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Abstract 

Modern network interfaces demand highly intelligent traffic management in addition to the basic 

requirement of wire speed packet forwarding. Several vendors are releasing network processors in 

order to handle these demands. Network workloads can be classified into data plane and control 

plane workloads, however most network processors are optimized for data plane. Also, existing 

benchmark suites for network processors primarily contain data plane workloads, which perform 

packet processing for a forwarding function. 

In this paper, we present a set of benchmarks, called NpBench, targeted towards control plane (e.g., 

traffic management, quality of service, etc.) as well as data plane workloads. The characteristics of 

NpBench workloads, such as instruction mix, parallelism, cache behavior and required processing 

capability per packet, are presented and compared with CommBench, an existing network processor 

benchmark suite [9]. We also discuss the architectural characteristics of the benchmarks having 

control plane functions, their implications to designing network processors and the significance of 

Instruction Level Parallelism (ILP) in network processors. 
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1. Introduction 

As Internet and network technologies have grown and evolved exponentially, the requirements of 

network interfaces have become more complex and diverse. Various applications and protocols 

require more intelligent processing over the network. To keep up with current trends of emerging 

network applications, programmable microprocessors called network processors (NP) are introduced 

in network interfaces to handle the demands of modern network applications. Several vendors are 

releasing various network processors having different architectural features to meet the demands of 

network application workloads. 

The bottleneck in communication networks is not just due to bandwidth anymore. Ability to provide 

flexible processing capability in order to support several emerging applications and meet their heavy 

processing workloads is equally important [1]. Major challenges for high bandwidth have reached 

tremendous advances from optical network approaches, a solution to bandwidth-centric bottleneck – 

currently 10Gbps (OC-192) at core router exists and 40Gbps (OC-768) is now starting to emerge. 

More complex protocols and various network services (e.g., Quality of Service, IPSec, IPv6, etc.) 

require significant processing power for highly intelligent applications; so the bottleneck of 

communication network has moved to the network nodes, in addition to the high bandwidth 

requirement. Accordingly, extracting representative benchmarks in several emerging network 

applications and characterizing their properties are essential for designing network processors and 

evaluating their performance. 

While GPPs (General Purpose Processors) are flexible to rapidly developing network applications 

and protocols, they do not provide enough performance to process data at wire rates. For example, 

packet throughput of a 10Gbps link is 19.5 million packets per second, assuming a stream of 

minimum-sized packets of 64 bytes. Given a single processor of 1 GHz clock frequency, it can 
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execute only 51 instructions per one packet time. Considering the required number of instructions for 

executing NP applications (Section 4.2.4), single processor is not enough to accomplish it. Highly 

parallel architectures are required to handle these workloads. Dedicated ASPs (Application Specific 

Processors) are designed to process packets at wire rates but are not allowed to add or change the 

features in order to support new environments. As shown in Figure 1, the network processor that 

exists at the middle points between GPPs and dedicated ASPs is a programmable processor or an 

instruction-set processor specialized for a particular application domain. 

NP applications can be functionally categorized into two types of operations: data plane operations 

and control plane operations. The data plane performs packet operations such as forwarding packets. 

The control plane handles flow management, signaling, higher-level protocol and other control tasks 

[2]. Over the past few years, several vendors have been releasing NPs having a number of different 

architectures, but most of them are optimized for throughputs mostly in data plane. Also, existing 

benchmark suites for network processors primarily contain data plane workloads, which perform 

packet processing for a forwarding function. Although NPs have initially been targeted for data plane 

applications, they also play a major role in the control plane. In fact, with the increased demand for 

complex processing, the boundaries between data plane and control plane have become blurred [1]. 

The recent trend is that some control plane activities, such as TCP and SSL applications, are being 

considered as a commodity. Since there are a lot of control mechanisms in TCP, it cannot be easily 

converted into an ASIC (Application Specific Integrated Circuit) and it has mostly been left to 

software solutions. From the above discussion, it is clear that control plane applications should be 

included in NP benchmarks. 
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Figure 1. Network Processor 

 
 

In this paper, we categorize modern NP applications into three functional groups: traffic-

management and quality of service group (TQG), security and media processing group (SMG), and 

packet processing group (PPG). Every application of each group can be sorted to either a control 

plane application or a data plane application, or both. Based on these functional groups, we present a 

set of benchmarks, called NpBench, for control plane and data plane applications of modern network 

processors. The characteristics of NpBench workloads such as instruction mix, available parallelism, 

cache behavior and required number of instructions per packet are presented and compared with 

CommBench. We also discuss the architectural implications of the control plane benchmarks and 

their impact on designing NPs. 

The rest of the paper is organized as follows. Section 2 provides background and related work on 

NPs and previously proposed benchmarks. Section 3 presents the applications in the proposed 

NpBench suites. In section 4, we present the application characteristics of benchmarks and discuss 

their implications. We conclude the paper in section 5 with an overview of functionality required for 

network processors of the next generation. 

 



 9

2. Background and Related Work 

Current network bottleneck has moved from network bandwidth to the network node, where data 

traffic is intercepted or forwarded. Network processors can be used in various node positions over the 

network, such as core, edge and access routers. Core routers (10 Gbps rate) are placed in the middle of 

the network, so they are critical for performance and least responsive to flexibility. Edge routers are 

placed in between core and access devices, requiring medium data rate (2.5 Gbps) and a certain 

amount of flexibility. URL load balancers and firewalls are examples of edge router functions. Access 

routers (1 Gbps) provide network access to various devices. Most of their functions are related to 

aggregating and forwarding numerous traffic streams through the network [31]. 

The conventional applications of network interfaces mainly consist of packet processing and 

classification algorithms. However, modern roles of such an interface includes congestion control, 

network security, accounting, network address/protocol translations, load balancing and media 

transcoding. The processing capability of these emerging workloads must be at a level equivalent to 

the speed of the network. As a solution to this problem, many NP vendors use the concept of packet-

level parallelism (PLP) to satisfy high-performance demands of networks. In fact, various companies 

use parallel architectures such as single chip multiple processor or fine-grain multithreaded processors 

to meet the packet-level parallelism [4]. 

Due to the variety of application spaces being addressed by network processors, there could be a 

wide range of NP architectures and implementations. For the enterprise service, several companies 

developed RISC-based NP with ASIC blocks for networking functions such as IXP 1200/2000 series 

by Intel [26], CXE-16 by Switchcore, CS2000 by Chameleon etc. For the high-end service, Motorola 

(C-port) [27], Lucent (FPP/RSP), EZChip (NP-1) and Vitesse/ Sitera(IQ2000) have used network-

specific ASICs with the features of network classifying, QoS, etc. Some companies like Chrysalis-
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ITS, Alliance, NetLogic developed co-processors with the functions such as routing table, 

classification or cryptography [30]. 

Most of NP architectures employ multiple processing engines (PE), even though they each have 

different names such as micro engine, channel processor or task optimized processor. Some are based 

on RISC cores having their PEs arranged in parallel or in a pipelined fashion. Another alternative is 

the VLIW based architecture [31]. Many RISC based NPs employ multithreading on their PEs to 

maximize the performance. To ensure fast context switching between tasks, the NP should have 

hardware support for multithreading. Figure 2 shows an overall architecture of typical network 

processor. In general, control and management functions have more complex processing requirements 

than data functions. GPPs have been used as control processors in commercial network products. 

Many NPs provide the function of control processor with an integrated core or externally via a host 

interface [35]. In this paper, we show that GPPs do not have enough processing capability to come up 

with increased demand for complex processing and higher data rates. 

Benchmarks are an important issue in the design and evaluation of a processor. In NP fields, there 

are two benchmarks which were previously proposed: CommBench [9] and NetBench [5]. Wolf et. al. 

[9] present eight selected workloads called CommBench for traditional routers and active routers. 

CommBench has two groups of benchmarks namely Header Processing Applications  (HPA) and 

Payload Processing Applications (PPA). Memik et. al. [5] proposed nine benchmarks called 

NetBench for micro-level, IP-level and application-level benchmarks. Nemirovsky [1] also discusses 

the guidelines for defining benchmarks and challenges of benchmark suites for network processors. 

He suggests that the benchmark should have two frameworks such as a task-specific benchmark 

focusing on a single algorithm or protocol and a rich-scenario benchmark containing the complexity 
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of real-life applications. EEMBC [24] and MiBench [21] have some network applications, but they 

only have routing and encryption applications. 
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Figure 2. Overall Architecture of NP 
 
 

Previously proposed benchmarks are mainly focused on data plane workloads. While the 

benchmarks of data plane applications have been reasonably well understood, there has been very 

little effort in designing control plane workloads that perform congestion control, flow management, 

higher-level protocols and other control tasks. Control plane workloads are just emerging and 

evolving in current network environments. The NpBench suite presented in this paper, is developed at 

the University of Texas in a project supported by Motorola. The suite includes several applications 

having control plane functions. 

3. Overview of NpBench 

This section presents the NpBench, a benchmark suite in the domain of the NP workloads. A 

benchmark suite should be representative of the domain of the application which it is going to be used 

for. We categorize network applications into three functional groups: traffic-management and quality 
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of service group (TQG), security and media processing group (SMG), and packet processing group 

(PPG). This categorization is presented in Table 1. We choose ten representative applications from 

the functional groups for the first version of NpBench suite as shown in Table 2. The suite includes 

several control plane functions as they are missing from the available NP workloads.  

We implement some of these selected applications to form the current release of the NpBench suite 

and the rest of them are referred from open source code site or other benchmarks [5][9][21]. The C 

code for the benchmarks is available on request [32]. 

 

3.1. Traffic-management and QoS Group (TQG) 

TQG has a set of applications related to routing, scheduling, queuing, switching, signaling and 

quality of services. These applications contain both control plane processing and data plane 

processing. The first two benchmarks, WFQ and RED are the solutions of congestion control 

algorithms. In general, congestion occurs at a router when incoming packets arrive at a rate faster than 

the rate the router can switch them to an outgoing link. The two representative algorithms for 

congestion control are the scheduling algorithm and the queue management algorithm [10]. The 

scheduling algorithm determines which packet to be sent next and is used primarily to manage the 

allocation of bandwidth among flows (e.g., weighted fair queuing). According to the IETF (Internet 

Engineering Task Force) recommendation [10], the default mechanism for managing queue lengths to 

meet these goals in FIFO queues is the RED algorithm. SSLD is a content-based switching algorithm 

and MPLS is a technology used for quick forwarding of packets across backbones. 
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Table 1. Functional Grouping of Network Processor Workloads 

Group Applications 
Data 
Plane 

Control 
Plane 

Routing X X 
Scheduling X X 

Content-based switching X X 
Weighted fair queuing X X 

Traffic shaping X X 
Load balancing X X 

VLAN  X 
MPLS X X 
RSVP X X 

DiffServ X X 

TQG 
(Traffic-

management and 
Quality- 

of-Service Group) 

IntServ X X 
Block cipher algorithm X  

Message digest algorithm X  
Firewall application X X 

IPSec X X 
Virtual private network X X 

Public encryption X  
Usage-based accounting [23] X X 

H.323 X  
Media transcoding X X 

SMG 
(Security and 

Media Processing 
Group) 

Duplicate data suppression X  
IP-packet fragmentation X  

Packet encapsulation X  
Packet marking/editing X  

Packet classification X  

PPG 
(Packet Processing  

Group) 
Checksum calculation X  

 
 

WFQ (Weighted Fair Queuing): WFQ [6-8][18] is a queue-scheduling algorithm to serve packets in 

order of their finish-times considering the weight on connections. As shown in Figure 3, various 

lengths of packets from incoming traffic are classified into different queues, which can be used for 

differential service. And they are scheduled by a specific mechanism that determines packets to be 

sent from the queues. WFQ uses each packet's estimated finish-time to decide packets to be sent. 
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Figure 3. WFQ (Weighted Fair Queuing) 

 
 

Table2. Descriptions of the NpBench Suite 

Group 
Applicatio

n 
Description 

WFQ Weighted Fair Queuing is a queue scheduling algorithm 

RED 
Random Early Detection is an active queue management algorithm which 
drops arriving packets probabilistically 

SSLD 
Secure Sockets Layer Dispatcher is an example of content-based switching 
mechanism 

TQG 

MPLS 
Multi Protocol Layer Switching is a forwarding technology using short 
labels 

MTC 
Media Transcoding is the process that a media object in one representation 
is converted into another representation for wide spectrum of client types 

AES 
Advanced Encryption Standard (RijnDael) is a block cipher that encrypts 
and decrypts 128, 192 and 256 bits blocks 

MD5 
Message Digestion algorithm takes as input a message of arbitrary length 
and produces as output a 128-bit fingerprint or message digest of the input 

SMG 

DH 
Diffie-Hellman key exchange allows two parties who have not met to 
exchange keys securely on an unsecure communication path 

FRAG FRAG is a packet fragmentation application 
PPG 

CRC 
Cyclic Redundancy Check is used in Ethernet and ATM Adaptation Layer 5 
(AAL-5) checksum calculation 

 
 

RED (Random Early Detection): RED [10][11][18] is an active queue management algorithm for 

routers. In contrast to the traditional queue management algorithm, which drops packets only when 

the buffer is full, the RED algorithm drops arriving packets probabilistically before coming into the 
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queue. The decision of whether or not to drop an incoming packet is based on the estimation of the 

average queue size. 
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Figure 4. RED (Random Early Detection) 

 

SSLD (SSL Dispatcher): SSLD [12][13] is one example of content-based switching mechanism in 

the server and client cluster environments. SSL typically runs over TCP (Transmission Control 

Protocol), which is used for secure processing of e-commerce applications. Once TCP connection is 

established, SSLD maintains the session ID information during authentication process, sharing the 

SSL information among the nodes in cluster. When reconnecting to the same server, a client can reuse 

the session state established during a previous SSL handshake which makes the workloads 

computationally heavy. 

 

MPLS (Multi Protocol Label Switching): MPLS [14-17][33] is a forwarding technology, which 

eliminates the lookup of bulky IP headers and uses short labels for forwarding at the edge of the 

MPLS domain as shown in Figure 5. In this version of NpBench we concentrate on two control plane 

aspects of MPLS: Label Distribution and Label Generation. Two functions are extracted from MPLS, 
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namely an upstream routing function (for an ingress edge router or a core router) and a downstream 

routing function (for a core router or an egress router).  

 

3.2. Security and Media processing Group (SMG)  

As the e-commerce industry has grown, security and accounting applications such as firewalls, 

admission control, encryption applications and usage based accounting, have become very common. 

With higher bandwidth, the demand for high quality multimedia service has also increased. Data 

stream manipulation, media transcoding, H.323 and several encoding applications [19] can be 

important issues of NP, associated with QoS. For security benchmarks, three components of IPSec 

[20] – Authentication Header (AH), Encapsulating Security Payload (ESP) and key management – are 

included in the SMG subgroup of NpBench. 
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Figure 5. MPLS (Multi Protocol Label Switching) 
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MTC (Media TransCoding): Media Transcoding [28][29] is a process in which a data object in one 

representation is converted into another representation. In order to accommodate the wide spectrum of 

client capabilities, the media data is modified along the dimensions, fidelity, and resolution. 

 

AES (Advanced Encryption Standard): Advanced Encryption Standard (RijnDael) [21] is a block 

cipher that encrypts and decrypts 128, 192 and 256 bit blocks, which is a U.S. government standard 

for encryption and digital signature. It is used for implementation of ESP in IPSec. 

 

MD5 (Message Digestion): MD5 algorithm [5] takes a message of arbitrary length as an input and 

produces a 128-bit “fingerprint” or “message digest” as an output. MD5 is a method to verify data 

integrity and is more reliable than checksum method. It is used to perform AH in IPSec. 

 

DH (Diffie-Hellman): Diffie-Hellman [5] key exchange allows two parties who have not met, to 

exchange keys securely on an unsecured communication path. Typically DH is used to exchange a 

randomly generated conventional encryption key, the rest of the exchange is then encrypted with the 

conventional cipher. It is used in key management in IPSec. 

 

3.3. Packet Processing Group (PPG) 

Packet processing group includes IP packet fragmentation, packet marking, editing and 

classification. Most applications are data plane processing. 

 

FRAG (Packet Fragmentation): FRAG [9] is a packet fragmentation application. IP packets are split 

into multiple fragments for which some header fields have to be adjusted and a header checksum 

computed. 
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CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check [21] is used in Ethernet and 

ATM Adaptation Layer 5 (AAL-5) checksum calculation. 

 

4. Implementation and Characterization of NpBench 

4.1. Implementation and Experimental Methodology 

We develop NpBench control-plane functions at the application level using C language and refer 

most of the data-plane functions from open source code or other benchmarks [5][9][21]. The MPLS 

benchmark is based on effort by Datta [33]. We used the SUN Shade binary instrumentation tool [22] 

to obtain the dynamic traces while executing NpBench applications. We also use cachesim5, a cache 

analyzer tool of SUN Shade [22], to perform cache simulation and Tetra [8] to get available 

parallelism with constraints. 

We utilize randomly generated input packets for the characterization of the benchmark. For TQG, 

WFQ uses packet size and queue information as an input. RED uses incoming packet size and average 

queue size to decide whether the packet is to be dropped or put in the FIFO queue. The clientHello 

message and serverHello message of the SSL protocol [13] are used with randomly generated session 

ID information for the SSLD experiments. The values of FEC (Forwarding Equivalence Class) 

identification numbers are used as input for the MPLS functions. The RED implementation allows an 

option of congestion environment, which is controlled by transmission rate of the queue. The SSLD 

inputs can be different session IDs with different reusability factors. In SMG, MTC can be separated 

into two components which are policy modules to get adaptive transcoding policies and 

transformation modules to perform real transcoding. The policy decision module can be executed 
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independently with an execution option. AES can use any files as an input data and MD5 can make a 

fingerprint of any files or strings for the input. DH generates and exchanges any given number of 

Diffie-Hellman key pairs. FRAG and CRC employ randomly generated IP header as an input data. 

Under the above simulated network environments, the characteristic of NpBench is investigated. 

 

4.2. Benchmark Characteristics 

In this section, we present the experimental results on instruction distribution, cache behavior and 

parallelism of the NpBench. These metrics are essential information for understanding dynamic 

characteristics of the application and for designing the processor architecture. We also explore the 

required number of instructions to process one packet data, assuming a minimum-sized packet of 64 

bytes. 

 

4.2.1. Instruction Mix 

In these experiments, we investigate the number of instructions in the NpBench applications. Table 

3 shows the dynamic instruction mix during execution. From this workload distribution, we can 

observe that computational operations occupy a significant share of the total instruction mix (53% on 

the average). Branch operations (branch, jump and call) are heavily used in the applications having 

control plane functions (23.7%) such as WFQ, SSLD and MPLS, for finding fair conditions of each 

packet, looking up session reuse conditions of each session request and investigating same forwarding 

equivalence class respectively. Data plane functions have relatively small percentage of branch 

operations (11.1%). 

Since the data plane application is to handle more packet data and coefficients for performing the 

algorithm within payload processing, we observe that the data plane application uses more load and 

store operations (31.2% on average) than the applications having control plane functions (23.5%). In 
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the case of SSLD, as the reusability factor used in SSLD increases, we see that the required 

computation workloads for new session request could be avoided and the required number of 

instructions could be reduced. 

Table 3. Instruction Mix 
 

NpBench CommBench 
App. int/float shift logic branch load store etc App. int/float shift logic branch load store etc 
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3 CAST 25.4 17.0 20.4 8.9 20.4 7.4 0.5 
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0 ZIP 34.0 8.0 12.4 20.2 19.4 5.6 0.4 
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0 REED 40.2 11.7 7.1 21.4 14.7 4.9 0.0 
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3 JPEG 43.8 16.1 2.7 10.8 16.5 9.7 0.3 
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9 PPA 35.8 13.2 10.7 15.3 17.8 6.9 0.3 
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1 RTR 20.6 0.7 11.0 23.4 41.3 2.7 0.2 
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2 FRAG 41.5 3.8 15.0 20.4 12.8 6.5 0.0 
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1 DRR 31.7 1.0 0.2 18.3 41.8 6.9 0.1 
CRC 25.0 10.0 15.0 10.0 25.0 15.0 0.0 TCP 37.2 5.2 12.5 20.5 16.4 7.1 1.3 
FRAG 40.0 3.8 15.1 21.4 12.2 6.1 0.7 HPA 32.8 2.6 9.7 20.6 28.1 5.8 0.4 
Avg. 33.2 9.5 10.8 16.2 19.3 8.9 2.2 Avg. 34.3 7.9 10.2 18.0 22.9 6.3 0.4 
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(a) Instruction Cache Miss Rate (%) with varying cache size 
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(b) Data Cache Miss Rate (%)with varying cache size 

 
Figure 6. The Cache Performance 
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(b) Available Parallelism with Unlimited Function Units 

 
 

Figure 7. Available Parallelism 
 
 

Compared to CommBench, the NpBench has similar percentage of ALU operations out of the total 

instructions. However, branch operations are heavily used in NpBench control plane applications 

(23.7%), followed by CommBench-HPA (20.6%), CommBench-PPA (15.3%) and NpBench data 

plane applications (11.1%). 

 

4.2.2. Cache Behavior 

 

It is important to understand cache behavior of the NpBench applications. Cache performance for 2-

way set associative cache was evaluated with varying cache sizes. A line size of 32 bytes was 

NpBench CommBench 

NpBench CommBench 
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commonly used for all cache configurations. Figure 6 shows the cache miss rates for NpBench 

applications. If control plane processor is implemented with an integrated core within the NP, cache 

sizes tend to be small because of area constraints. Most of NPs have 4K to 32K of cache sizes [31]. 

Most of the NpBench applications perform same operations with various inputs, explaining the 

excellent instruction cache hit ratios. However, data cache performance of these applications, 

especially for control plane, is poor for small cache sizes. The average miss ratios converge to 0.056% 

for I-cache and 1.531% for D-cache with increasing cache sizes. Instruction cache sizes larger than 

16KB marginally increase cache performance and same observations are made with data cache sizes 

larger than 32KB. This implies 16KB and 32KB could be optimal I-cache and D-cache size for 

NpBench application. As shown in Figure 6, the applications having control plane function show 

more sensitivity on varying cache sizes. We also find that CommBench and NpBench show similar 

trends in cache miss rates, for example, poor data cache behavior. 

In general, each application can be implemented with one PE having its L1 cache within the PE 

itself, and L2 cache of the network processor can be shared by several PEs. For reduction of L2 

memory access latency, a few mechanisms are proposed [34]. 

 

4.2.3. Available ILP 

 

We explore the instruction level parallelism of NpBench applications as a function of the inherent 

data dependencies and data flow constraints with limited/unlimited number of functional units. If 10 

functional units are allowed, available parallelism ranges from 2 to 9 as shown in Figure 7 (a). 

NpBench control plane applications have more ILP (7.41 on an average) than NpBench data plane 

applications (4.43), and the available parallelism of CommBench (6.14) is in the middle. When the 
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number of function units are infinity, the difference of available ILP between control plane and data 

plane applications are larger (NpBench control plane:4,226, NpBench data plane: 46, 

CommBench:1,852) as shown in Figure 7 (b). From these results, we can see that control plane 

operations have more opportunity to exploit aggressive ILP than data plane. Security applications 

except for AES exhibit lower parallelism due to the need to perform encryption tasks. Since AES is a 

block cipher algorithm, it shows relatively higher ILP than other security applications. Even though 

the applications having control plane function have large amount of branch operations, they have 

more execution parallelism, which means there exists a room to improve performance of control plane 

processor with more parallel implementation. While most of NPs are implemented with several PEs 

to exploit packet level parallelism (PLP) for data plane operations, they can exploit more instruction 

level parallelism (ILP) within the PEs or control plane processors. 

 

4.2.4. Required number of instructions per packet 

 

Some control plane and data plane workloads, from NpBench (e.g., WFQ, RED) and CommBench 

(e.g., DRR, FRAG), are used to get the required number of instructions per packet. These experiments 

employ one million packets of data as each input. The required processing capability of control plane 

is estimated at 180 to 32,000 instructions per packet, while data plane is from 330 to 440 (10,170 for 

control plane and 380 for data plane on average). From the graph in Figure 8, we see that control 

plane functions need larger processing capabilities, since their algorithms have higher complexity to 

meet sophisticated network services. For example, WFQ has to estimate each packet’s finish-time and 

then classify the incoming packet into different queues, in order to maintain fairness and support QoS. 

This makes the algorithm more complex and the number of instructions larger. In contrast to that, 
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FRAG performs relatively simple algorithm to split packets into multiple fragments, requiring less 

processing capabilities. 

As shown in Table 4, larger packet throughput is demanded for higher line rate. Assuming a stream 

of minimum-sized packets of 64 bytes and one clock frequency for executing one instruction, packet 

throughput of a 10 Gbps link is 19.5 million packets per second which means one packet is arrived 

every 51.2 nanosecond. Given a single processor of 1 GHz clock frequency, it can execute only 51 

instructions per one packet time. Since a single processor is not enough to cope up with wire speed 

and handle the workload of those applications, current trend of NPs is to use single chip multi-

processors. Not only more parallelism, but also changes in instruction set architecture (ISA) with 

sophisticated programmability, should be considered to increase the number of instructions per cycle. 
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Figure 8. Required number of instructions per packet 

 
 

Table 4. Processing Capability of Single Processor according to Line Rates 
 

Line rate 
Throughput 
(packets/s) 

One 
packet 
time 

Processor 
clock 

frequency 

Allowable # of 
instructions per one 

packet time 
500 MHz 256 

1Gbps 1.95 M 
512 
ns 1 GHz 512 

500 MHz 25 
10 Gbps 19.5 M 

51.2 
ns 1 GHz 51 

500 MHz 6 
40 Gbps 78.12 M 

12.8 
ns 1 GHz 12 

 

2,005 

187

(32,335)

6,191 

448 331

Control plane Data plane
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4.3. Architectural Implications 

 

Since NPs would be used in routers over the network, an important issue to be considered in 

designing NPs is the processing capability without slowdown of required wire speed. Based on the 

characterization of NpBench, several issues are relevant while designing the network processor to 

accomplish demanding performance and throughput. 

To reduce the number of instructions per cycle, frequently used instruction pairs can be considered 

as new instruction sets to accomplish higher throughput that can come up with the required number of 

instruction per packet. In this case, hardware implementation without loss of overall performance can 

be an important challenging issue. 

When control plane processor is implemented with an integrated core within the NP, cache sizes 

tend to be small. From the observation of cache behavior, data cache performance need to be 

improved at smaller cache sizes. When several PEs are integrated on a single chip, the problems 

including the shared memory problem also should be solved for network processors. 

Several current network processors use packet level parallelism for data plane operations. However, 

if large numbers of PEs are used, the processing time for each individual packet would be longer and 

utilization ratio could be deteriorated [25]. Based on the analysis of available parallelism with 

limited/unlimited function units, NP architectures can exploit more instruction level parallelism (ILP) 

within the PEs or control plane processors. 
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5. Conclusion 

 

As the network environment is rapidly changing, network interfaces demand highly intelligent 

traffic management in addition to the basic requirement of wire speed packet forwarding. Extracting 

representative applications and characterizing network workloads is essential for designing network 

processors and for evaluating their performance. Several vendors are releasing various network 

processors in order to handle these demands, but they are primarily oriented for data plane functions. 

Also, existing benchmark suites for the network processor primarily contain data plane workloads, 

which perform packet processing for forwarding operations. 

In this paper, we present a set of benchmarks, called NpBench, targeted towards control plane 

workloads as well as data plane workloads. The characteristics of NpBench workloads such as 

instruction mix, cache behavior, available parallelism and required processing capability per packet 

are presented and compared with CommBench. We also discuss the architectural implications of 

control plane workloads and the significance of additional parallelism to perform NP applications at 

wire speed. 
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1. Traffic-management and QoS Group (TQG) 

 

Overview 

Congestion 
Congestion is the phenomenon that occurs at a router when incoming packets arrive at a 
rate faster than the router can switch them to an outgoing link. Two router algorithms for 
congestion control: scheduling algorithms and queue management 
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100Mbps

34Mbps
Internet

Gateway Router

Router

Router

Router
 

 

•  Scheduling algorithms determine which packet to send next and are used 
primarily to manage the allocation of bandwidth among flows (e.g., WFQ) 

•  Queue management algorithms manage the length of packet queues by 
dropping packets when necessary or appropriate (e.g., RED) 

 

Content-based switch using session level information (e.g., URL) 

Since layer 4 switches are content-blind, the servers in the cluster are either completely 
replicated or share a common file system. Content-based switch taking into account 
session level information(layer 5) makes it possible to partition the URL space among the 
server node to balance load among the servers in the cluster.  

 

Front-end node

Back-end nodes
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WFQ (Weighted Fair Queuing) 

Description 

WFQ (Weighted Fair Queuing) is a queuing algorithm (or, queue scheduling algorithm) 
to serve packets in order of their finish-times considering the weight on connections. 
                          

   Fi(k,t) = max{Fi(k-1,t),R(t)} + Pi(k,t)/����(i) 
 
        Fi(k,t): the finish number of packet k on connection i at time t 
        R(t) : round number 
        Pi(k,t) : the size of the k-th packet arriving on connection i at time t                                  

       �(i) : the weight on connection I 
 
 

From Traffic Transmit Queue

Classfier Scheduler
 

 

Input and command options 

Two integer values: queue number and packet size 
  - The number of queue can be defined in wfq.h (NUM_QUEUES) 
- The values of packet size are randomly generated within some ranges 
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RED (Random Early Detection) 

Description 

In contrast to traditional queue management algorithm, which drops packets only when 
the buffer is full, The RED(Random Early Detection) algorithm  drops arriving packets 
probabilistically. 

From Traffic
Transmit Queue

Scheduler
(FIFO)

RED

Drop Test

Forw
ard

Drop

 
 
 
 
 
 
 
 
 
 
 

Input and command options 

Two integer values: time interval between packets and packet size 
  - Packets could be arrived at constant interval time. Sometimes, no packets could 
     be arrived during some time. In RED algorithm, this situation could be considered 
     to calculate average value of queue size 
  - The values of packet size are randomly generated within some ranges. 
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For every packet arrival { 
    Calculate avg_queue_size 
    if ( avg_queue_size > maxth ) 
        Drop the packet 
    else if ( minth < avg_queue_size < maxth ) { 
        Calculate the dropping probability Pa 
        Drop the packet with probability Pa, Otherwise forward it
    }  
    else 
        Forward the packet 
} 
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SSL Dispatcher 

Description 

The SSL Dispatcher is one example of content-based switching mechanism. SSL 
typically runs over TCP, which is used for secure processing of e-commerce applications. 
Once TCP connection is established, the client and the server authenticate each other and 
exchange session key. This phase is known as the SSL handshake and is computationally 
heavy workloads as it typically involves public key cryptography. Based on the session 
ID, it decides which server node has session state corresponding to this session. The SSL 
Dispatcher maintains the session ID information, sharing the SSL information among the 
nodes in cluster. When reconnecting to the same server, a client can reuse the session 
state established during a previous handshake. 
 

SSL Dispatcher
Server
Cluster

Client network

Client network
 

 
 
 
Input and command options 

Session ID: 32 bytes of data randomly generated. 
 (When generating input data, reusability of the session_id is considered. 
  10% of resuability factor is included in this release.) 
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MPLS (Multi Protocol Label Switching) 

Description 

MPLS is a forwarding technology, which does away with the lookup of bulky IP headers 
and uses short labels for forwarding at the edge of the MPLS domain as shown in Figure 
5. In this version of NpBench we concentrate on two control plane aspects of MPLS: 
Label Distribution and Label Generation. Two functions are extracted from MPLS, 
namely an upstream routing function (for an ingress edge router or a core router) and a 
downstream routing function (for a core router or an egress router).  
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Input and command options 

FEC_id: A integer value 
  - The values of Forwarding Equivalence Class id are randomly generated within some  
     ranges. 
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2. Security and Media processing Group (SMG) 
 

Overview 

As the e-commerce industry has grown, the security and the accounting applications 
such as firewall application, admission control, encryption applications and usage based 
accounting, have become an emerging workload. With higher bandwidth, the demand for 
high quality of multimedia service is increased. Data stream manipulation, media 
transcoding, H.323 and several encoding applications can be important issues of NP, 
associated with QoS. For security benchmarks, three components of IPSec – 
Authentication Header (AH), Encapsulating Security Payload (ESP) and key 
management – are included in SMG. 
 
IPSec (IP Security) 
 
    IPSec provides security services at the IP layer by enabling a system to select required 
security protocols, determine the algorithm(s) to use for the service(s), and put in place 
any cryptographic keys required to provide the requested services. IPSec uses two 
protocols to provide traffic security - Authentication Header (AH) and Encapsulating 
Security Payload (ESP).  Both AH and ESP are vehicles for access control, based on the 
distribution of cryptographic keys and the management of traffic flows relative to these 
security protocols 

•  AH(Authentication Header) 

    AH is a mechanism for providing strong integrity and authentication of IP datagram. 
Authentication guarantees that the data received is the same as the data that was  sent and 
that the claimed sender is in fact the actual sender. Integrity means that we are sure the 
transmitted data has arrived at destination without undetected altercation.                         

      � Application: MD5, SHA   

•  ESP (Encapsulating Security Payload) 

     Confidentiality is the property of communicating such that the intended recipients 
know what was being sent, but unintended parties cannot determine it. A mechanism 
commonly used for providing confidentiality is called encryption. IPSec provides 
confidentiality services through ESP(Encapsulating Security Payload) which can provide 
data origin authentication, connectionless integrity, and anti-replay service ( a form of 
partial sequence integrity) 

     � Application: DES, 3DES, RC5, IDEA, 3IDEA, cast, blowfish 

•  Key management 

      Key management is the determination and distribution of secret keys. Four keys for 
each pair of communication endpoints: transmit and receive with AH and transmit and 
receive with ESP 

      � Application:  Diffie-Hellman secret key exchange protocols 
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MTC (Media TransCoding) 

Description 

MTC is a process in which a data object in one representation is converted into another 
representation. In order to accommodate the wide spectrum of client capabilities, the 
media data is modified along the dimensions, fidelity, and resolution. 
 

Transcoding Policy Decision Module
bandwidth, hardware capability, user preferences, etc.

Transformation Module
text modification, actual transcoding

(decode & compress)

Content
Server

Client

Transcoding Proxy

 
 
 
 
Input and command options 

Eight unsigned char values are randomly generated.  
 
    Input type                           Data range 
   ----------------------------------------------- 
    data_size                              [1, 255] 
    data_type                             [0, 6] 
    data_purpose                       [0, 7] 
    client_black_and_white      [0, 2] 
    client_display_size              [0, 2] 
    client_display_color            [0, 2] 
    client_user_enhance      [0, 4] 
    client_user_contrast     [0, 3] 
 
 
References 
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AES (Advanced Encryption Standard) 

Description 

AES Advanced Encryption Standard (RijnDael) is a block cipher that encrypts and 
decrypts 128, 192 and 256 bit blocks, which is a U.S. government standard for encryption 
and digital signature. It is used for implementation of ESP in IPSec. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Input and command options 

Any kind of data to be processed in the network application 
 
 

References 

1. Security Architecture for the Internet Protocol (RFC 2401) 
       http://www.ietf.org/rfc/rfc2401.txt. 
2. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B. Brown, 

“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” 
In proceedings of the 4th annual IEEE International Workshop on Workload 
Characterization, Dec. 2001. 

 
 
 
 
 
 
 

Basics of Rijndael / AES 
 
  -Designed by Joan Daemen & Vincent Rijmen (both of Belgium) 
  -Block cipher, Symmetric key 
  -Fast and scalable, Resistant to all known cryptanalysis attacks 
  -Decryption is 30% slower than encryption (inverse matrix more complicated) 
 
Inside Rijndael 
 
  -Rijndael is a block cipher that encrypts and decrypts 128, 192 and 256 bits blocks  
   (4 x Nb), using 128, 192 and 256 bits keys (4 x Nk) in any combination.  
  -The block is considered to be structured as 4, 6 or 8 columns of 4 bytes, depending on  
    block size 
  -The basic operations applied to the block 
    .KeyAddition: XORing each byte with a round key 
    .Substitution: Applying an S-box (substituting each byte with another) 
    .ShiftRow: Shifting the rows in a circular way, the amount of shift (0,1,2,3 or 4 bytes) 
                      depending on the position from the top and on the block size 
    .MixColumn: Mixing the 4, 6 or 8 columns vertically by taking invertible linear  
                           combinations (Matrix multiplications) 
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MD5 (Message Digestion) 

Description 

MD5 algorithm takes a message of arbitrary length as an input and produces a 128-bit 
“fingerprint” or “message digest” as an output. MD5 is a method to verify data integrity 
and is more reliable than checksum method. It is used to perform AH in IPSec. 
 
An algorithm created in 1991 by Professor Ronald Rivest that is used to create digital 
signatures. It is intended for use with 32 bit machines and is safer than the MD4 
algorithm, which has been broken. MD5 is a one-way hash function, meaning that it takes 
a message and converts it into a fixed string of digits, also called a message digest.  

When using a one-way hash function, one can compare a calculated message digest 
against the message digest that is decrypted with a public key to verify that the message 
hasn't been tampered with. This comparison is called a "hashcheck."  

 
 
 
 
Input and command options 

Any kind of data to be processed in the network application 
 
 
References 
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DH (Diffie-Hellman) 

Description 

DH key exchange allows two parties who have not met, to exchange keys securely on an 
unsecured communication path. Typically DH is used to exchange a randomly generated 
conventional encryption key, the rest of the exchange is then encrypted with the 
conventional cipher. It is applied to the function of key management in IPSec. 
 
Diffie-Hellman key exchange allows two parties who have not met to exchange keys 
securely on an unsecure communication path. Typically D-H is used to exchange a 
randomly generated conventional encryption key, the rest of the exchange is then 
encrypted with the conventional cipher. It has been used with DES, 3DES, IDEA, RC4 
though basically the approach of using D-H key exchange can be used for any 
conventional stream or block cipher. PGP itself operates in a similar fashion, except that 
PGP uses RSA for key exchange, and IDEA as the conventional cipher.  
 
 
 
 
Input and command options 

Number of key exchanges and Number of key length 
 
 
References  
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Network Processors,” ICCAD 2001. 
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3. Packet Processing Group (PPG) 
 

Packet processing group includes IP packet fragmentation, packet marking, editing and 
classification. Most applications are data plane processing. 

 

FRAG (Packet Fragmentation) 

Description 

FRAG is a packet fragmentation application. IP packets are split into multiple fragments 
for which some header fields have to be adjusted and a header checksum computed. 
 
Input and command options 

unsigned char ip_v_hl;                /* version and header length */ 
unsigned char ip_tos;                  /* type of service */ 
unsigned short ip_len;                 /* total length */ 
unsigned short ip_id;                   /* identification */ 
unsigned short ip_off;                 /* fragment offset field */ 
unsigned char ip_ttl;                   /* time to live */ 
unsigned char ip_p;                    /* protocol */ 
unsigned short ip_sum;              /* checksum */ 
unsigned int ip_src, ip_dst;        /* source and dest address */ 
 
References 

1. T. Wolf and M. Franklin, “CommBench - A Telecommunications Benchmark for 
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CRC (Cyclic Redundancy Check) 

Description 

CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check is used in Ethernet 
and ATM Adaptation Layer 5 (AAL-5) checksum calculation. 
 
Input and command options 

Any kind of data to be processed in the network application 
 
References 
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