
 1

Avoiding Store Misses to Fully Modified Cache Blocks

Abstract

This paper investigates a class of store misses that can
be eliminated to reduce memory bandwidth requirements
of write-allocate caches. Those avoidable misses allocate
cache blocks whose original data is never used until the
whole blocks are overwritten by subsequent stores. Hence,
those fully modified blocks can be allocated directly in the
data cache without accessing lower levels of memory. Our
results indicate that for a 1MB data cache, 28% misses to
memory are avoidable across SPEC CINT 2000
benchmarks. We also propose a hardware mechanism, the
Store Fill Buffer, which can effectively identify avoidable
misses and allocate the associate blocks directly to reduce
memory traffic substantially. By utilizing a 16-entry Store
Fill Buffer, on average 16% overall misses to a 64KB data
cache are eliminated, which results in 6% speedup in
performance.

1. Introduction

As the speed gap between microprocessor and main
memory grows, main memory accesses become a
significant bottleneck to processor performance. The
inability of memory system is represented by long
memory accesses latencies and limited memory bandwidth.
Numerous techniques, such as value prediction and
speculative execution [7,12], prefetching [2], and
multithreading [14], are proposed to reduce or tolerate
large memory access latencies. However, many of those
latency-hiding techniques demand high memory
bandwidth, which is reported to be a bottleneck in several
systems [6,13]. Furthermore, the performance of future
microprocessors is highly likely to be affected by limited
pin bandwidth [3]. Hence, memory bandwidth limitation
will be one of the major impediments to future
microprocessors.

In modern processors, write-allocate caches are
normally preferred over non-write-allocate caches. Write-
allocate caches fetches blocks upon store misses, while
non-write-allocate caches send the written data to lower
levels of memory without allocating the corresponding
blocks. Comparing with non-write-allocate caches, write-
allocate caches lead to better performance by exploiting
the temporal locality of recently written data [9].

This work investigates the reduction of memory
bandwidth requirements of write-allocate caches by
avoiding fetches of fully modified blocks. A store
allocated cache block is fully modified if its original data
has not been used until the block is fully overwritten by
subsequent stores. Hence, the fetches of fully modified

blocks can be avoided without affecting program
correctness. Accordingly, the store misses allocating fully
modified blocks are called avoidable misses, and the
associated memory traffic is avoidable memory traffic.

Besides fully modified blocks, store allocated blocks
can be categorized into two other types. If a block’s
original data is read by a load instruction, the block is
called load unmodified. And a block is partially modified
if it is evicted from the cache with unmodified portion and
is not load unmodified. The state of a block is affected by
both program characteristics and cache parameters. For
instance, many potential fully modified blocks are evicted
partially modified because of their short lifetimes in the
cache. Figure 1 illustrates the states and transitions of store
allocated blocks, and a newly allocated block is partially
modified initially.

Figure 1. States and transitions of store allocated
blocks. Store allocated blocks are allocated due to store
misses.

This work makes two contributions. 1) We demonstrate
the potential to effectively reduce both memory traffic and
cache misses by directly installing fully modified blocks in
data caches. For a 1MB data cache, 28% misses that
access memory are avoidable. 2) We introduce a hardware
mechanism, the Store Fill Buffer, which can efficiently
identify avoidable misses by delaying fetches for store
misses. The Store Fill Buffer has certain advantages over
schemes such as write-validate caches [9] and cache
installation instructions [8,15]. For example, the Store Fill
Buffer requires no compile-time support and incurs
minimal hardware overhead. For a 64KB data cache with a
16-entry Store Fill Buffer, 16% of overall data cache
misses are eliminated, which results in 6% performance
speedup across SPEC CINT 2000 benchmarks.

The rest of the paper is organized as follows: Section 2
discusses previous efforts in the area, and Section 3
describes the simulation environment and evaluation
methodology. The characteristics of avoidable memory
traffic are presented in Section 4. Section 5 proposes the
Store Fill Buffer and evaluates its performance impact.
Finally, we conclude in Section 6.

Load: modified segment
Store: not fully modified

Partially modified Load unmodified

Fully modified

Load: unmodified segment

Store: fully modified

 2

2. Related work

There have been many studies on reducing memory
traffic. One of such schemes is the write-validate cache [9],
in which store allocated blocks are not fetched. Instead,
the data is written directly into the cache, and extra valid
bits are required to indicate the valid (i.e. modified)
portion of the blocks. One of write-validate’s deficiencies
is the significant implementation overhead, especially
when per-byte valid bits are required (e.g. Alpha ISA [5]).
More importantly, a write-validate cache reduces store
misses at the expense of increased load misses arising
from reading invalid portions of directly installed blocks,
which may negate write-validate’s traffic advantage. As a
comparison, the Store Fill Buffer reduces both load and
store misses, and incurs far less overhead to yield
comparable cache performance to a write-validate cache.

Write caches [9] are used with write-though caches to
coalesce missed stores before they are written to lower
levels of memory. Although both write-allocate or non-
write-allocate write-miss policies can be utilized, write-
allocate leads to better performance by exploiting the
temporal locality of recently written data. And with a
write-allocate cache, a write cache is unable to minimize
avoidable memory traffic identified in this work.

Cache installation instructions, such as dcbz in
PowerPC [8], are proposed to allocate and initialize cache
blocks directly [15]. Unfortunately, several limitations
prevent broader application of the approach. For example,
to use the instruction, the compiler must assume a cache
block size and ensure that the whole block will be
modified. Consequently, executing the program on a
machine with wider cache blocks may cause errors. The
use of the instruction is further limited by the compiler’s
limited scope since it cannot identify all memory
initialization instructions.

Recently, a hardware mechanism is proposed to
identify stores that initialize heap objects, and trigger
cache installation instructions to reduce memory traffic
dynamically [11]. The mechanism’s dependence on the
malloc() system routine limits its application to
programs that use the routine exclusively. For instance, the
approach cannot work efficiently on Java programs since
most Java virtual machines manage the heap by
themselves. Furthermore, the mechanism can only identify
heap object initializations, and leaves out fully modified
blocks arising from other program activities. In contrast,
the Store Fill Buffer identifies almost all fully modified
blocks with no software assistance, and hence is valid for
programs written in any languages.

3. Methodology

This section summarizes the time-accurate, execution-
driven simulation environment and the SPEC CINT 2000
benchmarks used in this research.

3.1. Simulator
This work utilizes the revised Simplescalar/Alpha

version 3.0 toolset [4] to obtain the characteristics of fully
modified blocks and evaluate the performance impact of
the Store Fill Buffer. Simplescalar/Alpha includes a suite
of functional and timing simulation tools for the Alpha
ISA [5], and its timing simulator incorporates a detailed
execution-driven out-of-order processor that accurately
executes user-level instructions. The baseline machine is
configured as an aggressive 8-way out-of-order processor
with two levels of instruction and data caches. The
configuration parameters of the simulated system are
given in Table 1.

Table 1. Baseline configuration of the simulated
machine.

CPU
Instruction window 128-IFQ, 128-RUU, 64-LSQ
Issue/Commit width 8 instructions per cycle
Functional units 8 intALU, 4 IntMult/Div, 6 FPALU, 2 FPMult/Div
Branch predictor 2K-entry combined predictor

Memory Hierarchy
L1 data cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency
L1 instr. cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency
L1 miss penalty 12 cycles
L2 unified cache 1MB, 128B blocks, 4-way, LRU
L2 miss penalty 80 cycles

3.2. Benchmarks
To perform our evaluation, we collect results from

SPEC CINT 2000 benchmarks [16]. The benchmarks are
compiled with SPEC peak settings, which performs many
aggressive optimizations. For each benchmark, the
execution of its first billion instructions is fast-forwarded
to warm up the simulator, and statistics are collected
during the execution of the second billion instructions.
Each benchmark’s input set, level-one data cache miss rate,
and proportion of store misses are summarized in Table 2.
On average, 23% overall misses are store misses for a
64KB L1 data cache.

Table 2. Characteristics of SPEC CINT 2000 benchmarks.
(Cache configurations: 64KB, 4-way, 64B blocks)
Benchmarks Input set L1 data cache miss

rate
% of store misses in

overall L1 misses
gzip log 1.38% 26.57%
vpr route 2.70% 15.76%
gcc 166 6.61% 52.74%
mcf ref 18.61% 23.02%
crafty ref 1.31% 12.55%
parser ref 2.07% 10.38%
eon cook 2.02% 31.52%
perlbmk diffmail 0.78% 16.36%
gap ref 4.43% 25.01%
vortex two 1.22% 14.70%
bzip2 program 2.00% 27.81%
twolf ref 5.48% 17.70%

 3

4. Analysis of avoidable memory traffic

In this section, we demonstrate that large amount of
memory traffic are avoidable, regardless of varying cache
configurations. We also classify data references by their
access types and the accessed block types. Finally, we
study the stability of fully modified blocks by analyzing
the fill intervals of those blocks.

4.1. Avoidable memory traffic
Figure 2 gives the percentages of the three types of

store allocated blocks for write-allocate caches ranging
from 64KB to 4MB. It is assumed that the two smaller
caches represent the L1 data caches, while the two larger
caches represent the total capacities of on-chip caches.
Hence, the results show the data traffic that can be avoided
either between L1 and L2 caches, or between L2 cache
and memory.

The data traffic allocating fully modified blocks is
avoidable. Since cache blocks stay longer in a larger cache,
many otherwise partially modified blocks become fully
modified in a larger cache. Consequently, the proportions
of avoidable memory traffic increase with larger caches.
On average, 28% misses of a 1M cache with 64B blocks
allocate fully modified blocks. All data traffic for these
misses can be eliminated since the allocated data will
never be used.

Load unmodified blocks represent the increased load
misses of a non-write-allocate cache over a write-allocate
cache. Such load misses occur in a non-write-allocate
cache when the invalid block portions are accessed. The
corresponding increase of load misses is one of the reasons
that write-allocate caches outperform non-write-allocate
caches. Figure 2 shows that many programs have
ignorable load unmodified blocks. One distinct program is
gap, 11% of allocated cache blocks are load unmodified.
Hence, a non-write-allocate cache will perform badly in
gap.

Figure 3 illustrates the sensitivity of the three types of
store allocated blocks to cache block sizes. As cache block
size increases, the proportions of store misses drop. This
demonstrates that stores have better spatial locality than
loads. As cache blocks become wider, a store allocated
block has a higher probability to be partially modified or

load unmodified. As a result, the fraction of fully modified
blocks decreases with wider cache blocks. However, even
with wide blocks, there are still plenty avoidable memory
traffic. On average 16% memory traffic are avoidable for a
1MB cache with 256B blocks.

0%
10%
20%
30%
40%
50%
60%

32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B 32
B

64
B

12
8B

25
6B

64K 256K 1M 4M

%
 o

f o
ve

ra
ll

m
is

se
s partially modified

load unmodified
fully modified

Figure 3. Sensitivity of avoidable memory traffic to
cache size and block size.

Reducing avoidable memory traffic by directly
installing fully modified blocks can improve performance
by reducing pressure on store queues and cache
hierarchies. In addition, eliminating avoidable memory
traffic decreases memory bandwidth requirements. As a
result, performance can be further improved by utilizing
optimizations, such as prefetching and multithreading, that
demand high memory bandwidth.

4.2. Decomposition of data references
In a write-allocate cache, cache blocks can be classified

into load or store allocated blocks by their initiating miss
types, and loads and stores may access both types of
blocks. Figure 4 breaks down the data references by their
reference types and accessing block types. Data cache
miss rates represent the differences between the top of the
accumulated bars and 100% of data references.

As shown in Figure 4, accesses to load allocated blocks
dominate most SPEC CINT 2000 benchmarks. On average,
66% of data references hit load allocated blocks, 30% of
them hit store allocated blocks, and the other 4% miss in
the data cache.

Interestingly, on average 18% of overall data references
are loads hitting in store allocated blocks. More loads of
gap access store allocated blocks instead of load allocated

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M 64
K

25
6K 1M 4M

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

%
 o

f o
ve

ra
ll

m
is

se
s partially modified

load unmodified
fully modified

Figure 2. Cache miss breakdown. (64KB-4M caches, 4-way, 64B blocks)

 4

blocks, which partially accounts for the high percentage of
load unmodified blocks in gap. The results also imply that
by buffering store and load allocated blocks in separate
caches, the conflicts between those two types of blocks
may be effectively eliminated. Consequently, load misses
can be reduced by structures such as the Store Fill Buffer,
which is introduced in the next section.

0%

20%

40%

60%

80%

100%

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x2

bz
ip

2

tw
ol

f

%
 o

f L
1

da
ta

 a
cc

es
se

s

store hit in SAB
load hit in SAB
store hit in LAB
load hit in LAB

Figure 4. Breakdown of L1 data references. (LAB: load
allocated blocks; SAB: store allocated blocks)

4.3. Fill intervals
Figure 5 categorizes fully modify blocks by the lengths

of their fill intervals. A block’s fill interval is the number
of data references/stores executed during the period that
the whole block is overwritten. A block with long fill
intervals has a higher probability to be partially modified
in case that its lifetime is short. Hence, the lengths of fill
intervals reveal the stability of fully modified blocks. For
benchmarks such as gzip, gcc and parser, most of the 64-
byte blocks are filled by at most 16 stores. This implies
that those blocks are filled up by series of successive
stores without accessing other blocks. Heap object
initialization is one source of the stores with such good
spatial locality [11].

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es re
fs

st
or

es

gzip vpr gcc mcf craf pars eon perl gap vort bziptwol

%
 o

f a
vo

id
ab

le
 m

is
se

s <=16 <=128 <=1K <=8K >8K

Figure 5. Intervals between allocation and fillness of
fully modified blocks. (64KB data cache, 4-way, 64B
blocks)

5. Eliminating avoidable memory traffic

To eliminate avoidable memory traffic, we must be
able to identify fully modified blocks and install them
directly in the data cache. We propose a hardware
mechanism, the Store Fill Buffer, to temporarily buffer all

store allocated blocks, and identify fully modified blocks
in the mean time to reduce memory traffic.

In this work, the Store Fill Buffer assists the L1 data
cache to reduce traffic between the L1 and L2 caches.
However, there is virtually no limit to apply the idea to the
L2 cache to further eliminate memory traffic.

5.1. Store Fill Buffer
The Store Fill Buffer (SFB) is a small, fully set

associative buffer that is accessed in parallel with the L1
data cache. It has the same block size as the L1 data cache.
Considering its small size, the SFB hardly affects the L1
data cache’s access latency. By default, the SFB uses per-
byte valid bits to identify fully modified blocks. The valid
overhead can be reduced if the minimum store unit is
larger than one byte and all stores are aligned.

When store misses occur, the requesting blocks are not
fetched. Instead, all store allocated blocks are installed
directly in the SFB and their modification states are
monitored. As soon as a block’s modification status, i.e.
fully modified or load unmodified, is identified, the block
is evicted to the L1 data cache. By doing so, the SFB
makes the best use of its limited size. With a full SFB, the
partially modified block in the LRU entry is evicted to the
L1 data cache, leaving the SFB entry for the new block.

By employing the SFB, data traffic between L1 and L2
caches is reduced since writing fully modified blocks to
the L1 cache incurs no fetches to lower levels of memory.
For the non-fully modified blocks, the SFB delays the
fetches of their original data until they are evicted from the
SFB. Consequently, many load allocated blocks have
longer lifetimes than in the baseline configuration. Hence,
load misses incurred by the conflicts between load and
store allocated blocks are reduced, which effectively offset
the load misses increased due to invalid potion accesses.

The transfers between SFB and L1 cache is transparent
to lower levels of memory hierarchies, and the L1 cache
still maintains the write-allocate policy. Since both SFB
and L1 cache are on chip, such transfers are at full speed.
By using a one-entry buffer to temporarily hold the evicted
SFB blocks, the performance penalty of a full SFB can
also be minimized.

The SBF can be supported by a weak ordering model to
maintain cache coherence [1]. Before a block is allocated
in the SFB, its update permission should be obtained.

5.2. Evaluation Results
In this subsection, we analyze the performance impact

of the SFB and compare the SFB with the write-validate
cache and the victim cache.

5.2.1 Avoidable memory traffic reduction
Figure 6 illustrates the overall data misses reduced by

incorporating the SFBs with 16, 32 or 64 entries to the
baseline 64KB write-allocate data cache. The two columns

 5

of each result bar represent the percentages of load and
store misses eliminated by the SFB respectively.

A small SFB is effective on eliminating store misses. In
a write-allocate cache, many partially modified blocks are
potentially fully modified given long enough lifetimes.
Since load misses dominate most programs, many store
allocated blocks have similar lifetimes in the SFB as in the
L1 cache of the baseline system. For most programs,
nearly all fully modified blocks of a 64KB cache (Figure 2)
can be recognized by a 16-entry SFB because of those
blocks’ short fill intervals (Figure 5). However, due to the
long fill intervals of crafty and bzip2, the SFB cannot
identify all fully modified blocks of these two programs.

Despite that accessing invalid portions of SFB blocks
increases load misses, overall load misses are reduced by
the SFB for programs such as mcf, crafty, eon, perlbmk,
and vortex. By using the SFB, store allocated blocks are
initially buffered in the SFB instead of the L1 data cache.
Consequently, load allocated blocks stay relatively longer
in the L1 data cache, and many conflict misses between
load and store allocated blocks are avoided.

0%

10%

20%

30%

40%

50%

60%

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

gzip vpr gcc mcf craf pars eon perl gap vort bzip twol%
 o

f L
1

da
ta

 m
is

se
s

re
du

ce
d load

store

Figure 6. Percentages of L1 data misses reduced by
Store Filled Buffers over a write-allocate cache. (64KB
cache, 4-way, 64B blocks; SFB entries: 16, 32, and 64)

5.2.2 Comparison with other schemes
Although the SFB is similar to a write-validate cache,

write-allocate with SFB is superior to write-validate in
three aspects. First, a SFB incur less hardware overhead
and uses on-chip transistors more efficiently than write-
validate. For example, a 64KB write-validate cache needs
additional 8K bytes to store block valid information.
However, an 8KB SFB with 64B blocks has only about
862 bytes valid overhead, and the majority of the
transistors can be used for buffering real data.

Second, the SFB scheme simplifies the memory
interface design and implements partial block stores more
efficiently. The write validate policy requires that the
lower levels of memory support partial block writes. This
may complicate the memory interface design and reduce
bus efficiency. For instance, storing a partially modified
block may require multiple bus transactions when several
valid and invalid portions of the block intertwine with
each other. In the SFB scheme, the partial block writes
occurs on-chip, and can be implemented more efficiently

and consume less time to fulfill. Furthermore, the partial
block stores are totally transparent to lower levels of
memory, which simplifies the design of lower memory
hierarchies.

Finally, a SFB reduces load misses as well as store
misses, as can be seen in Figure 6. In contrast, a write-
validate cache reduces store misses at the expense of
increased load misses arising from reading invalid portions
of directly allocated blocks. Since the system performance
is more sensitive to load misses than to store misses, the
increased load misses may negate the traffic advantage of
write-validate over write-allocate.

To justify the increased cache capacity by the SFB, we
also compare the SFB with the victim cache [10]. Among
all kinds of cache assists, victim cache is one of the most
popular schemes. Victim cache is a small, fully set
associative buffer holding discarded cache blocks. It is
checked on cache misses to see if it contains desired data
before going down to next level of memory hierarchy.
Hence, it is effective on eliminating conflict misses.

Figure 7 shows the comparison results. For each
scheme, the figure shows the percentages of L1 data
misses reduced over the baseline 64KB write-allocate
cache. Besides the additional 8KB valid bits, the write-
validate cache has the same configuration as the write-
allocate cache. Both the SFB and the victim cache have 16
entries. With significantly less overhead, the SFB
outperforms the write-validate policy in half programs. It
also exceeds the victim cache in eight programs.

0%

10%

20%

30%

40%

50%

60%

gz
ip vp
r

gc
c

m
cf

cr
af

pa
rs

eo
n

pe
rl

ga
p

vo
rt

bz
ip

tw
ol

f%
 o

f L
1

da
ta

 m
is

se
s

re
du

ce
d

store fill buffer
victim cache
write-validate

Figure 7. Comparison of Store Fill Buffer with write-
validate cache and victim cache. (64KB caches, 4-way,
64B blocks; 16-entry Store Fill Buffer and 16-entry Victim
Cache)

5.2.3 Performance impact
Figure 8 compares the performance results, in terms of

IPC, of the baseline system (Table 1) and a system
combining the baseline configuration with a 16-entry SFB.
Differing from what occurs in a conventional write-
allocate cache, a store missed in both the data cache and
the SFB triggers a direct block allocation in the SFB,
which has the same latency as a cache hit unless the SFB
is full. In the latter case, the block in the LRU entry of the
SFB must be evicted before the new block is installed in
the entry. In practice, a one-entry buffer can temporarily

 6

store the evicted block to reduce the allocation penalty in a
full SFB. A load miss to the invalid portion of a SFB entry
incurs the same amount penalty as a L1 load miss.

On average, more than 6% speedup is achieved by
using the SFB. The SFB is especially effective on gcc
(13% speedup) and mcf (27% speedup), which is due to
their runtime characteristics such as high miss rate and
abundance of avoidable misses. On the other hand, the
SFB has almost no impact on the performance of perl and
twolf.

0

0.5

1

1.5

2

2.5

3

3.5

gzip vpr gcc mcf craf pars eon perl gap vort bzip twol

in
st

ru
ct

io
ns

 p
er

 c
yc

le

baseline store fill buffer

Figure 8. Performance speedup by the Store Fill Buffer.
(Baseline configurations as shown in Table 1; 16-entry
Store Fill Buffer)

6. Conclusions

Memory bandwidth limitation will be one of the major
impediments to future microprocessors. Hence, reducing
memory bandwidth requirements can improve
performance by reducing pressure on store queues and
cache hierarchies. It also enables other bandwidth-hungry
techniques to further improve performance.

This work investigates the reduction of memory
bandwidth requirements of write-allocate caches by
avoiding fetches of fully modified blocks. A cache block
is fully modified if its original data has not been used until
it is fully overwritten by subsequent stores. Hence, those
blocks can be directly installed in the cache to reduce
memory traffic. The amount of fully modified blocks is
affected by program characteristics and cache parameters.
For the SPEC CINT 2000 programs, on average 28%
overall data misses are avoidable for a 1M cache.

We also propose a hardware mechanism, the Store Fill
Buffer, to identify fully modified blocks and reduce
memory traffic. By delaying fetches for store misses, the
Store Fill Buffer identifies the majority of fully modified
blocks even with a size as small as 16 entries. Moreover,
the Store Fill Buffer reduces both load and store misses.
By incurring significant less overhead, the Store Fill
Buffer provides comparable performance to a write-
validate cache. The Store Fill Buffer is also superior to the
victim cache in cache performance. For a 64KB data cache
with a 16-entry Store Fill Buffer, on average 16% data

misses are eliminated, which results in 6% performance
speedup across SPEC CINT 2000 benchmarks.

References
[1] S. Adve and M. Hill, “Weak Ordering - A New Definition”,

in Proc. ISCA’17, 1990, pp. 2-14.
[2] A. Badawy, A. Aggarwal, D. Yeung, and C. Tseng,

“Evaluating the Impact of Memory System Performance on
Software Prefetching and Locality Optimizations”, in Proc.
ICS’ 15, 2001, pp. 486-500.

[3] D. Burger, J. Goodman, and A. Kagi, “Memory Bandwidth
Limitations of Future Microprocessors”, in Proc. ISCA’23,
1996, pp. 78-89.

[4] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Technical Report CS-1342, University of
Wisconsin-Madison, 1997.

[5] Digital Equipment Corporation, “Alpha 21164
Microprocessor Hardware Reference Manual”, Maynard
Mass., Apr. 1995.

[6] C. Ding and K. Kennedy, “Memory Bandwidth Bottleneck
and its Amelioration by a Compiler”, in Proc. IPDPS, 2000,
pp. 181-190.

[7] F. Gabbay and A. Mendelson, “Speculative Execution
Based on Value Prediction”, Technical Report, Technion,
1996.

[8] IBM Microelectronics and Motorola Corporation,
“PowerPC Microprocessor Family: The Programming
Environments”, Motorola Inc., 1994.

[9] N. Jouppi, “Cache Write Policies and Performance”, in
ACM SIGARCH Computer Architecture News, V.21, No.2,
May 1993, pp. 191-201.

[10] N. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers, in Proc. ISCA’90, 1990, pp 364-373.

[11] J. Lewis, B. Black, and M. Lipasti, “Avoiding Initialization
Misses to the Heap”, in Proc. ISCA’29, 2002, pp. 183-194.

[12] M. Lipasti and J. Shen, “Exceeding the Dataflow Limit via
Value Prediction”, in Proc. MICRO’29, 1996, pp. 226-237.

[13] S. Perl and R. Sites, “Studies of Windows NT Performance
Using Dynamic Execution Traces”, in ACM SIGOPS
Operating System Reviews, V.30, No.10, Oct. 1996, pp 169-
183.

[14] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”, in Proc.
ISCA’ 22, 1995, pp. 392–403.

[15] W. Wulf and S. McKee, “Hitting the Memory Wall:
Implications of the Obvious”, in ACM Computer
Architecture News, V.23, No.1, 1995, pp. 20-24.

[16] SPEC System Performance Evaluation Committee,
http://www.spec.org.

