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Abstract

Performing multiple, accurate, low-latency predictions is crucial to improving instruction
throughput in future wide-issue microprocessors. However, demands of wide-issue processing cou-
pled with implementation challenges posed by high clock frequencies present obstacles to these
prediction goals. This paper proposes the Traveling Speculation framework to accommodate pre-
dictions in a wide-issue environment. Instead of using large centralized data tables to perform
predictions, distributed predictors are introduced along with the Traveling Speculation hint, or
tint. A tint contains execution history and is assigned to each instruction that is in-flight or in
the trace cache. The tint can be related to branch behavior, cache behavior, value prediction, or
any history-based aspect of microarchitecture. By associating a unique tint with each instruction
in the trace cache, a per-instruction, interference-free execution history is maintained, providing
superior prediction accuracy and instruction coverage in a low-latency manner. Our results show
that the Traveling Speculation framework improves prediction accuracy and provides personalized
execution history to a high percentage of dynamic instructions. Value prediction using Traveling
Speculation tints improves instruction throughput by 9.7% over the base model, in comparison
to 5.0% obtained by a table-based value predictor. Similarly, speculative memory forwarding us-
ing tints improves instruction throughput by 11.8% compared to 7.3% obtained using a memory
renaming scheme.

1 Introduction

Improving instruction throughput continues to be a high priority for high-performance microproces-

sors. Increasing issue width or resources such as the instruction window, functional units, and cache

does not always result in sufficient improvement, especially for irregular applications. Fundamental

program characteristics such as data and control dependencies limit opportunities for high instruction

throughput. However, studies show that accurate, low-latency predictions coupled with aggressive

instruction fetching can improve instruction throughput well beyond current levels [10, 11, 19].

Several aspects in the state-of-the-art microprocessor’s operation are guided by accumulated

histories. For instance, branch prediction, value prediction, cache replacement, and advanced cluster
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scheduling are all governed by information collected by history-capturing structures. The histories

are typically stored in one or more tables where they can be accessed and updated. Branch history

tables, branch target buffers, and value prediction tables are examples of structures that are based

on capturing instruction execution history.

The latency to access large structures is becoming an obstacle to achieving high instruction

throughput. This is the result of history tables growing in area and complexity, while cycle times

become more wire-delay dominated, [1, 14]. Prediction tables have become large to avoid destructive

interference (multiple instances corrupting one particular table entry). The latency problem is more

serious if a table is not located in close proximity to the pipeline stage that accesses its data. In

some situations, a multiple cycle latency is tolerable, especially if the prediction can be pipelined

easily. However, the extra latency is often undesirable and can lead to minimal performance gain or

no gain at all.

Increasing the number of read and write ports of the tables aggravates the latency problem.

For instance, Figure 1 contains latency in clock cycles for a 32kB table with different read port

configurations using Cacti 2.0 [32]. Reducing ports limits the coverage of aggressive speculation,

as one-ported or two-ported structures do not offer the sufficient access bandwidth needed by a

wide-issue environment. Consider that several basic blocks of instructions are introduced to the

wide-issue processor in each cycle and potentially hundreds of instructions are in-flight at any given

time. Therefore performing multiple predictions per cycle is very attractive.
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Figure 1: Clock Cycles to Access a 32KB Buffer with Varying Read Ports
Absolute latencies are obtained using Cacti 2.0 for a 100nm technology, 64-bit data blocks, one
read/write port, two write ports, and a varying number of read ports. A clock frequency of 3.5
GHz is chosen based on the SIA road map project for a 100nm process [36]

To solve the aforementioned problems of centralized prediction buffers, we present the Traveling

Speculation framework, where predictors are several distributed components instead of a centralized
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table-driven mechanism. Prediction information travels with the instructions through the processor

pipeline. The prediction logic, update logic, history for in-flight instructions, and history storage for

retired instructions are physically separated. The binding element is the traveling speculation hint,

or the tint, which contains execution history, prediction hints, and profiling information. A high-level

view of the proposed scheme is shown in Figure 2. Each in-flight instruction has a corresponding tint,

which is present in locations such as the decoder, dispatcher, reservation stations, reorder buffer, etc.

Trace caching, which is present in modern commercial processors [12], presents a convenient method

for the storage of the tints. When a new trace cache line is built, a corresponding trace of tints is

stored. At any time, there exists a one-to-one mapping between instructions in the trace cache and

the stored tints. When the trace cache is accessed, the instructions and associated tints are acquired

simultaneously.

I−Cache

From L2

Core
Execution

Retired Instructions with Tint

Tinted Instruction
Feedback Loop

Trace Cache

Uses Tints from Trace Cache in Execution

Modify Tints while Instruction is Executing

Tinted

Figure 2: Overview of the Traveling Speculation Framework

Depending on the target applications and the specific bottlenecks of the processor in question,

the Traveling Speculation framework can be used to improve prediction techniques or microarchi-

tecture policies based on accumulating history, such as value prediction, control prediction, power

optimization opportunities, cluster scheduling policies, and replacement policies. Instead of viewing

the prediction process as an awkward appendage to the microarchitecture, we consider history-based

tuning of the processor as an essential component of high-performance execution. Therefore, we in-

tegrate execution histories into the instruction flow path. Our approach exploits the transistors and

localized on-chip bandwidth readily available on future microprocessors, while avoiding high-latency

communication. The use of per instruction, per path (context) tints improves prediction accuracy
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and instruction coverage, while eliminating many of the accesses to centralized prediction tables.

This work analyzes the Traveling Speculation framework in the context of a general-purpose

processor executing SPEC2000 integer applications. Using value prediction and speculative mem-

ory forwarding tints as Traveling Speculation examples, we show high instruction coverage, wide

prediction bandwidth, and improved prediction accuracy. We also analyze the benefits of storing

the tints in a trace-based format. When compared to table-based structures, Traveling Speculations

yield 4.7% more performance over our base model for versus a table-based value predictor. The

improvement is 4.5% using a speculative memory forwarding tint versus memory-forwarding tables.

The next section describes the basics of the Traveling Speculation framework and discusses two

applications of the Traveling Speculation framework. Section 3 describes the benchmarks and sim-

ulation environment. In Section 4, we analyze when and how the Traveling Speculation framework

provides beneficial performance for a Value Prediction tint and Speculative Memory Forwarding

tint. We compare these results to table-based value predictor and memory forwarding strategies,

respectively. Related work is presented in Section 5. Section 6 summarizes the paper and presents

our conclusions.

2 Description of the Traveling Speculation Framework

Traditionally, predictors are treated as stand-alone mechanisms separate from the execution core.

The prediction information is typically held in a cache-like table, indexed by some distinct charac-

teristic of the instruction, such as its program counter bits. This approach is well understood and

common-place in microarchitecture. However, this strategy can impose limitations on the accuracy

and coverage of predictions due to destructive interference and limited table entries.

The Traveling Speculation framework takes a different approach to the process of prediction.

The goal is to provide high-bandwidth, low-latency predictions while increasing prediction accuracy

and instruction coverage. The process of prediction is distributed throughout the microarchitecture

using a per instruction traveling hint, or tint, as the binding element. The tint data can contain

microarchitecture state that the instruction encounters while executing, specialized prediction hints,

and dynamic profiling information. Using branch prediction as an example, a possible tint may

have a taken/not taken history (microarchitecture state), a confidence state (prediction hint), and a

misprediction counter (profiling information). In a traditional microarchitecture, the contents of a

tint would be stored in a table, if they are stored at all.

In the Traveling Speculation framework, the tint data is constantly available with the in-flight

instruction, eliminating a table access. Between invocations of the instruction, the tint data is stored
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using a one-to-one mapping with the instructions stored in the trace cache. The traveling speculation

approach fits well into the wide-issue environment supported by a trace cache. A trace cache provides

high instruction bandwidth fetches by storing dynamic traces of execution that can contain multiple

basic blocks [2, 7, 29, 33]. The Traveling Speculation framework takes advantage of the trace cache

instruction feedback cycle, where retired instructions are written to and fetched from the trace cache.

A detailed view of a Traveling Speculation framework is shown in Figure 3. The arrows represent

the path of instructions and shaded areas represent possible points at which the tints are present

and active.
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Figure 3: Detailed Look at a Traveling Speculation Framework
Shaded areas are possible points for tints to be active

A description of the various destinations of a Traveling Speculation follows below and corresponds

to Figure 3.

1. An instruction must first be fetched from the instruction cache into the processor and then

decoded. At this point, it does not have any tint. item As the instruction is decoded, the tint is

initialized based on its instruction type and injected into the instruction’s micro-data (necessary

per instruction microarchitecture information for executing and retiring the instruction).

2. If a trace cache hit occurs, the instructions and tints associated with that trace cache entry are

fetched in parallel. The tints are accessed using the same indexing method as the trace cache.
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Because there is a one-to-one association between the instruction storage and tint storage, the

fetching of personalized tints comes relatively easily. This is the only time tints are read from

the tinted portion of the trace cache.

3. The tint remains associated with the instruction wherever it is needed - issue logic, reservation

stations, functional units, reorder buffer, memory controller, etc. At these points, the tint can

be used to guide predictions.

4. After the microarchitecture is finishes executing the instruction, the tint is altered based on

the execution circumstances and results.

5. As the instruction is retired, its tint is also sent to the trace cache fill unit, which is in charge

of creating and storing the dynamic instruction traces.

6. When the fill unit has created a new trace, it writes the tint to the trace-based tint storage.

Using trace-based storage provides the tints with a degree of natural path correlation in addition

to the inherent per instruction correspondence. History in prediction tables is usually accessed using

the program counter (PC) of the corresponding instruction. In addition to instruction uniqueness, an

instruction’s setting within the dynamic flow of the program is important. Previous research shows

that capturing information along the path that leads to an instruction, combined with the PC, can

provide a more distinguishable behavior pattern than using just the PC [25, 26, 27, 40, 41]. The

tints are stored in trace format, providing the associated history with some context.

Traveling Speculations also provide the opportunity to dynamically acquire per instruction infor-

mation, a task sometimes relegated to static profiling. It has been demonstrated that many predictors

are more effective if the run-time behaviors of the target applications are understood before execu-

tion using pre-execution profiling [16, 25, 31, 37]. However, this type of profiling requires multiple

program runs and is often imprecise due to the large variance in data input sets and program phases.

Transferring the profile information to the individual instructions is tricky and can involve instruc-

tion set architecture alterations. Also, the supporting compiler is complicated and requires detailed

hardware knowledge. The Traveling Speculation framework has the ability to capture personalized

history dynamically and feed it back to the microarchitecture at run-time.

2.1 Value Prediction Tint Example

This work presents a value prediction tint (VP-Tint) as an example application of the Traveling

Speculation framework. The predicted value, stride, and confidence counter are all stored in the
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VP-Tint. Since the prediction data is self-contained, value prediction using the VP-Tint does not

require any prediction tables. Only eligible instructions (integer loads and arithmetic) are given an

active tint, and the prediction mechanism works exactly the same as table-based stride prediction

[9]. Our example microarchitecture with a VP-Tint tint is presented in Figure 4.
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VPTint Modify
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Figure 4: Traveling Speculation Framework with the Value Prediction Tint

The VP-Tint uses the Traveling Speculation framework illustrated in Figure 3. An eligible

instruction receives a VP-Tint once it is decoded on the instruction cache fetch path (point 2 in Figure

3). The VP-Tint value, stride, and confidence fields are all set to an initial value. If the instruction

is fetched as part of a trace from the trace cache (point 3), the existing VP-Tints are incorporated

into the instruction micro-data after the fetch. Value predictions occur after the instructions are

decoded and before they reach the instruction window (point 4 at issue). A prediction is executed

only if the VP-Tint confidence counter demonstrates the proper confidence. If this is the case, the

VP-Tint value is speculatively assigned to the instruction’s destination register so that dependent

instructions can benefit from the prediction (as in standard value prediction). Once the instruction

is executed and reaches a non-speculative state, the prediction is verified and the VP-Tint fields are

updated before being processed by the Fill Unit.
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2.2 Speculative Memory Forwarding Tint Example

The speculative memory forwarding tint (SMF-Tint) is another application of the Traveling Spec-

ulation framework. It has been shown in the past that a large fraction of load instructions obtain

data recently written by a store instruction from the same program. The purpose of this tint is to

allow load instructions to speculatively receive data from instructions that store to the same memory

location before the address of the load has been calculated. A load that speculates correctly frees

dependent instructions early instead of waiting to access the memory subsystem. The SMF-Tint

accomplishes something similar to previous memory forwarding hardware [24, 30, 39].

The SMF-Tint is different from the VP-Tint because it uses accompanying tables as shown in

Figure 5. Load instructions speculatively obtain values from the value file, which holds the data

or data tag from a previous store instruction. The store cache identifies store-load dependencies

non-speculatively and organizes the speculative indexing into the value file. The functionality of the

store-load cache from memory renaming is replaced by the SMF-Tint, so only one table needs to be

accessed at prediction time. The tables for the memory renaming hardware function as described

in [31, 39]. While the use of a value file table does not allow this particular Traveling Speculation

to take full advantage of the prediction bandwidth and latency properties of the framework, the

framework still offers performance boosts through an increase in prediction accuracy and instruction

coverage.
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Figure 5: Traveling Speculations: Speculative Memory Forwarding Tint
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The SMF-Tint has three fields for store instructions and two fields for load instructions. The

interaction of the SMF-Tint with the store cache and value file is shown in Figure 6. The store

SMF-Tint contains a filter for the value file, a HasIndex field, and an index field. This filter is a

two-bit saturating counter that prevents a store instruction from writing to value file entries if it

is determined that it is not forwarding data to load instructions. The HasIndex field is a one-bit

field that works like a valid bit. If the field is set to one, then this store has been assigned a proper

index and can access the value file. The load SMF-Tint contains a one-bit confidence counter and

an index. The confidence counter is based upon the confidence of the prediction accuracy.

Pre−execute Post−execute

Value File (VF)
1−bit
Conf

HasIndex
1−bit

Indexn−bits

n−bits Index2−bit
Filter

Value/Tag Source

Store Cache (SC)
Load Mem Addr

Store Mem Addr

Tag VF Index

HasIndex = 1

Conf Index

Load SMF−Tint

Store SMF−Tint

Index Filter

Store SMF−Tint

Load SMF−Tint

Figure 6: Interaction of Load and Store SMF-Tint with the Tables

2.3 Summary of Traveling Speculations

Traveling Speculations have several unique attributes that provide significant advantages over tra-

ditional table-based prediction. The per instruction nature of the tints permits execution histories

to be truly unique. For example, the VP-Tint behaves like a fully-associative prediction table where

the lack of destructive interference makes the predictions very accurate. A table is limited to a fixed

number of ports, but the VP-Tint is equivalent to an infinite port mechanism where each instruction

can obtain a prediction.

Tints can be used to dynamically profile the run-time instruction behavior by providing per in-

struction counters. Strategies have been proposed that use compiler and/or static profiling help for

prediction hardware. All of these features are a product of the readily available local bandwidth

instead of long-distance communication and data access latency, making this an attractive imple-

mentation for present and emerging processing technologies. For example, the filtering done by the

SMF-Tint uses per instruction execution history to improve the access efficiency of the value file.

Using the Traveling Speculation framework, the latency to access an instruction’s personalized

history is less susceptible to multi-cycle on-chip latencies because the tint is part of the instruction

micro-data. Furthermore, self-contained tints (those that do not require tables) provide the equiva-
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lent of an infinite-ported structure. Most encouragingly, once the Traveling Speculation framework

is implemented for one particular tint, it is inherently suitable for a variety of tints. On an example

by example basis, there seems to be wasted tint storage space since all instructions are not tintable.

However, in its full glory all classes of instructions are tinted with at least one tint. The framework

is not specific to value prediction or memory forwarding. Instead, these are only examples of how

Traveling Speculation can readily improve upon prediction and history-based techniques.

3 Methodology

In this section, we describe the benchmarks and simulation environment used to study the Traveling

Speculation framework. We examine the integer benchmarks from the SPEC CPU2000 suite [38].

Because the test input for perlbmk provides a very short run, a modified ref input is used. With

these inputs, the run length of this benchmark matches the run length for other benchmarks using

the test inputs. The SPEC programs are dynamically linked and compiled using the Sun Compiler

with the -fast -xO5 optimizations. The benchmarks and their respective inputs are presented in

Table 1.

Table 1: SPECINT2000 Benchmarks

Benchmark Inputs Instr Simulated
bzip2 input.random 2 300M
crafty crafty.in 300M
eon chair.control.kajiya chair.camera chair.surfaces

chair.kajiya.ppm ppm pixels out.kajiya
300M

gap -l ./ -q -m 64M test.in 300M
gcc cccp.i -o cccp.s 300M
gzip input.compressed 2 300M
mcf inp.in 251M
parser 2.1.dict -batch test.in 300M
perlbmk -I. -I./lib splitmail.pl 1 5 19 18 150 300M
twolf test 243M
vortex bendian.raw 300M
vpr net.in arch.in place.out dum.out -nodisp -place only -init t

5 -exit t 0.005 -alpha t 0.9412 -inner num 2
300M

To perform our simulation, we use a functional, program-driven, cycle-accurate simulator. Given

a SPARC executable as input, the front-end functional execution is performed by the Sun tool Shade

[3]. The simulator models many of the modern aggressive instruction-level parallelism techniques, as

well as all resource contentions and speculative execution. We do not “idealize” any portion of the

microprocessor since the Traveling Speculation framework is best analyzed using a realistic balance

of resources. The basic pipeline is six stages: fetch, decode/merge, rename, issue, execute, and

write-back. Memory operations require additional pipeline stages, including TLB access and cache
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access. The parameters for the simulated base microarchitecture can be found in Table 2.

Table 2: Simulated architecture parameters

Data memory
· L1 Data Cache: 4-way, 32KB, 2-cycle access
· L2 Unified cache: 4-way, 1MB, +8 cycles
· Non-blocking 12 MSHRs and 2 ports
· D-TLB 512-entry, 4-way, 1-cycle hit, 30-cycle miss
· Store buffer: 64-entry w/load forwarding

loads access in 1-cycle
· Load queue: 64-entry, no speculative disambiguation
· Main Memory Infinite, +65 cycles

Fetch Engine
· Trace cache: 4-way, 2K entry, 1-cycle hit

partial matching, no path assoc.
· L1 Instr cache: 4-way, 4KB, 1-cycle hit

one basic block per access
· Branch Predictor: 16k-entry gshare/bimodal hybrid predictor

3-cycle misprediction penalty + refetch
· Branch target buffer 512 entries, 4-way

Execution Core

· Functional unit # Exec. lat. Issue lat.
Load/store 8 1 cycle 1 cycle
Simple Integer 8 1 1
Int. Mul/Div 2 3/20 1/19
Branch 4 1 1
Simple FP 4 3 1
FP Mul/Div/Sqrt 1 3/12/24 1/12/24

· Data Forwarding Latency: 1 cycle
· Register File Latency: 2 cycle

· 256-entry INT ROB; 128-entry FP ROB
· 12 reservation station entries/INT func. unit
· 16 reservation station entries/FP func. unit
· Machine width: 16 instructions

The distribution of the functional units favors general-purpose integer benchmarks. There is a

one-cycle latency for data forwarding to another functional unit and two-cycle latency for accessing

the register file. A 2048-entry trace cache is accompanied by a small 4kB instruction cache. The

trace cache is modeled after the trace cache in [8]. In our model, partial hits are allowed, but path

associativity is not. The fill buffer writes a new trace cache line each time a new one is created,

regardless of whether a similar trace is already present. The multiple branch predictor performs

the equivalent of three hybrid predictions [20] per cycle. Trace cache writes do not take place

simultaneously with a read to the same set. Store buffer forwarding takes one cycle.

For various forms of data prediction (value prediction, memory renaming, VP-Tint, SMF-Tint),

the aggressive selective reexecution mechanism is used. Only instructions in the dependency chain of

the mispredicted instruction are restarted. These instructions are placed into a reissue queue after a

fixed latency (three cycles). The reissue queue can accept 16 instructions per cycle and has priority

over the correct path issue queue. These same predictions are not done on reissued instructions.

4 Evaluation of the Traveling Speculation Framework

In this section we discuss the effectiveness of the Traveling Speculations. We look at the instructions

retired per cycle, and analyze the speedup provided by the value prediction tint and speculative

memory forwarding tint. The performance differences are also compared to known table-based

methods.
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4.1 General Analysis of the Traveling Speculation Framework

Table 3 presents some trace cache characteristics for the base model which are important to the

effectiveness of the Traveling Speculation framework. These results are presented first to assist the

interpretation of the performance results.

Table 3: Base Model Trace Cache Characteristics

bzip2 cc1 crafty eon gap gzip mcf
TC Instr Pct 98.64 86.06 92.36 97.00 97.53 99.81 99.77
TC Conflict Pct 0.00 9.23 1.65 0.04 0.42 0.00 0.00
TC Rd Wr Conf Pct 21.77 5.34 0.54 3.77 0.83 11.96 10.07

parser perlbmk twolf vortex vpr Mean
TC Instr Pct 90.27 91.86 89.86 93.12 97.92 94.31
TC Conflict Pct 0.32 0.00 3.45 1.64 0.00 0.21
TC Rd Wr Conf Pct 4.00 2.09 0.75 2.16 0.39 1.35

TC Instr Pct: Percentage of fetched instructions - correct or wrong path - that come from the trace cache.
TC Conflict Pct: Percentage of trace cache writes that cause a set replacement.
TC Rd Wr Conf Pct: Percentage of trace cache reads that cause a trace cache write to be delayed.
Mean: The mean is a harmonic mean.

An important statistic for understanding the performance numbers in this paper is the percentage

of fetched instructions that come from the trace cache (TC Instr Pct). If instructions are not fetched

from the trace cache, then they have no associated tints. Therefore, good trace cache hit rates are

preferable. Overall, 94% of instructions that are decoded come from the trace cache. This ranges

from 86% in the cc1 benchmark to almost 100% in gzip and mcf. Effectively, this is the instruction

coverage provided by Traveling Speculations since each instruction fetched from the trace cache has

an associated tint with current history information.

Most of the misses and resulting I-Cache fetches are due to cold misses and capacity misses. TC

Conflict Pct is the percentage of trace cache writes that actually cause a set replacement. This

number is below 1% for eight of the 12 benchmarks. Only cc1 shows significant set replacement.

Our studies indicate that the trace cache misses for cc1 are due to new regions of code rather than

the thrashing of interfering traces.

Though infrequent, the scenario exists where a trace is discarded from the trace cache and

recreated later. In this case, the history accumulated in the tint is lost and must be acquired once

again. A table-based mechanism has the opportunity to retain a history in this scenario. However,

if the instruction footprint is large and exhibits random access patterns that would thrash a trace

cache, it is also likely to cause destructive interference in a prediction table.

The final percentage in Table 3 is the percentage of trace cache reads that delay a trace cache

write (TC Rd Wr Conf Pct). In our simulations, the fill unit cannot write to the trace cache in the
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same cycle as a read access to the same set. This is more relevant for the tints than the instruction

traces. When a trace is formed that is identical to a current trace, no new information is written

to the instruction storage of the trace cache. However, for each trace captured, new history needs

to be written to the tint storage. If the extra tint writes are consistently conflicting with tint reads,

then the tinted information update is delayed or even discarded. However, the table shows that the

read-write conflict percentage is fairly low. Over the SPECINT2000 benchmarks, only 1.3% of reads

cause a write to be delayed.

4.2 Analyzing the Value Prediction Tint

Figure 7 summarizes the performance of the VP-Tint. Speedups versus the base model are presented

for the VP-Tint and two versions of table-based stride value predictors. The mean is presented

as a geometric mean throughout the results unless noted. Stride prediction is done with a basic

stride predictor [9] with 4096 entries. Although there are more complex methods of value prediction

[18, 35, 40], we study a large stride predictor because it is more easily realizable and captures both

the striding and last value behaviors. The 16 port stride predictor presented in the figure (Stride

VP Port 16) can accommodate up to 16 predictions and updates each cycle. The second stride

predictor presented (Stride VP Port 2) has a more realistic implementation, using two read ports,

but still permitting 16 updates. In this case, the first two eligible instructions (memory and integer

operations that write a destination register) are predicted on a “first-come, first-serve” basis, and

instructions get one opportunity to access the table. The access latency for both predictors is just

one clock cycle, although this latency could be multiple clock cycles in future technologies.
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Figure 7: Value Prediction: Speedups Versus the Base
VP-Tint: as described in the paper.
Stride VP Port 16: 4096-entry table, 16 read ports, 16 write ports, 1-cycle latency.
Stride VP Port 2: 4096-entry table, two read ports, 16 write ports, 1-cycle latency.

Figure 7 illustrates that the value prediction Traveling Speculation improves performance by

9.7% over the base model for SPECint2000. This method of prediction outperforms a large, low-
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latency, 16 port stride value predictor by almost 2%. However, the table-based stride predictor

has been generously provided with 16 read and write ports, as well as a one-cycle access latency.

This combination of parameters would not be possible in future high-performance, high-frequency

processors. When the stride predictor is restricted to two read ports, the performance contribution

over the base provided by the VP-Tint is almost double that of the stride predictor, 9.7% to 5.0%.

Individual benchmarks provide some interesting results. For example, several benchmarks show

better stride predictor performance when port-limited (cc1, eon, gzip, vortex) than with 16

ports. The precise reason is difficult to isolate since performance benefits of value prediction are based

on a combination of factors, such as misprediction rate, prediction confidence, update frequency,

varying rewards for correct predictions, and varying penalties for mispredictions [18, 34].

Table 4: Analysis of Value Prediction Effectiveness

bzip2 cc1 crafty eon gap gzip mcf
VP-Tint MP Rate 7.57 7.84 4.03 8.89 5.37 5.55 17.51
SVP-2 MP Rate 13.00 13.57 5.21 16.26 8.41 8.26 29.27

VP-Tint Coverage 98.43 84.20 94.64 95.98 95.56 99.93 99.71
SVP-2 Coverage 99.18 77.42 69.36 82.39 77.28 98.78 99.34

parser perlbmk twolf vortex vpr Mean
VP-Tint MP Rate 7.91 7.02 5.03 3.26 6.44 6.08
SVP-2 MP Rate 28.45 9.22 7.89 9.68 8.86 10.30

VP-Tint Coverage 96.56 94.22 87.82 90.93 97.44 94.38
SVP-2 Coverage 95.49 86.75 86.23 65.81 93.34 84.39

VP-Tint: as described in this paper
SVP-2: two read port stride value predictor
MP Rate: misprediction rate = retired loads predicted incorrectly / retired loads predicted
Coverage: percentage of instructions that have an available history to perform prediction
Mean: harmonic mean of the benchmark suite

Table 4 contains some of the prediction-related characteristics for the VP-Tint and two read

port stride predictor. Over all of the programs, the VP-Tint hardware provides a significantly lower

misprediction rate (MP Rate) than the table-based methods, 6.08% versus 10.30% for the two port

stride value predictor. Often in value prediction schemes, the total number of correct predictions

must be sacrificed for a higher accuracy. However, even with the superior accuracy, the VP-Tint still

provides 2.75 times the number of correct predictions as the two read port predictor (0.94 times as

many correct predictions for than a 16 port stride predictor).

The lower section of the table presents the instruction coverage (Coverage) for the two read port

stride value predictor and the VP-Tint. This represents the percentage of instructions that have

an available history. For the stride value predictor, this results from a tag-match in the table. For

Traveling Speculations, this means any instruction fetched from the tinted trace cache. The results

in the table show that the Traveling Speculations do a better job of providing per instruction history
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than the 4k-entry, direct-mapped, table-based predictor.

Two programs show better performance using table-based prediction than the VP-Tint (cc1,

vortex). In these programs, correct predictions do not have a high reward. So even though the

two read port stride value predictor has a worse prediction rate and fewer correct predictions, it

outperforms the VP-Tint because it has the fewest mispredictions.

4.3 Analyzing Speculative Memory Forwarding

The SMF-Tint is analyzed versus the base model and compared to a version of the memory renaming

hardware in [31, 39]. The memory renaming hardware consists of a 4-way, 1024-entry store cache, a

1024-entry value file, and a 4-way, 1024-entry store-load cache. The store cache and value file have

similar functionality to the VP-Tint store cache and value file. The SMF-Tint has the equivalent

purpose of the store-load cache, resulting in one fewer table. The process of accessing the two

levels of tables in the memory renaming scheme (store-load cache and value file) has a one-cycle

access latency. The speedups versus the base model for the different speculative memory forwarding

strategies are presented in Figure 8.
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Figure 8: Speculative Memory Forwarding: Speedups Versus the Base
SMF-Tint Port 16: SMF-Tint with 16 ports to value file
MR Port 16: memory renaming with 16 read ports to the store-load cache and value file
SMF-Tint Port 2: SMF-Tint with two read ports to value file
MR Port 2: memory renaming with two read ports to the store-load cache and value file

The first two bars for each benchmark in the figure represent the SMF-Tint with a 16 read port

value file versus memory renaming hardware with a 16 read port store-load cache and value file.

Using the SMF-Tint as a replacement for the store-load cache results in 11.8% improvement over the

base model versus 7.3% using memory renaming, and in all cases except for twolf, the SMF-Tint

provides an improvement versus the table-based method. As seen in the two right-hand bars, when

placing a two read port restriction on both sets of hardware (value file for SMF-Tint, store-load

cache and value file for memory renaming) while keeping 16 write ports, the SMF-Tint continues to

provide superior performance, 5.2% versus the base model for the programs examined versus 1.9%
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using memory renaming.

Table 5 presents the misprediction rate and coverage for the memory forwarding strategies. The

advantage of the SMF-Tint is a much lower misprediction rate (MP Rate). The misprediction rate

using the SMF-Tint with 16 ports to the value file is only 11.30% versus 24.26% for the memory

renaming hardware. Although the memory renaming hardware is able to produce 14% more correct

predictions than the SMF-Tint, the increase in mispredictions overshadows this advantage. The

instruction coverage when using the Traveling Speculations is part of the reason for the improved

misprediction rate. The lower portion of the table shows the load coverage for the two mechanisms.

A greater percentage of loads has an available instruction history in the Traveling Speculation frame-

work than in the strictly table-based case.

Table 5: Analysis of Speculative Memory Forwarding Effectiveness

bzip2 cc1 crafty eon gap gzip mcf
SMFT-16 MP Rate 3.65 16.43 11.70 33.29 17.82 15.97 22.18
MR-16 MP Rate 39.40 19.41 17.51 63.96 24.37 23.93 44.45

SMFT-16 Coverage 99.17 83.47 93.42 96.20 97.79 99.84 99.64
MR-16 Coverage 99.99 88.43 71.82 63.00 98.66 99.99 99.99

parser perlbmk twolf vortex vpr Mean
SMFT-16 MP Rate 12.82 5.70 19.65 11.75 17.27 11.30
MR-16 MP Rate 15.49 37.45 26.05 12.68 32.19 24.26

SMFT-16 Coverage 93.41 91.910 89.670 91.88 97.79 94.27
MR-16 Coverage 96.14 94.750 91.130 74.54 98.94 87.78

SMFT-16: SMF-Tint with 16 read ports to value file
MR-16: memory renaming with 16 read ports to the store-load cache and value file
MP Rate: misprediction rate = retired loads predicted incorrectly / retired loads predicted
Coverage: percentage of loads that have an available history to perform prediction
Mean: harmonic mean for benchmark suite

4.4 Correlation Analysis

The Traveling Speculation framework provides high instruction coverage, low-latency accesses, and

high-bandwidth prediction capability. The instruction coverage and prediction bandwidth have been

discussed in the previous sections while the low-latency access capability is not directly quantified in

this work. However, one more characteristic of the Traveling Speculation framework that works to

the advantage of the studied prediction mechanisms is path correlation.

Path correlation is present because tints are stored in a trace format. The same static instruction

may be present multiple times in the trace cache but in the context of different traces. This has the

advantage of providing a more distinctive execution history for speculation, but has the potential

disadvantage of diluting the instruction history for a particular static instruction. To study the

correlation effect, we compare the Traveling Speculation framework described in Section 2 with a
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Traveling Speculation framework with a different tint storage. The new storage scheme stores one

tint per PC in an infinite sized table. When a trace is fetched from the trace cache, this table

is accessed once per instruction to obtain a strictly per PC history without any correlation effects.

Obviously, this exact mechanism for tint storage is infeasible, but presents an upper-bound for precise

per instruction storage.

Figure 9 presents IPC speedups for the two methods of tint storage for both the VP-Tint and

SMF-Tint. In both cases, the trace-based storage provides better performance than per PC storage.

The difference is not as great in the case of the VP-Tint, but remember that the per PC storage is

of infinite size and never loses history while the per trace storage can lose history when a trace is

evicted from the trace cache. Still, using trace-based storage for the SMF-Tint proves to be a much

better method of providing meaningful per instruction histories than the per PC method. This is

another reason that the SMF-Tint performs well versus the table-based renaming scheme.
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Figure 9: Speedups for Path Correlated Tint Storage and Per PC Tint Storage

5 Related Work

The concept of caching and refetching instructions with extra information has been discussed in

various forms. Trace caches store information beyond the decoded instruction information. Tradi-

tional versions of the trace cache choose to store multiple branch targets, branch directions, and the

terminating instruction type in each trace cache line [28, 33].

The fill unit by Melvin, et al. places dynamically determined instruction information into the

decoded instruction cache [21, 6]. The information consists of decoding hints to reduce the latency

of variable-length instruction decoding. The fill unit also places dynamic branch information into

the decoded instruction cache, including branch targets for two-way branches and information about

the instruction that generates the condition code. J. D. Johnson proposes an expansion cache that

is similar to the trace cache, but for a statically scheduled architecture. Each line of the expansion

cache contains dynamic information on instruction alignment, branch target addresses, and branch
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prediction bits [15].

Friendly, et al. focus on compiler-like optimizations that could be performed dynamically in the

fill unit within a trace cache entry [8]. The fill unit determines optimizations that can be performed,

then rearranges and/or rewrites the instructions within the trace cache line accordingly. These

optimizations include marking register-to-register move instructions, combining immediate values of

dependent instructions, combining a dependent add and shift into one instruction, and rearranging

instructions to minimize the latency through their operand bypass network. Jacobson and Smith

propose similar preprocessing steps for the Trace Processors [13].

Lee, et al. propose a decoupled value prediction for processors with a trace cache [17]. In this

work, they perform value predictions using a series of four tables at the time an instruction retires.

The fill unit then stores the predicted value and type in a value prediction buffer adjacent to the

trace cache, similar to the tinted portion of our trace cache. The goal of this work is to remove value

prediction from the critical path in instruction fetch and to reduce the port requirements for the four

value prediction tables. Lee and Yew also propose a similar system for use with an instruction cache

[18].

Per-instruction profiling has been done for the purpose of post-execution analysis and feedback

to a compiler. Conte, et al. propose a profile buffer to allow for dedicated profiling [4]. The goal of

the buffer is to improve the accuracy of information used in compiler optimizations while designing

a hardware-compiler system. Dean, et al. present ProfileMe as a hardware approach to sample

instructions and paired instructions as they travel through the out-of-order pipeline [5]. The results

are designed to provide off-line feedback for programmers and optimizers. Work from Merten, et

al. attempts to identify hot spots in order to support run-time optimizations [22]. This work uses

dedicated hardware tables and logic to allow for rapid detection of hot spots with negligible overhead.

The authors also envision hot spots being used for run-time binary reoptimization [23].

There exists a large body of research on prediction related to the schemes discussed in this paper,

which we refer to throughout the paper. However, due to limitation of space, the focus of this section

is on related work that has similarity to our general framework.

6 Conclusion

This paper proposes a Traveling Speculation framework, organized around distributed predictors

and a traveling hint, called a tint. The tints are distributed on a per-instruction basis, reducing

destructive interference and increasing predictor accuracy and instruction coverage. The in-flight

tints allow for high-bandwidth predictions because there is no access to a centralized table. Instead
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all necessary execution history travels with the instructions and resides in a trace-based hint storage.

The tint storage corresponds one-to-one with the instruction storage of the trace cache. This allows

for simple tint fetching and also provides path correlation for the history information within the tints.

Additionally, counter fields in the tint can dynamically collect profile-like information at run-time

for immediate feedback to the microarchitecture.

We describe two tint examples to illustrate the potential of Traveling Speculations. A value

prediction tint, VP-Tint, provides a 9.7% performance improvement over the base model for the

SPECint2000 benchmarks, and 4.7% additional performance compared to a table-based stride pre-

dictor. The VP-Tint provides extra prediction performance by reducing the misprediction rate from

10.3% to 6.1% versus a two read port stride value predictor. In this case, the number of correct

predictions almost triples the amount of correct predictions.

A speculative memory forwarding hint, SMF-Tint, provides 11.8% performance improvement

over the base model and 4.5% additional performance compared to a memory renaming scheme.

The increased instruction throughput is primarily due to a reduction in the misprediction rate from

24.2% to 11.3%. Further analysis reveals that the natural path correlation due to trace storage of

tints has a substantial impact on the performance of the speculative memory forwarding tint.

This work indicates that the Traveling Speculation framework can be a powerful, dynamic, self-

tuning mechanism for future implementations of prediction techniques in wide-issue microprocessors.

The VP-Tint and SMF-Tint are two potential applications of the framework. Depending on the

restrictions and design goals of a particular processor, many other useful tints can be designed.

For example, a low-power processor could choose to use the run-time profiling abilities of Traveling

Speculations for power management schemes. In fact, any history-based policy - not just predictions

- can benefit from the Traveling Speculation framework. Cache replacement policies and cluster

scheduling algorithms are additional candidates for tints.

We will continue to analyze more applications of the Traveling Speculation framework. In addi-

tion, we are looking at solutions to some of the frameworks weaknesses such as lost tint history on

trace cache evictions and vulnerability to stale data. We are also working on supporting multiple

classes of tints (tints for branches, tints for loads, tints for floating point, etc) and multiple tints per

instruction class. We believe that the Traveling Speculation framework can be a powerful tool for

dynamically fine-tuning future highly-speculative, wide-issue microprocessors.
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