
LCA TECHNICAL REPORT
TR-030827-01

Development and Characterization of Control-Plane Network Workloads

 - NpBench -

August 2003

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas at Austin

 2

 3

Contents

Abstract ……………………………………………………………………………………………… 5

1. Introduction …………………………………………………………………….………………… 6

2. Background and Related Work …………………………………………………………………… 9

3. Overview of NpBench ………………………………………………………………..…………..11

 3.1. Traffic-management and QoS Group (TQG)…………………………………………….…..12

 3.2. Security and Media processing Group (SMG)……………………………………………….16

 3.3. Packet Processing Group (PPG)………………………………………………………...……17

4. Characteristics and Implications of NpBench………………………………………………….…18

 4.1. Implementation and Experimental Methodology…………...………………………………..18

 4.2. Benchmark Characteristics…………………………………………………………………...19

 4.2.1. Instruction Distribution………………………………………………….…………..…19

 4.2.2. Cache Behavior…………………………………………………………………...……21

 4.2.3. Available ILP…………………………………………………………………………..22

 4.2.4. Required number of instructions per packet…………………………………...………23

 4.3. Implications and Analysis……………………...……………………………………………..25

5. Conclusion………………………………………………………….………………………….….26

References……………………………………………………………………………………………26

Appendix. NpBench Descriptions……………………………………………………………………29

 4

 5

Development and Characterization of Control-Plane Network Workloads

- NpBench -

 Byeong Kil Lee and Lizy Kurian John

Laboratory for Computer Architecture
The University of Texas at Austin

{blee, ljohn}@ece.utexas.edu

Abstract

Modern network interfaces demand highly intelligent traffic management in addition to the basic

requirement of wire speed packet forwarding. Several vendors are releasing network processors in

order to handle these demands. Network workloads can be classified into data plane and control

plane workloads, however most network processors are optimized for data plane. Also, existing

benchmark suites for network processors primarily contain data plane workloads, which perform

packet processing for a forwarding function.

In this paper, we present a set of benchmarks, called NpBench, targeted towards control plane (e.g.,

traffic management, quality of service, etc.) as well as data plane workloads. The characteristics of

NpBench workloads, such as instruction mix, parallelism, cache behavior and required processing

capability per packet, are presented and compared with CommBench, an existing network processor

benchmark suite [9]. We also discuss the architectural characteristics of the benchmarks having

control plane functions, their implications to designing network processors and the significance of

Instruction Level Parallelism (ILP) in network processors.

 6

1. Introduction

As Internet and network technologies have grown and evolved exponentially, the requirements of

network interfaces have become more complex and diverse. Various applications and protocols

require more intelligent processing over the network. To keep up with current trends of emerging

network applications, programmable microprocessors called network processors (NP) are introduced

in network interfaces to handle the demands of modern network applications. Several vendors are

releasing various network processors having different architectural features to meet the demands of

network application workloads.

The bottleneck in communication networks is not just due to bandwidth anymore. Ability to provide

flexible processing capability in order to support several emerging applications and meet their heavy

processing workloads is equally important [1]. Major challenges for high bandwidth have reached

tremendous advances from optical network approaches, a solution to bandwidth-centric bottleneck –

currently 10Gbps (OC-192) at core router exists and 40Gbps (OC-768) is now starting to emerge.

More complex protocols and various network services (e.g., Quality of Service, IPSec, IPv6, etc.)

require significant processing power for highly intelligent applications; so the bottleneck of

communication network has moved to the network nodes, in addition to the high bandwidth

requirement. Accordingly, extracting representative benchmarks in several emerging network

applications and characterizing their properties are essential for designing network processors and

evaluating their performance.

While GPPs (General Purpose Processors) are flexible to rapidly developing network applications

and protocols, they do not provide enough performance to process data at wire rates. For example,

packet throughput of a 10Gbps link is 19.5 million packets per second, assuming a stream of

minimum-sized packets of 64 bytes. Given a single processor of 1 GHz clock frequency, it can

 7

execute only 51 instructions per one packet time. Considering the required number of instructions for

executing NP applications (Section 4.2.4), single processor is not enough to accomplish it. Highly

parallel architectures are required to handle these workloads. Dedicated ASPs (Application Specific

Processors) are designed to process packets at wire rates but are not allowed to add or change the

features in order to support new environments. As shown in Figure 1, the network processor that

exists at the middle points between GPPs and dedicated ASPs is a programmable processor or an

instruction-set processor specialized for a particular application domain.

NP applications can be functionally categorized into two types of operations: data plane operations

and control plane operations. The data plane performs packet operations such as forwarding packets.

The control plane handles flow management, signaling, higher-level protocol and other control tasks

[2]. Over the past few years, several vendors have been releasing NPs having a number of different

architectures, but most of them are optimized for throughputs mostly in data plane. Also, existing

benchmark suites for network processors primarily contain data plane workloads, which perform

packet processing for a forwarding function. Although NPs have initially been targeted for data plane

applications, they also play a major role in the control plane. In fact, with the increased demand for

complex processing, the boundaries between data plane and control plane have become blurred [1].

The recent trend is that some control plane activities, such as TCP and SSL applications, are being

considered as a commodity. Since there are a lot of control mechanisms in TCP, it cannot be easily

converted into an ASIC (Application Specific Integrated Circuit) and it has mostly been left to

software solutions. From the above discussion, it is clear that control plane applications should be

included in NP benchmarks.

 8

Application
Specific Processor

or Co-processor

General
Purpose

Processor

Network
processor

P
ro

gr
am

m
ab

le
 (

F
le

xi
bi

lit
y)

Task specific (Performance)

Figure 1. Network Processor

In this paper, we categorize modern NP applications into three functional groups: traffic-

management and quality of service group (TQG), security and media processing group (SMG), and

packet processing group (PPG). Every application of each group can be sorted to either a control

plane application or a data plane application, or both. Based on these functional groups, we present a

set of benchmarks, called NpBench, for control plane and data plane applications of modern network

processors. The characteristics of NpBench workloads such as instruction mix, available parallelism,

cache behavior and required number of instructions per packet are presented and compared with

CommBench. We also discuss the architectural implications of the control plane benchmarks and

their impact on designing NPs.

The rest of the paper is organized as follows. Section 2 provides background and related work on

NPs and previously proposed benchmarks. Section 3 presents the applications in the proposed

NpBench suites. In section 4, we present the application characteristics of benchmarks and discuss

their implications. We conclude the paper in section 5 with an overview of functionality required for

network processors of the next generation.

 9

2. Background and Related Work

Current network bottleneck has moved from network bandwidth to the network node, where data

traffic is intercepted or forwarded. Network processors can be used in various node positions over the

network, such as core, edge and access routers. Core routers (10 Gbps rate) are placed in the middle of

the network, so they are critical for performance and least responsive to flexibility. Edge routers are

placed in between core and access devices, requiring medium data rate (2.5 Gbps) and a certain

amount of flexibility. URL load balancers and firewalls are examples of edge router functions. Access

routers (1 Gbps) provide network access to various devices. Most of their functions are related to

aggregating and forwarding numerous traffic streams through the network [31].

The conventional applications of network interfaces mainly consist of packet processing and

classification algorithms. However, modern roles of such an interface includes congestion control,

network security, accounting, network address/protocol translations, load balancing and media

transcoding. The processing capability of these emerging workloads must be at a level equivalent to

the speed of the network. As a solution to this problem, many NP vendors use the concept of packet-

level parallelism (PLP) to satisfy high-performance demands of networks. In fact, various companies

use parallel architectures such as single chip multiple processor or fine-grain multithreaded processors

to meet the packet-level parallelism [4].

Due to the variety of application spaces being addressed by network processors, there could be a

wide range of NP architectures and implementations. For the enterprise service, several companies

developed RISC-based NP with ASIC blocks for networking functions such as IXP 1200/2000 series

by Intel [26], CXE-16 by Switchcore, CS2000 by Chameleon etc. For the high-end service, Motorola

(C-port) [27], Lucent (FPP/RSP), EZChip (NP-1) and Vitesse/ Sitera(IQ2000) have used network-

specific ASICs with the features of network classifying, QoS, etc. Some companies like Chrysalis-

 10

ITS, Alliance, NetLogic developed co-processors with the functions such as routing table,

classification or cryptography [30].

Most of NP architectures employ multiple processing engines (PE), even though they each have

different names such as micro engine, channel processor or task optimized processor. Some are based

on RISC cores having their PEs arranged in parallel or in a pipelined fashion. Another alternative is

the VLIW based architecture [31]. Many RISC based NPs employ multithreading on their PEs to

maximize the performance. To ensure fast context switching between tasks, the NP should have

hardware support for multithreading. Figure 2 shows an overall architecture of typical network

processor. In general, control and management functions have more complex processing requirements

than data functions. GPPs have been used as control processors in commercial network products.

Many NPs provide the function of control processor with an integrated core or externally via a host

interface [35]. In this paper, we show that GPPs do not have enough processing capability to come up

with increased demand for complex processing and higher data rates.

Benchmarks are an important issue in the design and evaluation of a processor. In NP fields, there

are two benchmarks which were previously proposed: CommBench [9] and NetBench [5]. Wolf et. al.

[9] present eight selected workloads called CommBench for traditional routers and active routers.

CommBench has two groups of benchmarks namely Header Processing Applications (HPA) and

Payload Processing Applications (PPA). Memik et. al. [5] proposed nine benchmarks called

NetBench for micro-level, IP-level and application-level benchmarks. Nemirovsky [1] also discusses

the guidelines for defining benchmarks and challenges of benchmark suites for network processors.

He suggests that the benchmark should have two frameworks such as a task-specific benchmark

focusing on a single algorithm or protocol and a rich-scenario benchmark containing the complexity

 11

of real-life applications. EEMBC [24] and MiBench [21] have some network applications, but they

only have routing and encryption applications.

Hardware
Support

Control
Processor

Shared
Memory

Lookup
Engine

Processing
EngineProcessing

EngineProcessing
Engine

Fabric
Interface

DRAM
Controller

SRAM
ControlloerNetwork

Interface

Figure 2. Overall Architecture of NP

Previously proposed benchmarks are mainly focused on data plane workloads. While the

benchmarks of data plane applications have been reasonably well understood, there has been very

little effort in designing control plane workloads that perform congestion control, flow management,

higher-level protocols and other control tasks. Control plane workloads are just emerging and

evolving in current network environments. The NpBench suite presented in this paper, is developed at

the University of Texas in a project supported by Motorola. The suite includes several applications

having control plane functions.

3. Overview of NpBench

This section presents the NpBench, a benchmark suite in the domain of the NP workloads. A

benchmark suite should be representative of the domain of the application which it is going to be used

for. We categorize network applications into three functional groups: traffic-management and quality

 12

of service group (TQG), security and media processing group (SMG), and packet processing group

(PPG). This categorization is presented in Table 1. We choose ten representative applications from

the functional groups for the first version of NpBench suite as shown in Table 2. The suite includes

several control plane functions as they are missing from the available NP workloads.

We implement some of these selected applications to form the current release of the NpBench suite

and the rest of them are referred from open source code site or other benchmarks [5][9][21]. The C

code for the benchmarks is available on request [32].

3.1. Traffic-management and QoS Group (TQG)

TQG has a set of applications related to routing, scheduling, queuing, switching, signaling and

quality of services. These applications contain both control plane processing and data plane

processing. The first two benchmarks, WFQ and RED are the solutions of congestion control

algorithms. In general, congestion occurs at a router when incoming packets arrive at a rate faster than

the rate the router can switch them to an outgoing link. The two representative algorithms for

congestion control are the scheduling algorithm and the queue management algorithm [10]. The

scheduling algorithm determines which packet to be sent next and is used primarily to manage the

allocation of bandwidth among flows (e.g., weighted fair queuing). According to the IETF (Internet

Engineering Task Force) recommendation [10], the default mechanism for managing queue lengths to

meet these goals in FIFO queues is the RED algorithm. SSLD is a content-based switching algorithm

and MPLS is a technology used for quick forwarding of packets across backbones.

 13

Table 1. Functional Grouping of Network Processor Workloads

Group Applications
Data
Plane

Control
Plane

Routing X X
Scheduling X X

Content-based switching X X
Weighted fair queuing X X

Traffic shaping X X
Load balancing X X

VLAN X
MPLS X X
RSVP X X

DiffServ X X

TQG
(Traffic-

management and
Quality-

of-Service Group)

IntServ X X
Block cipher algorithm X

Message digest algorithm X
Firewall application X X

IPSec X X
Virtual private network X X

Public encryption X
Usage-based accounting [23] X X

H.323 X
Media transcoding X X

SMG
(Security and

Media Processing
Group)

Duplicate data suppression X
IP-packet fragmentation X

Packet encapsulation X
Packet marking/editing X

Packet classification X

PPG
(Packet Processing

Group)
Checksum calculation X

WFQ (Weighted Fair Queuing): WFQ [6-8][18] is a queue-scheduling algorithm to serve packets in

order of their finish-times considering the weight on connections. As shown in Figure 3, various

lengths of packets from incoming traffic are classified into different queues, which can be used for

differential service. And they are scheduled by a specific mechanism that determines packets to be

sent from the queues. WFQ uses each packet's estimated finish-time to decide packets to be sent.

 14

Incoming Packets Transmit Queue

Classfier Scheduler

Figure 3. WFQ (Weighted Fair Queuing)

Table2. Descriptions of the NpBench Suite

Group
Applicatio

n
Description

WFQ Weighted Fair Queuing is a queue scheduling algorithm

RED
Random Early Detection is an active queue management algorithm which
drops arriving packets probabilistically

SSLD
Secure Sockets Layer Dispatcher is an example of content-based switching
mechanism

TQG

MPLS
Multi Protocol Layer Switching is a forwarding technology using short
labels

MTC
Media Transcoding is the process that a media object in one representation
is converted into another representation for wide spectrum of client types

AES
Advanced Encryption Standard (RijnDael) is a block cipher that encrypts
and decrypts 128, 192 and 256 bits blocks

MD5
Message Digestion algorithm takes as input a message of arbitrary length
and produces as output a 128-bit fingerprint or message digest of the input

SMG

DH
Diffie-Hellman key exchange allows two parties who have not met to
exchange keys securely on an unsecure communication path

FRAG FRAG is a packet fragmentation application
PPG

CRC
Cyclic Redundancy Check is used in Ethernet and ATM Adaptation Layer 5
(AAL-5) checksum calculation

RED (Random Early Detection): RED [10][11][18] is an active queue management algorithm for

routers. In contrast to the traditional queue management algorithm, which drops packets only when

the buffer is full, the RED algorithm drops arriving packets probabilistically before coming into the

 15

queue. The decision of whether or not to drop an incoming packet is based on the estimation of the

average queue size.

Incoming Packets
Transmit Queue

Scheduler
(FIFO)

RED

Drop Test

Forw
ard

Drop

Figure 4. RED (Random Early Detection)

SSLD (SSL Dispatcher): SSLD [12][13] is one example of content-based switching mechanism in

the server and client cluster environments. SSL typically runs over TCP (Transmission Control

Protocol), which is used for secure processing of e-commerce applications. Once TCP connection is

established, SSLD maintains the session ID information during authentication process, sharing the

SSL information among the nodes in cluster. When reconnecting to the same server, a client can reuse

the session state established during a previous SSL handshake which makes the workloads

computationally heavy.

MPLS (Multi Protocol Label Switching): MPLS [14-17][33] is a forwarding technology, which

eliminates the lookup of bulky IP headers and uses short labels for forwarding at the edge of the

MPLS domain as shown in Figure 5. In this version of NpBench we concentrate on two control plane

aspects of MPLS: Label Distribution and Label Generation. Two functions are extracted from MPLS,

 16

namely an upstream routing function (for an ingress edge router or a core router) and a downstream

routing function (for a core router or an egress router).

3.2. Security and Media processing Group (SMG)

As the e-commerce industry has grown, security and accounting applications such as firewalls,

admission control, encryption applications and usage based accounting, have become very common.

With higher bandwidth, the demand for high quality multimedia service has also increased. Data

stream manipulation, media transcoding, H.323 and several encoding applications [19] can be

important issues of NP, associated with QoS. For security benchmarks, three components of IPSec

[20] – Authentication Header (AH), Encapsulating Security Payload (ESP) and key management – are

included in the SMG subgroup of NpBench.

(Ingress) edge label
switching router

(Egress) edge label
switching router

Core label
switching router

Existing routing
protocol(OSPF, IS-IS)

LDP(Label Distribution
Protocol)

Figure 5. MPLS (Multi Protocol Label Switching)

 17

MTC (Media TransCoding): Media Transcoding [28][29] is a process in which a data object in one

representation is converted into another representation. In order to accommodate the wide spectrum of

client capabilities, the media data is modified along the dimensions, fidelity, and resolution.

AES (Advanced Encryption Standard): Advanced Encryption Standard (RijnDael) [21] is a block

cipher that encrypts and decrypts 128, 192 and 256 bit blocks, which is a U.S. government standard

for encryption and digital signature. It is used for implementation of ESP in IPSec.

MD5 (Message Digestion): MD5 algorithm [5] takes a message of arbitrary length as an input and

produces a 128-bit “fingerprint” or “message digest” as an output. MD5 is a method to verify data

integrity and is more reliable than checksum method. It is used to perform AH in IPSec.

DH (Diffie-Hellman): Diffie-Hellman [5] key exchange allows two parties who have not met, to

exchange keys securely on an unsecured communication path. Typically DH is used to exchange a

randomly generated conventional encryption key, the rest of the exchange is then encrypted with the

conventional cipher. It is used in key management in IPSec.

3.3. Packet Processing Group (PPG)

Packet processing group includes IP packet fragmentation, packet marking, editing and

classification. Most applications are data plane processing.

FRAG (Packet Fragmentation): FRAG [9] is a packet fragmentation application. IP packets are split

into multiple fragments for which some header fields have to be adjusted and a header checksum

computed.

 18

CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check [21] is used in Ethernet and

ATM Adaptation Layer 5 (AAL-5) checksum calculation.

4. Implementation and Characterization of NpBench

4.1. Implementation and Experimental Methodology

We develop NpBench control-plane functions at the application level using C language and refer

most of the data-plane functions from open source code or other benchmarks [5][9][21]. The MPLS

benchmark is based on effort by Datta [33]. We used the SUN Shade binary instrumentation tool [22]

to obtain the dynamic traces while executing NpBench applications. We also use cachesim5, a cache

analyzer tool of SUN Shade [22], to perform cache simulation and Tetra [8] to get available

parallelism with constraints.

We utilize randomly generated input packets for the characterization of the benchmark. For TQG,

WFQ uses packet size and queue information as an input. RED uses incoming packet size and average

queue size to decide whether the packet is to be dropped or put in the FIFO queue. The clientHello

message and serverHello message of the SSL protocol [13] are used with randomly generated session

ID information for the SSLD experiments. The values of FEC (Forwarding Equivalence Class)

identification numbers are used as input for the MPLS functions. The RED implementation allows an

option of congestion environment, which is controlled by transmission rate of the queue. The SSLD

inputs can be different session IDs with different reusability factors. In SMG, MTC can be separated

into two components which are policy modules to get adaptive transcoding policies and

transformation modules to perform real transcoding. The policy decision module can be executed

 19

independently with an execution option. AES can use any files as an input data and MD5 can make a

fingerprint of any files or strings for the input. DH generates and exchanges any given number of

Diffie-Hellman key pairs. FRAG and CRC employ randomly generated IP header as an input data.

Under the above simulated network environments, the characteristic of NpBench is investigated.

4.2. Benchmark Characteristics

In this section, we present the experimental results on instruction distribution, cache behavior and

parallelism of the NpBench. These metrics are essential information for understanding dynamic

characteristics of the application and for designing the processor architecture. We also explore the

required number of instructions to process one packet data, assuming a minimum-sized packet of 64

bytes.

4.2.1. Instruction Mix

In these experiments, we investigate the number of instructions in the NpBench applications. Table

3 shows the dynamic instruction mix during execution. From this workload distribution, we can

observe that computational operations occupy a significant share of the total instruction mix (53% on

the average). Branch operations (branch, jump and call) are heavily used in the applications having

control plane functions (23.7%) such as WFQ, SSLD and MPLS, for finding fair conditions of each

packet, looking up session reuse conditions of each session request and investigating same forwarding

equivalence class respectively. Data plane functions have relatively small percentage of branch

operations (11.1%).

Since the data plane application is to handle more packet data and coefficients for performing the

algorithm within payload processing, we observe that the data plane application uses more load and

store operations (31.2% on average) than the applications having control plane functions (23.5%). In

 20

the case of SSLD, as the reusability factor used in SSLD increases, we see that the required

computation workloads for new session request could be avoided and the required number of

instructions could be reduced.

Table 3. Instruction Mix

NpBench CommBench
App. int/float shift logic branch load store etc App. int/float shift logic branch load store etc
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3 CAST 25.4 17.0 20.4 8.9 20.4 7.4 0.5
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0 ZIP 34.0 8.0 12.4 20.2 19.4 5.6 0.4
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0 REED 40.2 11.7 7.1 21.4 14.7 4.9 0.0
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3 JPEG 43.8 16.1 2.7 10.8 16.5 9.7 0.3
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9 PPA 35.8 13.2 10.7 15.3 17.8 6.9 0.3
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1 RTR 20.6 0.7 11.0 23.4 41.3 2.7 0.2
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2 FRAG 41.5 3.8 15.0 20.4 12.8 6.5 0.0
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1 DRR 31.7 1.0 0.2 18.3 41.8 6.9 0.1
CRC 25.0 10.0 15.0 10.0 25.0 15.0 0.0 TCP 37.2 5.2 12.5 20.5 16.4 7.1 1.3
FRAG 40.0 3.8 15.1 21.4 12.2 6.1 0.7 HPA 32.8 2.6 9.7 20.6 28.1 5.8 0.4
Avg. 33.2 9.5 10.8 16.2 19.3 8.9 2.2 Avg. 34.3 7.9 10.2 18.0 22.9 6.3 0.4

0

1

2

3

4

5

W
F

Q

R
E

D

S
S

LD

M
P

LS

M
T

C

A
E

S

M
D

5

D
H

C
R

C

F
R

A
G

C
A

S
T

Z
IP

R
E

E
D

JP
E

G

R
T

R

F
R

A
G

D
R

R

T
C

P

8K

16K

32K

64K

128K

(a) Instruction Cache Miss Rate (%) with varying cache size

0

5

10

15

20

25

W
F

Q

R
E

D

S
S

LD

M
P

LS

M
T

C

A
E

S

M
D

5

D
H

C
R

C

F
R

A
G

C
A

S
T

Z
IP

R
E

E
D

JP
E

G

R
T

R

F
R

A
G

D
R

R

T
C

P

8K

16K

32K

64K

128K

(b) Data Cache Miss Rate (%)with varying cache size

Figure 6. The Cache Performance

NpBench CommBench
(5.8)

NpBench CommBench

 21

6.0
7.0

9.7
7.8

6.7
8.3

2.8 2.3
3.3

5.4
3.6

5.8

8.5

5.9 5.2 5.3
7.0 7.6

0

2

4

6

8

10

W
F

Q

R
E

D

S
S

LD

M
P

LS

M
T

C

A
E

S

M
D

5

D
H

C
R

C
32

F
R

A
G

C
A

S
T

Z
IP

R
E

E
D

JP
E

G

R
T

R

F
R

A
G

D
R

R

T
C

P

(a) Available Parallelism with Limited Function Units of 10

749.6

19.8

7969.81036.011355.0

12.1 3.1
125.6

3.4
86.0

4.5 18.9

12413.0

96.5

793.0

83.0

1290.0

120.0

0

200

400

600

800

1000

W
F

Q

R
E

D

S
S

LD

M
P

LS

M
T

C

A
E

S

M
D

5

D
H

C
R

C
32

F
R

A
G

C
A

S
T

Z
IP

R
E

E
D

JP
E

G

R
T

R

F
R

A
G

D
R

R

T
C

P

(b) Available Parallelism with Unlimited Function Units

Figure 7. Available Parallelism

Compared to CommBench, the NpBench has similar percentage of ALU operations out of the total

instructions. However, branch operations are heavily used in NpBench control plane applications

(23.7%), followed by CommBench-HPA (20.6%), CommBench-PPA (15.3%) and NpBench data

plane applications (11.1%).

4.2.2. Cache Behavior

It is important to understand cache behavior of the NpBench applications. Cache performance for 2-

way set associative cache was evaluated with varying cache sizes. A line size of 32 bytes was

NpBench CommBench

NpBench CommBench

 22

commonly used for all cache configurations. Figure 6 shows the cache miss rates for NpBench

applications. If control plane processor is implemented with an integrated core within the NP, cache

sizes tend to be small because of area constraints. Most of NPs have 4K to 32K of cache sizes [31].

Most of the NpBench applications perform same operations with various inputs, explaining the

excellent instruction cache hit ratios. However, data cache performance of these applications,

especially for control plane, is poor for small cache sizes. The average miss ratios converge to 0.056%

for I-cache and 1.531% for D-cache with increasing cache sizes. Instruction cache sizes larger than

16KB marginally increase cache performance and same observations are made with data cache sizes

larger than 32KB. This implies 16KB and 32KB could be optimal I-cache and D-cache size for

NpBench application. As shown in Figure 6, the applications having control plane function show

more sensitivity on varying cache sizes. We also find that CommBench and NpBench show similar

trends in cache miss rates, for example, poor data cache behavior.

In general, each application can be implemented with one PE having its L1 cache within the PE

itself, and L2 cache of the network processor can be shared by several PEs. For reduction of L2

memory access latency, a few mechanisms are proposed [34].

4.2.3. Available ILP

We explore the instruction level parallelism of NpBench applications as a function of the inherent

data dependencies and data flow constraints with limited/unlimited number of functional units. If 10

functional units are allowed, available parallelism ranges from 2 to 9 as shown in Figure 7 (a).

NpBench control plane applications have more ILP (7.41 on an average) than NpBench data plane

applications (4.43), and the available parallelism of CommBench (6.14) is in the middle. When the

 23

number of function units are infinity, the difference of available ILP between control plane and data

plane applications are larger (NpBench control plane:4,226, NpBench data plane: 46,

CommBench:1,852) as shown in Figure 7 (b). From these results, we can see that control plane

operations have more opportunity to exploit aggressive ILP than data plane. Security applications

except for AES exhibit lower parallelism due to the need to perform encryption tasks. Since AES is a

block cipher algorithm, it shows relatively higher ILP than other security applications. Even though

the applications having control plane function have large amount of branch operations, they have

more execution parallelism, which means there exists a room to improve performance of control plane

processor with more parallel implementation. While most of NPs are implemented with several PEs

to exploit packet level parallelism (PLP) for data plane operations, they can exploit more instruction

level parallelism (ILP) within the PEs or control plane processors.

4.2.4. Required number of instructions per packet

Some control plane and data plane workloads, from NpBench (e.g., WFQ, RED) and CommBench

(e.g., DRR, FRAG), are used to get the required number of instructions per packet. These experiments

employ one million packets of data as each input. The required processing capability of control plane

is estimated at 180 to 32,000 instructions per packet, while data plane is from 330 to 440 (10,170 for

control plane and 380 for data plane on average). From the graph in Figure 8, we see that control

plane functions need larger processing capabilities, since their algorithms have higher complexity to

meet sophisticated network services. For example, WFQ has to estimate each packet’s finish-time and

then classify the incoming packet into different queues, in order to maintain fairness and support QoS.

This makes the algorithm more complex and the number of instructions larger. In contrast to that,

 24

FRAG performs relatively simple algorithm to split packets into multiple fragments, requiring less

processing capabilities.

As shown in Table 4, larger packet throughput is demanded for higher line rate. Assuming a stream

of minimum-sized packets of 64 bytes and one clock frequency for executing one instruction, packet

throughput of a 10 Gbps link is 19.5 million packets per second which means one packet is arrived

every 51.2 nanosecond. Given a single processor of 1 GHz clock frequency, it can execute only 51

instructions per one packet time. Since a single processor is not enough to cope up with wire speed

and handle the workload of those applications, current trend of NPs is to use single chip multi-

processors. Not only more parallelism, but also changes in instruction set architecture (ISA) with

sophisticated programmability, should be considered to increase the number of instructions per cycle.

0

2,000

4,000

6,000

8,000

10,000

WFQ RED SSLD MPLS FRAG DRR

Required Number of
Instructions per packet

Figure 8. Required number of instructions per packet

Table 4. Processing Capability of Single Processor according to Line Rates

Line rate
Throughput
(packets/s)

One
packet
time

Processor
clock

frequency

Allowable # of
instructions per one

packet time
500 MHz 256

1Gbps 1.95 M
512
ns 1 GHz 512

500 MHz 25
10 Gbps 19.5 M

51.2
ns 1 GHz 51

500 MHz 6
40 Gbps 78.12 M

12.8
ns 1 GHz 12

2,005

187

(32,335)

6,191

448 331

Control plane Data plane

 25

4.3. Architectural Implications

Since NPs would be used in routers over the network, an important issue to be considered in

designing NPs is the processing capability without slowdown of required wire speed. Based on the

characterization of NpBench, several issues are relevant while designing the network processor to

accomplish demanding performance and throughput.

To reduce the number of instructions per cycle, frequently used instruction pairs can be considered

as new instruction sets to accomplish higher throughput that can come up with the required number of

instruction per packet. In this case, hardware implementation without loss of overall performance can

be an important challenging issue.

When control plane processor is implemented with an integrated core within the NP, cache sizes

tend to be small. From the observation of cache behavior, data cache performance need to be

improved at smaller cache sizes. When several PEs are integrated on a single chip, the problems

including the shared memory problem also should be solved for network processors.

Several current network processors use packet level parallelism for data plane operations. However,

if large numbers of PEs are used, the processing time for each individual packet would be longer and

utilization ratio could be deteriorated [25]. Based on the analysis of available parallelism with

limited/unlimited function units, NP architectures can exploit more instruction level parallelism (ILP)

within the PEs or control plane processors.

 26

5. Conclusion

As the network environment is rapidly changing, network interfaces demand highly intelligent

traffic management in addition to the basic requirement of wire speed packet forwarding. Extracting

representative applications and characterizing network workloads is essential for designing network

processors and for evaluating their performance. Several vendors are releasing various network

processors in order to handle these demands, but they are primarily oriented for data plane functions.

Also, existing benchmark suites for the network processor primarily contain data plane workloads,

which perform packet processing for forwarding operations.

In this paper, we present a set of benchmarks, called NpBench, targeted towards control plane

workloads as well as data plane workloads. The characteristics of NpBench workloads such as

instruction mix, cache behavior, available parallelism and required processing capability per packet

are presented and compared with CommBench. We also discuss the architectural implications of

control plane workloads and the significance of additional parallelism to perform NP applications at

wire speed.

References

 [1] A. Nemirovsky, “Towards Characterizing Network Processors: Needs and Challenges,” Xstream logic,

white paper.

 [2] J. Williams, “Architectures for Network Processing,” IEEE International Symposium on VLSI

Technology, Systems, and Applications, 2001.

 [3] S. Keshav and R. Sharma, “Issues and Trends in Router Design,” IEEE Communications Magazines, May

1998.

 27

 [4] P. Crowley, M. E. Fiuczynski, J-L Baer and B. Bershad, “Workloads for Programmable Network

Interfaces,” In Workload Characterization for Computer System Design, Kluwer Academic Publishers, L.

John and A. Maynard, ISBN 0-7923-7777-x.

 [5] G. Memik, W. Mangione-smith and W. Hu, “NetBench: A Benchmarking Suite for Network Processors,”

ICCAD 2001.

 [6] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a Fair Queuing Algorithm,” In ACM

SIGCOMM, 1989.

 [7] D. Stiliadis and A. Varma, “Efficient Fair-queuing Algorithms for Packet-switched Networks,”

IEEE/ACM transactions on Networking, Apr. 1998.

 [8] T. M. Austin and G. S. Sohi, “TETRA: Evaluation of Serial Program Performance on Fine-grain Parallel

Processors,” University of Wisconsin Technical Report #1162, Jul. 1993.

 [9] T. Wolf and M. Franklin, “CommBench - A Telecommunications Benchmark for Network Processors,”

International Symposium on Performance Analysis of Systems and Software, Apr. 2000.

 [10] B. Branden, et al., “Recommendations on Queue Management and Congestion Avoidance in the

Internet,” IETF Internet Draft 1997.

 [11] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,” IEEE

Transactions on Networking, Vol.1, No. 4, Aug. 1993.

 [12] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan and D. Saha, “Design, Implementation and

Performance of a Content-Based Switch,” INFOCOM'00, Mar. 2000.

 [13] SSL Protocol version 3.0,

 http://wp.netscape.com/eng/ssl3/ssl-toc.html.

 [14] Multi Protocol Label Switching Architecture (RFC 3031)

 http://www.ietf.org/rfc/rfc3031.txt.

 [15] LDP Specification (RFC 3036), http://www.ietf.org/rfc/rfc3036.txt.

 [16] G. Armitage, “MPLS: The Magic Behind the Myths,” IEEE Communications Magazine, Jan. 2000.

 [17] X. Xiao and L. M. Ni, “Internet QoS: A Big Picture,” IEEE Network, Mar./Apr. 1999.

 [18] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten, “Technologies and Building

Blocks for Fast Packet Forwarding,” IEEE Communication Magazine, Jan. 2001.

 [19] B. Lee and L. John, “Implications of Programmable General Purpose Processors for Compression /

Encryption Applications,” IEEE 13th International Conference on Application-specific Systems,

Architectures and Processors, Jul. 2002.

 [20] Security Architecture for the Internet Protocol (RFC 2401)

 http://www.ietf.org/rfc/rfc2401.txt.

 28

 [21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown, “MiBench: A

Free, Commercially Representative Embedded Benchmark Suite,” In proceedings of the 4th annual IEEE

International Workshop on Workload Characterization, Dec. 2001.

 [22] R. F. Cmelik and D. Keppel, “Shade: A Fast Instruction-set Simulator for Execution Profiling,” SUN

Microsystems Inc., Technical Report SMLI TR-93-12, 1993.

 [23] W. Fang, “Building An Accounting Infrastructure for the Internet,” Princeton University Computer

Science Technical Report, TR-599-99, Mar. 1999.

 [24] Embedded Microprocessor Benchmarking Consortium,

 http://www.eembc.org.

 [25] H. Liu, "A Trace Driven Study of Packet Level Parallelism", Proc. International Conference on

Communications (ICC), 2002.

 [26] Intel IXP1200 Network Processor,

 http://www.intel.com/design/network/products/npfamily/

 ixp1200.htm.

 [27] C-Port Network Processors, http://e-www.motorola.com.

 [28] J. R. Smith, R. Mohan, C. Li, “Content-based Transcoding of Images in the Internet,” IEEE

Conference on Image Processing (ICIP-98), Oct. 1998.

 [29] R. Han and P. Bhagwat, et al, "Dynamic Adaptation in An Image Transcoding Proxy for Mobile Web

Browsing," IEEE Personal Communications Magazine, Dec. 1998.

 [30] The Electronic Design, Jul. 2000, http://www.elecdesign.com.

 [31] N. Shah, “Understanding Network Processors,” Master's thesis, University of California, Berkeley,

Sep. 2001.

 [32] NpBench Website, Laboratory for Computer Architecture (LCA), University of Texas at Austin,

 http://www.ece.utexas.edu/projects/ece/lca/npbench.

 [33] R. Datta, “Development and Characterization of MPLS Workloads,” UT at Austin, EE382M Project

Report, 2002.

 [34] G. Memik and W. H. Mangione-Smith, “Improving Power Efficiency of Multi-Core Network

Processors Through Data Filtering,” In Proc. of International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, Oct. 2002.

 [35] A. Heppel, “An Introduction to Network Processors,” Roke Manor Research Ltd., White paper, Jan.

2003.

Appendix. NpBench Descriptions

 30

 31

1. Traffic-management and QoS Group (TQG)

Overview

Congestion
Congestion is the phenomenon that occurs at a router when incoming packets arrive at a
rate faster than the router can switch them to an outgoing link. Two router algorithms for
congestion control: scheduling algorithms and queue management

100Mbps

100Mbps

100Mbps

34Mbps
Internet

Gateway Router

Router

Router

Router

• Scheduling algorithms determine which packet to send next and are used
primarily to manage the allocation of bandwidth among flows (e.g., WFQ)

• Queue management algorithms manage the length of packet queues by
dropping packets when necessary or appropriate (e.g., RED)

Content-based switch using session level information (e.g., URL)

Since layer 4 switches are content-blind, the servers in the cluster are either completely
replicated or share a common file system. Content-based switch taking into account
session level information(layer 5) makes it possible to partition the URL space among the
server node to balance load among the servers in the cluster.

Front-end node

Back-end nodes

 32

WFQ (Weighted Fair Queuing)

Description

WFQ (Weighted Fair Queuing) is a queuing algorithm (or, queue scheduling algorithm)
to serve packets in order of their finish-times considering the weight on connections.

 Fi(k,t) = max{Fi(k-1,t),R(t)} + Pi(k,t)/����(i)

 Fi(k,t): the finish number of packet k on connection i at time t
 R(t) : round number
 Pi(k,t) : the size of the k-th packet arriving on connection i at time t

 �(i) : the weight on connection I

From Traffic Transmit Queue

Classfier Scheduler

Input and command options

Two integer values: queue number and packet size
 - The number of queue can be defined in wfq.h (NUM_QUEUES)
- The values of packet size are randomly generated within some ranges

References

1. A. Demers, S. Keshav, and S. Shenker, "Analysis and Simulation of a Fair
Queueing Algorithm," In ACM SIGCOMM, 1989.

2. 2. D. Stiliadis and A. Varma, "Efficient fair-queuing algorithms for packet-
switched networks," IEEE/ACM transactions on Networking, April 1998.

3. Mukundan Sridharan, Praveen Kandikuppa, Sriram Chellappan, Pierre-Francois Quet,
Arjan Durresi, Hitay Ozbay, and Raj Jain, "A Congestion Control Algorithm based
on Router Load," Submitted to IEEE INFOCOM 2003, San Francisco, March 30-
April 3, 2003.

4. T. Wolf and M. Franklin, "CommBench – A Telecommunications Benchmark for
Network Processors", International Symposium on Performance Analysis of
Systems and Software, April 2000, pp. 154-162

 33

RED (Random Early Detection)

Description

In contrast to traditional queue management algorithm, which drops packets only when
the buffer is full, The RED(Random Early Detection) algorithm drops arriving packets
probabilistically.

From Traffic
Transmit Queue

Scheduler
(FIFO)

RED

Drop Test

Forw
ard

Drop

Input and command options

Two integer values: time interval between packets and packet size
 - Packets could be arrived at constant interval time. Sometimes, no packets could
 be arrived during some time. In RED algorithm, this situation could be considered
 to calculate average value of queue size
 - The values of packet size are randomly generated within some ranges.

References

1. Branden, et al., "Recommendations on Queue Management and Congestion
Avoidance in the Internet", March 25 1997 IETF Internet Draft

2. Sally Floyd and Van Jacobson, "Random Early Detection Gateways for
Congestion Avoidance," IEEE Transactions on Networking, Vol.1, No. 4, (Aug
1993), pp.397-413

3. Mukundan Sridharan, Praveen Kandikuppa, Sriram Chellappan, Pierre-Francois Quet,
Arjan Durresi, Hitay Ozbay, and Raj Jain, "A Congestion Control Algorithm based
on Router Load," Submitted to IEEE INFOCOM 2003, San Francisco, March 30-
April 3, 2003.

4. T. Wolf and M. Franklin, "CommBench – A Telecommunications Benchmark for
Network Processors", International Symposium on Performance Analysis of
Systems and Software, April 2000, pp. 154-162

For every packet arrival {
 Calculate avg_queue_size
 if (avg_queue_size > maxth)
 Drop the packet
 else if (minth < avg_queue_size < maxth) {
 Calculate the dropping probability Pa
 Drop the packet with probability Pa, Otherwise forward it
 }
 else
 Forward the packet
}

 34

SSL Dispatcher

Description

The SSL Dispatcher is one example of content-based switching mechanism. SSL
typically runs over TCP, which is used for secure processing of e-commerce applications.
Once TCP connection is established, the client and the server authenticate each other and
exchange session key. This phase is known as the SSL handshake and is computationally
heavy workloads as it typically involves public key cryptography. Based on the session
ID, it decides which server node has session state corresponding to this session. The SSL
Dispatcher maintains the session ID information, sharing the SSL information among the
nodes in cluster. When reconnecting to the same server, a client can reuse the session
state established during a previous handshake.

SSL Dispatcher
Server
Cluster

Client network

Client network

Input and command options

Session ID: 32 bytes of data randomly generated.
 (When generating input data, reusability of the session_id is considered.
 10% of resuability factor is included in this release.)

References

1. G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, D. Saha, "Design,
Implementation and Performance of a Content-Based Switch," INFOCOM’00,
Tel Aviv, March 2000

2. SSL protocol version 3.0, http://wp.netscape.com/eng/ssl3/ssl-toc.html

 35

MPLS (Multi Protocol Label Switching)

Description

MPLS is a forwarding technology, which does away with the lookup of bulky IP headers
and uses short labels for forwarding at the edge of the MPLS domain as shown in Figure
5. In this version of NpBench we concentrate on two control plane aspects of MPLS:
Label Distribution and Label Generation. Two functions are extracted from MPLS,
namely an upstream routing function (for an ingress edge router or a core router) and a
downstream routing function (for a core router or an egress router).

(Ingress) edge label
switching router

(Egress) edge label
switching router

Core label
switching router

Existing routing
protocol(OSPF, IS-IS)

LDP(Label Distribution
Protocol)

Input and command options

FEC_id: A integer value
 - The values of Forwarding Equivalence Class id are randomly generated within some
 ranges.

References

1. Multi Protocol Label Switching Architecture (RFC 3031)
 http://www.ietf.org/rfc/rfc3031.txt
2. LDP Specification (RFC 3036), http://www.ietf.org/rfc/rfc3036.txt
3. G. Armitage, “MPLS: The Magic Behind the Myths,” IEEE Communications

Magazine, Jan. 2000
4. X. Xiao and L. M. Ni, “Internet QoS: A Big Picture,” IEEE Network, Mar./Apr.

1999

 36

2. Security and Media processing Group (SMG)

Overview

As the e-commerce industry has grown, the security and the accounting applications
such as firewall application, admission control, encryption applications and usage based
accounting, have become an emerging workload. With higher bandwidth, the demand for
high quality of multimedia service is increased. Data stream manipulation, media
transcoding, H.323 and several encoding applications can be important issues of NP,
associated with QoS. For security benchmarks, three components of IPSec –
Authentication Header (AH), Encapsulating Security Payload (ESP) and key
management – are included in SMG.

IPSec (IP Security)

 IPSec provides security services at the IP layer by enabling a system to select required
security protocols, determine the algorithm(s) to use for the service(s), and put in place
any cryptographic keys required to provide the requested services. IPSec uses two
protocols to provide traffic security - Authentication Header (AH) and Encapsulating
Security Payload (ESP). Both AH and ESP are vehicles for access control, based on the
distribution of cryptographic keys and the management of traffic flows relative to these
security protocols

• AH(Authentication Header)

 AH is a mechanism for providing strong integrity and authentication of IP datagram.
Authentication guarantees that the data received is the same as the data that was sent and
that the claimed sender is in fact the actual sender. Integrity means that we are sure the
transmitted data has arrived at destination without undetected altercation.

 � Application: MD5, SHA

• ESP (Encapsulating Security Payload)

 Confidentiality is the property of communicating such that the intended recipients
know what was being sent, but unintended parties cannot determine it. A mechanism
commonly used for providing confidentiality is called encryption. IPSec provides
confidentiality services through ESP(Encapsulating Security Payload) which can provide
data origin authentication, connectionless integrity, and anti-replay service (a form of
partial sequence integrity)

 � Application: DES, 3DES, RC5, IDEA, 3IDEA, cast, blowfish

• Key management

 Key management is the determination and distribution of secret keys. Four keys for
each pair of communication endpoints: transmit and receive with AH and transmit and
receive with ESP

 � Application: Diffie-Hellman secret key exchange protocols

 37

MTC (Media TransCoding)

Description

MTC is a process in which a data object in one representation is converted into another
representation. In order to accommodate the wide spectrum of client capabilities, the
media data is modified along the dimensions, fidelity, and resolution.

Transcoding Policy Decision Module
bandwidth, hardware capability, user preferences, etc.

Transformation Module
text modification, actual transcoding

(decode & compress)

Content
Server

Client

Transcoding Proxy

Input and command options

Eight unsigned char values are randomly generated.

 Input type Data range

 data_size [1, 255]
 data_type [0, 6]
 data_purpose [0, 7]
 client_black_and_white [0, 2]
 client_display_size [0, 2]
 client_display_color [0, 2]
 client_user_enhance [0, 4]
 client_user_contrast [0, 3]

References

1. J. R. Smith, R. Mohan, C. Li, “Content-based Transcoding of Images in the Internet,”
IEEE Conference on Image Processing (ICIP-98), Oct. 1998.

2. R. Han and P. Bhagwat, et al, "Dynamic Adaptation in An Image Transcoding Proxy
for Mobile Web Browsing," IEEE Personal Communications Magazine, Dec. 1998.

 38

AES (Advanced Encryption Standard)

Description

AES Advanced Encryption Standard (RijnDael) is a block cipher that encrypts and
decrypts 128, 192 and 256 bit blocks, which is a U.S. government standard for encryption
and digital signature. It is used for implementation of ESP in IPSec.

Input and command options

Any kind of data to be processed in the network application

References

1. Security Architecture for the Internet Protocol (RFC 2401)
 http://www.ietf.org/rfc/rfc2401.txt.
2. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,

“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,”
In proceedings of the 4th annual IEEE International Workshop on Workload
Characterization, Dec. 2001.

Basics of Rijndael / AES

 -Designed by Joan Daemen & Vincent Rijmen (both of Belgium)
 -Block cipher, Symmetric key
 -Fast and scalable, Resistant to all known cryptanalysis attacks
 -Decryption is 30% slower than encryption (inverse matrix more complicated)

Inside Rijndael

 -Rijndael is a block cipher that encrypts and decrypts 128, 192 and 256 bits blocks
 (4 x Nb), using 128, 192 and 256 bits keys (4 x Nk) in any combination.
 -The block is considered to be structured as 4, 6 or 8 columns of 4 bytes, depending on
 block size
 -The basic operations applied to the block
 .KeyAddition: XORing each byte with a round key
 .Substitution: Applying an S-box (substituting each byte with another)
 .ShiftRow: Shifting the rows in a circular way, the amount of shift (0,1,2,3 or 4 bytes)
 depending on the position from the top and on the block size
 .MixColumn: Mixing the 4, 6 or 8 columns vertically by taking invertible linear
 combinations (Matrix multiplications)

 39

MD5 (Message Digestion)

Description

MD5 algorithm takes a message of arbitrary length as an input and produces a 128-bit
“fingerprint” or “message digest” as an output. MD5 is a method to verify data integrity
and is more reliable than checksum method. It is used to perform AH in IPSec.

An algorithm created in 1991 by Professor Ronald Rivest that is used to create digital
signatures. It is intended for use with 32 bit machines and is safer than the MD4
algorithm, which has been broken. MD5 is a one-way hash function, meaning that it takes
a message and converts it into a fixed string of digits, also called a message digest.

When using a one-way hash function, one can compare a calculated message digest
against the message digest that is decrypted with a public key to verify that the message
hasn't been tampered with. This comparison is called a "hashcheck."

Input and command options

Any kind of data to be processed in the network application

References

1. Security Architecture for the Internet Protocol (RFC 2401)
 http://www.ietf.org/rfc/rfc2401.txt.

2. G. Memik, W. Mangione-smith and W. Hu, “NetBench: A Benchmarking Suite for
Network Processors,” ICCAD 2001.

 40

DH (Diffie-Hellman)

Description

DH key exchange allows two parties who have not met, to exchange keys securely on an
unsecured communication path. Typically DH is used to exchange a randomly generated
conventional encryption key, the rest of the exchange is then encrypted with the
conventional cipher. It is applied to the function of key management in IPSec.

Diffie-Hellman key exchange allows two parties who have not met to exchange keys
securely on an unsecure communication path. Typically D-H is used to exchange a
randomly generated conventional encryption key, the rest of the exchange is then
encrypted with the conventional cipher. It has been used with DES, 3DES, IDEA, RC4
though basically the approach of using D-H key exchange can be used for any
conventional stream or block cipher. PGP itself operates in a similar fashion, except that
PGP uses RSA for key exchange, and IDEA as the conventional cipher.

Input and command options

Number of key exchanges and Number of key length

References

1. Security Architecture for the Internet Protocol (RFC 2401)
 http://www.ietf.org/rfc/rfc2401.txt.
2. G. Memik, W. Mangione-smith and W. Hu, “NetBench: A Benchmarking Suite for

Network Processors,” ICCAD 2001.

 41

3. Packet Processing Group (PPG)

Packet processing group includes IP packet fragmentation, packet marking, editing and
classification. Most applications are data plane processing.

FRAG (Packet Fragmentation)

Description

FRAG is a packet fragmentation application. IP packets are split into multiple fragments
for which some header fields have to be adjusted and a header checksum computed.

Input and command options

unsigned char ip_v_hl; /* version and header length */
unsigned char ip_tos; /* type of service */
unsigned short ip_len; /* total length */
unsigned short ip_id; /* identification */
unsigned short ip_off; /* fragment offset field */
unsigned char ip_ttl; /* time to live */
unsigned char ip_p; /* protocol */
unsigned short ip_sum; /* checksum */
unsigned int ip_src, ip_dst; /* source and dest address */

References

1. T. Wolf and M. Franklin, “CommBench - A Telecommunications Benchmark for
Network Processors,” International Symposium on Performance Analysis of
Systems and Software, Apr. 2000.

CRC (Cyclic Redundancy Check)

Description

CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check is used in Ethernet
and ATM Adaptation Layer 5 (AAL-5) checksum calculation.

Input and command options

Any kind of data to be processed in the network application

References

1. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,”
In proceedings of the 4th annual IEEE International Workshop on Workload
Characterization, Dec. 2001.

