 cycle mispred penalty 

 
 

Table 8.  Configurations of machines for which IPC of MiBench and MediaBench suites is estimated 

using subsetting. 

 
Parameter 2-way 4-way 

RUU/LSQ 32/16 entries 64/32 entries 

Memory System 
8KB 2-way L1 I/D, 

256K 4-way L2 
16KB 2-way L1 I/D,  512K 4-way L2 

ITLB/DTLB 
4-way 16 entries/ 4-
way 32 entries 30 

cycle misses 

4-way 16 entries/ 4-way 32 entries 30 
cycle misses 

L1/L2/mem latency 1/6/36 cycles 2/8/36 cycles 

Functional Units 
2 I-ALU, 1 I-MUL/DIV, 

2FP-ALU, 2 FP-
MUL/DIV 

4 I-ALU, 2 I-MUL/DIV, 4 FP-ALU, 2 FP-
MUL/DIV 

Branch Predictor 
Combined 2k tables 4 

cycle misprediction 
penalty 

Combined 2k tables 4 cycle misprediction 
penalty 

 

 

The error in weighted average IPC computed using the subset of programs in Table 3 for 

both 8-way and 16-way issue widths is less than 5%.  We observe that the average IPC 

calculated using the list of popular programs published by Citron in [4] shows high errors (-15% 

and -23.4% respectively for the 8-way and 16-way issue configurations, respectively).  The two 



        

23 

 

main reasons why we see a higher error from the subset of popular programs are: (i) the popular 

subset of programs is not selected by using a formal methodology to find similarity/dissimilarity 

with the rest of the programs, and (ii) there is no method to assign weights to the programs in the 

subset.   

Figure 1(b) shows the average IPC (harmonic mean) of all the embedded programs from 

the MiBench and MediaBench benchmark suites, and the estimated average IPC (weighted 

harmonic mean) using the subset of programs shown in Table 4.  We find that the error in 

estimating the average IPC using the subset of programs is very small for both the configurations 

(-0.67% for 2-way issue and -3.9% for 4-way issue).  

Since the IPC of the entire suite can be estimated with reasonable accuracy using the 

subsets formed using our methodology, we feel that it is a good validation for the usefulness of 

the subsets. 

4.2   Estimating speedup of SPEC CPU2000 benchmarks through subsetting 

In the previous section we evaluated the usefulness of the subset to accurately estimate 

the overall IPC in a single design point.  However, in early stages of the design cycle, relative 

accuracy, i.e., the ability to predict speedup, is even more important. We now demonstrate the 

usefulness of the subset of programs from the SPEC CPU2000 suite to estimate the speedup of 

11 machines from different vendors with respect to the base machine (Sun Ultra5_10 with 

300MHz processor) that SPEC uses to calculate the SPEC CPU rating. Figure 2 shows the 

estimated weighted average (geometric mean) speedup of the entire suite using the subset based 

on overall program characteristics, and the average speedup (geometric mean) of the entire suite, 

for computers from various manufacturers.   

The speedup numbers for SPEC CPU2000 programs were directly obtained from their 
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execution times published by SPEC [42].   The maximum error in the speedup estimated using 

the subset is 9.1%.  Since the machines used in this experiment have different ISAs, 

microarchitecture, and compiler settings, we can conclude that the subset of programs composed 

using inherent program characteristics is valid across different microarchitectures, ISAs, and 

compilers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Estimating average speedup using a subset of programs from the SPEC CPU2000 

benchmark suite. 

4.3   Estimating average data cache miss-rate through subsetting 

In this section we evaluate the usefulness of the subset of programs, formed using the 

data locality characteristics, in estimating the average data cache miss-rate of the entire suite.  

Similar to the procedure described in the earlier section we assign a weight to every 

representative program.  Figure 3(a) shows the weighted average (harmonic mean) L1 data cache 

miss-rate of the SPEC CPU2000 benchmark suite estimated using the subset of programs shown 

in Table 5 (based on data locality characteristics), the estimated average (harmonic mean) L1 
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data cache miss-rate using the entire benchmark suite, and the estimated average L1 data cache 

miss-rate using the list of popular programs published by Citron in [4]. We obtained the miss-

rates for 9 different L1 data cache configurations from Cantin et al. [3].   The average absolute 

error in estimating the L1 data cache miss-rate of the entire suite using the subset of programs 

shown in Table 5 is 0.8%.  The average absolute error in estimating the L1 data cache miss-rate 

using the set of popular programs is 3%.   From these results we can conclude that the program 

subset derived in Table 5 is indeed representative of the data locality characteristics of programs 

in the SPEC CPU2000 benchmark suite.   
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(b) Embedded programs from MiBench and MediaBench suites 

Figure 3.  Estimating the average data cache miss rate using a subset of programs from the (a) SPEC 

CPU2000 and (b) MiBench and MediaBench suites. 

Figure 3(b) shows the average (harmonic mean) L1 data cache miss-rate of the entire set 

of embedded programs, and the estimated weighted average (harmonic mean) L1 data cache 

miss-rate using the subset of programs shown in Table 4 (all characteristics) and Table 6 (only 

data locality characteristics).  We use 12 different cache configurations (sizes of 4KB, 8KB, 

16KB, and 64KB, each with a direct-mapped, 4-way set associative and fully-associative 

configurations) to validate the representativeness of the subset of programs.  The average 

absolute error in estimating L1 data cache miss-rate using the subset based on overall program 

characteristics is 0.6%, and using the subset based on data locality characteristics is 0.5%.  

Again, our results show that the subset of programs is very effective in estimating the data cache 

miss-rate of the entire suite. 

5. Similarity across four generations of SPEC CPU benchmark suites 

We now use the methodology presented in this paper for analyzing how benchmark 

programs evolve with time.  The Standard Performance Evaluation Corporation (SPEC) CPU 

benchmark suite which was first released in 1989 as a collection of 10 computation-intensive 

benchmark programs (average size of 2.5 billion dynamic instructions per program), is now in its 

fourth generation and has grown to 26 programs (average size of 230 billion dynamic 

instructions per program).  So far, SPEC has released four CPU benchmark suites: in 1989, 1992, 

1995 and 2000. 

In this section, we use our collection of microarchitecture-independent characteristics, 

described in section 2, to characterize the generic behavior of four generations of SPEC CPU 

benchmark programs.  In these experiments we use the same compiler to compile programs from 
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all the four suites. The data is analyzed using PCA and cluster analysis to understand the changes 

in the CPU workloads over time. First, we use all the characteristics and perform k-means 

clustering to find optimal number of clusters for all the four generations of SPEC CPU 

benchmarks. In the subsequent sections, we analyze each important characteristic separately for 

all the generations. In order to visualize the workload space we plot the scores for the first two 

PCs for sixty programs on a two dimensional graph, and also plot a dendrogram showing the 

similarity between the programs.   

5.1 Overall Characteristics 

In order to understand the (dis)similarity between programs across SPEC CPU 

benchmark suites we perform a cluster analysis in the PCA space as described in section 3.   

Table 9. Optimum number of clusters for the four generations of SPEC CPU benchmark programs using 

the overall program characteristics. 

Clustering all the 60 benchmarks yields 12 optimum clusters, which are shown in Table 

9; the benchmarks in boldfaced font are the cluster representatives. 

Cluster 1 gcc(95), gcc(2000) 

Cluster 2 mcf(2000) 

Cluster 3 turbo3d (95), applu (95), apsi(95), swim(2000), mgrid(95), wupwise(2000) 

Cluster 4 hydro2d(95), hydro2d(92), wave5(92), su2cor(92), succor(95), apsi(2000), 

tomcatv(89), tomcatv(92), crafty(2000), art(2000), equake(2000), mdljdp2(92) 

Cluster 5 perl(95), li (89), li(95), compress(92), tomcatv(95), matrix300(89) 

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92), galgel(2000), wave5(95), alvinn(92) 

Cluster 7 applu(2000), mgrid(2000) 

Cluster 8 doduc(92), doduc(89), ora(92) 

Cluster 9 mdljsp2(92), lucas(2000) 

Cluster 10 parser(2000), twolf(2000), espresso(89), espresso(92), compress(95), go(95), 

ijpeg(95), vortex(2000) 

Cluster 11 fppp(95), fppp(92), eon(2000), vpr(2000), fppp(89), fma3d(2000), mesa(2000), 

ammp(2000) 

Cluster 12 bzip2(2000), gzip(2000) 
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A detailed analysis of Table 9 gives us several interesting insights.  First, out of all the 

benchmarks, gcc (2000) and gcc (95) are together in a separate cluster. We observe that 

instruction locality for gcc is worse than any other program in all 4 generations of SPEC CPU 

suite.  Because of this, the gcc programs from the SPEC CPU 95 and 2000 suites reside in their 

own separate cluster.  Due to its peculiar data locality characteristics, mcf (2000) resides in a 

separate cluster (cluster 2), and bzip2 (2000) and gzip (2000) form one cluster (cluster 12).   

SPEC CPU2000 programs exist in 10 out of 12 clusters, as opposed to SPEC CPU95 in 7 

clusters, SPEC CPU92 in 6 clusters, and SPEC CPU89 in 5 clusters. This shows that SPEC 

CPU2000 benchmark suite is more diverse than its ancestors. 

5.2 Instruction Locality 

We perform PCA on the raw data measured for the instruction locality characteristics, 

which yields two principal components explaining 68.4 % and 28.6 % of the total variance. 

Figure 4 shows the benchmarks in the PCA space.   In order to visualize the relative positions of 

the benchmarks in the workload space we also present a tree, or dendrogram, using hierarchical 

clustering.  Figure 5 shows the dendrogram obtained from applying hierarchical clustering to the 

data set in the PCA space.  The horizontal scale of the dendrogram lists the benchmarks, and the 

horizontal scale corresponds to the linkage distance obtained from the hierarchical clustering 

analysis.  The shorter the linkage distance the closer, i.e., more similar, the benchmarks are to 

each other in the workload space.   
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Figure 4.  PCA space built from the instruction locality characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Dendrogram showing the linkage distance between programs based on the instruction locality 

characteristics. 

For example, in Figure 5, the gcc (2000) and gcc (95) benchmarks combine into a cluster 

at a linkage distance of 0.2, and the cluster containing the two gcc benchmarks combines into a 
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cluster containing all the other programs at a linkage distance of 6.2.  This means that the gcc 

benchmarks from SPEC CPU95 and SPEC CPU2000 benchmark suites are more similar to each 

other than with all the other programs. 

PC1 represents the instruction temporal locality and PC2 represents the instruction spatial 

locality of the benchmarks, i.e., the benchmarks with a higher value along PC1 show poor 

temporal locality for the instruction stream, and the benchmarks with a higher value along PC2 

show good spatial locality in the instruction stream.  Figures 4 and 5 show that programs from 

all the SPEC CPU generations overlap. The biggest exception is gcc in SPECint2000 and 

SPECint95 (the two dark points on the plot on the extreme right). The gcc benchmark from the 

SPECint2000 and SPECint95 suites exhibits poor instruction temporal locality. It also shows 

very low values for PC2 due to poor spatial locality. The floating point program matrix300 from 

SPEC CPU89 suite and compress from SPEC CPU92 show very good temporal and spatial 

locality. The benchmark program applu from SPEC CPU2000 shows a very high value for PC2 

and would therefore benefit a lot from an increase in block size. The fppp benchmarks from 

SPEC CPU89, SPEC CPU92, SPEC CPU95 suites, and the bzip2 and gzip benchmarks from the 

SPEC2000 suite show similar instruction locality.   

In general, we observe that although the average dynamic instruction count of the 

benchmark programs has increased by a factor of x100, the static instruction count has remained 

more or less constant.  This suggests that the dynamic instruction count of the SPEC CPU 

benchmark programs have simply been scaled – more iterations through the same instructions. 

5.3  Branch characteristics 

For studying the branch behavior we include the following characteristics in our analysis: 

the percentage of branches in the dynamic instruction stream, the average basic block size, the 
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percentage forward branches, the percentage taken branches, and the percentage forward-taken 

branches.  From PCA analysis, we retain 2 principal components explaining 62% and 19% of the 

total variance, respectively.  Figure 6 plots the various SPEC CPU benchmarks in this PCA 

space and Figure 7 is a dendrogram showing the linkage distance between the programs based on 

the branch characteristics. 

We observe that the integer benchmarks are clustered in an area. We also observe that the 

floating-point benchmarks typically have a positive value along the first principal component 

(PC1), whereas the integer benchmarks have a negative value along PC1.  The reason is that 

floating-point benchmarks typically have fewer branches, and thus have a larger basic block size; 

also, floating-point benchmarks typically are very well structured, and have a smaller percentage 

of forward branches, and fewer forward-taken branches.   

 

 

 

 

 

 

 

Figure 6.  PCA space built from the branch characteristics. 
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Figure 7.  Dendrogram showing linkage distance between programs based on the branch 

characteristics. 

In other words floating point benchmarks tend to spend most of their time in loops. The 

two prominent outliers in the top right corner of this graph are SPEC 2000’s mgrid and applu 

programs due to their extremely large average basic block sizes, 273 and 318 instructions, 

respectively. The two outliers on the right are swim benchmarks from SPEC92 and SPEC95 

suites, due to their large percentage taken branches and small percentage forward branches. On 

the extreme left of the PCA space is vortex from SPEC2000 which shows a very low average 

basic block size. Due to a significant overlap seen in the plot we can conclude that the branch 

characteristics of the SPEC CPU programs did not significantly change over the past four 

generations of SPEC CPU programs.  Figure 7 also suggests that the branch behavior of 

programs has not significantly changed for the last four generations – doduc, espresso, fppp, 
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hydro2d, li, and tomcatv are examples of programs whose branch characteristics have not 

changed across generations of SPEC CPU benchmark suites. 

5.4  Instruction-level parallelism 

In order to study the instruction-level parallelism (ILP) of the SPEC CPU suites we used 

the inter-instruction register dependency characteristic.  This characteristic is closely related to 

the intrinsic ILP available in an application.  Long dependency distances generally imply a high 

ILP.  The first two principal components explain 96% of the total variance.  The PCA space is 

plotted in Figure 8, and Figure 9 shows the dendrogram with the linkage distance between the 

programs based on their ILP characteristics.   

We observe that the integer benchmarks typically have a high value along PC1, which 

indicates that these benchmarks have a higher percentage of short dependency distances.  The 

floating-point benchmarks typically have larger dependency distances.  We observe no real trend 

in this graph.  The intrinsic ILP did not change over the 4 benchmark suites except for the fact 

that several floating-point programs from SPEC CPU89 and SPEC CPU92 suites (and no SPEC 

CPU95 or SPEC CPU2000 benchmarks) exhibit relatively short dependencies compared to other 

floating-point benchmarks; these overlap with integer benchmarks in the range -0.1 < PC1 < 0.6.  

 

 

 

 

 

 

Figure 8.  PCA space built from the ILP characteristics. 
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Figure 9.  Dendrogram showing the linkage distance between programs based on the ILP 

characteristics. 

In the top left corner we can see two outliers, mgrid and applu, that are quite far from a 

lot of other programs and show large dependency distances, which implies better ILP. The 

program swim from the SPEC CPU2000 suite also shows large dependency distances. The 

majority of the programs on the right side of the PCA space are integer programs with vortex 

from SPEC 2000 being the one with the largest number of short dependency distances.  In Figure 

9 we observe that a lot of floating point programs across various generations, e.g., fppp, tomcatv, 

nasa7, li, and doduc, form a tight cluster. Hence we can conclude that there is a lot of similarity 

between the ILP characteristics exhibited by the floating point programs across all four 

generations of the SPEC CPU suites. 

5.5 Data Locality 
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For studying the temporal and spatial locality behavior of the data stream we used the 

locality characteristics described in section 2.  Recall that the characteristics by themselves 

quantify temporal locality whereas the ratios between them are a measure for the spatial locality.  

Figure 10 shows a plot of the benchmarks in the PCA space built from these data locality 

characteristics, and Figure 11 shows the linkage distance between various programs.  

In Figure 10 the first principal component measures temporal locality, i.e., a more 

positive value along PC1 indicates poorer temporal locality.  The second principal component 

measures spatial locality.  Therefore, benchmarks with a high value along PC2 will thus benefit 

more from an increased cache line size.   From this figure we conclude that several SPEC 

CPU2000 and CPU95 benchmark programs, namely bzip2, gzip, mcf, and wupwise, from 

CPU2000, and gcc, turbo3d, applu, and mgrid from CPU95, exhibit a temporal locality that is 

significantly worse than the other benchmarks.  Concerning spatial locality, most of these 

benchmarks exhibit a spatial locality that is relatively higher than that of the remaining 

benchmarks, i.e., increasing the window sizes improves performance of these programs more 

than they do for the other benchmarks.  

Programs like gzip, bzip2 and mcf show poor spatial locality.  There are a lot of programs 

in all the four generations of SPEC CPU suites that overlap.  This indicates that although the 

objective of SPEC is to worsen the data stream locality behavior of subsequent CPU suites, 

several benchmarks in recent suites exhibit a locality behavior that is similar to older versions of 

SPEC CPU.  Moreover, several CPU95 benchmarks like wave, perl, compress, apsi and 

CPU2000 benchmarks like equake, galgel, lucas and swim that show a temporal locality 

behavior that is better than some CPU89 and CPU92 benchmarks.  
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Figure 10.  PCA space built from the data locality characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Dendrogram showing the linkage distance between programs based on the data locality 

characteristics. 

6. Related Work 

Weicker [37] used characteristics such as statement distribution in programs, distribution  

of operand data types, and distribution of operations, to study the behavior of several stone-age 

benchmarks.  Saveedra and Smith [28] characterized FORTRAN applications in terms of the 
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number of various fundamental operations, and predicted their execution time.  They also 

developed a measure for program similarity that makes it possible to classify benchmarks with 

respect to a large set of characteristics.    

Prior work in studying benchmark characteristics has typically taken the approach of 

measuring microarchitecture-dependent characteristics e.g., cycles per instruction, cache miss 

rate, branch prediction accuracy etc., on various microarchitecture configurations that offer a 

different mixture of bottlenecks [11][12][36][41].  The variation in these characteristics is then 

used to infer the generic program behavior.   

There has been prior research to find redundancy in benchmark suites. Dujmovic and 

Dujmovic [9] developed a quantitative approach to evaluate benchmark suites.  They used the 

execution time of a program on several machines to calculate measures that quantify the size, 

completeness, and redundancy of the benchmark space. Vandierendonck and De Bosschere [36] 

analyzed the SPEC CPU2000 benchmark suite peak results on 340 different machines 

representing eight ISAs, and used PCA to identify the redundancy in the benchmark suite. In 

[36], the authors quantify redundancy as the ability of a program to show different speedup on 

two different machines. The programs that do not show very different speedups are considered 

redundant.  They conclude that only a subset of programs from SPEC CPU2000 benchmark 

programs are required to accurately predict the ranks of these 340 machines.  

There has been some research on microarchitecture-independent locality and ILP 

characteristics. For example, locality models researched in the past include working set models, 

least recently used stack models, independent reference models, temporal density functions, 

spatial density functions, memory reuse distance, locality space etc., [5] [6] [18] [22] [32] [33] 

[34].  Generic measures of parallelism were used by Noonburg et al. [26] and Dubey et al. [8] 
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based on a profile of dependency distances in a program.   Microarchitecture-independent 

characteristics such as true computations versus address computations, and overhead memory 

accesses versus true memory accesses, have been proposed by several researchers [15] [19]. The 

methodology presented in this paper can benefit from more microarchitecture-independent 

characteristics, but we believe that the characteristics we have used cover a wide enough range of 

the program characteristics to make a meaningful comparison between the programs.  

Another stream of work reduces simulation time of benchmarks by finding representative 

phases within a program [29] [30] [40]. These techniques are orthogonal to the one presented in 

this paper and can be used to further reduce the simulation time of the subset of programs 

selected from the suite.  

7. Conclusion 

In this paper we proposed a method to measure the similarity between programs based on 

their inherent microarchitecture-independent characteristics and we demonstrated the use of this 

technique to subset programs from the SPEC CPU2000, MiBench, and MediaBench benchmark 

suites.  We validated the usefulness of the subsets obtained using our methodology by 

demonstrating that the average IPC, data cache miss rate, and speedup of the entire suite could be 

estimated with a reasonable accuracy by just simulating the subset of programs.  Based on our 

results and validation experiments we recommend that if the time required to simulate the entire 

SPEC CPU benchmark suite is prohibitively high, the following set of programs should be used 

as a representative subset: applu, equake, fma3d, gcc, gzip, mcf, mesa, and twolf. 

From our study on the similarity between the four generations of SPEC CPU benchmark 

suites we find that no single characteristic has changed as dramatically as the dynamic 

instruction count.   Our analysis shows that the branch and ILP characteristics have not changed 
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much over the last four generations, but the temporal data locality of programs has become 

increasingly poor.   

The methodology presented in this paper can be used to select representative programs 

for the characteristics of interest, should the cost of simulating the entire suite be prohibitively 

high.  This technique can also be used during the benchmark design process to compose a 

benchmark suite from a group of candidate program.    
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