Tensor Slices to the Rescue: Supercharging ML Acceleration on
FPGAs

Aman Arora Samidh Mehta
aman.kbm@utexas.edu samidh99@gmail.com
University of Texas BITS Pilani
Austin, Texas, USA Goa, India

ABSTRACT

FPGAs are well-suited for accelerating deep learning (DL) appli-
cations owing to the rapidly changing algorithms, network archi-
tectures and computation requirements in this field. However, the
generic building blocks available on traditional FPGAs limit the
acceleration that can be achieved. Many modifications to FPGA
architecture have been proposed and deployed including adding
specialized artificial intelligence (AI) processing engines, adding
support for IEEE half-precision (fp16) math in DSP slices, adding
hard matrix multiplier blocks, etc. In this paper, we describe replac-
ing a small percentage of the FPGA’s programmable logic area with
Tensor Slices. These slices are arrays of processing elements at their
heart that support multiple tensor operations, multiple dynamically-
selectable precisions and can be dynamically fractured into indi-
vidual adders, multipliers and MACs (multiply-and-accumulate).
These tiles have a local crossbar at the inputs that helps with easing
the routing pressure caused by a large slice. By spending ~3% of
FPGA’s area on Tensor Slices, we observe an average frequency
increase of 2.45x and average area reduction by 0.41x across several
ML benchmarks, including a TPU-like design, compared to an Intel
Agilex-like baseline FPGA. We also study the impact of spending
area on Tensor slices on non-ML applications. We observe an aver-
age reduction of 1% in frequency and an average increase of 1% in
routing wirelength compared to the baseline, across the non-ML
benchmarks we studied. Adding these ML-specific coarse-grained
hard blocks makes the proposed FPGA a much efficient hardware
accelerator for ML applications, while still keeping the vast majority
of the real estate on the FPGA programmable at fine-grain.

KEYWORDS

FPGA; neural networks; deep learning; machine learning; hardware
acceleration; computer architecture; tensor slice

ACM Reference Format:

Aman Arora, Samidh Mehta, Vaughn Betz, and Lizy K. John. 2021. Tensor
Slices to the Rescue: Supercharging ML Acceleration on FPGAs. In Proceed-
ings of the 2021 ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA °21), February 28-March 2, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3431920.3439282

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA 21, February 28-March 2, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8218-2/21/02...$15.00
https://doi.org/10.1145/3431920.3439282

Vaughn Betz
vaughn@ece.utoronto.ca
University of Tornoto
Toronto, Ontario, Canada

1 INTRODUCTION

Machine Learning (ML) has become commonplace in today’s world.
Owing to the enormous computation requirements of ML and DL
workloads, many solutions have been deployed for accelerating
them in hardware, ranging from ASICs to GPUs to FPGAs. FPGAs
are very well suited for the rapid changing world of DL. FPGAs
provide massive parallelism, while being flexible and easily config-
urable, and also being fast and power-efficient.

At their heart, FPGAs comprise of fine-grained programmable
logic blocks (LBs), embedded memory structures (RAMs) and fixed-
function math units (DSP slices). These generic building blocks
make FPGAs flexible, but also limit the performance we can achieve
with FPGAs for domain-specific applications like DL. That brings
up a question: Can we improve the performance of FPGAs for DL
workloads? Several techniques have been proposed or used by the
industry and academia with this goal in mind. In this paper, we
propose adding Tensor Slices to the FPGA, a block that is specialized
for performing tensor operations like matrix multiplication and
addition, which are common in DL workloads. This helps pack

Lizy K. John
ljohn@ece.utexas.edu
University of Texas
Austin, Texas, USA

far more compute in the same area footprint and improves the
performance of FPGAs for ML/DL applications.

We architect and implement a Tensor Slice and compare the
performance of an FPGA architecture with Tensor Slices (in addition
to LBs, DSPs and RAMs) with an FPGA architecture similar to state-
of-the-art Intel’s Agilex FPGAs. We convert ~3% of the FPGA’s area
into Tensor Slices resulting in adding only a few columns of Tensor
Slices to the FPGA. We observe significant performance boost for
ML benchmarks. We explore different percentages of the FPGA
area spent on Tensor Slices as well.

FPGAs provide flexibility to meet the requirements of broad
range of applications. Adding Tensor Slices to an FPGA is focused
on accelerating ML applications. It can be a concern that adding
such slices may impact the generality of an FPGA, and hence may
degrade the performance of non-ML applications by causing a
higher routing wirelength and longer critical paths. To that end, we
also evaluate the impact of this proposal on non-ML applications.
We also enhance the Tensor Slice so that it can be fractured into
smaller math units like adders, multipliers and MACs (multiply-
and-accumulate) and used for non-DL workloads.

Our contributions in this paper are the following:

(1) We propose adding Tensor Slices to FPGAs, describing their
architecture, design and implementation in detail.

(2) We quantify the impact of adding Tensor Slices on a va-
riety of ML and non-ML benchmarks, by comparing their
performance to a contemporary FPGA.

(3) We study the sensitivity of various metrics to the percentage
of the FPGA area consumed by Tensor Slices.


https://doi.org/10.1145/3431920.3439282
https://doi.org/10.1145/3431920.3439282

The rest of this paper is organized as follows. The next section
provides an overview of related work and compares our proposal
with existing solutions. In Section 3, we present architecture of the
Tensor Slice. We explain the implementation details of the Tensor
Slice, the FPGA used for our experiments, and the benchmarks used
for evaluation in Section 4. The results from the experiments we
conducted are in Section 5.

2 RELATED WORK

In recent years, many FPGA based hardware accelerators have been
proposed and deployed to meet the ever-increasing compute and
memory demands of ML workloads. Microsoft’s Brainwave [7],
Intel’s DLA [1], Xilinx’s xDNN [18] are some examples. BrainWave
is a soft NPU (Neural Processing Unit) with dense matrix-vector
multiplication units at its heart implemented on Intel’s Stratix 10
FPGAs. xDNN is an overlay processor, containing a systolic array
based matrix multiplier, that can be implemented on Xilinx FPGAs.
DLA uses a 1-D systolic processing element array to perform dot
product operations commonly required in neural networks.

These accelerators use the programmable logic that exist on
current FPGAs, such as LBs, DSP slices and RAMs. They do not
modify the architecture of the FPGA itself. There have been several
innovations in changing the FPGA architecture as well. Intel’s
Agilex FPGAs [8] enable flexible integration of heterogeneous tiles
using EMIB interface in a System-In-Package (SIP), an example
of which is domain-specific accelerator tiles like Tensor Tiles [14].
Xilinx’s Versal ACAP family [19] adds Al engines on the same die as
the programmable logic. These Al engines contain vector and scalar
processors, with tightly integrated memory. Achronix’s Speedster7t
FPGAs [2] have Machine Learning Processor (MLP) blocks in the
FPGA fabric. An MLP is an array of up to 32 multipliers, followed by
an adder tree, an accumulator and a normalize block. Flex-Logix’s
nnMAX [6] inference IP contains tiles in which 3x3 Convolutions
of Stride 1 are accelerated by dedicated Winograd hardware. Native
support for int4, fp16 and bfloat16 data types in DSP slices has also
been added to recent FPGAs.

Eldafrawy et al. [5] propose LB enhancements and add a shadow
multiplier in LBs to increase MAC density in FPGAs improving
DL performance. Boutros et al. [4] have explored enhancing DSP
slices by efficiently supporting 9-bit and 4-bit multiplications. Ra-
soulinezhad et al. [15] suggest improvements to the DSP-DSP in-
terconnect and also inclusion of a register file in the DSP slice to
improve data reuse. Nurvitadhi et al. [13] study integrating an ASIC
chiplet, TensorRAM, with an FPGA in an SIP to enhance on-chip
memory bandwidth.

We propose adding building blocks called Tensor Slices to the
FPGAs. Intel recently announced adding Tensor Blocks [10] to the
new Stratix 10 NX range of FPGAs. These blocks have 30 MACs
and 15x more int8 (8-bit fixed point) compute than a Stratix 10 DSP
slice (7.5x compared to an Intel Agilex DSP slice). Our Tensor Slice
has 32x more int8 compute compared to Stratix 10 (16x compared
to Agilex). Our proposal looks similar to Intel Stratix NX but there
isn’t much public information available about Tensor Blocks at
this point in time to do a comparison with our proposal. Arora
et al. [3] propose adding hard matrix multipliers to FPGAs. These
blocks support only one precision (fp16 or int8) and one operation

(matrix multiplication). The authors do not do an assessment of
the impact of adding these blocks on non-ML applications. Also,
the implementation details do not mention adding a local input
crossbar to the block, which is essential for good routability with a
large block.

3 ARCHITECTURE

3.1 Overview

A Tensor Slice is to machine learning, just like a DSP slice is to
digital signal processing. DSP slices support the most common
DSP operations like the MAC operation, along with additions and
multiplications. Similarly, Tensor Slices support the most common
machine learning operations like matrix multiplication, along with
element-wise matrix addition, subtraction and multiplication. The
matrix multiplication operation is pervasive in DL layers like fully-
connected, convolution and recurrent layers. Element-wise (also
referred to as Eltwise) matrix addition and subtraction is commonly
found in layers like normalization, residual add and weight update.
Eltwise matrix multiplication is used in layers like dropout. The
Tensor slice also has support for bias-preloading and tiling.

Tensor Slice

Sl Muxing for various modes
—

—— | Input Switch
— | Logic Box
eezl] | - (mainly . ! . Mux
Input ____ | atrix LCCBEST
Crossbar, q
=
ux systolic
data
Zoomed setup) . - - J
Output Logic u | |

into, in--q-t-"""""""

i

— Connection Box Mux

~
Gilobal routing
wires

Figure 1: High-level block diagram of the Tensor Slice

Figure 1 shows a logical block diagram of Tensor Slice. The slice
interfaces with the FPGA interconnect through connection box
(for inputs) and switch box (for outputs), similar to other blocks
on modern FPGAs. The slice has a 50% sparsely populated local
input crossbar, that makes the input pins of the slice swappable and
hence increases the routability of the FPGA.

The core of the Tensor Slice is a 2D array of 16 processing el-
ements (PEs) along with control logic. Each PE comprises of a
multiplier and an adder which can act as an accumulator when
a MAC operation is desired. The control logic comprises of input
logic, output logic and muxing logic. The input logic reads input
data from RAMs and sends it to the PEs. The output logic shifts out
the output data and writes it to a RAM. The muxing logic selects
between various modes of operation of the slice.

3.2 Precision

The Tensor Slice currently supports two precisions natively: IEEE
half-precision (fp16) and 8-bit fixed-point (int8), although it can
extended to support more precisions. These two are the most com-
monly used precisions in ML inference and training. In the fp16



mode, all multiplications happen in fp16, but accumulations are
done in fp32. In the int8 mode, all multiplications happen in int8,
but accumulations are done in int16.

3.3 Modes of operation

There are two primary modes of operation of the Tensor Slice:
Tensor mode and Individual PE mode. In the Tensor mode, the
slice operates on matrix inputs, whereas in individual PE mode, it
operates on scalar inputs. All the modes and sub-modes supported
by the Tensor Slice are shown in Figure 2. The mode of operation
of the slice is dynamically selectable. That is, the mode bits can be
changed during run-time without requiring reconfiguration of the
FPGA. In other words, the mode bits are not controlled by SRAM

cells.
Tensor Slice

Tensor Mode Individual PE mode

Matrix Eltwise Eltwise
Mult Add/Sub)| Mult Mult|  Add/Sub MAC]

FP16 Int8 FP16 Int8 FP16 Int8FP16 Int8 FP16  Int8 FP16 Int8

In each Tensor mode, inputs accumulate and preload
can be configured to 1 or 0. Useful during bias and tiled operations

Figure 2: Modes supported by the Tensor Slice

3.3.1 Tensor Mode. In the Tensor Mode (mode = 0), the slice can
be configured to operate using fp16 precision or int8 precision. In
fp16 mode (dtype = 1), the Tensor Slice acts on 4x4 matrix operands
and generates a 4x4 matrix result. In the int8 mode (dtype = 0),
the Tensor Slice acts on 8x8 matrix operands and generates an 8x8
matrix result. We observed that by doing this, we can utilize the
input-output pins of the Tensor Slice fully in each mode. Also, as
we will show in Section 4, the area of the hardware required for a
4x4 fp16 array of processing elements is similar to the area of the
hardware required for an 8x8 int8 array, with ample opportunities
in sharing the hardware.

There are three sub-modes of the Tensor mode (controlled us-
ing op): Matrix Multiplication (Dot Product), Eltwise Addition /
Subtraction and Eltwise Multiplication. The matrix multiplication
operation in the Tensor Slice is done systolically. The elements
of first input matrix move from left to right and the elements of
the second input matrix move from top to bottom. The result is
calculated during the shifting process, and it stays in the respective
PE until its computation is done. After that, the resulting matrix
is shifted out left to right column-wise in a pipelined fashion. For
the eltwise operations, the input and output shifting mechanisms
remain the same, but the result calculation happens after all inputs
have reached their respective locations in the 2D PE array. This
part-serial characteristic of eltwise mode elongates the computation
time of an eltwise operation, however, it would be serialized with
DSP Slices as well because of RAM access. When the results are
being shifted out, the another tensor operation can be started on
the Tensor Slice.

In Tensor mode, bias and tiling support can be enabled. For bias
(controlled using preload), the Tensor Slice supports pre-loading
the PEs with an input matrix which is effectively added to the result
of the subsequent matrix operation. For tiling (controlled using

accumulate), the Tensor Slice supports the choice of not-resetting
the results in the PEs before starting another operation. This can be
used in performing tiled or blocked matrix multiplications, where
the partial sums need to be accumulated across tiles or blocks.

3.3.2 Individual PE Mode. To reduce the impact of adding Tensor
Slices to an FPGA on non-ML applications and to improve utiliza-
tion, the Tensor Slice supports an Individual PE mode (mode = 1).
In this mode, the slice is fractured such that inputs and outputs of
individual PEs are exposed to the pins of the slice, enabling the PEs
to be used like mini-DSP slices. Each PE can be separately and dy-
namically configured in three sub-modes: adder, multiplier or MAC.
Furthermore, both fp16 and int8 precisions are available and can be
dynamically selected. In the int8 mode, each PE can be configured
to be used as 4 8-bit fixed-point multipliers or 4 16-bit fixed-point
adders or 4 MACs. In the fp16 mode, each PE can be configured to be
used as 1 16-bit floating-point multiplier or 1 32-bit floating-point
adder or 1 MAC. Note that because of the large delay in getting
to and from the PEs in the Tensor Slice, using the Individual PE
mode will not be performant compared to, for example, a LB based
addition or a DSP slice based multiplication. The area overhead of
adding this mode is discussed in Section 4.3.
The inputs and outputs of an exposed PE are:

e direct_in_a[15:0]

e direct_in_b[15:0]

e direct_mode[1:0] (Multiply, add or mac mode)

e direct_dtype (int8 or fp16 mode)

e direct_out[15:0]

o direct_flags[3:0] (exception flags for floating point mode)

There is a limitation of this mode. The number of inputs and
outputs on the slice (also called the IO footprint of the slice) is
governed by the Tensor mode (481 inputs, including clock and
reset, and 306 outputs). Based on that, 12 PEs out of the 16 PEs
have been exposed. We could add additional inputs and outputs
to the slice to accommodate for exposing all 16 PEs in individual
PE mode, but that would mean worsening the IO footprint of an
already large slice. Increasing the number of IOs can lead to more
routing congestion and higher channel width requirement and also
a larger area of the Tensor Slice.

3.4 Inputs and Outputs

I/O | Signal Bits || I/O | Signal Bits
I clk 1 I [a/b/c]_data_in 64*3
I reset 1 I valid_mask_[a/b]_rows | 8*2

I mode 1 I valid_mask_[a/b]_cols | 8*2
I accumulate | 1 I final_op_size 8

I preload 1 I address_mat_[a/b/c] 16"3
I dtype 1 I address_stride_[a/b/c] | 16*3
I op 1 (¢} done 1

I start 1 (¢} [a/b/c]_data_out 64*3
I x_loc 8 (¢} flags 4

I y_loc 8 (0] [a/b/c]_addr 16*3
I [a/b]_data | 64*2 || O c_data_available 1

Table 1: Inputs (I) and outputs (O) of the Tensor Slice



The list of inputs and outputs (IOs) of the Tensor Slice are shown
in Table 1. The names of the pins and their description are valid
in the Tensor mode (ie. when mode input pin is set to 0). Inputs
named mode, accumulate, preload, dtype, op decide the mode
of operation of the Tensor Slice as explained in Section 3.3. As
mentioned above, in the Tensor mode, the slice operates on matrix
inputs and generates matrix outputs. For this, it reads input matrices
from a RAM block. Inputs address_mat_a and address_mat_b
are used to tell the slice the addresses of the first location of each
matrix. The slice reads the input matrix A column-wise (it is ex-
pected to be stored in column-major order) and reads the input
matrix B row-wise (it is expected to be stored in row-major or-
der). The stride inputs (address_stride_a and address_stride_b)
are required to handle the common case where the slice is a part
of a larger matrix operation and the address of the first element
of the next column/row to read or write is not consecutive. For
example, if the slice was being used to multiply a 20x20 matrix
with a 20x20 matrix in fp16 mode, then the addresses of consecu-
tive columns and rows will differ by 40, so 40 should be provided
to the stride inputs. The slice sends out the address of the loca-
tion to read on the a_addr and b_addr outputs. It receives the
input data from RAMs on a_data and b_data inputs. To handle
non-square input matrices, the slice provides for providing valid-
ity masks for the inputs. This is done using valid_mask_a_rows,

valid_mask_a_cols, valid_mask_b_rows and valid_mask_b_cols

inputs. For example, when multiplying a 6x4 matrix with a 4x7 ma-
trix in int8 mode, the values of these inputs can be 8'b0011_1111,
8’b0000_1111, 8’b0000_1111 and 8'b0111_1111 respectively.

The Tensor Slice performs a tensor operation over multiple clock
cycles, depending on the operation. The input start is asserted
to start the operation and when the operation is done, the slice
asserts the done signal. The input address_mat_c tells the starting
address of the output matrix that the slice should write to and the
stride in addresses across consecutive columns is specified using
address_stride_c. While writing, the output data is sent out on
c_data_out and the address is sent out on c¢_addr. The output
c_data_available is asserted during this process.

The rest of the inputs and outputs are related to chaining and
are explained in Section 3.6.

When the mode input pin is set to 1, the Tensor Slice changes to
Individual PE mode. In this mode, the usage/meaning of the various
pins changes. Each exposed PE’s inputs and outputs are mapped
onto the top-level inputs and outputs of the slice. The mapping
of all inputs and outputs to various PEs is not significant for this
paper, but here’s an example of the pin mapping for exposed PE #1:

e direct_in_a[15:0] is mapped to
{valid_mask_b_cols, final_mat_mul_size}

o direct_in_b[15:0] is mapped to a_data[31:16]

e direct_mode[1:0] is mapped to address_mat_c[3:2]

o direct_dtype is mapped to address_mat_b[6]

e direct_out[15:0] is mapped to c_data_out[31:16]

o direct_flags[3:0] is mapped to c_addr[3:0]

3.5 Processing Element

Figure 3 shows the diagram of one processing element (PE) in fp16
mode and int8 mode. There are 16 PEs in the slice and in fp16 mode,

the slice needs 16 PEs to process 16 matrix elements. So, there is a
one-to-one correspondence between a physical PE in the slice and
a logical PE required in fp16 mode. For example, logical PE0O in
fp16 mode is physical PE00 of the slice, logical PE01 in fp16 mode
is physical PE01 of the slice, and so on upto PE33. However, in int8
mode, the slice processes 64 matrix elements, so it needs 64 logical
int8 PEs. Because of hardware sharing, each physical PE in the slice
acts as 4 logical int8 PEs in int8 mode. So, physical PE0O0 in the slice
maps to logical int8 PE00, PE01, PE02, PE03. Physical PE01 in the
slice maps to logical int8 PE04, PE05, PE06, PE07. And so on.

Each PE consists of some registers for shifting input data and a
MAC. The MAC is shown in Figure 4. The figure also shows the
multiplexing in the MAC required for the individual PE mode. The
MAC primarily consists of a multiplier and an adder. Hardware is
shared between the integer and floating point modes in the multi-
plier and adder circuits. There is circuitry for 4 int8 multiplications
in the multiplier. In fp16 mode, these multipliers are reused (along
with additional logic) to perform 1 fp16 multiplication. Similarly,
in the adder, there is circuitry for 4 int16 additions, which is reused
(along with additional logic) to perform a 1 fp32 addition in the
floating point mode.

3.6 Chaining

Multiple Tensor Slices can be chained to perform operations on
larger matrices. This is especially important for matrix multiplica-
tion operation which is done systolically. Figure 5 shows a logical
view of 4 Tensor Slices chained in x and y directions to perform
a larger matrix multiplication operation (e.g. a 8x8 matrix multi-
plied with an 8x8 matrix using 4 slices in fp16 mode). Slice inputs
a_data_in and a_data_out are used to chain the inputs from ma-
trix A along the x direction. The signals b_data_in and b_data_out
are used to chain the inputs from matrix B along the y direction.
The signals c_data_in and c_data_out are used for chaining the
outputs. Only the Tensor Slices at the periphery interface with
RAMs on the FPGA.

In Figure 5, we show different aspects of the Tensor Slice archi-
tecture in each slice. The top-left quadrant shows the movement
of matrix A elements (in red) and matrix B elements (in yellow)
through the PEs. Top-right shows the capture and shift out of the
results (i.e. data for matrix C). In the bottom-left part, we show
the systolic setup of data from matrix A (left-to-right) for matrix
multiplication and the muxing required for chaining. The bottom-
right quadrant is the same but for data from matrix B. Note that the
figure shows a logical connectivity of the slices in the x and y di-
rections. Physically, these slices can be anywhere on the FPGA. For
example, 4 Tensor Slices in one grid column of the FPGA could be
connected to perform a larger matrix operation. The inputs x_loc
and y_loc are used to specify the logical location to the slices. The
input final_op_size is used to specify the overall size of the ma-
trix operation being performed (in this case, 8). These signals are
decoded internally to select which inputs to feed to the PEs (e.g.
a_data_in or a_data) and when to start shifting out the result.

3.7 Speeds and Feeds

Matrix multiplication operation in the tensor mode is the most
compute intensive operation done by the Tensor Slice. When using



Zoomed

FP16 mode into, in N INT8 mode
in_b [31:0] Fig.4 |in_b [31:0] out_c [31:0]
: v
23:16 15:8 7:0
15.0
out_c [31:0]
| ol M L L
MAC bty MAC 1 MAC o MAC
: 7:0 7:0 7.0
in_a [15/0 out afisop -2 0% out_a [15:0]

-

v v
T

out_b [31:0]

in_a[15:0] :1 fp16 input for this PE .
in_b [31:0] : Lower 16 bits contain the fp16 input.
Upper 16 bits are 0 in this mode :
out_c [31:0] : Lower 16 bits contain the fp16 output. :
Upper 16 bits are 0 in this mode .

i out_b [31:0]

in_a [15:0] : Lower 8 bits contain the input. Only 1 input is required for 4 horizontally connected logical int8 PEs.
in_b [31:0] :4 int8 inputs for 4 logical int8 PEs
out_c [31:0] : 4 int8 outputs from 4 logical int8 PEs

Figure 3: A processing element (PE) in FP16 and INT8 modes. There are 16 PEs in the Tensor Slice.

Individual

PE mode Individual PE Individual PE

mode && mode &&
add_mode mult_mode

Individual
PE mode

Individual PE
mode &&
add_mode

Figure 4: Functional diagram of the MAC block which forms the
core of a PE

fp16 precision, the slice performs 16 MAC operations in 1 cycle. So
the math throughput of the slice is 16*2=32 fp16 ops/clock. When
using int8 precision, the slice’s math throughput is 64*2=128 int8
ops/clock. To keep the slice fed with data, it reads 8 fp16 elements
every clock cycle in fp16 precision mode and 16 int8 elements
every clock cycle in int8 precision mode. So, the on-chip memory
bandwidth requirement of the Tensor Slice is 16 bytes/clock.

4 EVALUATION

The goal of evaluating the Tensor Slice is to compare the perfor-
mance of an FPGA with Tensor Slices, LBs, DSP slices and RAMs
on it, with an FPGA with only the traditional building blocks (LBs,
RAMs and DSP slices). We use an Intel Agilex-like FPGA architec-
ture as our baseline. There are differences between our baseline
architecture and Intel Agilex (e.g. we do not model HyperFlex),
but for the purposes of this evaluation, we believe that as long as
the baseline and the proposed FPGA architectures only differ in
presence/absence of Tensor Slices, the results will hold. Also, in our
evaluation, we use 22nm technology node, but Intel Agilex devices
are 10nm.

For our baseline FPGA architecture, we start with a Stratix-10-
like architecture used by Eldafrawy et al. [5] and modify it for Agilex.

_data

from

RAM)
b_data_in

I3
o
g?
o
a_data_in D_)D_,D_,D_,I o data i da(a,o%
_data_out
WP | e
RAM)
c_data_in b c_data_out _ c_data_i Shift register ta_out
o (to
% E‘ ;%‘ % '-g RAM)
@ & ° 9
<
d g a_data_out
o datain D Da,Ddaa out a_data_i @ _)©
I NN
S LI @
RAM) —“ r*
R b ||
o_datai ) CICIC T e dataout
c_data_out _ c_data_i —
o— i o A

b_data jout

H ie

Figure 5: Multiple Tensor Slices can be chained together to
perform larger matrix operations. Here, 4 slices are shown to be
chained together in x & y direction (logically). Each slice is
showing a different piece of detail of the slice internals.

The relevant architectural difference between Stratix-10 and Agilex
is the enhanced DSP slice with support for lower precisions like
fp16 and fixed-point 9-bit. We implement an Agilex-like DSP slice
(details are described later in Section 4.2) and use it in the baseline
architecture.

4.1 Tools Used

To evaluate and compare FPGA architectures, we use the Verilog-
to-Routing (VTR) tool flow [12]. VTR takes two inputs. The first
input is an architecture description file containing information
about an FPGA’s building blocks and interconnect resources. The



second input is a Verilog design. VIR synthesizes and implements
the design on the given FPGA architecture and generates resource
usage, area and timing reports.

To obtain the area and delay values for the various components
of an FPGA (to enter them in the FPGA architecture description
file for VTR), we use COFFE [20]. COFFE is a transistor sizing and
modeling tool. The inputs to COFFE are the properties of the FPGA
architecture (e.g. N, K, Fcin, Fs, etc.). It performs SPICE simulations
to iteratively optimize the transistor sizing and generates areas
and delays in various subcircuits in the FPGA tile. COFFE also
supports a hybrid flow in which the core of blocks like DSP Slices
or Tensor Slices is implemented using a standard cell flow and the
interface to the interconnect (local crossbar, switch box, connection
box, etc) is implemented in full custom using SPICE. The standard
cell flow uses Synopsys Design Compiler for synthesis, Cadence
Encounter for placement & routing, and Synopsys Primetime for
timing analysis. Our SPICE simulations use 22nm libraries from
Predictive Technology Model [17]. Our standard cell library was
the 45nm GPDK library from Cadence. We used scaling factors
from Stillmaker et al. [16] to scale down from 45nm to 22nm. When
running COFFE, we used a cost factor of area * delay? as it reflects
the greater emphasis on delay compared to area, which is typical
of high-performance FPGAs like Agilex.

4.2 DSP Slice Implementation

We create a DSP slice that closely matches the DSP slice from
Intel Agilex DSP user guide [9]. It supports all major modes and
all precisions - 9x9, 18x19, 27x27, fp16, fp32. To sanity check our
implementation, we first implemented a fixed-point-only slice (Intel
Arria) and compared the area and delay numbers to those in [4].
Our numbers were very similar after scaling for technology nodes.
For the Agilex-like DSP slice, the overall delay came out to be 2.97ns
in floating point mode and 2.55ns in fixed point mode. Scaling down
to 10nm, this is about 740 MHz in floating point mode and 861 MHz
in fixed point mode. This is similar to numbers from the Agilex
datasheet (750 MHz and 900 MHz respectively).

Table 2 shows the breakdown of the DSP slice area obtained
from COFFE. We observe that about 42% of the area of the slice is
routing, whereas 58% is the core. The The delay of the 50% sparsely
populated local crossbar was 0.333ns. Our DSP slice has 216 non-
dedicated inputs and 101 non-dedicated outputs, so it needs access
to 4 switchboxes. So, it spans 4 rows in the FPGA grid (1 LB spans
1 row) and the DSP slice column is 1.6x wide (compared to that
of a LB). The DSP slice has a IO density of 0.0255 wires per unit
area (compared to 0.0158 for the Tensor Slice). Table 3 shows the
post-synthesis area of the DSP Slice as we added more precisions
to it.

Component Area (um?)
Standard-cell core 7089

Local input crossbar 1487
Dedicated output routing | 18

Switch box (4) 2752
Connection box 1087

Total 12433

Table 2: Breakdown of the DSP Slice area (post P&R)

DSP Slice variant Area (um?) | Ratio
Fixed point 18x19 and 27x27 | 4180 1
(similar to Intel Arria)

Add fp32 support (similar to | 5092 1.22
Stratix 10)

Add support for fp16 and fixed | 5765 1.39
point 9 bit (similar to Agilex)

Table 3: Post-synthesis area of the DSP Slice showing overhead of
supporting more precisions

4.3 Tensor Slice Implementation

We implement a Tensor Slice using the architecture described in
Section 3. The Tensor Slice uses the same core fixed-point and
floating-point adders and multipliers as the ones used in the DSP
slice. Because the number of modes supported by the Tensor Slice
is quite less compared to the DSP slice (which is designed to be
very flexible), the critical path delay of the Tensor Slice was shorter
than DSP slice. But because of the much larger number of inputs in
the Tensor Slice, the local input crossbar delay was higher (0.723ns).
The overall delay came out to be 3.07ns in floating point mode and
2.69ns in fixed point mode. Scaling down to 10nm, the Tensor Slice
works at 716 MHz in floating point mode and at 817 MHz in fixed
point mode.

Tables 4 and 5 show the breakdown of the Tensor Slice area
obtained from COFFE. We observe that about 28% of the area of
the slice is routing, whereas 72% is the core. Table 6 shows the
post-synthesis area of the Tensor Slice as we added more modes
to it. This shows that the creating a Tensor Slice that operates
on 4x4 matrices in fp16 mode and 8x8 matrices in int8 mode was
justifiable, because there is enough sharing of hardware between
the two modes.

Component Area (um?)
Standard-cell core 36037
Local input crossbar 6062
Dedicated output routing | 0

Switch box (8) 5504
Connection box 2429

Total 50032

Table 4: Breakdown of the Tensor Slice area (post P&R)

Component | Area (%age)
Input logic 3.92 Adder 39.2
Output logic | 3.87 Multiplier 31.7
2D PE array | 92.21 Rest 29.1
Total 100 Total 100

Table 5: Area distribution of the various components of the Tensor
Slice core (left) and the Processing Element (right)

Component | Area (%age)

Our Tensor Slice has 479 non-dedicated inputs and 306 non-
dedicated outputs, so it needs access to 8 switchboxes. So, it spans
8 rows in the FPGA grid (1 LB spans 1 row) and the Tensor Slice
column is 3.23x wide (compared to that of a LB).

4.4 Baseline vs. Proposed FPGAs

The routing and tile parameters of the FPGA architecture used for
the baseline and proposed FPGAs are shown in Table 7. These are



Tensor Slice variant Area (um?) | Ratio
4x4 fp16 matrix mult only 13338 -

8x8 int8 matrix mult only 16368 1

4x4 fp16 and 8x8 int8 matrix mult | 20598 1.26
Add Individual PE modes 24673 1.51
Add Element-wise modes 29062 1.78

Table 6: Post-synthesis area of the Tensor Slice showing overhead
of adding more functionality/modes

based on Intel FPGAs and follow from [5]. As a sanity check for
our experimental setup, the tile area we obtain from COFFE (1938
um?) is similar to the one from [5].

When describing the FPGA architecture in VTR, we use a column
based layout for all the blocks, similar to modern FPGAs. Our archi-
tecture doesn’t have sectors though. From Intel Agilex’s product
table, we pick the product with the most compute intensive resource
mix: AGF 027 (91280 LBs, 8528 DSP slices and 13272 RAMs). Based
on the areas of each block on the FPGA obtained from COFFE, we
calculate the total area of the FPGA consumed by each type of block.
For our baseline, we create an FPGA architecture with the exact
same resource mix as Intel AGF 027, in terms of %age of the area and
%age of the count of various blocks on the FPGA. The absolute size
of the FPGA is smaller than Agilex to ensure speedy simulations
and also to ensure high utilization of the FPGA for our benchmarks
for realistic results. Column "Our baseline" in Table 8 shows the
total count of each block type, the %age of total area spent on each
block type and the %age count of each block type for our baseline
FPGA. We then create 3 different FPGA architectures by spending
3% (actually 2.76%), 6% (actually 5.52%) and 9% (actually 8.29%) area
of the FPGA on Tensor Slices respectively. These 3 architectures
are called "Proposed_3pct", "Proposed_é6pct", "Proposed_9pct". The
table shows the resource mix of these FPGA architectures as well.

The grid dimensions of all the architectures used in our exper-
iments were around 170x80. The number of columns containing
Tensor Slices were 2, 4 and 6 in Proposed_3pct, Proposed_6pct and
Proposed_9pct architectures respectively. We placed the Tensor
Slice columns in the middle of the FPGA to keep the layout sym-
metric. Figure 6 shows the layout of the FPGA with 2 Tensor Slice
columns.

Figure 6: A zoomed-in version of the layout of the Proposed_3pct
FPGA architecture obtained from VTR. Blue: LB, Yellow: RAM,
Purple: DSP Slice, Peach: Tensor Slice

Parameter | Value | Definition

N 10 Number of BLEs per cluster
W 320 Channel width

L 4 Wire segment length

I 60 Number of cluster inputs

(0] 40 Number of cluster outputs
K 6 LUT size

Fs 3 Switch block flexibility

Fcin 0.15 Cluster input flexibility
Fcout 0.1 Cluster output flexibility
Fclocal 0.5 Local input crossbar population

Table 7: Routing and tile architecture parameters of the baseline
and proposed FPGA architectures

4.5 Benchmarks

For benchmarking our FPGA architecture, we use a set of ML and
non-ML designs. VIR has a benchmark suite [12] that comprises
of designs from several applications including finance, computer
vision, math and processors. However, this suite currently does not
have any ML/DL designs. So, we created a set of ML benchmarks.
Table 9 contains a list of all the benchmarks we used. When eval-
uating an ML benchmark on the proposed FPGAs, Tensor Slices
were manually instantiated in Verilog, because the synthesis tool
cannot automatically infer them.

4.5.1 TPU-like Design (tpuld). We created a design based on the
architecture from Google’s TPU v1 [11]. At its heart, it uses a 32x32
matrix multiplication unit, instead of a 256x256 matrix multipli-
cation unit used by the TPU. The design uses int8 precision. The
activations are stored in RAM block A, whereas the weights are
stored in RAM block B. Control and configuration are done through
an APB interface, instead of a PCle interface on the TPU. The nor-
malization block applies the mean and variance values to the output
of the matrix multiplication unit. Pooling unit supports 3 pooling
windows - 1x1, 2x2 and 4x4. The activation unit supports two acti-
vation functions - rectified linear unit (ReLU) and the hyperbolic
tangent (TanH). The activation unit is the last unit before the results
are written back to RAM block A, from where they can be read
again into the matrix multiplication unit for the next layer.

4.5.2  Fully Connected Layers (fcl8 and fcl16). We created two full-
connected layer designs to use as a micro-benchmarks. fcl8 uses
int8 precision and has num_features = 15, batch_size = 16 and
num_outputs = 14. fcl16 uses fp16 precision and has a 20x20 activa-
tion matrix, a 20x20 weight matrix and generates a 20x20 output
matrix. The designs contain a state machine to control the operation
and a control-and-status register block and a matrix multiplication
unit. The inputs and outputs are stored in RAMs on the FPGA.

4.5.3 Element-wise Layers (eltadd and eltmul). We created micro-
benchmarks for eltwise layers. eltadd performs eltwise addition of
two int8 matrices of size 14x6. eltmul performs eltwise multiplica-
tion of two fp16 matrices of size 24x8. The input matrices are read
from a RAM block and the result is written to a RAM block.

4.5.4 Convolution Layer (conv). Convolution is a very common
operation in ML/DL workloads, especially image recognition and



Baseline (AG047-like) Proposed_3pct Proposed_6pct Proposed_9pct

Relative | # %age | %age | # %age | %age | # %age | %age | # %age | %age
Block

area blocks | area count | blocks | area count | blocks | area count | blocks | area count
Logic Block | 1 8480 45.19 80.92 8240 43.97 80.78 8000 42.74 80.65 7920 42.39 81.15
DSP Slice 6.42 800 27.37 7.63 780 26.72 7.65 760 26.07 7.66 740 25.43 7.58
RAM 4.29 1200 27.44 11.45 1160 26.55 11.37 1120 25.67 11.29 1040 23.88 10.66
Tensor Slice | 25.82 0 0 0 20 2.76 0.2 40 5.52 0.4 60 8.29 0.61

Table 8: Resource mix in various FPGA architectures. The Proposed_3pct, Proposed_6pct and Proposed_9pct refer to 3 proposed
architectures with approximately 3%, 6% and 9% percentage of FPGA area consumed by Tensor Slices.

n BRD}\‘MB
sl & |

Systolic Data Setup

F

o
i e
& 5
B 8 ~ Mt Mftiply
s = § "% q Unit
2 5 L =L
< E gé
$
E g
=
T = e )
. @
[ — —
b
L

Figure 7: Architecture of the TPU-like design used as an ML
benchmark for evaluation

detection networks. We designed a micro-benchmark that con-
volves a 8x8 image with a 3x3 weight kernel, with padding = 1 and
stride = 1. This design uses fp16 precision.

4.5.5 Non-ML benchmarks. For non-ML benchmarks, we use the
VTR benchmark suite [12]. We use a variety of benchmarks from
the suite such as: meml, LU32PEEng, stereovision2, LUSPEEng, bgm,
stereovision0, and arm_core. These include designs with/without
floating point operations, heavy/low DSP usage, and heavy/low/no
RAM usage. We used the largest designs from the suite so that the
%age utilization of the FPGAs (baseline and proposed) was fairly
high to ensure realistic results.

5 RESULTS
5.1 Compute Throughput

Table 10 illustrates a comparison of the throughput of Tensor and
DSP slices. The Tensor Slice has 15x int8 and 7.7x fp16 throughput
compared to an Agilex DSP slice. An Agilex DSP Slice (baseline)
has 4 effective int8 MACs and 2 effective fp16 MACs. On the other
hand, a Tensor Slice has 64 int8 MACs and 16 fp16 MACs, albeit at
an area cost of ~4x.

Note that because of quantization/fragmentation, the Tensor
Slice can suffer from under-utilization (reduced effective through-
put) in cases where the problem size does not divide up evenly into

the dimensions of the Tensor Slice. For example, to compute a 7x7
int8 matrix-matrix dot product using the Tensor Slice, 15 out of the
64 PEs will be effectively wasted. But with the matrix sizes in use
in ML/DL applications, this performance loss is not a significant
issue for real-world applications.

5.2 Resource Usage

Table 11 shows the resource usage obtained from VTR for the vari-
ous benchmarks when implemented on the baseline and proposed
FPGAs. For ML benchmarks, we can see that the usage of LBs and
DSPs reduces greatly with the usage of Tensor Slices. The highest
reduction in LB usage was in fcl16 with 0.09x usage (i.e. 91% re-
duction from baseline architecture). The same number of blocks
are used across the 3 variants of the proposed FPGA; so we only
show one column for Proposed. Larger number of Tensor Slices on
an FPGA would enable larger ML benchmarks to be implemented
without having to use DSP slices.

For non-ML benchmarks, we do not see any difference in the
resource usage between baseline and proposed FPGAs. This is ex-
plainable because the designs still use the same blocks and they do
not have any matrix operations in them. In a case where the design
is large enough that it is limited by the number of DSP slices, then
the Tensor Slices could be used in Individual PE mode, depending
upon the required operations.

5.3 Frequency

Figure 8 shows the improvement in the frequency of operation of
the benchmarks when implemented on a proposed FPGA vs. the
baseline FPGA. We see that the ML benchmarks achieve a much
higher frequency on the FPGA with Tensor Slices. This is expected
because on the baseline FPGA, the critical paths include long paths
across LBs and DSP slices, which are inside the hard Tensor Slice
on the proposed FPGA. We see a maximum speedup of 2.82x and
an average speedup of 2.44x with the Proposed_3pct architecture.
We observe that the achieved frequency is not very sensitive to the
area consumed by Tensor Slices. We would have seen a noticeable
difference if a benchmark was large enough to be limited by the
number of Tensor Slices, and DSP slices would have been required
to implement that logic instead. But we do not have such cases in
our benchmarks.

In non-ML benchmarks, the frequency remains almost the same,
with an average degradation less than 1%. Some degradation is
expected because the presence of Tensor Slices can increase the
routing wire length required to route a circuit causing an increase
in the critical path delay. The worst case is 4.2% (in arm_core with



Benchmark | Netlist primitives | Application Nature of the workload

tpuld 172401 ML/DL A design similar to Google’s TPU v1, with a 32x32 systolic array

fcl8 41596 ML/DL Fully connected layer. Multiply matrices 14x15 with 15x16 (int8).

feli6 149272 ML/DL Fully connected layer. Multiply 20x20 matrices (fp16).

eltadd 22132 ML/DL A design that adds two 6x14 int8 matrices elementwise

eltmul 48033 ML/DL A design that multiplies two 24x8 fp16 matrices elementwise

conv 37166 ML/DL A convolution layer for an 8x8 fp16 input image with 3 channels,
padding=1, stride=1, filter size = 3x3 and batch size=2.

meml 275204 Medical physics | Large design with multiple fixed point multiplications

LU32PEEng 191012 Math Has floating point operations and extensive RAM usage

stereovision2 | 51556 Computer vision | Lots of fixed point multiplications and no RAM usage

LUSPEEng 57922 Math High logic depth, some DSP usage and RAM usage

bgm 111643 Finance Has floating point operations and no RAM usage

stereovision0 | 30516 Computer vision | Only LBs, no multiplications in this design, no RAM usage

arm_core 57568 Soft processor No multiplications in this design, but some RAM usage

Table 9: ML and non-ML benchmarks used for evaluation. Non-ML benchmarks are from the VIR benchmark suite. The netlist primitives
are from when the benchmark is implemented on the baseline FPGA with DSP slices.

INTS8 DSP Slice | Tensor Slice | Ratio
# Ops 8 128 16
Freq (MHz) 391 371 0.95
Area (um?) 12433 50032 4.02
Throughput (Gops/sec) | 3.13 47.49 15.18
FP16 DSP Slice | Tensor Slice | Ratio
# Ops 4 32 8
Freq (MHz) 336 325 0.97
Area (um?) 12433 50032 4.02
Throughput (Gops/sec) | 1.34 10.4 7.74

Table 10: Comparison of a Tensor Slice with a DSP Slice (all
numbers are based on 22nm technology node).

Proposed_9pct). A much larger %age of Tensor Slice area may im-
pact non-ML applications more, but converting a small percentage
of the area is sufficient to reap the benefits of Tensor Slices.

35

£ Average of non-ML benchmarks B Average of ML benchmarks marm_core

mbgm
stereovision0
LU32PEEng

= mcml

M stereovision2

m LUSPEEng

W conv

Achieved Frequency
(Normalized to baseline)

o fcl8
m fcl16
M eltadd

meltmul

m tpuld

Proposed_3pct

Proposed_6pct Proposed_9pct
Figure 8: Comparison of achieved frequency of operation for
various benchmarks. ML benchmarks benefit significantly,
whereas minimal effect in non-ML benchmarks.

5.4 Area

The total area consumed by a circuit on an FPGA is the sum of the
logic area and the routing area. Logic area is available in the VTR
output report, but routing area is not. The routing area is estimated

approximately by adding the routing area of all tiles that had atleast
one operation mapped to.

For ML benchmarks, the total used area reduces significantly.
This follows directly from the usage of Tensor Slices instead of
LBs and DSP slices. On average, area reduces to 0.4x. The best
case we see is 0.3x for fcl8. Tensor Tiles harden the circuitry that
would otherwise be implemented in soft logic. These area results
also provide a first order approximation of the potential power
reductions that can be achieved when using Tensor Slices instead
of DSP slices.

—
[N}

Baseline

conv fcl8 felle

s e @
B o b e

Total area used
o
S

(Normalized to baseline)

=]

eltadd eltmul tpuld Average

Figure 9: Comparison of used area for various benchmarks.
Significant area reduction in ML benchmarks. Non-ML
benchmarks not shown because no change in their area.

Non-ML benchmarks do not show any change in total area. Logic
area is not expected to change because the resource usage does
not change. The routing area may change slightly because of the
presence of Tensor Tiles. However, our routing area model only
considers the routing area of the tiles that had at least one opera-
tion mapped to, which stays constant for the non-ML benchmarks.
Therefore, we only show the benefits to total area for ML bench-
marks in Figure 9.

5.5 Interconnect

The impact of adding Tensor Slices on the FPGA’s interconnect
resources is important because Tensor Slices are large blocks with
a large I/O footprint. This can lead to reduction in routability of the
FPGA. Adding a local input crossbar to the slice, which we have



Logic Blocks (LBs) DSP Slices RAMs Tensor Slices

Benchmark Baseline | Proposed | Baseline | Proposed | Baseline | Proposed | Baseline | Proposed
arm_core 833 833 0 0 72 72 0 0
bgm 2122 2122 11 11 0 0 0 0
stereovision0 | 584 584 0 0 0 0 0 0
LU32PEEng 5839 5839 32 32 274 274 0 0
meml 6788 6788 106 106 270 270 0 0
stereovision2 | 1931 1931 516 516 0 0 0 0
LUSPEEng 1709 1709 8 8 73 73 0 0
conv 569 226 (0.39x) | 42 0 56 56 0 7

fel8 452 80 (0.17x) 56 0 24 24 0 4
fcli6 1550 145 (0.09x) | 200 0 60 60 0 25
eltadd 290 1(021x) | 0 0 24 24 0 2
eltmul 627 175 (0.28x) | 96 0 48 48 0 6
tpuld 2083 237 (0.11x) | 292 0 52 52 0 16

Table 11: Resource usage of various benchmarks. All 3 proposed architectures have the same resource usage, hence there is only one
moniker used here: "Proposed”

done as explained in the architecture section, alleviates much of
the impact.

Figure 10 shows the impact of adding Tensor Slices on total
routing wirelength. For ML benchmarks, we see routing wirelength
reducing significantly (~0.25x in the case of fcl16 to 0.6x in case of
eltadd). This is expected because a lot of wiring required to connect
soft logic on the baseline FPGA is effectively absorbed inside the
hard Tensor Slice. As the area spent on Tensor Slices increases,
we see a reduction in routing wirelength in benchmarks where
Tensor Slices are chained (like fcl16 and tpuld) because instead of
connecting Tensor Slices within a column, now Tensor Slices in
neighboring columns have to be connected.

<«———— Non-ML/DL

ML/DL >

Baseline
08
>

04

0.2

Routing wirelength
(Normallzed to baseline)
—
—
—
—
—
—
—
P :
— :
:
|
|
|
|
|
|
|
|
|
|

2 ) \ Q Q b > R N\
& &S @% & & $ & N &
P @ & & © \& £ KR & @
&7 & & N L S P
< SERC) SHERN) &
3 & & &
& & & ¥

A
M Proposed_3pct Proposed_6pct Proposed_9pct v
Figure 10: Comparison of routing wirelength used for various
benchmarks. The routing wirelength decreases significantly for

ML benchmarks and does not degrade for non-ML benchmarks.

For non-ML benchmarks, the routing wirelength increases slightly
as expected. Adding a large block on the FPGA can increase wire
length required to route a design that does not use the large block.
We see an average increase of 1% across the non-ML benchmarks. As
we increase the percentage of area consumed by the Tensor Slices,
in most non-ML benchmarks (like meml, stereovision2, arm_core),
the routing wirelength increases or stays the same. There are some
aberrations like bgm, which we believe to be noise. A much larger
percentage of Tensor Slice area would increase the routing length
even more and can even lead to insufficient resources for a non-ML

design which can happen for mcml if we convert 20% of the FPGA
area to Tensor Slices.

Channel width is another important aspect of routing. With a
large block like the Tensor Slice, the required channel width to
successfully route a circuit can increase because of the large I/O
footprint. We see that in the results reported by VTR. The maximum
channel width for successful routing across all benchmarks and
FPGA architectures was observed to be 230, which is within the
value specified for the FPGA architecture in Table 7 (i.e. 320).

6 CONCLUSION

This paper proposes adding Tensor Slices to FPGAs to supercharge
their performance for ML/DL workloads. The Tensor Slice provides
15x int8 compute and 7.7x fp16 compute, compared to an Intel
Agilex DSP slice. The Tensor Slice performs common operations
used in today’s neural networks like matrix multiplication (dot
product) and element-wise matrix addition/subtraction and multi-
plication. We observe that adding a few columns of Tensor Slices
on the FPGA significantly benefits ML benchmarks, while non-ML
benchmarks show no noticeable degradation. Product variants of
the FPGA with different number of Tensor Slices could be created
targeting different application domains. With the abundance of
ML/DL applications, adding Tensor Slices to FPGAs is an attractive
proposition that will make FPGAs even more appealing for ML/DL
acceleration, while still keeping FPGAs flexible and performant for
non-ML applications.

Although the analysis presented in this paper provides a proof of
concept that adding Tensor Slices is beneficial, there are still more
explorations to do. We plan to efficiently support more operations
in the Tensor Slice like matrix-vector multiplication, to support
even smaller precisions like int4 and to provide a more flexible I/O
interface.

ACKNOWLEDGMENTS

This research was supported in part by National Science Foundation
(NSF) grant number 1763848. Any opinions, findings, conclusions
or recommendations are those of the authors and not of the NSF.



REFERENCES

(1]

(6]

(71

= =

Mohamed S. Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane
O’Connell, Nitika Shanker, Joseph Chu, Ian Prins, Joshua Fender, Andrew C.
Ling, and Gordon R. Chiu. 2018. DLA: Compiler and FPGA Overlay for Neural
Network Inference Acceleration. CoRR abs/1807.06434 (2018). arXiv:1807.06434
http://arxiv.org/abs/1807.06434
Achronix. 2019. Speedster7t FPGAs.
speedster7t/

A. Arora, Z. Wei, and L. K. John. 2020. Hamamu: Specializing FPGAs for ML
Applications by Adding Hard Matrix Multiplier Blocks. In 2020 IEEE 31st Inter-
national Conference on Application-specific Systems, Architectures and Processors
(ASAP). 53-60.

A. Boutros, S. Yazdanshenas, and V. Betz. 2018. Embracing Diversity: Enhanced
DSP Blocks for Low-Precision Deep Learning on FPGAs. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). 35-357.
Mohamed Eldafrawy, Andrew Boutros, Sadegh Yazdanshenas, and Vaughn Betz.
2020. FPGA Logic Block Architectures for Efficient Deep Learning Inference.
ACM Trans. Reconfigurable Technol. Syst. 13, 3, Article 12 (June 2020), 34 pages.
https://doi.org/10.1145/3393668

Flex-Logix. 2019.  Flex-Logix nnMAX Inference Acceleration Architec-
ture.  https://flex-logix.com/wp-content/uploads/2019/09/2019-09-nnMAX-
4-page-Overview.pdf

Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-scale DNN Processor for Real-time AL In Proceedings
of the 45th Annual International Symposium on Computer Architecture (ISCA ’18).
IEEE Press, Piscataway, NJ, USA, 1-14. https://doi.org/10.1109/ISCA.2018.00012
Intel. 2019. Intel Agilex FPGAs and SOCs. https://www.intel.com/content/www/
us/en/products/programmable/fpga/agilex. html

Intel. 2020. Intel Agilex Variable Precision DSP Blocks User Guide.
https://www.intel.com/content/dam/altera- www/global/en_US/pdfs/literature/
hb/agilex/ug-ag-dsp.pdf

Intel. 2020. Intel Stratix 10 NX FPGA Technology Brief. https:
//www.intel.com/content/www/us/en/products/programmable/stratix-10-
nx-technology-brief. html

https://www.achronix.com/product/

[11

[12

(13

[14

[15

[19

[20

Norman P. Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor
Processing Unit. CoRR abs/1704.04760 (2017). arXiv:1704.04760 http://arxiv.org/
abs/1704.04760

Kevin E. Murray, Oleg Petelin, Sheng Zhong, Jai Min Wang, Mohamed ElDafrawy,
Jean-Philippe Legault, Eugene Sha, Aaron G. Graham, Jean Wu, Matthew J. P.
Walker, Hanging Zeng, Panagiotis Patros, Jason Luu, Kenneth B. Kent, and
Vaughn Betz. 2020. VTR 8: High Performance CAD and Customizable FPGA
Architecture Modelling. ACM Trans. Reconfigurable Technol. Syst. (2020).

E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson, H. Sumbul, G.
Chen, P. Knag, R. Kumar, R. Krishnamurthy, S. Gribok, B. Pasca, M. Langhammer,
D. Marr, and A. Dasu. 2019. Why Compete When You Can Work Together: FPGA-
ASIC Integration for Persistent RNNs. In 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 199
207.

Eriko Nurvitadhi, Sergey Shumarayev, Aravind Dasu, Jeff Cook, Asit Mishra,
Debbie Marr, Kevin Nealis, Philip Colangelo, Andrew Ling, Davor Capalija, and
Utku Aydonat. 2018. In-Package Domain-Specific ASICs for Intel® Stratix® 10
FPGAs: A Case Study of Accelerating Deep Learning Using TensorTile ASIC.
FPGA ’18: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 287-287. https://doi.org/10.1145/3174243.3174966
S. Rasoulinezhad, H. Zhou, L. Wang, and P. H. W. Leong. 2019. PIR-DSP: An
FPGA DSP Block Architecture for Multi-precision Deep Neural Networks. In
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 35-44.

A. Stillmaker and B. Baas. 2017. Scaling equations for the accurate prediction
of CMOS device performance from 180 nm to 7 nm. Integration, the VLSI Jour-
nal 58 (2017), 74-81. http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSlintegration.
TechScale/.

Arizona State University. 2012. Predictive Technology Model. http://ptm.asu.edu/
Xilinx. 2018. Accelerating DNNs with Xilinx Alveo Accelerator Cards. https://
www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
Xilinx. 2018. Xilinx AI Engines and Their Applications. https://www.xilinx.com/
support/documentation/white_papers/wp506-ai-engine.pdf

Sadegh Yazdanshenas and Vaughn Betz. 2019. COFFE2: Automatic Modelling
and Optimization of Complex and Heterogeneous FPGA Architectures. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 12, 1 (January
2019), 3:1-3:27.


http://arxiv.org/abs/1807.06434
http://arxiv.org/abs/1807.06434
https://www.achronix.com/product/speedster7t/
https://www.achronix.com/product/speedster7t/
https://doi.org/10.1145/3393668
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-nnMAX-4-page-Overview.pdf
https://flex-logix.com/wp-content/uploads/2019/09/2019-09-nnMAX-4-page-Overview.pdf
https://doi.org/10.1109/ISCA.2018.00012
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/agilex.html
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-technology-brief.html
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-technology-brief.html
https://www.intel.com/content/www/us/en/products/programmable/stratix-10-nx-technology-brief.html
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
https://doi.org/10.1145/3174243.3174966
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
http://ptm.asu.edu/
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Overview
	3.2 Precision
	3.3 Modes of operation
	3.4 Inputs and Outputs
	3.5 Processing Element
	3.6 Chaining
	3.7 Speeds and Feeds

	4 Evaluation
	4.1 Tools Used
	4.2 DSP Slice Implementation
	4.3 Tensor Slice Implementation
	4.4 Baseline vs. Proposed FPGAs
	4.5 Benchmarks

	5 Results
	5.1 Compute Throughput
	5.2 Resource Usage
	5.3 Frequency
	5.4 Area
	5.5 Interconnect

	6 Conclusion
	Acknowledgments
	References

