
- 1 -

Mapping of Applications to Heterogeneous Multi-cores

Based on Micro-architecture Independent Characteristics

Jian Chen, Nidhi Nayyar and Lizy K. John
Department of Electrical and Computer Engineering

The University of Texas at Austin
 {chenjian, nidhin}@mail.utexas.edu,ljohn@ece.utexas.edu

Abstract
Heterogeneous multi-core processor is demonstrated

to be more efficient than its homogeneous counterpart

due to its ability to meet different resource requirements

of the applications. One of the challenges of designing a

heterogeneous multi-core is how to schedule programs to

the core that can execute them most efficiently. This

paper presents a method to map application to its

optimum core by analyzing the micro-architecture

independent characteristics of that application. The

proposed method exploits data/instruction reuse distance

and true dependency distance to derive switching gains

and ranks for each configuration, and maps the

application to the optimum core accordingly. The

experiment result shows that four out of the five

representative programs under study are mapped to the

optimum core in terms of energy-delay product. This

study opens the possibility to design a more intelligent

dynamic program switching mechanism than the current

trial-and-error approach.

I. Introduction
Multi-core architectures are becoming an attractive

design alternative due to the capability of achieving high

instruction throughput as well as the flexibility to meet

specific performance and power constraints. The existing

multi-core architectures can be divided into two

categories, i.e., homogeneous multi-core processor and

heterogeneous multi-core processor. A homogeneous

multi-core processor can be implemented by duplicating

multiple copies of the same core, which is desirable from

the perspective of design and validation complexity [1].

However, a homogeneous multi-core system does not

give any credit to the fact that the different programs have

very different resource requirements during the

execution. The heterogeneous multi-core processor, on

the contrary, is able to accommodate different resource

demands of applications by scheduling programs to the

core that can execute them most efficiently, hence, is

more efficient than its homogeneous counterpart in terms

of power consumption and area cost [1][2].

In order to exploit the core diversity in heterogeneous

multi-core processor, programs have to be scheduled or

mapped to the proper cores that are most suitable for the

execution. Prior research mainly focuses on dynamic core

selection based on sampling the behavior of neighboring

or all cores during the switching intervals [3]. Although

this dynamic method can identify program phase changes

during runtime and make corresponding core switching, it

gives no insight into the relationship between inherent

program behavior and the corresponding resource

requirements. Such relationship is important in a sense

that it can not only help mapping applications statically

according to the off-line profiling but also potentially lead

to more intelligent dynamic core selection algorithms.

This is the reason that motivates us to understand how

micro-architecture independent characteristics shape and

modulate the resource demands of programs. As one step

towards this direction, this paper presents a method to

map applications to the proper cores statically based on

micro-architecture independent characteristics. The

proposed method uses data/instruction reuse distance

and register dependency distance to characterize the

data/instruction working set sizes and the ILP

(Instruction Level Parallelism) in the program. It

introduces the concept of switching gain to quantify the

benefit and cost of switching from one core to another.

A ranking system based on the gains is employed to

determine the core configuration that can best fit runtime

resource requirements of the program. The experiment

result shows that four out of the five representative

programs under this study are mapped to the optimum

core in terms of energy-delay product. This result

demonstrates the possibility to correlate

micro-architecture independent characteristics of

programs with optimum core configuration in a

heterogeneous multi-core system.

The rest of the paper is organized as follows: Section II

presents the overall framework for the proposed static

application mapping. Section III describes the

experiment environment used in this research. Section

IV gives detailed description of the mapping heuristics

- 2 -

as well as the evaluation results of the proposed mapping

policies. Section V concludes the paper and points out

the future work.

II. Framework for Application

Mapping

 Figure 1 shows the framework for application mapping

based on micro-architecture independent characteristics.

The framework starts with an application space, which is

a collection of different programs that will be running on

the multi-core processor. These programs are profiled

according to a set of micro-architecture independent

metrics, followed by PCA (Principal Component

Analysis) and clustering. The immediate result of these

steps is that application space is partitioned into several

clusters with one representative program for each cluster.

The underlying rationale for this step is two-fold. First,

the representative programs constitute a desirable subset

of the application space for the demonstration of the

mapping algorithm because these representative

programs are different by nature and are more likely to be

mapped to different cores. Second, the reduced number of

programs under study can significantly accelerate the

time-consuming validation process without losing

generality. The mapping heuristic then takes the

micro-architecture independent characteristics of these

representative programs as well as the configurations of

heterogeneous cores to produce the program-core

mapping table. The step highlighted with dash line is

only used for the validation of the mapping algorithm,

hence is not the integral part of the mapping process. It

should be noted that the framework only targets at

single-ISA heterogeneous multi-core system [2], though

it can be further extended to multi-ISA systems. In

addition, this framework assumes programs running

independently on different cores, and there is no

communication and memory sharing between programs.

This assumption may not be true in real world multi-core

environment, yet it helps to identify the essential

relationship between programs and hardware without

being interfered with the side effects of the program

communications.

The following subsections elaborate some aspects the

proposed framework, including the details of

microarchitecture-independent characteristics, principle

component analysis and clustering.

A. Microarchitecture Independent Metrics

Microarchitecture independent metrics give the

opportunity to understanding the inherent program

characteristics isolated from features of particular

microarchitectural components [4]. These program

characteristics can be measured effectively through

instrumentation which is substantially faster than

simulation. This paper employs two different types of

the metrics, i.e., register RAW (Read-after-Write)

dependency distance to capture the instruction level

parallelism and data/instruction reuse distance to capture

the working set sizes. These two metrics are among the

factors that have the most significant impact on the

hardware resource requirements of the program,

therefore have the strongest correlations with the core

configurations.

RAW Dependency Distance: Dependency distance is

defined as the total number of instructions in the

dynamic instruction stream between the producer and

the first consumer of a register instance [4]. Only true

dependency distance, i.e., RAW dependency distance is

profiled because false dependencies can be easily

removed by register renaming and cannot reveal the

Figure 1. Framework for Application Mapping

- 3 -

degree of concurrency existed in the program. Since the

integer RAW dependency distance and the floating-point

one.

Data/Instruction Reuse Distance: The use of average

memory reuse distance to characterize data temporal

locality is proposed in [4]. The reuse distance is defined as

the number of memory accesses between two consecutive

memory accesses to the same block address. The average

reuse distance can be calculated according to the

distribution of reuse distance with the window size of 16,

64, 256, and 4096. The size of the block that the address

indexed into can vary from 16 byte to 256 byte. One may

want to sweep through all L1 block sizes that are

implemented in the target multi-core processor. Table I

summaries Microarchitecture independent metrics that are

used in the proposed framework for program profiling and

clustering.

Table I. Micro-architecture Independent Metrics used for

Characterizing Benchmarks.

No. Category Characteristics

1

2

3

4

5

6

7

Integer RAW

Dependency

Distance

Distance of 1

Distance upto 2

Distance upto 4

Distance upto 8

Distance upto 16

Distance upto 32

Distance larger than 32

8

9

10

11

12

13

14

Floating Point

RAW

Dependency

Distance

Distance of 1

Distance upto 2

Distance upto 4

Distance upto 8

Distance upto 16

Distance upto 32

Distance larger than 32

15

16

17

18

Data temporal

Locality

Average distance for window

size 16

Average distance for window

size 64

Average distance for window

size 256

Average distance for window

size 4096

19

20

21

22

Instruction

temporal

Locality

Average distance for window

size 16

Average distance for window

size 64

Average distance for window

size 256

Average distance for window

size 4096

B. Principal Component Analysis & Clustering

Theoretically, a program can be mapped to a particular

core by inspecting its micro-architecture independent

program characteristics. However, in order to measure the

quality of the mapping, detailed micro-architecture level

simulations are needed for validation. The simulation time

constraints prevent the mapping-and-validation process on

a program-by-program basis from being practical.

Therefore, this framework employs cluster analysis to

subset the application space into several clusters, and uses

the representative programs from these clusters as the

major programs for mapping.

In order to cluster programs, this framework applies

principal component analysis to transform the raw data to

an orthogonal space with reduced dimensionality. PCA

achieves dimensionality reduction by removing principal

component with lowest variance and retaining the most

important factors that contribute to the covariance among

different programs. This framework employs 95% criterion

for data reduction, that is, 95% of the total variance should

be explained by the retained principal components.

The clustering is based on the Euclidean distance between

different programs calculated in the space spanned with the

reduced principal components. Programs that are close to

each other in application space have similar characteristics

and tend to be mapped to the same core, thus, should be

grouped together. The immediate benefit of clustering is

the reduction of the number of programs under analysis

because other programs in the same cluster may follow the

mapping of the representative program. This framework

employs K-means clustering technique. The optimum

number of clusters for K-means is determined by BIC

(Bayesian Information Criterion) [6].

III. Experiment Setup

The application space of the experiment is composed of

a broad range of benchmark suites, including SPEC

CPU2000INT, SPEC CPU2000FP and MediaBench. These

programs are compiled to Alpha-ISA. We modified

SimProfile from Simplescalar tool set [5] to instrument

programs and collect the above mentioned characteristics.

To reduce the time for profiling, each SPEC2000 program

is profiled at its single Simpoint interval with 100 million

instructions [6] instead of the entire run of the program.

We use STATISTICA to perform principal component

analysis on the profiled program characteristics. The

programs are then grouped into 5 clusters with K-means

cluster algorithm. The number of clusters is determined

using BIC with the tools provided in Simpoint tool suite.

Table II shows the clustering results. The highlighted

program for each cluster is the program that has shortest

Euclidean distance toward the center of the cluster, thus is

- 4 -

the representative program for that cluster. These

representative programs are chosen as the target

applications to be mapped to different cores.

Table II. Clusters based on overall program characteristics

Cluster 1 bzip2, parser, adpcm, gcc, gzip,

perlbmk, twolf, bzip2, vpr,

applu, fm3d

Cluster 2 cjpeg, epic, unepic, mesa_med,

mpeg2decode, mpeg2encode, rasta,

encode, decode

Cluster 3 equake, djepg, lucas

Cluster 4 vortex, ghostscript, crafty, mesa,

eon

Cluster 5 art, mcf, swim

Our hypothetical single-ISA heterogeneous multi-core

processor has four different cores. The configurations of

these cores should be able to demonstrate enough

heterogeneity so that the mapping of an application to

different cores could yield noticeable difference in terms of

performance and energy consumption. This paper focuses

on two key aspects of processor configurations, namely,

issue width and cache size. These two aspects are

consistence with the profiled micro-architecture

independent characteristics, and are believed to define the

performance of processors at large. Table III gives the

detailed information of these four core configurations.

Note that each core has a private L1 and L2 cache.

Table III. Core Configurations for Multi-core Processor

Configurations Details

Configuration 1

In-order, single-issue, 2lev(1k), 8k

2-way d-cache 128byte, 4k 2-way

i-cache 64byte, 32k L2 cache

Configuration 2

Out-of-order, 2-issue, 2lev(1k), 16k

4-way d-cache 128byte, 8k 2-way

i-cache 64byte, 64k L2 cache

Configuration 3

Out-of-order, 4-issue, 2lev(4k), 32k

4-way d-cache 128byte, 16k 2-way

i-cache 64byte, 128k L2 cache

Configuration 4

Out-of-order, 8-issue, 2lev(4k), 64k

4-way d-cache 128byte, 32k 2-way

i-cache 64byte, 512k L2 cache

In order to evaluate the quality of the proposed

application mapping, Wattch-1.02 [7] is employed to

perform detailed power and performance simulations. Each

of the five representative programs is simulated with 4

different configurations. These programs except for

MediaBench have a huge amount of dynamic instruction

count, which requires extremely long time to simulate.

Therefore, for each SPEC benchmark, one single Simpoint

interval with 100 million instructions is used for detailed

micro-architecture level simulation, which is consistent

with the one used in profiling. The warm-up effect in 100

million instruction interval is relatively small, hence is

ignored.

IV. Mapping Heuristics and

Evaluation

The mapping heuristic proposed in this paper exploits

two aspects of programs, i.e., RAW register dependency

distance and data/instruction reuse distance. The former

serves to identify the degree of ILP in the program, while

the latter captures the temporal and spatial locality

behavior of the program. Unlike general classification of

programs into processor bound and memory bound [9], this

approach provides an opportunity to quantitatively analysis

the relationship between the program characteristics and

the program resource requirement implications. The

following subsections give detailed description of the

mapping heuristic with respect to these two aspects.

A. Correlation between Cache Size and Data/Inst

Reuse Distance

 According to the definition, reuse distance is measured

by the number of memory accesses between two

consecutive accesses to the same block address. In the

worst case, these memory accesses are unique and only

caches with cache block number larger than the reuse

distance can possibly accommodate all the data set.

Therefore, the percentage of reuse distance larger than the

number of cache blocks in the cache is highly correlated

with the cache miss rate of the program. Given the fixed

cache block size, the cache capacity has to be enlarged to

reduce the miss rate under this analytical model. However,

the performance gain has to be large enough to amortize

the increased hardware cost and energy consumption. Let

Ci be the size of cache i, and B be the cache block size,

define the switching gain when switching from one cache

configuration to another as

22
0 log0 log

() /(/)
j k

i i j k
C C

ii
BB

P P C C

≤ ≤≤ ≤

−∑ ∑ (1)

where Pi and Pj are the percentages of reuse distance 2
i
 and

2
j
 respectively.

In this paper, data/instruction reuse distance distribution

is profiled based on the cache block size consistent with

the corresponding cache block size in the hypothetical

heterogeneous multi-core system. Figure 2 shows the

distribution of the data/instruction reuse distance, where

x-axis represents the distance in logarithm of 2. According

to the distribution, it is able to derive the switching gains

- 5 -

Data Reuse Distance Distribution

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

cjpeg

Instruction Reuse Distance Distribution

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

cjpeg

 (a) (b)

Data Reuse Distance Distrution

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

vortex

Instruction Reuse Distance Distribution

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

vortex

 (c) (d)

Data Reuse Distance Distribution

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

 Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

bzip2

Instruction Reuse Distance Distribution

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

bzip2

(e) (f)

Data Reuse Distance Distibution

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

art

Instruction Reuse Distance Distribution

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e
rc

e
n

ta
g

e
 o

f
R

e
u

s
e
 D

is
ta

n
c
e

art

(g) (h)

- 6 -

Data Reuse Distance Distribution

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e

rc
e

n
ta

g
e

 o
f

R
e

u
s

e
 D

is
ta

n
c

e
equake

Instruction Reuse Distance Distribution

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Reuse Distance

P
e

rc
e

n
ta

g
e

 o
f

R
e

u
s

e
 D

is
ta

n
c

e

equake

 (i) (j)

Figure 4. Reuse distance distribution for five representative programs. (a),(c),(e),(g),(i). Data reuse distance distribution.

(b),(d),(f),(h),(j). Instruction reuse distance distribution.

Table IV Cache Switching Gains with Respect to the Caches in In-order Core

Data Switching Gains Instruction Switching Gains Combined Switching Gains Rank Bench

mark
Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4

Cjpeg 0.42 0.49 0.36 0.52 0.37 0.21 0.94 0.86 0.57 2 1 3
Vortex 1.10 1.08 0.69 1.01 1.07 0.71 2.11 2.15 1.4 2 1 3
Bzip2 1.56 2.61 1.52 0.85 0.59 0.36 2.41 3.2 1.88 2 1 3

Art 4.33 2.17 1.09 1.74 0.9 0.45 6.07 3.07 1.54 1 2 3
Equake 0.23 0.33 0.28 3.48 1.8 0.98 3.71 2.13 1.26 1 2 3

for both data and instruction caches by sweeping through

four different configuration nodes. The efficiency of the

overall L1 cache systems of the corresponding core can be

represented by the sum of data and instruction cache

switching gains. Table IV shows the switching gains of

both instruction cache and data cache when the program is

switched from the in-order core to other cores. The

combined switching gain is the sum of switching gains on

data and instruction caches of the corresponding

configuration node. The higher the gain is, the more

desirable the program should be mapped to the

corresponding cache system. Such tendency can be

captured by a rank system with 1 represents the highest

priority and 3 the lowest priority.

B. Correlation between Issue Width and RAW

Dependency Distance

 RAW dependency distance sets an upper-bound of how

much parallelism can be exploited in the program. In the

best case, with the dependency distance K, K-1 instructions

can be executed simultaneously [8]. These instructions can

exercise the processor with issue width less than K-1 to its

full potential. In other words, the product of the issue width

with the percentage of instructions that has dependency

distance larger than the issue width closely represents the

maximum throughput when executing the program on the

core. Therefore, similar gain based approach can be

applied to determine the proper issue width. We define

issue width switching gain as follows:

 () /(/)
i ji dis W j dis W i j

W P W P W W
> >

• − • (2)

where Wi and Wj stand for the issue width of the

configuration node i and j, and Pdis>Wi stands for the

percentages that the reuse distance is larger than Wi.

Figure 5 shows RAW dependency distance distribution

for both integer and floating-point programs, where art and

equake are in floating-point dependency distance and the

rest of the programs are in integer dependency distance.

Although cjpeg has floating-point dependencies, they are

- 7 -

RAW Dependency Distance Distribution

0

20

40

60

80

100

120

1 2 4 8 16 32 Infi

Distance

P
e

rc
e

n
ta

g
e

bzip2 cjpeg art vortex equake

Figure 5. Distribution of RAW Dependency Distance for

the representative programs.

Table V Issue Width Switching Gain with Respect to the

Single-issue In-order Processor

Switching Gains Rank Bench

mark Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4

Cjpeg 24.47 31.40 29.28 3 1 2

Vortex 21.11 24.62 19.32 2 1 3

Bzip2 30.25 25.29 18.31 1 2 3

Art 41.4 60.33 59.51 3 1 2

Equake 43.87 62.46 62.71 3 2 1

in very small number in terms of the dynamic instruction

count and have very little impact on the overall ILP for the

program. Therefore, floating-point dependencies are

ignored in cjpeg. The same is true for integer dependency

part in art and equake. Applying equation (2) to the

distribution, one can get the issue width switching gain of

configuration 2 to 4 relative to the single-issue in-order

core, as is shown in Table V. Rank system similar with the

one used in ranking the cache switching gains is also

employed here.

Now that we have two different rank systems that

indicate two types of mapping preferences, the mapping

heuristic should consider both and generate the application

mapping result based on the following rules:

1. Choose the core that has smallest value in the sum

of the rank pair unless there is a tie.

2. If there are ties, give priority to the rank on the issue

width side. For example, if the rank pairs are

(3,1),(1,3) and (2,2), the configurations with rank 1

in issue width should be chosen.

The second rule is based on the fact that out-of-order

execution core can hide some memory latencies caused by

L1 cache miss. The application-core mapping results can be

derived according to these rules, and are shown in Table VI.

Table VI Mapping results of the programs

Rank Pairs Mapping Bench

mark Cfg2 Cfg3 Cfg4 Cfg2 Cfg3 Cfg4

Cjpeg (2,3) (1,1) (3,2) √

Vortex (2,2) (1,1) (3,3) √

 Bzip2 (2,1) (1,2) (3,3) √

Art (1,3) (2,1) (3,1) √

Equake (1,3) (2,2) (3,1) √

C. Evaluation of Mapping Result

 In this paper, the quality of the mapping result is

evaluated with energy-delay product. In other words, the

application should be mapped to the core that has the lowest

energy-delay product value after finishing executing the

program. We use Wattch to get the average power number

per cycle, and multiply it with the number of simulation

cycles twice to calculate the effective energy-delay product,

as is shown in table VII.

Table VII Normalized Energy Delay Product for

benchmark programs across four different configurations

Benchmark Cfg1 Cfg2 Cfg3 Cfg4 Best Cfg

Cjpeg 1 0.617 0.468 0.685 Cfg3
Vortex 1 0.534 0.440 0.554 Cfg3

 Bzip2 1 0.618 0.685 0.862 Cfg2
Art 1 0.387 0.267 0.231 Cfg4

Equake 1 0.481 0.509 0.404 Cfg4
Table VII also shows the optimum mapping result for the

corresponding program according to the minimum

energy-delay product among four different configurations.

Comparing the mapping result with the one derived by the

proposed heuristic, four out of the five programs hit the

optimum mapping. Even for art, which is the only one that

has different mapping, the energy-delay product is very

close to the optimum one. This gives a good confidence that

by analyzing the micro-architecture independent

characteristics, we are able to correlate program and its

optimum core in a heterogeneous multi-core system.

However, the proposed method has inherent deficiency

because it cannot map any applications to the core with the

in-order processor. The reason for that is the in-order core is

- 8 -

used as the baseline processor to calculate the switching

gains. One way to get around this is to introduce a virtual

baseline core configuration, and calculate the gains in terms

of that core. Further investigation is required as to determine

what the proper configuration of this virtual baseline

processor is.

V. Conclusion & Future Work

This paper presents a method to map applications to its

optimum cores in a heterogeneous multi-core system by

analyzing the micro-architecture independent

characteristics of these applications. The proposed method

exploits data/instruction reuse distance and RAW

dependency distance to derive the ranks for each

configuration based on the switching gains, and maps the

application to the core accordingly. The experiment result

shows that four out of the five programs under study are

mapped to the optimum core in terms of energy-delay

product. While it is static mapping, this study opens the

possibility to design a more intelligent dynamic program

scheduling mechanism in heterogeneous multi-cores than

the current trial-and-error approach.

However, several aspects of the proposed method require

further research. The paper assumes that the proposed

switching gain can correlate program characteristics with

micro-architecture configurations. Systematic validation is

required to understand how strong and general the

correlation is. In addition, the heterogeneous multi-core

system in this study assumes no memory sharing in L2

cache. Further research is required to identify the effect of

L2 cache sharing on application mapping. Finally, we need

to explore ways to apply the method to dynamic core

switching.

References:

[1] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi,

“Core architecture optimization for heterogeneous

chip multiprocessors” Proceedings of the 15th

international conference on Parallel architectures and

compilation techniques, Sept. PACT '06.

[2] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,

and D. M. Tullsen. “Single-ISA Heterogeneous

Multi-core Architectures: The Potential for Processor

Power Reduction” In International Symposium on

Microarchitecture, Dec. 2003.

[3] R. Kumar, D.M Tullsen, P. Ranganathan, N. P. Jouppi,

and K.I. Farka, “Single-ISA Hetereogeneous

Multi-core Architectures for Multithreaded Workload

Performance”. In International Symposium on

Computer Architecture, June 2004.

[4] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John,

“Measuring Program Similarity: Experiments with

SPEC CPU Benchmark Suites,”. IEEE International

Symposium on Performance Analysis of Systems and

Software. pp10-20. Mar.2005

[5] SimpleScalar LLC, D. Burger and T. M. Austin.

 The simplescalar tool set version 3.02

 http://www.simplescalar.com/

[6] Simpoint 3.0, Erez Perelman, Greg Hamerly and Brad

Calder. “Picking Statistically Valid and Early

Simulation Points”, In the International Conference on

Parallel Architectures and Compilation Techniques,

Sept. 2003.

[7] Sim-Wattch 1.02, David Brooks, Vivek Tiwari, and

Margaret Martonosi. “Wattch: A Framework for

Architectural-Level Power Analysis and

Optimizations,” 27th International Symposium on

Computer Architecture, June, 2000.

[8] Pradeep K.Dubey, George B.Adams, and Michael J.

Flynn, “Instruction Window Size Trade-offs and

Characterization of Program Parallelism”, IEEE Trans.

On Computers. Vol.43, No.4, April 1994.

[9] Jaehyuk Huh, Stephen W. Keckler, Doug Bruger, “

Exploring the Design Space for Future CMPs”, 10th

International conference on Parallel Architectures and

Compilation Techniques, Sept. 2001.

