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Avoiding Store Misses to Fully Modified Cache Blocks 
     

Abstract 

This paper investigates a class of store misses that can 
be eliminated to reduce memory bandwidth requirements 
of write-allocate caches. Those avoidable misses allocate 
cache blocks whose original data is never used until the 
whole blocks are overwritten by subsequent stores. Hence, 
those fully modified blocks can be allocated directly in the 
data cache without accessing lower levels of memory. Our 
results indicate that for a 1MB data cache, 28% misses to 
memory are avoidable across SPEC CINT 2000 
benchmarks. We also propose a hardware mechanism, the 
Store Fill Buffer, which can effectively identify avoidable 
misses and allocate the associate blocks directly to reduce 
memory traffic substantially. By utilizing a 16-entry Store 
Fill Buffer, on average 16% overall misses to a 64KB data 
cache are eliminated, which results in 6% speedup in 
performance. 
 

1. Introduction 

As the speed gap between microprocessor and main 
memory grows, main memory accesses become a 
significant bottleneck to processor performance. The 
inability of memory system is represented by long 
memory accesses latencies and limited memory bandwidth. 
Numerous techniques, such as value prediction and 
speculative execution [7,12], prefetching [2], and 
multithreading [14], are proposed to reduce or tolerate 
large memory access latencies. However, many of those 
latency-hiding techniques demand high memory 
bandwidth, which is reported to be a bottleneck in several 
systems [6,13]. Furthermore, the performance of future 
microprocessors is highly likely to be affected by limited 
pin bandwidth [3]. Hence, memory bandwidth limitation 
will be one of the major impediments to future 
microprocessors.  

In modern processors, write-allocate caches are 
normally preferred over non-write-allocate caches. Write-
allocate caches fetches blocks upon store misses, while 
non-write-allocate caches send the written data to lower 
levels of memory without allocating the corresponding 
blocks. Comparing with non-write-allocate caches, write-
allocate caches lead to better performance by exploiting 
the temporal locality of recently written data [9]. 

This work investigates the reduction of memory 
bandwidth requirements of write-allocate caches by 
avoiding fetches of fully modified blocks. A store 
allocated cache block is fully modified if its original data 
has not been used until the block is fully overwritten by 
subsequent stores. Hence, the fetches of fully modified 

blocks can be avoided without affecting program 
correctness. Accordingly, the store misses allocating fully 
modified blocks are called avoidable misses, and the 
associated memory traffic is avoidable memory traffic. 

Besides fully modified blocks, store allocated blocks 
can be categorized into two other types. If a block’s 
original data is read by a load instruction, the block is 
called load unmodified. And a block is partially modified 
if it is evicted from the cache with unmodified portion and 
is not load unmodified. The state of a block is affected by 
both program characteristics and cache parameters. For 
instance, many potential fully modified blocks are evicted 
partially modified because of their short lifetimes in the 
cache. Figure 1 illustrates the states and transitions of store 
allocated blocks, and a newly allocated block is partially 
modified initially. 

 
 
 
 
 
 
 
 
 
Figure 1. States and transitions of store allocated 
blocks. Store allocated blocks are allocated due to store 
misses. 
 

This work makes two contributions. 1) We demonstrate 
the potential to effectively reduce both memory traffic and 
cache misses by directly installing fully modified blocks in 
data caches. For a 1MB data cache, 28% misses that 
access memory are avoidable. 2) We introduce a hardware 
mechanism, the Store Fill Buffer, which can efficiently 
identify avoidable misses by delaying fetches for store 
misses. The Store Fill Buffer has certain advantages over 
schemes such as write-validate caches [9] and cache 
installation instructions [8,15]. For example, the Store Fill 
Buffer requires no compile-time support and incurs 
minimal hardware overhead. For a 64KB data cache with a 
16-entry Store Fill Buffer, 16% of overall data cache 
misses are eliminated, which results in 6% performance 
speedup across SPEC CINT 2000 benchmarks. 

The rest of the paper is organized as follows: Section 2 
discusses previous efforts in the area, and Section 3 
describes the simulation environment and evaluation 
methodology. The characteristics of avoidable memory 
traffic are presented in Section 4. Section 5 proposes the 
Store Fill Buffer and evaluates its performance impact. 
Finally, we conclude in Section 6. 
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2. Related work 

There have been many studies on reducing memory 
traffic. One of such schemes is the write-validate cache [9], 
in which store allocated blocks are not fetched. Instead, 
the data is written directly into the cache, and extra valid 
bits are required to indicate the valid (i.e. modified) 
portion of the blocks. One of write-validate’s deficiencies 
is the significant implementation overhead, especially 
when per-byte valid bits are required (e.g. Alpha ISA [5]). 
More importantly, a write-validate cache reduces store 
misses at the expense of increased load misses arising 
from reading invalid portions of directly installed blocks, 
which may negate write-validate’s traffic advantage. As a 
comparison, the Store Fill Buffer reduces both load and 
store misses, and incurs far less overhead to yield 
comparable cache performance to a write-validate cache. 

Write caches [9] are used with write-though caches to 
coalesce missed stores before they are written to lower 
levels of memory. Although both write-allocate or non-
write-allocate write-miss policies can be utilized, write-
allocate leads to better performance by exploiting the 
temporal locality of recently written data. And with a 
write-allocate cache, a write cache is unable to minimize 
avoidable memory traffic identified in this work.    

Cache installation instructions, such as dcbz in 
PowerPC [8], are proposed to allocate and initialize cache 
blocks directly [15]. Unfortunately, several limitations 
prevent broader application of the approach. For example, 
to use the instruction, the compiler must assume a cache 
block size and ensure that the whole block will be 
modified. Consequently, executing the program on a 
machine with wider cache blocks may cause errors. The 
use of the instruction is further limited by the compiler’s 
limited scope since it cannot identify all memory 
initialization instructions.  

Recently, a hardware mechanism is proposed to 
identify stores that initialize heap objects, and trigger 
cache installation instructions to reduce memory traffic 
dynamically [11]. The mechanism’s dependence on the 
malloc() system routine limits its application to 
programs that use the routine exclusively. For instance, the 
approach cannot work efficiently on Java programs since 
most Java virtual machines manage the heap by 
themselves. Furthermore, the mechanism can only identify 
heap object initializations, and leaves out fully modified 
blocks arising from other program activities. In contrast, 
the Store Fill Buffer identifies almost all fully modified 
blocks with no software assistance, and hence is valid for 
programs written in any languages. 

3. Methodology 

This section summarizes the time-accurate, execution-
driven simulation environment and the SPEC CINT 2000 
benchmarks used in this research. 

3.1. Simulator 
This work utilizes the revised Simplescalar/Alpha 

version 3.0 toolset [4] to obtain the characteristics of fully 
modified blocks and evaluate the performance impact of 
the Store Fill Buffer. Simplescalar/Alpha includes a suite 
of functional and timing simulation tools for the Alpha 
ISA [5], and its timing simulator incorporates a detailed 
execution-driven out-of-order processor that accurately 
executes user-level instructions. The baseline machine is 
configured as an aggressive 8-way out-of-order processor 
with two levels of instruction and data caches. The 
configuration parameters of the simulated system are 
given in Table 1.  

 
Table 1. Baseline configuration of the simulated 
machine. 

CPU 
Instruction window 128-IFQ, 128-RUU, 64-LSQ 
Issue/Commit width 8 instructions per cycle 
Functional units 8 intALU, 4 IntMult/Div, 6 FPALU, 2 FPMult/Div 
Branch predictor 2K-entry combined predictor 

Memory Hierarchy 
L1 data cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency
L1 instr. cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency
L1 miss penalty 12 cycles 
L2 unified cache 1MB, 128B blocks, 4-way, LRU 
L2 miss penalty 80 cycles 

3.2. Benchmarks 
To perform our evaluation, we collect results from 

SPEC CINT 2000 benchmarks [16]. The benchmarks are 
compiled with SPEC peak settings, which performs many 
aggressive optimizations. For each benchmark, the 
execution of its first billion instructions is fast-forwarded 
to warm up the simulator, and statistics are collected 
during the execution of the second billion instructions. 
Each benchmark’s input set, level-one data cache miss rate, 
and proportion of store misses are summarized in Table 2. 
On average, 23% overall misses are store misses for a 
64KB L1 data cache. 

 
Table 2. Characteristics of SPEC CINT 2000 benchmarks.            
(Cache configurations: 64KB, 4-way, 64B blocks) 
Benchmarks Input  set L1 data cache miss 

rate 
% of store misses in 

overall L1 misses 
gzip log 1.38% 26.57%
vpr route 2.70% 15.76%
gcc 166 6.61% 52.74%
mcf ref 18.61% 23.02%
crafty ref 1.31% 12.55%
parser ref 2.07% 10.38%
eon cook 2.02% 31.52%
perlbmk diffmail 0.78% 16.36%
gap ref 4.43% 25.01%
vortex two 1.22% 14.70%
bzip2 program 2.00% 27.81%
twolf ref 5.48% 17.70%
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4. Analysis of avoidable memory traffic 

In this section, we demonstrate that large amount of 
memory traffic are avoidable, regardless of varying cache 
configurations. We also classify data references by their 
access types and the accessed block types. Finally, we 
study the stability of fully modified blocks by analyzing 
the fill intervals of those blocks. 

4.1. Avoidable memory traffic 
Figure 2 gives the percentages of the three types of 

store allocated blocks for write-allocate caches ranging 
from 64KB to 4MB. It is assumed that the two smaller 
caches represent the L1 data caches, while the two larger 
caches represent the total capacities of on-chip caches. 
Hence, the results show the data traffic that can be avoided 
either between L1 and L2 caches, or between L2 cache 
and memory.  

The data traffic allocating fully modified blocks is 
avoidable. Since cache blocks stay longer in a larger cache, 
many otherwise partially modified blocks become fully 
modified in a larger cache. Consequently, the proportions 
of avoidable memory traffic increase with larger caches. 
On average, 28% misses of a 1M cache with 64B blocks 
allocate fully modified blocks. All data traffic for these 
misses can be eliminated since the allocated data will 
never be used. 

Load unmodified blocks represent the increased load 
misses of a non-write-allocate cache over a write-allocate 
cache. Such load misses occur in a non-write-allocate 
cache when the invalid block portions are accessed. The 
corresponding increase of load misses is one of the reasons 
that write-allocate caches outperform non-write-allocate 
caches. Figure 2 shows that many programs have 
ignorable load unmodified blocks. One distinct program is 
gap, 11% of allocated cache blocks are load unmodified. 
Hence, a non-write-allocate cache will perform badly in 
gap. 

Figure 3 illustrates the sensitivity of the three types of 
store allocated blocks to cache block sizes. As cache block 
size increases, the proportions of store misses drop. This 
demonstrates that stores have better spatial locality than 
loads. As cache blocks become wider, a store allocated 
block has a higher probability to be partially modified or 

load unmodified. As a result, the fraction of fully modified 
blocks decreases with wider cache blocks. However, even 
with wide blocks, there are still plenty avoidable memory 
traffic. On average 16% memory traffic are avoidable for a 
1MB cache with 256B blocks. 
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Figure 3. Sensitivity of avoidable memory traffic to 
cache size and block size.  
 

Reducing avoidable memory traffic by directly 
installing fully modified blocks can improve performance 
by reducing pressure on store queues and cache 
hierarchies. In addition, eliminating avoidable memory 
traffic decreases memory bandwidth requirements. As a 
result, performance can be further improved by utilizing 
optimizations, such as prefetching and multithreading, that 
demand high memory bandwidth.  

4.2. Decomposition of data references 
In a write-allocate cache, cache blocks can be classified 

into load or store allocated blocks by their initiating miss 
types, and loads and stores may access both types of 
blocks. Figure 4 breaks down the data references by their 
reference types and accessing block types. Data cache 
miss rates represent the differences between the top of the 
accumulated bars and 100% of data references.  

As shown in Figure 4, accesses to load allocated blocks 
dominate most SPEC CINT 2000 benchmarks. On average, 
66% of data references hit load allocated blocks, 30% of 
them hit store allocated blocks, and the other 4% miss in 
the data cache.  

Interestingly, on average 18% of overall data references 
are loads hitting in store allocated blocks. More loads of 
gap access store allocated blocks instead of load allocated 
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Figure 2. Cache miss breakdown. (64KB-4M caches, 4-way, 64B blocks) 
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blocks, which partially accounts for the high percentage of 
load unmodified blocks in gap. The results also imply that 
by buffering store and load allocated blocks in separate 
caches, the conflicts between those two types of blocks 
may be effectively eliminated. Consequently, load misses 
can be reduced by structures such as the Store Fill Buffer, 
which is introduced in the next section.  
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Figure 4. Breakdown of L1 data references. (LAB: load 
allocated blocks; SAB: store allocated blocks) 

4.3. Fill intervals 
Figure 5 categorizes fully modify blocks by the lengths 

of their fill intervals. A block’s fill interval is the number 
of data references/stores executed during the period that 
the whole block is overwritten. A block with long fill 
intervals has a higher probability to be partially modified 
in case that its lifetime is short. Hence, the lengths of fill 
intervals reveal the stability of fully modified blocks. For 
benchmarks such as gzip, gcc and parser, most of the 64-
byte blocks are filled by at most 16 stores. This implies 
that those blocks are filled up by series of successive 
stores without accessing other blocks. Heap object 
initialization is one source of the stores with such good 
spatial locality [11].  
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Figure 5. Intervals between allocation and fillness of 
fully modified blocks.  (64KB data cache, 4-way, 64B 
blocks) 

5. Eliminating avoidable memory traffic 

To eliminate avoidable memory traffic, we must be 
able to identify fully modified blocks and install them 
directly in the data cache. We propose a hardware 
mechanism, the Store Fill Buffer, to temporarily buffer all 

store allocated blocks, and identify fully modified blocks 
in the mean time to reduce memory traffic.  

In this work, the Store Fill Buffer assists the L1 data 
cache to reduce traffic between the L1 and L2 caches. 
However, there is virtually no limit to apply the idea to the 
L2 cache to further eliminate memory traffic. 

5.1. Store Fill Buffer 
The Store Fill Buffer (SFB) is a small, fully set 

associative buffer that is accessed in parallel with the L1 
data cache. It has the same block size as the L1 data cache. 
Considering its small size, the SFB hardly affects the L1 
data cache’s access latency. By default, the SFB uses per-
byte valid bits to identify fully modified blocks. The valid 
overhead can be reduced if the minimum store unit is 
larger than one byte and all stores are aligned.  

When store misses occur, the requesting blocks are not 
fetched. Instead, all store allocated blocks are installed 
directly in the SFB and their modification states are 
monitored. As soon as a block’s modification status, i.e. 
fully modified or load unmodified, is identified, the block 
is evicted to the L1 data cache. By doing so, the SFB 
makes the best use of its limited size. With a full SFB, the 
partially modified block in the LRU entry is evicted to the 
L1 data cache, leaving the SFB entry for the new block.  

By employing the SFB, data traffic between L1 and L2 
caches is reduced since writing fully modified blocks to 
the L1 cache incurs no fetches to lower levels of memory. 
For the non-fully modified blocks, the SFB delays the 
fetches of their original data until they are evicted from the 
SFB. Consequently, many load allocated blocks have 
longer lifetimes than in the baseline configuration. Hence, 
load misses incurred by the conflicts between load and 
store allocated blocks are reduced, which effectively offset 
the load misses increased due to invalid potion accesses.  

The transfers between SFB and L1 cache is transparent 
to lower levels of memory hierarchies, and the L1 cache 
still maintains the write-allocate policy. Since both SFB 
and L1 cache are on chip, such transfers are at full speed. 
By using a one-entry buffer to temporarily hold the evicted 
SFB blocks, the performance penalty of a full SFB can 
also be minimized. 

The SBF can be supported by a weak ordering model to 
maintain cache coherence [1]. Before a block is allocated 
in the SFB, its update permission should be obtained.  

5.2. Evaluation Results  
In this subsection, we analyze the performance impact 

of the SFB and compare the SFB with the write-validate 
cache and the victim cache. 

5.2.1 Avoidable memory traffic reduction 
Figure 6 illustrates the overall data misses reduced by 

incorporating the SFBs with 16, 32 or 64 entries to the 
baseline 64KB write-allocate data cache. The two columns 
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of each result bar represent the percentages of load and 
store misses eliminated by the SFB respectively.  

A small SFB is effective on eliminating store misses. In 
a write-allocate cache, many partially modified blocks are 
potentially fully modified given long enough lifetimes. 
Since load misses dominate most programs, many store 
allocated blocks have similar lifetimes in the SFB as in the 
L1 cache of the baseline system. For most programs, 
nearly all fully modified blocks of a 64KB cache (Figure 2) 
can be recognized by a 16-entry SFB because of those 
blocks’ short fill intervals (Figure 5). However, due to the 
long fill intervals of crafty and bzip2, the SFB cannot 
identify all fully modified blocks of these two programs.  

Despite that accessing invalid portions of SFB blocks 
increases load misses, overall load misses are reduced by 
the SFB for programs such as mcf, crafty, eon, perlbmk, 
and vortex. By using the SFB, store allocated blocks are 
initially buffered in the SFB instead of the L1 data cache. 
Consequently, load allocated blocks stay relatively longer 
in the L1 data cache, and many conflict misses between 
load and store allocated blocks are avoided.  
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Figure 6. Percentages of L1 data misses reduced by 
Store Filled Buffers over a write-allocate cache. (64KB 
cache, 4-way, 64B blocks; SFB entries: 16, 32, and 64) 

5.2.2 Comparison with other schemes 
Although the SFB is similar to a write-validate cache, 

write-allocate with SFB is superior to write-validate in 
three aspects. First, a SFB incur less hardware overhead 
and uses on-chip transistors more efficiently than write-
validate. For example, a 64KB write-validate cache needs 
additional 8K bytes to store block valid information. 
However, an 8KB SFB with 64B blocks has only about 
862 bytes valid overhead, and the majority of the 
transistors can be used for buffering real data. 

Second, the SFB scheme simplifies the memory 
interface design and implements partial block stores more 
efficiently. The write validate policy requires that the 
lower levels of memory support partial block writes. This 
may complicate the memory interface design and reduce 
bus efficiency. For instance, storing a partially modified 
block may require multiple bus transactions when several 
valid and invalid portions of the block intertwine with 
each other. In the SFB scheme, the partial block writes 
occurs on-chip, and can be implemented more efficiently 

and consume less time to fulfill. Furthermore, the partial 
block stores are totally transparent to lower levels of 
memory, which simplifies the design of lower memory 
hierarchies. 

Finally, a SFB reduces load misses as well as store 
misses, as can be seen in Figure 6. In contrast, a write-
validate cache reduces store misses at the expense of 
increased load misses arising from reading invalid portions 
of directly allocated blocks. Since the system performance 
is more sensitive to load misses than to store misses, the 
increased load misses may negate the traffic advantage of 
write-validate over write-allocate.   

To justify the increased cache capacity by the SFB, we 
also compare the SFB with the victim cache [10]. Among 
all kinds of cache assists, victim cache is one of the most 
popular schemes. Victim cache is a small, fully set 
associative buffer holding discarded cache blocks. It is 
checked on cache misses to see if it contains desired data 
before going down to next level of memory hierarchy. 
Hence, it is effective on eliminating conflict misses. 

Figure 7 shows the comparison results. For each 
scheme, the figure shows the percentages of L1 data 
misses reduced over the baseline 64KB write-allocate 
cache. Besides the additional 8KB valid bits, the write-
validate cache has the same configuration as the write-
allocate cache. Both the SFB and the victim cache have 16 
entries. With significantly less overhead, the SFB 
outperforms the write-validate policy in half programs. It 
also exceeds the victim cache in eight programs. 
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Figure 7. Comparison of Store Fill Buffer with write-
validate cache and victim cache. (64KB caches, 4-way, 
64B blocks; 16-entry Store Fill Buffer and 16-entry Victim 
Cache) 

5.2.3 Performance impact 
Figure 8 compares the performance results, in terms of 

IPC, of the baseline system (Table 1) and a system 
combining the baseline configuration with a 16-entry SFB. 
Differing from what occurs in a conventional write-
allocate cache, a store missed in both the data cache and 
the SFB triggers a direct block allocation in the SFB, 
which has the same latency as a cache hit unless the SFB 
is full. In the latter case, the block in the LRU entry of the 
SFB must be evicted before the new block is installed in 
the entry. In practice, a one-entry buffer can temporarily 
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store the evicted block to reduce the allocation penalty in a 
full SFB. A load miss to the invalid portion of a SFB entry 
incurs the same amount penalty as a L1 load miss. 

On average, more than 6% speedup is achieved by 
using the SFB. The SFB is especially effective on gcc 
(13% speedup) and mcf (27% speedup), which is due to 
their runtime characteristics such as high miss rate and 
abundance of avoidable misses. On the other hand, the 
SFB has almost no impact on the performance of perl and 
twolf. 
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Figure 8. Performance speedup by the Store Fill Buffer. 
(Baseline configurations as shown in Table 1; 16-entry 
Store Fill Buffer) 

6. Conclusions 

Memory bandwidth limitation will be one of the major 
impediments to future microprocessors. Hence, reducing 
memory bandwidth requirements can improve 
performance by reducing pressure on store queues and 
cache hierarchies. It also enables other bandwidth-hungry 
techniques to further improve performance. 

This work investigates the reduction of memory 
bandwidth requirements of write-allocate caches by 
avoiding fetches of fully modified blocks. A cache block 
is fully modified if its original data has not been used until 
it is fully overwritten by subsequent stores. Hence, those 
blocks can be directly installed in the cache to reduce 
memory traffic. The amount of fully modified blocks is 
affected by program characteristics and cache parameters. 
For the SPEC CINT 2000 programs, on average 28% 
overall data misses are avoidable for a 1M cache.  

We also propose a hardware mechanism, the Store Fill 
Buffer, to identify fully modified blocks and reduce 
memory traffic. By delaying fetches for store misses, the 
Store Fill Buffer identifies the majority of fully modified 
blocks even with a size as small as 16 entries. Moreover, 
the Store Fill Buffer reduces both load and store misses. 
By incurring significant less overhead, the Store Fill 
Buffer provides comparable performance to a write-
validate cache. The Store Fill Buffer is also superior to the 
victim cache in cache performance. For a 64KB data cache 
with a 16-entry Store Fill Buffer, on average 16% data  

misses are eliminated, which results in 6% performance 
speedup across SPEC CINT 2000 benchmarks. 
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