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    The phenomenal growth of the World Wide Web has resulted in the emergence and popularity 

of several  information technology related computer applications. These applications are typically 

executed on computer systems that contain state-of-the-art superscalar microprocessors. 

Superscalar microprocessors can fetch, decode, and execute multiple instructions in each clock 

cycle. They contain multiple functional units and generally employ large caches. Most of these 

superscalar processors execute instructions in an order different from the instruction sequence 

that is fed to them.  In order to finish the job as soon as possible, they look further down into the 

instruction stream and execute instructions from places where sequential execution flow has not 

reached yet. With the aid of sophisticated branch predictors, they identify the potential path of 

program flow in order to find instructions to execute in advance. At times, the predictions are 

wrong and the processor nullifies the extra work that it speculatively performed. 

    Most of the microprocessors that are executing today’s internet workloads were designed 

before the advent of these emerging workloads. The SPEC CPU benchmarks (See sidebar on 

SPEC CPU benchmarks) have been used widely in performance evaluation during the last 12 

years, but they are different in functionality from the emerging commercial applications. Whether 

the difference in functionality results in key differences in the exploitation of architectural and 

microarchitectural features of the processor, is the subject of this article. In order to answer this 

question one has to identify appropriate workloads and obtain performance metrics that indicate 

the execution characteristics. 

    Emerging workloads contain several software packages, interfaces and standards that were 

triggered by the proliferation of web servers and  the arrival of electronic commerce. An end-to-

end e-business transaction typically involves  a dozen or more different software layers, including 

the front end/portal, shopping carts, network communication, credit card or electronic check 

transaction, security software layers, etc.  Literally all enterprises including airlines, banks, stock 

brokerage firms, and most consumer product vendors nowadays use their web servers to deal with 



 2

a significant part of their business.  Many of these applications involve a web based interface to 

an underlying database that stores the data relating to the user enquiry or transaction.  Modern 

servers use a 3-tier approach in which the backend tier handles the database accessing and the 

front end and the middle tiers implement much of the user interface and portals.  Some 

researchers have studied large database applications, which are usually used as the backend of 

Internet servers [1, 2, 5, 12].  While these studies have revealed much about the behavior of 

backend applications, the behavior of the front and middle tiers of server side workloads is still 

not fully understood.  

    We attempt with this study to fill some of that knowledge gap by characterizing the impact of 

the front and middle tier of web servers and Java servers on modern processor microarchitectures.  

We also compare server benchmarks with CPU intensive benchmarks such as SPECint2000 to get 

a perspective on their behavior in comparison to more “ traditional”  and better understood 

workloads. 

Platforms 
    We gathered data on three drastically different platforms: the IBM RS64-III (an in-order 

superscalar RISC machine), the IBM POWER3-II (an out-of-order superscalar RISC machine), 

and the Intel Pentium III (an out-of-order superscalar CISC machine). They are all current 

microarchitectures, but they differ in many significant ways. 

    The RS64-I I I  [4] is a 64-bit, superscalar, in order, speculative execution processor and is 

targeted specifically for commercial applications. It has one single cycle integer unit, one 

multiple cycle integer unit, one four stage pipelined floating point unit, one branch unit, and one 

load/store unit. The RS64-III can fetch, dispatch, and retire up to four instructions per cycle and 

has a five stage pipeline. It does not predict branches dynamically like the POWER3-II, but rather 

prefetches up to eight instructions from the branch target into a branch target buffer during 

normal execution, predicts the branch not taken, continues to fetch from the instruction stream 

and then, once the branch is resolved in the dispatch stage, either continues fetching from the 

current instruction stream with no penalty or flushes the instructions after the branch and begins 

fetching from the branch target buffer, with a penalty of at most one and often zero cycles. The 

RS64-III has a 128KB, two way set associative L1 instruction cache, a 128KB, two way set 

associative data cache, and a 4MB, four way set associative unified L2. It also has a 512 entry 

four way set associative unified TLB and a 64 entry instruction effective to real address 

translation buffer (IERAT) that allows fast address translation without the use of the TLB. . The 

RS64-III system we use is the IBM M80, configured as a uniprocessor system. The system has 
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2 GB of main memory. 

    The POWER3-I I [9] is a 64-bit, superscalar, out of order, speculative execution processor. It 

has two single cycle integer units, one multiple cycle integer unit, one branch/condition register 

unit, two load/store units, and two three stage pipelined floating point units. It can fetch, dispatch, 

and retire up to four instructions in the same cycle. It has a 256-entry branch target address cache 

(BTAC), which works like a branch target buffer, and a 2048 entry, 2 bits per entry branch 

history table for dynamic branch prediction. The POWER3-II has a 64KB, 128-way set 

associative, four way interleaved L1 instruction cache, a 64KB, 128 way set associative, four way 

interleaved L1 data cache, and a 8MB, four way set associative unified off-chip L2. It also has a 

256-entry two way set associative instruction TLB and two 256 entry two way set associative 

data TLBs. The POWER3-II is designed with separate buses to memory and L2 for greater 

memory bandwidth. The POWER3-II also employs a data prefetching mechanism that detects 

sequential data access patterns and prefetches cache lines to match these patterns. . For our 

experiments, we use the IBM 44p-170, which contains the POWER3-II processor and 2 GB of 

main memory. 

The Pentium I I I  processor is an out-of-order superscalar CISC processor.  It first 

converts the CISC-style instructions into simple RISC style operations called uops. The Pentium 

III is capable of issuing up to 5 uops and retiring up to 3 uops in one cycle. The processor has a 

40 entry reorder buffer to facilitate retirement of instructions in order. The processor employs 

speculative execution using a two level branch predictor and a 512-entry branch target buffer 

(BTB). The processor has a separate L1 data cache and L1 instruction cache.  Each cache is 16 

Kbytes in size, 4-way set associative with a 32-byte block size and employs an LRU replacement 

algorithm.  The data cache is write-allocate, non-blocking and dual-ported.   The processor also 

has a unified 512KB 4-way set associative non-blocking L2 cache with a 32-byte block size. In 

our study, we use a Dell Precision 410 PC with one Pentium III processor and 1 GB of physical 

memory.   

Experimental Environment 
    The IBM systems run AIX 4.3.3 and the IBM JDK version 1.18.  We use Apache 1.3.23 as our 

web server.  Admittedly, it is not the highest performance web server, but it is very popular.  

According to a Netcraft survey (http://www.netcraft.com), about 55% of all web sites on the Internet 

are using Apache. The operating system on the Pentium III system under measurement is 

Windows NT Workstation 4.0 with Service Pack 6a.  We use the Sun JDK 1.3.0 with Hotspot 
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Server (build 2.0fcs-E, mixed mode) as the Java virtual machine.  The Web server is Apache 

1.3.23 for Windows with mod_perl and ActivePerl 5.6.1. 

    Three server benchmarks: SPECweb99, VolanoMark 2.1.2 and SPECjbb2000, which represent 

various front end and middle-tier Internet services are run on the 3 platforms described above. 

These benchmarks are described in detail in the sidebar on Internet benchmarks.  To compare 

these benchmarks to “ traditional”  and better understood applications, we also experiment with the 

integer programs in the SPEC CPU2000 suite. (See sidebar on SPEC CPU2000).     We use the 

hardware performance monitors built into the microprocessors under study to make performance 

measurements. (See sidebar for a description on performance measurement using on-chip 

counters.) The Pentium III processor has two performance monitoring counters, and  the IBM 

PowerPC processors have eight performance counters that can be programmed to count a variety 

of events. Events in unprivileged user code (user mode) and privileged operating system code 

(OS mode) can be counted separately on all 3 machines.  The list of countable events differs 

between the two IBM machines, but many important events can be counted on both. We interface 

with the PowerPC performance monitors using the IBM-supplied performance monitor API and 

IBM’s pmcount (a utility that allows the user to interface with the performance monitor), both of 

which are AIX kernel extensions.  On the Intel processor, we use PMON [10] to access these 

counters.  PMON consists of two parts, a device driver and a control program.  The driver reads 

the performance counters of the Pentium III processor while the control program controls the 

measurement process and logs the results.  Since we developed the whole tool ourselves, we have 

better control over it than any other performance counter tools like Intel’s P6Perf.  The overhead 

of PMON is extremely small because it does not have GUI displays and does not write results to 

disks during measurements. Thus the tool incurs no disk I/O activity given enough memory.  The 

low overhead associated with the tool allows us to perform the measurements in a non-invasive 

fashion. The operation of the tool was verified by several test cases and by comparing it with 

VTune and P6Perf. 

    Though it is desirable to have quick starting and shutdown processes, the most important 

aspect of server performance is how the server responds to client requests.  Therefore, in all our 

measurements we skip the starting and shutdown period and measure the server only when it is 

busy handling client requests.  For this purpose, two timers are setup in the monitoring program 

to measure SPECweb.  Since the SPECweb client is controlled by the warmup time, test time, etc. 

specified in the configure file, the first timer is used to skip the warmup time and the second timer 

to stop the measurement just before the client closes connections.  However, VolanoMark is not 

controlled by a time parameter.  Therefore, to synchronize our measurements with the client 
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connections in the VolanoMark test, we add a wrapper to the client program.  The wrapper sets up 

an extra connection to the server to trigger the monitoring program immediately before it starts 

the actual client.  The monitoring program ends the measurement as soon as the wrapper closes 

the extra connection, which signals the end of the client program.  Since SPECjbb2000 does not 

have a separate client program, it is impossible to isolate the server transaction activity from data 

initialization and report generation without instrumentation of the benchmark itself.  The 

benchmark program has the ability to measure itself for reporting benchmark scores. We modify 

Company.java file to send signals to the monitoring program so that our measurement is 

synchronized with the benchmark’s own measurement interval.  To minimize the effect of 

instrumentation we only recompile Company.java and leave all other class files untouched.  As 

can be seen from our measurement method, the JIT compiling part should be negligible in the 

results because we skipped the starting of the program, where most compilation is done, and if 

any compilation slipped into our measurement, it would only account for a very small part of the 

long running of the benchmarks. 

    For VolanoMark and SPECweb99 the servers are run on machines with high-speed network 

connections to the client machines.  Only events on the server machines are counted. Apache on 

Windows is a multithreaded application, while on AIX it creates multiple processes to handle 

concurrent client connections.  Apache’s Perl module (mod_perl) is used to speedup the 

generation of dynamic web pages. But because the script provided by SPEC could not perform 

CAD Gets correctly using mod_perl, the CAD Get is implemented through traditional CGI 

resulting in some perl processes being created dynamically.   Therefore, the number of 

processes/threads changes with time on all platforms.  For VolanoMark, we use the default 20 

users per room configuration. We vary the number of chat rooms from 1 to 30 resulting in a 

connection number range of 20 to 600.  SPECjbb2000 is a data intensive application with 25M 

bytes data for each warehouse/thread.  The maximum number of threads that our systems can 

afford without significant memory swapping is 25.  Therefore, we increase the number of 

warehouses from 1 to 25 in our experiments. 

Comparison  
    In this section, we present data comparing the three server benchmarks with SPECint on our 

three different microarchitectures. We present results from VolanoMark runs with 10 and 30 chat 

rooms (indicated as volano10 and volano30 in the graphs and tables) and   SPECjbb runs with 10 

and 25 warehouses (indicated as SPECjbb10 and SPECjbb25).  The metrics collected are similar 

to those collected by Bhandarkar et.al. [3].  We have made the best effort to make the metrics 
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common across all three platforms.  However, not all events are available on all platforms.  

Therefore, some related metrics are compared where the exact same metrics cannot be collected 

on all platforms.  We focus on the difference between the server and SPEC integer (SPECint) 

benchmarks.   

Operating System Component 
     
Modern desktop and server processors have at least two modes: unprivileged user mode and 

privileged operating system (OS) or kernel mode.  To ensure security, some instructions can only 

be executed in the OS mode.  The processor enters the OS mode when the user application 

invokes a system call requesting the operating system to perform some task on its behalf (e.g. 

create another process, request synchronization with another kernel-level thread, or send a packet 

to the network).  The processor also switches to OS mode when it responds to a hardware 

interrupt. For example, when the network adaptor receives a packet it will raise an interrupt to 

inform the operating system, which will, in turn, read the packet into a buffer in main memory.  

Switches to OS mode can also be caused by software exceptions during execution (e.g. page fault, 

divided by zero).  We measure the operating system activity caused by the different applications 

under study. Table 1 compares the server benchmarks (SPECweb, VolanoMark and SPECjbb) to 

the SPECint benchmarks on the three different machines.   

Table1.  Percentage of OS mode cycles 

Benchmar k RS64-
I I I  

POWER3-
I I  

Pentium 
I I I  

SPECweb 36.50% 32.87% 31.21% 
volano30 47.06% 54.11% 65.32% 
volano10 64.47% 59.83% 58.25% 

SPECjbb25 0.37% 0.33% 0.67% Se
rv

er
s 

SPECjbb10 0.41% 0.39% 0.63% 
vortex 0.41% 0.29% 1.06% 
twolf 0.17% 0.18% 0.37% 
gcc 0.87% 0.86% 1.04% 
eon 0.15% 0.29% 0.24% 

crafty 0.16% 0.18% 0.27% 
perlbmk 0.39% 0.40% 0.81% 
parser 0.22% 0.15% 0.41% 
gap 0.32% 0.35% 0.47% 

bzip2 0.69% 1.11% 0.44% 
vpr 0.28% 0.19% 0.38% 
mcf 0.43% 0.32% 0.34% 

SP
E

C
in

t 2
00

0 

gzip 0.74% 0.78% 0.48% 

 
    As the table indicates, SPECweb and VolanoMark spend a high proportion of their execution 

cycles in operating system mode. In contrast, most programs in the SPECint2000 suite spend 

negligible time in the kernel mode.  VolanoMark spends most of its time in receiving and sending 

network messages, which is mainly the task of the operating system.  The number of threads in 

VolanoMark is large. To handle simultaneous client connections, a server usually spawns 



 7

multiple threads or processes. The studied server creates two threads to manage each client 

connection. Thus scheduling and synchronizing these threads constitutes a major task of the 

operating system. Adding to this is the relatively simple operation of distributing messages in 

user code.  Consequently, more than half of the execution time of VolanoMark is in OS mode.  

Network communication is also a major part of SPECweb.  In addition, its execution has a large 

portion of disk accesses.  Therefore 30% of the time is spent in OS mode.  SPECjbb, on the other 

hand, spends less than 0.7% of the total execution time in OS mode, which is not very different 

from SPECint.  In this respect, SPECjbb is not representative of server applications because it 

lacks the network communications and disk accesses common in all servers.  Servers have been 

reported to have a higher percentage of execution time in kernel mode than technical workloads 

[8].  

Instruction Level Parallelism profile 
    All three processors investigated in this study are superscalar processors capable of extracting 

instruction level parallelism (ILP).  Both the RS64-III and the POWER3-II can dispatch up to 

four instructions per cycle (dispatch for these machines meaning the stage in which the 

instruction is sent to the reservation station of the execution unit). From Figure 4 it is clear that 

the machines have more difficulty in exploiting ILP in the server benchmarks than in the SPECint 

benchmarks. For all of the server benchmarks on the RS64-III, zero instructions are dispatched 

for over 50% of the execution cycles. Only three SPECint benchmarks has zero instructions 

dispatched for over 50% of the execution cycles. On the POWER3-II, the dispatch profile is 

similar (we show only the percentage of cycles with zero instructions dispatched because the 

other counts were not available on this machine). All of the server benchmarks on the POWER3-

II have zero instructions dispatched for more than 60% of the execution cycles, while only twolf , 

vpr and mcf cross this threshold among the SPECint workloads. The profile is almost identical for 

the percentage of zero instructions-retired cycles on the POWER3-II, which is reasonable given 

that stalls are being created in the dispatch stage. 

    The same phenomenon is observed on the Pentium III processor.  In the Pentium III, most 

instructions are first converted into simpler RISC-type operations called uops. Some are decoded 

into two to four uops, and the more complex instructions require microcode.  The processor has 3 

decoders that can handle up to 3 instructions every cycle.  Up to 5 uops can be issued every clock 

cycle to the various execution units and up to 3 uops can be retired every cycle. But in the server 

applications, instruction level parallelism is seen to be limited: most of the time (more than 60%), 

the decoders are idle when executing the server benchmarks (Figure 4a) and no uops can be 
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retired in more than 60% of the execution cycles (Figure 4b).  Only gcc and twolf in SPECint2000 

shows a similarly poor decode and retirement profile. (Mcf is considered to be an exception.  Its 

poor performance is solely due to its extraordinarily high data cache misses, which makes it 

somewhat easier to understand than the server applications.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 

 

 

 

 

 

 

   

The difficulty in exploiting the instruction level parallelism also influences the average 

cycles per instruction (CPI) of the applications. Server applications generally exhibit a higher CPI 

than most SPECint programs as shown in Table 2. 

Figure 4A Instruction dispatch profile 
on RS64-III 

Figure 4B Instruction 
dispatch/completion profile on 

POWER3-III 

Figure 4C Instruction decode profile on 
Pentium III 

Figure 4D Instruction retirement profile 
on Pentium III 
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Table2.  Cycle Per  Instruction (CPI) 
 

 

 

 

 

 

 

 

 

 

Cache and TLB performance 
    Modern processors spend a significant part of their real estate on on-chip caches. These caches 

capture the instruction and data working sets and thus reduce the average memory access time. 

This section provides a comparison of the instruction and data cache behavior of the web server 

workloads and SPECint2000 on the 3 machines. 

 

L1 instruction cache: Figure 5 and Figure 6 show the L1 instruction cache misses and 

instruction TLB misses per 1000 instructions.  The server applications exhibit poorer instruction 

cache and TLB performance than SPECint programs on all three machines.  This indicates poor 

instruction locality at both the cache-line size level and page-size level.  Comparing results on the 

POWER3-II and RS64-III, we can see that the instruction cache miss rates are higher on the 

POWER3-II for most of the workloads (since its instruction cache is 64KB as opposed to 128KB 

for the RS64- III), but for vortex and crafty the instruction cache miss rates are higher on the 

RS64-III. This indicates that, for the server workloads and the other SPECint benchmarks, size is 

more important than associativity for instruction cache performance, while for vortex and crafty 

associativity (2 for the RS64-III and 128 for the POWER3-II) is more important than size for 

performance.    

     
 
 
 
 
 
 
 
 

Benchmar k RS64-
I I I  

POWER3-
I I  

Pentium 
I I I  

SPECweb 1.45 1.19 2.10 
volano30 1.76 1.44 3.03 
volano10 2.17 1.59 3.72 

SPECjbb25 1.52 1.27 2.31 Se
rv

er
s 

SPECjbb10 1.45 1.25 2.29 
vortex 1.45 0.64 1.27 
twolf 1.41 1.23 2.25 
gcc 1.07 0.78 2.25 
eon 1.27 1.04 1.36 

crafty 0.77 0.63 1.22 
perlbmk 1.16 0.85 1.13 
parser 1.04 0.93 1.64 
gap 1.19 0.82 1.32 

bzip2 0.98 0.97 1.36 
vpr 1.32 1.29 1.79 
mcf 4.66 3.08 6.65 

SP
E

C
in

t 2
00

0 

gzip 0.80 0.68 1.24 
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    To help understand the difference in the instruction access behavior, Table 3 compares the 

memory map for the code segments of various modules (user mode only) involved in the 

execution of gcc from the SPECint suite and the Apache web server running SPECweb 

benchmark. A noticeable difference between Gcc and Apache is that the web server invokes 

many more Dynamically Linked Libraries (DLLs).  Real-world server applications are complex 

pieces of software.  To streamline software development, nowadays, developers adhere to the 

principle of modularity at both source code level and binary level.  Most functions in the web 

server are implemented as modules, which are DLLs on the Windows platform.   The main 

executable of Apache server (apache.exe) is only about 20KB, while its core functions 

implemented in the DLL ApacheCore.dll is 320KB.  One heavily used DLL is mod_perl.so, 

which handles the cgi perl scripts.  Mod_perl in turn calls perl56.dll, a library from ActivePerl 

package to actually interprets and executes the perl script.  To complete its job, perl56.dll needs 

Figure 5A Icache misses per 1000 
instructions on RS64-III 

Figure 5B Icache misses per 1000 
instructions on POWER3-II 

Figure 5C Icache misses per 1000 
instructions on Pentium III 

Figure 6A ITLB misses per 1000 
instructions on RS64-III 

Figure 6B ITLB misses per 1000 
instructions on Pentium III 
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services from other modules in the perl package, such as fcntl.dll.  Besides, server programs 

usually require more services from the OS.  For example, to communicate through the network, 

the winsock library is called. To access the Windows Registry, functions in advapi32.dll are 

invoked.  SPECint programs, on the other hand, are compiled into self-contained stand-alone 

programs.  Libraries are usually statically linked, resulting in compact executables.  In addition, 

they seldom request services from OS or other applications except reading some input files at the 

beginning and printing the results at the end.  As a result, few DLLs are involved in the execution 

of SPECint programs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

   The dynamic invocation and loading of the libraries affect the instruction footprint and the 

instruction access nature of the server program.  Since each shared library is loaded to a different 

memory page, calling a function in another library causes the control flow to transfer to another 

memory page, resulting in poor instruction TLB performance.  Similar behavior has also been 

observed in Windows desktop applications by Lee et. al. [6].  In addition, many server 

applications are written in Java and Just-In-Time (JIT) compilers compile Java code at runtime.  

Dynamically compiled code for consecutively invoked methods may not be located in contiguous 

address spaces [11]. All the aforementioned effects explain the difference in instruction access 

behavior between server applications and the SPECint suite. Considering the significant OS 

activity observed in the server execution also, the whole instruction stream of the Apache server 

is definitely much more complex and larger than Gcc. It might be noted that high instruction 

cache miss rates have been observed in traditional database server applications also [1, 2].   

Table 3A. Memory map of code segments 
of gcc from the SPECint2000 suite 

Starting 
address 
(hex) 

code segment 
size (decimal) 

module 

00401000 958464 cc1_base 
77f01000 241664 kernel32.dll 
77f61000 245760 Ntdll.dll 

 

Table 3B. Memory map of code segments of 
Apache web server  

Starting 
address 
(hex) 

code segment 
size (decimal) 

module 

00401000 4096 apache.exe 
0d861000 8192 fcntl.dll 
10001000 163840 mod_perl.so 
1c0f1000 4096 Win9xConHook.dll 
28001000 516096 perl56.dll 
6ff61000 217088 ApacheCore.dll 
77661000 36864 msafd.dll 
77691000 12288 wshtcpip.dll 
776a1000 8192 ws2help.dll 
776b1000 49152 ws2_32.dll 
776d1000 4096 wsock32.dll 
77dc1000 172032 advapi32.dll 
77e11000 286720 rpcrt4.dll 
77e71000 266240 user32.dll 
77ed1000 147456 gdi32.dll 
77f01000 241664 kernel32.dll 
77f61000 245760 ntdll.dll 
78001000 204800 msvcrt.dll 
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    L1 data cache: The trends of the data cache miss rates in the level one data cache are not very 

different between the server and the SPECint applications and hence are not shown in detail. The 

SPECint applications have miss rates in a wide range, with mcf miss rates being very high. The 

miss rates of the server applications fall within the range exhibited by the SPECint applications. 

On the Pentium III, the number of L1 data misses per instruction in the SPECint applications 

range from 0.03 to 0.10, while the range for the server applications is 0.012 to 0.024. The number 

of misses per instruction is slightly lower on PowerPC machines: 0 to 0.094 for SPECint, and 

.005 to 0.016 for the server benchmarks. The SPEC program mcf  has the highest miss rate on all 

the 3 platforms. 

    L2 cache: L2 cache misses per 1000 instructions are shown in Figure 7.  The mcf program is 

exceptional on all platforms because of its high L2 cache miss rate. On Pentium III, which has a 

512K byte L2 cache, the L2 cache miss rates of the server applications are comparable to those of 

SPECint.  On the PowerPC machines, which have much larger L2 caches, the L2 cache miss rates 

of the servers are higher than those of SPECint.  Comparing the L2 performance of the 

POWER3-II and RS64-III shows that when the cache size increases from 4M bytes to 8M bytes, 

the miss rates for the servers change very little, while the miss rates for SPECint are almost 

halved.  This indicates that the data footprint of server applications is usually harder to capture 

with ordinarily large caches.  Servers usually manage large data sets, as in the case of SPECjbb, 

in which each warehouse is 25MB of data.  Since each client thread accesses a different 

warehouse, a large number of clients create a large and scattered data footprint.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7A L2 cache misses per 
1000 instructions on RS64-III 

Figure 7B L2 cache misses per 
1000 instructions on POWER3-

II 

Figure 7C L2 cache misses per 
1000 instructions Pentium III 
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Branch behavior 
    State-of-the-art high performance microprocessors employ speculative execution as a means of 

enhancing performance.  Control path prediction is the most common form of speculation 

implemented on modern superscalar processors. As shown in Figure 8A, the two-level adaptive 

branch prediction scheme of Pentium III does a fairly good job in terms of misprediction rate, but 

the BTB miss rates for the server applications are higher compared to SPECint2000.  If a BTB 

miss occurs, the static branch predictor will be used, which is generally not as accurate as the 2-

level dynamic predictor. Even if the static predictor makes correct predictions, the processor may 

still suffer from the latency because the static predictor is rendered much deeper in the pipeline 

than the dynamic one.  While we do not isolate the causes of the BTB misses and mispredictions, 

it is clear that the current BTB architecture on the Pentium III does not work very satisfactorily 

for server code.  

    Figure 8B indicates that the POWER3-II’s branch direction predictor works as well for the 

server applications as for the SPECint benchmarks.  However, the server benchmarks (with the 

exception of vol30) exhibit, on the average, worse BTAC (Branch Target Address Cache) 

performance than all SPECint programs but eon, crafty, and gap.  This could indicate that the 

BTAC of the POWER3-II, which caches branch target addresses and does not store any target 

instructions, does not work very well for server code, though the difference between SPECint and 

server BTAC performance is not as pronounced as on the Pentium III.  Further, eon, which shows 

BTAC performance similar to the server benchmarks, is written in C++ and makes heavy use of 

virtual functions, which are also widely used in Java.  Java programs are known to have poor 

branch target predictability due to indirect branches resulting from virtual function calls and code 

interpretation [11].  Branch prediction numbers for RS64-III are not shown because it does not 

employ dynamic branch prediction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8B. Branch behavior on 
POWER3-II 

Figure 8A. Branch behavior on 
Pentium III 
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Understanding components of CPI 
    It is very beneficial and interesting to find out the various components of the CPI and their 

individual contributions. There are some performance counters that shed some light on this 

aspect.  On Pentium III two major types of stalls can be counted: I-stream stalls and resource 

stalls, measured in terms of the cycles in which the stall conditions occur.  I-stream stalls are 

caused mainly by instruction cache misses and ITLB misses.  Resource stalls show the number of 

cycles in which resources such as reorder buffer entries, memory buffer entries, or execution units 

are not available [3].  Figure 9A and 9B show the I-stream stalls and resource stalls per 

instruction respectively.  Clearly, the resource stalls of the servers are within the range of 

SPECint while the I-stream stalls of the former are much higher than those of the latter.  To 

determine the contribution of each stall component to the CPI is hard, especially on an out-of-

order superscalar processor like the Pentium III, which is good at tolerating latencies by 

overlapping them. Therefore, we conducted a linear regression analysis in a top down fashion to 

determine statistically the importance of each stall factor. (See sidebar on regression analysis). 

 

The top linear model is 

CPI=b2*RS+b1* IS+b0              …………………….……………(1) 

where  

  RS is the number of resource stalls per instruction, and 

  IS is the number of I-stream stalls per instruction. 

 

The regression analysis gives the following results: 

  b2=1.00 with 95% confidence interval of [0.947, 1.06] 

  b1=1.23 with 95% confidence interval of [1.10, 1.36] 

  b0=0.785 with 95% confidence interval of [0.680, 0.891] 

 

The coefficient of determination R2 is 0.991.  This means that this regression model explains 

99.1% of the CPI variation, indicating high goodness of the linear model.  The correlation 

between resource stalls and I-stream stalls is small (-0.156).  Therefore, the regression model 

does not suffer from the problem of multicollinearity.  Neither the confidence interval of b2 nor 

that of b1 includes 0.  Thus both resource stalls and I-stream stalls are statistically important 

factors in determining the CPI.   Based on this regression model, the contributions of resource and 

I-stream stalls to the CPI are shown in Table 4.  For server applications, I-stream stalls contribute 

33% to 62% to the CPI while the contributions of I-stream stalls for SPECint are all below 33% 
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and are negligible (less than 1%) for half of the suite.  In all cases, the I-stream stalls make much 

larger absolute contribution to CPI for server applications than for SPECint. 

 

 

 

 

 

Table 4. Contr ibutions of resource stalls and I -stream stalls to CPI  

Absolute contr ibution 

Benchmar ks 
Resource 

stalls 
I -stream 

stalls 

Relative 
contr ibution 
of I -stream 
stalls to CPI  

(as % ) 
SPECweb 0.35068 0.93785 45.22% 
volano30 0.97476 1.30841 42.64% 
volano10 0.89170 1.86214 52.61% 
volano01 0.59106 2.22142 61.74% 

SPECjbb25 0.86600 0.81121 32.94% 
SPECjbb10 0.80074 0.89546 36.08% 

Se
rv

er
 

SPECjbb01 0.74111 0.94555 38.25% 
vortex 0.36342 0.20713 15.28% 
twolf 1.37280 0.00713 0.33% 
gcc 0.89576 0.32962 16.39% 
eon 0.29467 0.17404 13.88% 

crafty 0.13662 0.45766 33.17% 
perlbmk 0.12145 0.26453 22.58% 
parser 0.69689 0.00643 0.43% 
gap 0.45838 0.01048 0.84% 

bzip2 0.52759 0.00197 0.15% 
vpr 0.95453 0.00358 0.21% 
mcf 5.88349 0.00830 0.12% 

SP
E

C
in

t 2
00

0 

gzip 0.57135 0.00214 0.16% 
 

 

 

 

 

 

 

 

 

 

 

  Resource stalls encompass the conditions where register renaming buffer entries, reorder buffer 

entries, memory buffer entries, or execution units are full. In addition, serializing instructions 

(e.g., CPUID), interrupts, and privilege level changes may spend considerable cycles in 

Figure 9A I-stream stalls per 
instruction on Pentium III 

Figure 9B Resource stalls per 
instruction on Pentium III 
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execution, forcing the decoder to wait and incrementing the resource stalls counter. Stalls due to 

data cache misses are not explicitly included in resource stalls; however, if some other resource 

becomes oversubscribed due to a long data cache miss, the resource stall counter will be 

incremented [5].  Though resource stalls consist of various stall events, the linear regression 

analysis shows that the major component of resource stalls is caused by data cache misses, as in 

equation 2. 

 

Resource stalls=54.10*(L2 cache misses)+14.12*(L1 data cache misses)+0.0443…….(2) 

 

The coefficient of determination R2 is 0.991.  The single large resource stalls of mcf may result in 

unduly good R2.  Therefore, another analysis was performed without mcf.  R2 drops to 0.867, 

which still indicates strong correlation between resource stalls and data cache misses.   

  I-stream stalls count the number of cycles that instruction fetch is stalled for any reason, 

including L1 instruction cache misses, ITLB misses, ITLB faults, and other minor stalls.  The 

influence of instruction cache misses on I-stream stalls can be understood using the following 

linear regression model: 

IS=b1*L1+b0       ……………………………………………(3) 

where 

  IS = I-stream stalls per instruction, and 

  L1  = L1 instruction cache misses per instruction. 

 

Regression analysis yields that 

  b1 = 18.1  with 95% confidence interval [16.9,19.4] 

  b0 = -0.0330 with 95% confidence interval [-0.0822, 0.0161] 

The coefficient of determination R2=0.986, which means that L1 instruction cache misses alone 

statistically account for 98.6% of the variation in I-stream stalls. 

  In summary, CPI is statistically determined by resource stalls and I-stream stalls on the Pentium 

III processor.  The I-stream stalls make larger contributions to the CPI for the server applications 

than for the SPECint suite.  The high I-stream stalls of the servers can be attributed to their high 

L1 instruction cache misses. 

    Next, we explore the CPI components of the IBM platforms. Stall related events are not 

countable on the POWER3-II, and hence the analysis is limited to the RS64-III. Figure 10 

compares CPI components of the server benchmarks to the SPECint benchmarks on the RS64-III. 

With good performance counter support and in-order-issue, the CPI stack of RS64-III is a good 
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indication of the relative importance of various stalls.  The stalls in the figure do not comprise a 

comprehensive list, but they are the most significant storage related stalls on the machine.  “ Ideal 

CPI”  refers to (total execution cycles – storage latency)/instructions executed. “Storage latency”  

is a single countable event on the RS64-III performance monitor that indicates the 

(nonoverlapped) total amount of storage related stalls (i.e. multiple storage related stalls in one 

cycle are counted as one stall). Thus “ Ideal CPI”  is an approximation of CPI in the absence of all 

storage related stalls. “ Isync” and “Other sync” stalls are caused by various synchronizing 

PowerPC instructions. It is clear that the server benchmarks incur significantly more instruction 

cache stalls, data cache stalls, data TLB stalls, and L2 cache stalls than the SPECint benchmarks, 

and further, that these stalls dominate the memory related stall components of CPI. (In contrast, 

the SPECint benchmarks suffer from very little, if any, of the storage related stalls included in the 

figure. However, despite the large number of storage stall cycles for the server benchmarks, the 

CPIs of the benchmarks are lower than the sum total of the CPI components, which indicates the 

effectiveness of the RS64-III’s pipelined architecture in hiding some of the storage latency.   

    Data cache stalls and L2 stalls are the most significant storage stalls for the server applications.  

Figure 11 shows that the vast majority of the L2 misses on the RS64-III are due to loads as 

opposed to instructions, and Figure 10 shows that the data cache stall components of the server 

applications are nearly equal to the L2 stall components, indicating that most of the data cache 

stalls are in fact L2 stalls (L2 stalls are, of course, included in instruction and data cache stall 

times.).  Therefore, L2 performance, not data cache performance, is the real performance 

bottleneck with these server applications.  The high proportion of L2 stalls agrees with our earlier 

speculation that the large data sets, characteristic of server applications, cause poor L2 behavior 

in comparison to SPECint.  Though instruction cache behavior also has a significant impact on 

server performance, the poor L2 performance overshadows the poor instruction cache 

performance.  Observing Figure 10 and 11 instruction cache stalls on the RS64-III do not seem to 

adversely affect performance to the same degree that Istream stalls do on the Pentium III.  This is 

most likely because the RS64-III has an instruction cache eight times as large (128 KB vs. 16 

KB).  Further, the high ITLB miss rates of the server applications combined with the fact, 

illustrated by Figure 11, that hardly any L2 misses arise from instruction accesses suggest that 

most of the instruction cache misses on the RS64-III are due to a widely scattered instruction 

footprint rather than one large and contiguous footprint, which agrees with the earlier discussion 

in Section 4.3 about function call addresses and dynamically compiled JIT code and their affect 

on instruction stream behavior.  The contrast in instruction steam stalls between the RS64-III and 

the Pentium III shows that a larger instruction cache can improve server performance, despite the 
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scattered nature of the instruction footprint.  Still, instruction cache stalls do adversely affect 

server performance on the RS64-III. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Summary 
    Detailed characterization of three Internet server benchmarks, SPECweb99, VolanoMark and 

SPECjbb2000, and their comparison with SPECint2000 on three different architectures, i.e. IBM 

RS64-III, IBM POWER3-II and Intel Pentium III, demonstrate that the server applications differ 

from SPECint in several ways: 

1. Server benchmarks show worse instruction stream behavior than SPECint2000. Higher 

instruction cache miss rates, higher ITLB miss rates, higher BTB miss rates and 

consequently, higher I-stream stall cycles are observed on all three machines for the server 

applications in comparison to the SPECint suite.  The linear regression model shows that 

statistically, the instruction cache misses make a larger contribution to CPI for the server 

applications than for SPECint on the Pentium III.  On the PowerPC architectures, which have 

much larger instruction caches than the Pentium III, instruction cache stalls still make up a 

significant component of the CPIs of server workloads, while they are near negligible in the 

SPECint workloads.  Nevertheless, with the RS64-III instruction cache being four times as 

large (128 KB vs. 16 KB) as that of the Pentium III, instruction stream behavior degrades 

performance to a lesser degree on the former than on the latter, demonstrating the advantage 

that large instruction caches can provide for these server applications. 

2. Due to the large data set and network I/O the servers manage, the data footprint of servers is 

harder to capture than that of SPECint even with large L2 caches as in the PowerPC 

machines.  L2  cache misses per instruction are significantly higher than those for 

Figure 10 CPI stack for RS64-III 
Figure 11 Breakdown of L2 
Misses per Instruction on 

RS64-III 
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SPECint2000 (except for mcf), and L2 cache miss stalls constitute the major stall component 

of CPI on the RS64-III.  Poor L2 performance is another major factor in overall performance 

for the server workloads. 

3. In general, the server workloads have a higher percentage of cycles in which no instructions 

are decoded/dispatched/retired, suggesting that it is somewhat difficult to exploit ILP in these 

workloads.  

It is interesting to note that the observations generally hold on all the three architectures 

irrespective of them being drastically different, the RS64-II being an in-order execution RISC 

machine, the POWER3-II being a highly aggressive out-of-order execution RISC machine, 

and the Pentium III being an out-of-order execution CISC machine, all with varying cache 

and TLB sizes and branch prediction schemes. There is no doubt that, to maximize 

performance on Internet server applications, modern processor architectures need further 

design enhancements and optimizations, particularly in instruction stream and L2 cache 

performance. 
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Sidebar 1 
SPEC CPU Benchmarks  The System Performance Evaluation Cooperative (SPEC) is one of the early 
efforts in benchmark gathering and performance evaluation. SPEC was founded in 1988 by a small number 
of workstation vendors who realized that the marketplace was in desperate need of realistic, standardized 
performance tests. The basic SPEC methodology is to provide the benchmarker with a standardized suite of 
source code based upon existing applications that has already been ported to a wide variety of platforms by 
its membership. The benchmarker then takes this source code and compiles it for the system in question.  
 
SPEC started its efforts by releasing the SPEC89 suite of CPU intensive benchmarks in 1989. This was 
followed by SPEC92, SPEC95 and SPEC2000.  The suites contain integer and floating point benchmarks. 
SPEC creates its suites by gathering source code from real user applications. They give importance to 
portability of code so that the benchmarks can be used across a wide range of hardware. These benchmarks 
measure the performance of the processor, memory and compiler on the tested system. The current CPU 
suite, SPEC2000 suite contains  14 floating point programs written in C/Fortran and 12 integer programs 
(11 written in C and 1 in C++). The programs in the SPEC 2000 suite are listed in Table below.  
 

 Programs in the SPEC Cint2000  
Benchmark name Language Application details 
Gzip C Compression  
Vpr C FPGA Circuit Placement and Routing 
Gcc C Programming Language Compiler  
Mcf C Combinatorial Optimization  
Crafty C Game Playing: Chess  
Parser C Word Processing  
Eon C++  Computer Visualization  
Perlbmk C PERL Programming Language  
Gap C Group Theory, Interpreter  
Vortex C Object-oriented Database  
Bzip C Compression  
twolf C Place and Route Simulator 

Programs in SPEC Cfp2000 
wupwise  Fortran 77  Physics / Quantum Chromodynamics  
swim  Fortran 77  Shallow Water Modeling  
mgrid  Fortran 77  Multi-grid Solver: 3D Potential Field  
applu  Fortran 77  Parabolic / Elliptic Partial Differential Equations  
mesa  C  3-D Graphics Library  
galgel  Fortran 90 Computational Fluid Dynamics  
art  C  Image Recognition / Neural Networks  
equake  C   Seismic Wave Propagation Simulation  
facerec  Fortran 90  Image Processing: Face Recognition  
ammp  C   Computational Chemistry  
lucas  Fortran 90   Number Theory / Primality Testing  
fma3d  Fortran 90  Finite-element Crash Simulation  
sixtrack  Fortran 77  High Energy Nuclear Physics Accelerator Design  
apsi  Fortran 77  Meteorology: Pollutant Distribution  

 
For more information, please see http://www.spec.org. 
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Sidebar  2 
Internet/Server  Benchmarks 
 
The phenomenal growth of the World Wide Web has resulted in the emergence and popularity of several  
information technology applications. The proliferation of web servers and arrival of electronic commerce 
has brought in several new software packages, interfaces and standards into the picture.  Literally all 
enterprises including airlines, banks, stock brokerage firms, and most consumer product vendors nowadays 
use their web servers to deal with a significant part of their business.  Many of these  applications involve a 
web based interface to an underlying database that stores the data relating to the user enquiry or transaction.  
Driven by the business need for decision-support and powerful on-line transaction processing, 
organizations are implementing high-volume databases with terabytes of data. Commercial  workloads 
include Enterprise Resource Planning (ERP) applications, on-line transaction processing (OLTP), decision 
support systems (DSS), web-index search and many similar e-commerce workloads. ERP applications 
integrate all aspects of an enterprise such as  manufacturing, finance, sales, distribution, and human 
resources. Business decisions can be made by DSS software running on top of the enterprise database. 
Market research, customer buying patterns, etc can be studied using business intelligence and data mining 
software.   An end-to-end e-business transaction typically involves  a dozen or more different software 
layers, including the front end/portal, shopping carts, network communication, credit card or electronic 
check transaction, security software layers, etc. These layers may be implemented using cgi-script, Java 
servlets, Java Beans, XML, CORBA, JINI, etc. Thus e-commerce involves the integration of a variety of 
software, protocols, and standards: GUIs, Java, cgi, perl, php, SQL, TCP/IP, HTTP,  and HTML  are  just a 
few of them.  
 
Modern servers use a 3-tier approach in which the backend tier handles the database accessing and the front 
end and the middle tiers implement much of the user interface and portals. Table 1 provides examples of 
benchmarks in the different tiers. The Transaction Processing Council (TPC) benchmarks model the 
backend. (See related article XXX for a description of the TPC Benchmarks.) Examples of the front and 
middle tier benchmarks are SPECweb99, VolanoMark and SPECjbb2000. In the accompanying article, we 
describe the characteristics of these 3 benchmarks on 3 different superscalar machines. 
 

Table 1. Popular  benchmarks for  different internet/server  workloads 
On-Line Transaction Processing TPC-C, TPC-W Server Backend /Database  
Decision Support Systems TPC-H, TPC-R 
Web Server SPECweb99 
Chat Server VolanoMark 

Server front and middle tier 

E-commerce server  SPECjbb2000, TPC-W 
 
SPECweb99 [1] is SPEC’s current benchmark for measuring the performance of web servers. The 
SPECweb99 workload (Figure 1) simulates accesses to a web service provider, where the server supports 
web pages for a number of different organizations. Each home page is a collection of files ranging in size 
from small icons to large documents and images.  The workload simulates dynamic operations such as 
"rotating" advertisements on a web page and customized web page creation. The file accesses are made to 
closely match today’s real-world web server access patterns. The benchmark supports HTTP1.0 and 
HTTP1.1 protocols.  The benchmark's metric is SPECweb99, which represents the number of simultaneous 
connections the web server can support using the predefined workload.  
 
VolanoMark [2] is a pure Java server benchmark with long-lasting network connections and high thread 
counts. It can be divided into two parts: a server and a client, although they are provided in one package. It 
is based on a commercial chat server application, the VolanoChat, which is used in several countries world-
wide. The server accepts connections from the chat client as in Figure 2.  The chat client simulates many 
chat rooms and many users in each chat room. The client continuously sends messages to the server and 
waits for the server to broadcast the messages to the users in the same chat room.  The VolanoMark server 
creates two threads for each client connection. VolanoMark can be used to test both speed and scalability of 
a system. In the speed test, it is run on a local loopback connection with the server and client on a single 
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machine. In the scalability test, the server and client are run on separate machines with high speed network 
connections.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    SPECjbb2000 [3,4] is SPEC's first e-business benchmark and the first benchmark for evaluating the 
performance of server-side Java. JBB stands for Java Business Benchmark. The benchmark emulates an 
electronic commerce workload in a 3-tier system (Figure 3). The benchmark contains business logic and 
object manipulation, primarily representing the activities of the middle tier in an actual business server. It 
models a wholesale company with warehouses serving a number of districts. Customers initiate a set of 
operations such as placing new orders and checking the status of existing orders. Additional operations are 
generated within the company, such as processing orders for delivery, entering customer payments, and 
checking stock levels.  It is written in Java, adapting a portable business oriented benchmark called pBOB 
written by IBM.  Although it is a benchmark that emulates business transactions, it is very different from 
the Transaction Processing Council (TPC) benchmarks.  There are no actual clients, but they are replaced 
by driver threads. Similarly, there is no actual database access. Data is stored as binary trees of objects.  
The whole benchmark is implemented within a single Java Virtual machine (JVM).  The emulation of the 
other tiers isolates the middle tier and simplifies the benchmark by not requiring user emulation or a 
database. SPECjbb2000 assigns one active customer per warehouse, which is a 25MB data set stored in 
binary trees (Btrees).  The benchmark is memory resident without inherent disk I/O. One warehouse maps 
directly to one Java thread. As the number of warehouses increases during the full benchmark run, so does 
the number of threads. 
 
References: 
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3. Standard Performance Evaluation Corporation.  SPECjbb2000 Benchmark. 

http://www.spec.org/osg/jbb2000/ (current July 2002). 
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process.  http://www.spec.org/osg/jbb2000/images/arch.jpg (current July 2002). 
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Sidebar 3 
Per formance Monitor ing Using Microprocessor  On-chip Per formance Monitor ing Counters  
 
All state-of-the-art high performance microprocessors including Intel's Pentium III and Pentium 4, IBM's 
POWER 3 and POWER 4 processors, AMD's Athlon, Compaq's Alpha, and Sun's UltraSPARC processors 
incorporate on-chip performance monitoring counters which can be used to understand the performance of 
these microprocessors while they run complex, real-world workloads.  Studies to understand workloads 
used to use simulators and simulator based program profilers but they often could not execute complex 
workloads. The inability to run complete workloads including their operating system component used to be 
a major limitation. Now, complex run time systems involving multiple software applications can be 
evaluated and monitored very closely. All microprocessor vendors nowadays release information on their 
performance monitoring counters. 
 
For illustration of on-chip performance monitoring, let us look at the Intel P6 family processors (Pentium 
Pro, Pentium II and III). The microprocessors in the Intel P6 family contain two performance monitoring 
counters. These counters can be read with special instructions (eg: RDPMC) on the processor. The counters 
can be configured to measure user and kernel activity in combination or in isolation.  A variety of 
performance events can be measured using the counters [1]. For illustration of the nature of the events that 
can be measured, Table 1 lists a small subset of the events that can be measured on the Pentium III.  While 
more than 200 distinct events can be measured on the Pentium III, only 2 events can be measured 
simultaneously. For design simplicity, most microprocessors limit the number of events that can be 
simultaneously measured to a small number. Table 2 lists the number of performance monitoring counters 
on several processors. At times, certain events are restricted to be accessible only through a particular 
counter.  These steps are necessary to reduce the overhead associated with on-chip performance 
monitoring.  Performance counters do consume on-chip real estate.  Unless carefully implemented, they can 
detrimentally affect the processor cycle time.  
 

Table 1. Examples of events that can be measured using per formance monitor ing counters 
 on an Intel Pentium I I I  processor  

EVENT Description of Event Event Number  in 
Hex 

DATA_MEM_REFS  All loads and stores from/to memory  43H 
DCU_LINES_IN   Total lines allocated in the data cache unit  45H 
IFU_IFETCH   Number of instruction fetches (cacheable and 

uncacheable) 
80H 

IFU_IFETCH_MISS  Number of instruction fetch misses   81H 
ITLB_MISS   Number of Instruction TLB misses   85H 
IFU_MEM_STALL  Number of cycles instruction fetch is stalled for 

any reason 
86H 

L2_IFETCH   Number of L2 instruction fetches 28H 
L2_LD    Number of L2 data loads  29H 
L2_ST    Number of L2 data stores  2AH 
L2_LINES_IN   Number of lines allocated in the L2  24H 

L2_RQSTS   Total number of L2 requests 2EH 
INST_RETIRED   Number of instructions retired C0H 
UOPS_RETIRED  Number of  micro-operations retired  C2H 
INST_DECODED  Number of instructions decoded D0H 
RESOURCE_STALLS  Number of cycles in which there is a resource 

related stall  
A2H 

MMX_INSTR_EXEC  Number of MMX Instructions Executed  B0H 
BR_INST_RETIRED  Number of branch instructions retired  C4H 
BR_MISS_PRED_RETIRED Number of mispredicted branches retired  C5H 

BR_TAKEN_RETIRED  Number of taken branches retired   C9H 

BR_INST_DECODED  Number of branch instructions decoded  E0H 
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BTB_MISSES  
  

Number of branches for which BTB did not 
predict 

E2H 

Table 2. Number  of Per formance Monitor ing Counters on Microprocessors 
Microprocessor Number 

of 
Counters 

Intel Pentium II/III 2 
Pentium 4 18 
IBM Power3-II, IBM RS64-III 8 
AMD Athlon 4 
Compaq Alpha 21164 3 
Compaq Alpha 21264 2 
MIPS R10000 2 
MIPS R12000 4 
UltraSPARC I, II, III 2 

 
There are several tools available to measure performance using performance monitoring counters. Table 3 
lists some of the available tools. Intel's VTune software may be used to perform measurements using the 
Intel processor performance counters [2]. The P6Perf utility is a plug in for Windows NT performance 
monitoring [3].  The Compaq DIGITAL Continuous Profiling Infrastructure (DCPI) is a very powerful tool 
to profile programs on the Alpha processors [4,5]. The performance monitor perf-mon uses the on-chip 
counters on UltraSPARC-I/II processors to gather statistics [6]. Packages like VTune perform extensive 
post-processing and present data in graphical forms. However, some times, extensive post-processing can 
result in tools that are somewhat invasive. PMON [7] is a counter reading software developed at the 
Laboratory for Computer Architecture at the University of Texas. It provides a mechanism to read specified 
counters with minimal or no perceivable overhead. All these tools measure user and operating system 
activity. Since everything on a processor is counted, effort should be made to have minimal or no other 
undesired process running during experimentation. This type of performance measurement can be done on 
binaries, and no source code is needed.  
 

Table 3.  Example software packages for per formance counter  measurement 
Tool Platform Reference 
VTune IA-32  http://developer.intel.com/software/products/vtune/vtune60/vtune_oview.

htm. 
P6Perf IA-32 http://developer.intel.com/vtune/p6perf/index.htm 
PMON IA-32 http://www.ece.utexas.edu/projects/ece/lca/pmon 
DCPI Alpha http://www.research.digital.com/SRC/dcpi/ 

http://www.research.compaq.com/SRC/dcpi/ 
Perf-mon UltraSPARC http://www.sics.se/~mch/perf-monitor/index.html 

References: 
[1] D. Bhandarkar and J. Ding, “Performance Characterization of the Pentium Pro Processor”, Proceedings 
of the 3rd High Performance Computer Architecture (HPCA) Symposium, 1997, pp. 288-297. 
 
[2] Vtune profiling software,  
http://developer.intel.com/software/products/vtune/vtune60/vtune_oview.htm. 
 
[3] P6perf utility,  http://developer.intel.com/vtune/p6perf/index.htm 
[4] DCPI Tool home page,  http://www.research.compaq.com/SRC/dcpi/ 
 
[5] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and G. Chrysos, “Profile Me: Hardware Support 
for Instruction Level Profiling on Out of Order Processors” , Proceedings  of the 1997 International 
Symposium on Microarchitecture (MICRO-30), 1997, pp. 292-302. 
 
[6] Perf-monitor for UltraSparc, http://www.sics.se/~mch/perf-monitor/index.html 
[7] PMON http://www.ece.utexas.edu/projects/ece/lca/pmon
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Sidebar  4 

L inear Regression 
Given a set of related measures, the term "regression" is used to characterize the manner in which 
one of the measures changes as the other measures change.  Thus one estimates or predicts one 
variable as a function of several other variables.  The estimated variable is called the response 
var iable, and the variables used to predict the response are called predictor  var iables, 
predictors, or factors. In order to construct a regression model, the information on response 
variables and predictor variables are obtained from a sample of objects, events, or individuals.  
Although regression techniques can be used to develop a variety of linear and nonlinear models, 
their most common use in linear models.  Such models are called linear regression models.  A 
simple linear regression model has only one predictor variable as in 

xbby 10ˆ +=  

where x is the predictor variable, y is the response variable, and the parameters b0 and b1 are fixed 
regression parameters to be determined from the data.  Given n observation pairs { (x1, y1), … , 
(xn, yn )} , the estimated response iŷ  for the ith observation is  

ii xbby 10ˆ +=  

The error  between the predicted value and the actual value for the ith observation is  

iii yye ˆ−=  

If one sums up the errors to find the goodness of the regression, positive and negative errors can 
cancel each other yielding a deceiving metric. Hence goodness is judged based on a Least 
Squares Criterion, the Sum of Squared Errors (SSE) given by 
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with the constraint that the mean error is zero. 
 
The regression parameters that produce minimum error can be calculated as 
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where x  is the mean of the predictor variable and y  is the mean response. 
 
If there was no regression model and one used the mean value of y as the estimated value for all 
values of the predictor variable, then the sum of squared errors would be   
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 which is defined as Total Sum of Squares (SST). 
 
The difference between SST (no regression) and SSE (with regression) is called SSR or the sum 
of squares explained by regression. Thus SSR indicates the variation that can be explained by the 
regression, and SST is the total variation. SSE indicates the variation that cannot be explained by 
the regression. 
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The fraction of the variation that is explained by the regression determines the goodness of the 
regression and is called the coefficient of determination, R2: 

SST

SSE

SST

SSESST

SST

SSR
R −=−== 12  

A perfect regression model has a value of 1 for R2.   
 
The basic idea of simple linear regression can be extended to multiple linear  regression model, 
in which more than one predictor variable is used.   When doing multiple linear regression, a 
predictor variable that has linear dependence on other predictor variables should not be used.  
Otherwise, various significance tests may show contradictory results, known as the problem of 
multicollinear ity. For a detailed treatment of regression models, the reader is referred to [1]. 
 
Reference: 
 
[1] Raj Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc. 1991 
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Sidebar 5 –  TPC Benchmarks  
We can write a Sidebar on TPC Benchmarks if no other article is describing TPC Benchmarks 
 
 
 
 
 
Glossary: 
 
We can prepare a glossary of terms if required. 


