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1. Abstract

We show that accurate statistical simulation of technical loops requires more information than previously
elled. We show that simulation of code blocks with a granularity on the order of the basic block improves accura
technical loops and does not decrease accuracy for other workloads.

Higher-level basic block maps are proposed to model program phases and achieve higher accuracy. Th
block maps, implemented as graph structures, represent an actual workload and achieve good correlation
cycle-accurate simulator.

We show how to synthesize c-code benchmarks from basic block maps. To do this, memory accesses are
as streams in the synthetic benchmark. Correlation results for synthetic technical loops are given. Ideas for syn
ing more accurate statistical benchmarks are discussed.

The system provides a flexible framework for future investigations of statistical simulation and benchmark s
sis.

2. Introduction

The design of modern superscalar microprocessors has been complicated by the presence of hundreds of
of available transistors on chip [DIEF99][TEND02] and sophisticated microarchitectural techniques that use
transistors to enhance performance beyond the gains provided by technology feature size shrinks and the cor
ing processor clock frequency increases [AGAR00]. Microarchitectures have evolved from scalar in-order exe
processors to complex superscalar out-of-order processors involving speculative fetch and execution, branch
tion, and value prediction [JOHN90][SMIT95] [OSKI00]. In addition, the available transistor count has allowed
ments of the cache hierarchy and memory subsystem to reside on-chip to reduce communication costs [TEND
the face of anticipated shrink limits to CMOS technology, third-generation microarchitectures using dynamic p
sor reconfiguration and elements of dataflow execution are being considered [SANK03].

The growing microarchitectural complexity necessitates the use of several simulation systems written at m
levels of machine abstraction. Near the end of the design cycle, cycle-accurate logic simulation and detailed
simulation are required for functional verification. At the mid-point in the design cycle, an increasingly accurat
formance simulation system can be used to model and assess changes to the microarchitecture over the
space being considered.

In the very early high-level design phases, however, a simple, fast and accurate performance simulation ca
is needed [EECK03]. The simulator must be simple enough to be developed and modified quickly for the d
under-study, fast enough to evaluate large design spaces for performance and power, and yet accurate e
model the specific workloads of concern such that the study results can be relied on for sometimes momento
design decisions.

High-level statistical simulation systems use both machine-independent and machine-dependent informatio
execution-driven simulations to generate statistics that are then applied to a fast and flexible execution
[JOHN99][EECK03]. In [NUSS01][EECK03], machine independent statistics such as instruction operation mi
average instruction dependencies from specific workloads are used to create workload traces which are inp
execution engine. Machine dependent information such as branch prediction accuracy and cache miss ratio
specific workloads are used to dynamically create misspredictions and cache misses as the execution engine p
November 18, 2003 Page 1 of 27
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In [OSKI00], workload statistics are used to create a static graph of a small number of instructions, which a
much faster convergence than cycle-accurate simulations.

The execution engine typically models the stages in a superscalar out-of-order execution machine includin
dispatch, execution, and completion. Cache misses are modelled as additional latency to complete an instruc
actual addresses or data are used, making simulation extremely fast. Specialized workload features such as
store address collisions or data information (for value prediction studies) must also be modelled statistica
[JOSH02], the execution engine is modelled as a series of delays, and additional statistics facilitate the mode
read and write buffers in a multiprocessor system.

Prior studies have shown that statistical simulation systems that correlate well with execution-driven simu
also exhibit good “relative” accuracy, meaning that the delta in machine performance given a microarchite
change in a statistical performance simulation is reflective of the delta found using execution-driven simu
[EECK03]. Additional work is needed to quantify the relative accuracy of somewhat more inaccurate high-leve
tistical models, such as those typically available in the early phases of a design.

Prior studies using statistical simulation systems have focused on achieving correlation with execution-drive
ulators on benchmark suites like SPECint95 [OSKI00][EECK03], SPECfp95 [EECK03][NUSS01], the IBS tr
[EECK03], or specific parallel workloads [NUSS02][JOSH02]. Benchmark correlation accuracies within 15%
been achieved in those studies. The correlated statistical systems are then used to study pipeline tradeoffs
issue width and instruction window size versus IPC or the energy-delay product [EECK03], value pred
[OSKI00], or instruction throughput in a multiprocessor system [NUSS02][JOSH02].

When evaluating high-end processor designs, usually several classes of benchmarks are used. It is often im
that general-purpose, transaction-oriented, and standard benchmark suites such as SPECint perform well. F
designs it is equally important that scientific and technical workloads perform well. SPECfp and technical loop
as [STRE03] have been used to quantify the latency and bandwidth capabilities of machines at various levels o
hierarchy and are often used as key indicators of general technical and scientific workload performance. The d
of specific technical loops have also motivated the design of many novel microarchitectural innovations in the
data prefetching.

In this study, we focus on the challenges to statistical simulation systems posed by technical workloads. Te
workloads often rely heavily on particular kernel loops. While loops such as SAXPY are easy to understand an
acterize conceptually, it is difficult to develop a unified statistical simulation system that can accurately evaluat
together with general-purpose workloads. In the next section, we outline the specific challenges and sens
posed by technical loops. We then describe HLS and its graph structure and give results for several benchmar
We compare HLS to a system augmented to handle technical loops, called S-HLS, and describe techniques t
the amount of information needed to achieve the desired level of simulation accuracy.

The nature of the challenges posed by a variety of workloads leads us to argue that the necessary granu
simulation in statistical simulation is at the basic block level, not at the instruction level. To further enhance acc
over program phases, we propose a higher-level grouping of basic blocks, calledbasic block maps. Such constructs
can be built easily from the basic blocks that make up the front-end graph structure in S-HLS. It it more diffic
identify and use such mappings in trace-based systems such as [NUSS01][EECK03] because the workload is
tially represented as a graph structure.

It has always been challenging to create synthetic benchmarks that are representative of real wo
[WONG88]. The graph structure in S-HLS, and, at a higher-level, basic block maps, provide a natural way to
ate real programs from a representation of the program that converges quickly. The challenges to benchmark
sis are substantial and include the necessity of generating constructs that reproduce branch predictor an
locality behavior. In [WONG88], the LRU hit function is described mathematically and a method, calledreplication,
is described which can generate a program with a specific cache locality behavior using other programs. I
claimed that the resulting instruction mix matches the mix of the original program, however.

An area related to benchmark synthesis is circuit synthesis. Circuit synthesis transforms low-level circuit n
to similar but different low-level netlists. In [LEEC98], simulated annealing is used to generate new circuits fro
characteristics of a circuit to prevent over-tuning in synthesis systems. In [VERP00], circuits are cloned usin
models or mutated using wiring-signature or functional-perturbation invariant methods.

In this report. we show how to automatically synthesize representative executable benchmarks from a set
level workload characteristics obtained from statistical performance simulation. We give correlation results f
technical loops.
November 18, 2003 Page 2 of 27
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3. Technical Loops Revisited

Technical workloads have several characteristics that make it difficult for a statistical simulation system to
late their performance with the performance of execution-driven simulators. They may often consist of one o
tight loops containing specific instruction sequences. Figure 1 shows one iteration of the SAXPY loop, disass

from an optimizedgcc compile targeting the PISA machine language [BURG97]. A statistical simulation sys
would first generate a basic block size that would be equal to 10 instructions more or less. The system would t
an instruction type distribution to generate a random stream of instructions weighted by the frequency of the p
lar instruction. If themul.sandadd.swere switched in this process, with the dependency relationships remai
fixed (albeit with different corresponding instruction types), the extra latency of the multi-cyclemul.sinstruction is no
longer hidden by the latency of the secondl.s, leading to a generally longer overall execution time for the loop. Ev
if the instruction ordering was equivalent to the ordering in the figure, the dependency relationships generated
statistical distribution could cause latencies from two misses for the load instructions not to overlap, causing
ally longer iteration execution times.

Since dependency relationships are statistically generated, it is possible for longer running instructions
paired with shorter running instructions, leading to decreased execution times. In Figure 1, themul.shas a depen-
dency on the previousl.s. If the statistical trace switches the load with a one-cycleaddiu, themul.swill dispatch much
more quickly. For dispatch windows of 16 or more, this can lead to significant correlation errors.

In most statistical simulation systems, the program characteristics are used to randomly generate man
blocks with instruction types and dependencies also generated randomly from a distribution [OSKI00][EEC
[NUSS01]. This random mix is anathema to the performance simulation of technical loops, which are very se
to the order and exact dependency relationships of a few instructions [NUSS01]. The specific instruction seq
must be modelled with additional machine-independent information.

We seek modelling techniques that work well for both general purpose programs and technical loops.
higher-order ILP distributions might work well for technical loops, the results using that technique have been
in some cases and can actually lead to decreased accuracy for general purpose programs [EECK03]. In [N
the basic block size is the granule of simulation. We show below that that technique leads to a high probab
merging basic blocks with different functionality.

Table 1 shows the technical loops that we will use in this report. The third column gives the number of instru
in the kernel loop when compiled withgccversion 2.95.3 using-O. The last column gives the total amount of dat
needed to characterize the workload if loads and hits were written as separate streaming data items as the w
progresses, assuming 4 bytes accesses to 32 byte L1 cache lines and 64 byte L2 cache lines.

Table 1: Technical Loops

benchmark equation loop instructions
Unique Stream

Data

saxpy z[k] = z[k] + q * x[k] 10 16 x 3
sdot q = q + z[k] * x[k]  9 16 x 2
sfill z[k] = q 5 1

scopy z[k] = x[k]  7 16 x 2
ssum2 q = q + x[k] 6 16 x 1
sscale z[k] = q * x[k] 8 16 x 2
striad z[k] = y[k] + q * x[k] 11 16 x 3
ssum1 z[k] = y[k] + x[k] 10 16 x 3

00400258  addu $v0[2],$v1[3],$a2[6]
00400260  l.s $f2,0($v0[2])
00400268 mul.s $f2,$f4,$f2
00400270  l.s $f0,0($v1[3])
00400278 add.s $f2,$f2,$f0
00400280  addiu $a0[4],$a0[4],1
00400288  slt $v0[2],$a1[5],$a0[4]
00400290  s.s $f2,0($v1[3])
00400298  addiu $v1[3],$v1[3],4
004002a0  beq $v0[2],$zero[0],00400258

Figure 1: Optimized SAXPY loop iteration
November 18, 2003 Page 3 of 27
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4. Statistical Simulation using HLS

One statistical simulation system is HLS, available at [OSKI03], also described in [OSKI00]. In HLS, the ma
independent characteristics are analyzed using a modified version of Sim-Fast [BURG97]. This gives an inst
mix distribution consisting of the percentages of integer, float, load, store and branch instructions. No other di
tiation among the types of each of those groups is analyzed. Also calculated are the basic block mean size a
dard deviation.

In addition, the frequency distribution of the dependency distances between instructions for each input of t
instruction types is given. For loads, only one input has a frequency distribution. Each distribution gives the pe
ages of all instructions of that type for that input that have a dependency distance of zero, one, two, three, etc
19. Additional percentages are given for dependency distances between 20 and 100, between 101 and 1
above 1000, for a total of 23 dependency distance frequencies per input per instruction type. So the total ins
mix and dependency information,DHLS, (in bytes) is

After the workload is characterized, HLS generates 100 basic blocks using a normal random variable of th
block size and standard deviation. Then, a uniform random variable of the instruction percentages is used to fi
instructions of each basic block. Each basic block terminates in a branch, so the percentage of branches is e
from the random variable. The overall instruction mix turns out to be about right since the basic block size vari
also based on the workload.

For each randomly generated instruction, a uniform random variable over the dependency distance freque
used to specify a dependency for each instruction input. An effort is made to make an instruction not depende
store within the current basic block, so that a dependency distance may be calculated multiple times. But if the
dency that is generated stretches beyond the limits of the basic block, no change is made.

The basic blocks are connected into a graph via the branches. Each branch has both a taken pointer and a
pointer to other blocks. The not-taken pointer points to the next sequentially-generated basic block. A unifor
dom variable on the average number of backward branches, set statically to 15% in the code, determines whe
taken pointer is a backward branch or a forward branch. For backward branches, a normal random variable
mean backward block jump distance and standard deviation, set statically to 10 and 3 in the code, determin
basic block the taken pointer points to. For forward branches, a normal random variable on the mean forwar
jump distance and standard deviation, set statically to 3 and 2 in the code, determine which basic block th
pointer points to. Normal random variables based on the forward and backward branch predictability means an
dard deviations, also statically set to 85% and 0% each, are used to get a value to compare against for each
Later, during simulation, the machine-dependent branch predictability determines dynamically if the branch i
ally taken or not, and the corresponding branch pointer is followed.

Unfortunately, as described in the next section, there is no real advantage to using the above branching sc
a simulation system in which the basic block sizes, instructions, and their dependencies, are all randomly ge
from statistical distributions.

After the machine independent statistics are processed, the instruction graph is executed on a generalize
scalar execution model. Sim-OutOrder statistics such as L1 and L2 I-cache and D-cache hit rates and overal
predictability model the machine dependent locality structures. For comparison with SimpleScalar, the load an
queues are modelled as a single queue. No load-hit-store forwarding is modelled. Delayed-hits are also not m
so in the default configuration the only parallel cache miss operation occurs over the two memory ports avail
the load-store execution unit. As in SimpleScalar, stores execute immediately when they reach the tail of the
and an execution unit is available.

Because of the generalized execution model, there is no issue-width concept in the HLS system. The i
instructions to the issue queues associated with the execution units is instead limited by the queue size and
window and, ultimately, by the fetch window. There is also no limit to the number of completions per cycle in H
so the completion rate is also front-end limited. These are conducive to obtaining quick convergence to an a
result for well-behaved benchmarks, but they make it difficult to exactly correlate the system to SimpleSca
technical loops, as we shall see.

DHLS 5 2 4 2× 1+( )+ + 23×( ) 4× 856= =
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5. Setup and Procedure

Following the procedure in [OSKI00], running on an IBM Power3 P260, SimpleScalar release 2.0 [BURG97
the modified Sim-Fast found at [OSKI03] were downloaded and compiled to target big-endian pisa binaries
OutOrder using default parameters was then run on the big-endian SPECint95 binaries found at [SOHI03] usin
one billion instructions of one reference input dataset. As implemented in the code from [OSK03], the modified
Fast was run on the input dataset to completion.

The HLS system was then downloaded from [OSKI03] and compiled usingg++ (gcc version 2.95.3) without
change.

6.  The HLS Graph Structure

We wish to show that, since instructions are generated randomly and placed into the basic blocks, no
advantage is obtained in HLS when using a graph structure as given in [OSKI00]. We vary the percentages o
ward branches, the backward branch jump distance, the forward branch jump distance, and the graph con
themselves to demonstrate that the graph structure as used in HLS has no impact on IPC.

First, the HLS run results for a reference input data set is given. The data set may not be the same as in [O
if multiple reference inputs exist because the particular datasets used in [OSKI00] are not specified.

Now we takegccand vary the percentage of backward branches used to form the graph. Note that there do
seem to be a trend in the error.

We now vary the mean backward block jump distance from 1 to 16. Again, no trend.

Table 2: Baseline SPECint95 Run for Graph Structure Studies

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.962255 0.029882  5.787
perl 1.1610 1.23764 0.052625 6.600

m88ksim 1.4586 1.401735 0.041695 3.897
ijpeg 1.8449 1.884525 0.067900 2.146

vortex 0.9422 0.925260 0.025933 1.796
compress 1.1290 1.249695 0.079047 10.689

go 0.9644 1.04897 0.031119 8.768
li 1.5442 1.518960 0.060196 1.633

Table 3: Fraction of Branches that are Backward versus Error for gcc

Fraction
Backward
Branches

SimpleScalar
IPC

HLS IPC HLS Sigma Error (%)

0.05 0.9096 0.950270 0.032830 4.470
0.10 0.9096 0.964385 0.027900 6.021
0.15 0.9096 0.963525 0.027856 5.927
0.20 0.9096 0.969035 0.035735 6.533
0.30 0.9096 0.956085 0.027676 5.109
0.40 0.9096 0.964090 0.040602 5.989
0.50 0.9096 0.966575 0.060843 6.262
0.60 0.9096 0.936545 0.049673 2.961
0.70 0.9096 0.948450 0.058764 4.270
0.80 0.9096 0.948605 0.050113 4.287
0.90 0.9096 0.984435 0.062481 8.226
November 18, 2003 Page 5 of 27



We now vary the mean forward block jump distance. Again, there appears to be no trend.

We now randomize the not-taken (fall-through) target for the basic blocks in each benchmark.

Table 4: Backward Branch Mean Jump Distance versus Error for gcc

Mean Backward
Block Jump

Distance

SimpleScalar
IPC

HLS IPC HLS Sigma Error (%)

1 0.9096 0.960260 0.026757 5.568
2 0.9096 0.951070 0.034218 4.558
3 0.9096 0.943925 0.024706 3.772
4 0.9096 0.968600 0.026717 6.485
5 0.9096 0.958100 0.025197 5.331
6 0.9096 0.947485 0.034427 4.164
7 0.9096 0.963295 0.029373 5.902
8 0.9096 0.970905 0.019472 6.738
9 0.9096 0.964240 0.041481 6.006
10 0.9096 0.953565 0.026938 4.832
11 0.9096 0.965455 0.036890 6.139
12 0.9096 0.964835 0.029053 6.071
13 0.9096 0.949805 0.030311 4.419
14 0.9096 0.960670 0.028884 5.613
15 0.9096 0.962885 0.029452 5.857
16 0.9096 0.957170 0.031255 5.228

Table 5: Forward Branch Mean Jump Distance versus Error for gcc

Mean Forward
Block Jump

Distance

SimpleScalar
IPC

HLS IPC HLS Sigma Error (%)

1 0.9096 0.969510 0.029858 6.585
2 0.9096 0.948625 0.042222 4.289
3 0.9096 0.950420 0.022023 4.486
4 0.9096 0.958320 0.026656 5.355
5 0.9096 0.966225 0.030679 6.224
6 0.9096 0.950215 0.032600 4.464
7 0.9096 0.950880 0.026010 4.537
8 0.9096 0.960470 0.025520 5.591
9 0.9096 0.968590 0.030637 6.484
10 0.9096 0.966165 0.033810 6.217
11 0.9096 0.960370 0.032818 5.580

Table 6:  HLS Error When Randomizing the Not-Taken Branch

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.965660 0.032898 6.162
perl 1.1610 1.193370 0.111949 2.787

m88ksim 1.4586 1.421580 0.064695 2.537
ijpeg 1.8449 1.929850 0.176567 4.603

vortex 0.9422 0.928405 0.027221 1.463
compress 1.1290 1.248515 0.174408 10.584

go 0.9644 1.080000 0.058706 11.985
November 18, 2003 Page 6 of 27
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Within the error obtained using separate random seeds, which can be over 3%, there is no significant effe
we set the taken target to the next sequentially created block.

Again no significant difference. Now do the same but the last block simply feeds the first created block. Th
effect is to create a big loop of basic blocks. There is no substantive difference in error.

To summarize, when using individual instructions as the granule of simulation, i.e. randomly picking instruc
and placing them in basic blocks, the HLS graph structure itself makes no difference to accuracy as meas
comparing IPC between SimpleScalar and HLS runs. This begs the question of what the simulation granule sh
for statistical simulation. As we shall argue, very good accuracy can be obtained by using a simulation granul
the basic block level. This is similar to the block size simulation granularity presented in [NUSS01], but, to
unnecessary aliasing, the starting point is the set of the most frequent dynamic basic blocks.

Note that the HLS graph is a representation of program built from a real program. The graph contains a set o
blocks with the instructions that represent the original workload. This idea will assume more significance wh
discuss benchmark synthesis below.

7. HLS Runs

In each of the following tables, the benchmarks are summarized at the bottom of the table.
Here we try to quantify the error of HLS running on SPECint95, SPECfp95, and the technical loops. W

SPEC95 to compare with the results in [OSKI00] using the code downloaded from [OSKI03]. The modified Sim
program runs each benchmark for up to 50 B instructions to collect workload statistics. An input reference dat
used. This may not be the same one used in [OSKI00] if multiple reference sets are available since the data
was used was not specified.

li 1.5442 1.484475 0.116028 3.866

Table 7:  HLS Error Setting the Taken Branch to Next-Sequential

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.965210 0.019936 6.112
perl 1.1610 1.219300 0.030253 5.020

m88ksim 1.4586 1.426905 0.037285 2.171
ijpeg 1.8449 1.920560 0.039689 4.100

vortex 0.9422 0.926190 0.030187 1.698
compress 1.1290 1.217400 0.054286 7.828

go 0.9644 1.063855 0.030351 10.311
li 1.5442 1.514995 0.067419 1.890

Table 8:  HLS Error Using Big Loop of Basic Blocks

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.972175 0.026239 6.878
perl 1.1610 1.220555 0.033056 5.128

m88ksim 1.4586 1.414640 0.038046 3.012
ijpeg 1.8449 1.888350 0.041286 2.354

vortex 0.9422 0.921780 0.025405 2.166
compress 1.1290 1.230770 0.049961 9.013

go 0.9644 1.068515 0.025836 10.794
li 1.5442 1.511875 0.041735 2.092

Table 6:  HLS Error When Randomizing the Not-Taken Branch

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)
November 18, 2003 Page 7 of 27
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Note that, while SPECint does well as in [OSKI00], SPECfp has twice the correlation error. The technica
error is more than four times worse. Also note the large standard deviation for SPECfp and the technical loops
more work could be done to try to calibrate the generalized HLS processor for all the benchmarks using test da
attempts to do so failed. As described later, additional workload information was needed to obtain a framewo
worked for all three kinds of benchmarks.

A large improvement in correlation can be had by changing the modified Sim-Fast from HLS to collect sta
for only one billion instructions, the same number of instructions used to get cache and branch predictor stati
Sim-OutOrder. Both SPECint and SPECfp are significantly improved, but the standard deviation for SPECfp re
large because ofmgrid andapsi. The technical loops are not helped.

Table 9:  Baseline HLS Run

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.962840 0.032180 5.852
perl 1.1610 1.219825 0.035786 5.065

m88ksim 1.4586 1.379890  0.037567 5.395
ijpeg 1.8449 1.876680 0.065075 1.721

vortex 0.9422 0.911755 0.026343 3.230
compress 1.1290 1.261490 0.063339 11.734

go 0.9644 1.070320  0.031205 10.981
li 1.5442 1.506735 0.068131 2.425

tomcatv 0.9314 1.166815 0.019603 25.274
su2cor 1.0188 1.184175 0.023817 16.231

hydro2d 1.0888 1.139675 0.096239 4.671
mgrid 1.6826 1.171475 0.039468 30.376
applu 1.3779 1.334175 0.045145 3.172
turb3d 1.6288 1.655495 0.070213 1.637
apsi 1.1737 1.361210 0.053095 15.974

wave5 1.1619 1.488095 0.051179 28.073
fpppp 0.7117 0.687255 0.016716 3.433
swim 1.1813 1.096045 0.034478 7.216
saxpy 1.2878 1.031680 0.082820 19.887
sdot 1.2412 0.798475 0.061000 35.668
sfill 2.4769 2.228660 0.101467 10.021

scopy 1.5940 1.279990 0.099503 19.698
ssum2 1.4090 0.901300 0.104733 36.031
sscale 1.3875 1.149555 0.109330 17.148
striad 1.4165 0.877010 0.069869 38.085
ssum1 1.6621 0.927170 0.060633 44.215

All (mean/stdev) 15.508192 12.760963
SPECint (mean/stdev) 5.800375 3.489195
SPECfp (mean/stdev) 13.605700 10.561481
TECH (mean/stdev) 27.594125 11.523699

Table 10: HLS using Only 1 Billion Sim-Fast Instructions

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.969790 0.036009 6.616

perl 1.1610 1.200830 0.038747 3.429
m88ksim 1.4586 1.426720 0.035693 2.184
November 18, 2003 Page 8 of 27
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Note that the technical loops are uniformly slower in HLS than in SimpleScalar. While studying the technica
error, it was discovered that the modified Sim-Fast in HLS makes no distinction between memory instructions
PISA language that carry out auto-increment or auto-decrement on the address register after memory access
that do not. When not in auto-increment or auto-decrement mode, memory instructions do not change the con
the general-purpose register used as the address for an access. The HLS Sim-Fast code always assumes me
ations are in this mode. This causes the code to assume register dependences between instructions that do
and make codes with significant numbers of load and store dependences appear to run slower. The Sim-Fast
modified to check the instruction operand for the condition and mark dependences accordingly. The followin
shows the results.

ijpeg 1.8449 1.874115 0.067641 1.582
vortex 0.9422 0.926870 0.023626 1.626

compres 1.1290 1.211340 0.082729 7.292
go 0.9644 1.073670 0.042132 11.329
li 1.5442 1.475600 0.069037 4.441

tomcatv 0.9314 0.952090 0.023910 2.220
su2cor 1.0188 0.990465 0.027333 2.780

hydro2d 1.0888 1.168840 0.076533 7.350
mgrid 1.6826 1.189765 0.040772 29.289
applu 1.3779 1.355025 0.034835 1.659
turb3d 1.6288 1.644165 0.064775 0.942
apsi 1.1737 1.385880 0.058306 18.076

wave5 1.1619 1.158195 0.070632 0.317
fpppp 0.7117 0.700820 0.018319 1.527
swim 1.1813 1.137020 0.062677 3.747
saxpy 1.2878 0.992110 0.124944 22.959
sdot 1.2412 0.759980 0.052006 38.769
sfill 2.4769 2.287070 0.099732 7.663

scopy 1.5940 1.281400 0.095744 19.610
ssum2 1.4090 0.879885 0.096139 37.551
sscale 1.3875 1.109400 0.074767 20.042
striad 1.4165 0.892850 0.078510 36.966
ssum1 1.6621 0.912170 0.078307 45.118

All (mean/stdev) 12.887846 13.737734
SPECint (mean/stdev) 4.812375 3.190147
SPECfp (mean/stdev) 6.790700 9.001347
TECH (mean/stdev) 28.584750 11.992705

Table 11: HLS with Auto-Inc/Dec Instruction Bug Fix

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9096 0.980690 0.029812 7.814
perl 1.1610 1.308385 0.045983 12.693

m88ksim 1.4586 1.472850 0.052602 0.975
ijpeg 1.8449 2.128685 0.078539 15.381

vortex 0.9422 0.939565 0.018257 0.277
compres 1.1290 1.288890 0.080300 14.161

go 0.9644 1.088810 0.034582 12.900

Table 10: HLS using Only 1 Billion Sim-Fast Instructions

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)
November 18, 2003 Page 9 of 27
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Again, work was done to try to recalibrate HLS, but intrinsic workload differences made it impossible to reco
the errors for all three groups. In SPECint,perl, ijpeg andcompressincreased in error. In SPECfp, the error forapsi
almost doubled.

We also ran HLS using a dispatch window size of 32.

li 1.5442 1.703840 0.064999 10.337
tomcatv 0.9314 0.963815 0.022415 3.479
su2cor 1.0188 1.014700 0.033177 0.401

hydro2d 1.0888 1.213430 0.062992 11.445
mgrid 1.6826 1.576605 0.085137 6.298
applu 1.3779 1.482015 0.045743 7.555
turb3d 1.6288 1.709135 0.063649 4.931
apsi 1.1737 1.608430 0.058035 37.038

wave5 1.1619 1.290210 0.066091 11.042
fpppp 0.7117 0.701545 0.020937 1.425
swim 1.1813 1.216150 0.053905 2.949
saxpy 1.2878 1.104650 0.112750 14.220
sdot 1.2412 0.843590 0.067161 32.033
sfill 2.4769 2.243655 0.086004 9.415

scopy 1.5940 1.406540 0.113086 11.759
ssum2 1.4090 0.913105 0.091436 35.193
sscale 1.3875 1.276735 0.122670 7.982
striad 1.4165 0.982945 0.081332 30.606
ssum1 1.6621 1.022080 0.133868 38.505

All (mean/stdev) 13.108231 11.455160
SPECint (mean/stdev) 9.317250 5.466737
SPECfp (mean/stdev) 8.656300 10.096836
TECH (mean/stdev) 22.464125 11.936102

Table 12: HLS using a Dispatch Window of 32

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)

gcc 0.9178 0.981825 0.028521 6.974
perl 1.1627 1.241670 0.052421 6.790

m88ksim 1.4624 1.443345 0.059080 1.301
ijpeg 2.0443 1.891380 0.048275 7.479

vortex 0.9501 0.935230 0.026634 1.564
compres 1.2126 1.179490 0.091150 2.729

go 0.9928 1.078000 0.054173 8.580
li 1.5804 1.489775 0.078504 5.733

tomcatv 0.9502 0.971220 0.026506 2.211
su2cor 1.0358 1.012415 0.037292 2.256

hydro2d 1.2736 1.253245 0.073781 1.597
mgrid 1.8161 1.177150 0.040049 35.181
applu 1.6507 1.353435 0.058746 18.007
turb3d 1.9772 1.661580 0.053740 15.961
apsi 1.3412 1.405510 0.056961 4.793

wave5 1.2482 1.188670 0.099693 4.768

Table 11: HLS with Auto-Inc/Dec Instruction Bug Fix

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)
November 18, 2003 Page 10 of 27
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SPECint does better, but the technical loops do much worse.

8. Improving Correlation Errors using S-HLS

While trying to correlate the technical loops, it was noticed that, because of its generalized execution mode
has no concept of an issue width. The issue of instructions to the issue queues associated with the execution
simply limited by the issue queue sizes and dispatch window and, ultimately, by the fetch width. There is also n
to the number of completions per cycle in HLS, so the completion rate is also front-end limited. These are con
to obtaining quick convergence to an average result for well-behaved benchmarks, but they make it difficult to e
correlate the system to SimpleScalar for technical loops. HLS also has no separate issue queues for longe
integer or floating point operations.

In order to help with the task of correlation, the SimpleScalar-HLS (S-HLS) system was developed. The goa
HLS is to more accurately model the execution engine of SimpleScalar. We want the execution engines to ma
two reasons. First, if the execution engine is modelled accurately, then the correlation errors due to the machin
pendent workload characteristics can be more thoroughly studied. Second, if we model the execution engin
rately and model the workload characteristics sufficiently, we expect to be able to achieve very low correlation
on a variety of benchmarks. Both of these goals are in contrast to HLS, in which it is assumed that, because
generalized processor, machine parameters will be calibrated or tuned to achieve low correlation errors for the
marks under study. Even so, we wish to run more efficiently than SimpleScalar, so outside the pipeline we
model everything exactly. The caches and branch predictor in particular still use the statistical parameters tak
the SimpleScalar runs. S-HLS is therefore an intermediate combination of the execution engine in [NUSS01] a
statistical locality structures and graphical front-end of [OSK00]. Also, based on the analysis of the graph str
above and in order to obtain the fastest convergence, we model the program as a single loop of basic blocks

The overall framework of HLS was retained including the front-end execution graph structure, but the exe
engine was rewritten to include an RUU (Register-Update Unit) as in SimpleScalar, with a dispatch window eq
the RUU size, an issue width, and a completion width. These are all parameters to S-HLS and are set to th
sponding SimpleScalar machine values.

We first run the benchmarks on S-HLS using only the workload characteristics modelled in HLS, as des
above. The difference here is that the execution engine flow, delays and parameters are all chosen to match
SimpleScalar, while in HLS, as mentioned, the generalized processor needs to be tuned for the benchmark
study. Given the more accurate machine model, we wish to determine what additional workload characteristic
to be modelled to achieve small correlation errors. Table 13 shows the baseline run.

There are large errors for particular benchmarks, such asijpeg, compressandapsi. But overall, there is a remark-
able similarity of the mean error for each of the three kinds of benchmarks and the overall error. This is an ind

fpppp 0.7143 0.706010 0.016745 1.159
swim 1.3620 1.123050 0.058747 17.543
saxpy 1.6621 1.014810 0.092639 38.943
sdot 1.7558 0.819395 0.059563 53.331
sfill 2.4771 2.245675 0.099129 9.341

scopy 1.6901 1.267900 0.098147 24.979
ssum2 1.6510 0.897710 0.108843 45.625
sscale 1.7469 1.152055 0.097205 34.050
striad 1.8094 0.922470 0.071190 49.016
ssum1 1.8126 0.923840 0.091264 49.031

All (mean/stdev) 17.267000 17.343272
SPECint (mean/stdev) 5.143750 2.671159
SPECfp (mean/stdev) 10.347600 10.551376
TECH (mean/stdev) 38.039500 13.890552

Table 12: HLS using a Dispatch Window of 32

Benchmark
SimpleScalar

IPC
HLS IPC HLS Sigma Error (%)
November 18, 2003 Page 11 of 27
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that the underlying operation of the machine is not skewed to favor a particular benchmark class.
We enhance the workload model to reduce correlation errors. From the analysis of the graph structure, w

that the instruction level granularity in the workload analysis of HLS did not seem to contribute to accura
[NUSS01], the basic block size is used as the granularity of simulation for a variety of studies. Instruction dis
tions are maintained for each basic block size found in the workload. However, multiple basic blocks in a wo
may happen to have the same size but different functionality and dependence relationships. Thisblock size aliasing
can reduce the effectiveness of the techniques described in [NUSS01]. As an example, ingcc, there are 66 different
sequences that are of length 9. One sequence contains 7 sequential loads and an integer operation. Anothe
likely sequence contains 6 sequential integer operations followed by a load and an integer operation. The dep
and stream information for these two blocks are very different.

Instead, S-HLS uses the exact sequence of instructions in the basic block as the granularity of simulation. T
quencies of each basic block so defined is maintained and used as a distribution function for building the sequ
basic blocks in the S-HLS graph. By using the basic block as the granule of simulation, additional informatio
easily be extracted and maintained. Table 14 below lists the number of basic blocks found for each benchm
account for the top 99% of all basic blocks in the first one billion instructions, ordered by the blocks with the hi
frequencies. It also gives the average length of the basic blocks (not weighted by frequency of the basic block,
over the count of basic blocks, for the purposes of determining how much information must be stored). It also
the number of basic block sizes that alias to other blocks.

Table 13: S-HLS Baseline Run

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9096 0.967090 0.016043 6.319
perl 1.1610 1.268023 0.028371 9.217

m88ksim 1.4586 1.479110 0.025797 1.405
ijpeg 1.8449 2.669050 0.052241 44.670

vortex 0.9422 0.911880 0.011047 3.217
compres 1.1290 1.589893 0.036913 40.822

go 0.9644 1.094280 0.018289 13.466
li 1.5442 1.823467 0.033757 18.083

tomcatv 0.9314 0.938056 0.014192 0.713
su2cor 1.0188 0.949989 0.010429 6.753

hydro2d 1.0888 1.306746 0.022473 20.016
mgrid 1.6826 1.711185 0.014135 1.697
applu 1.3779 1.697247 0.015573 23.175
turb3d 1.6288 2.088964 0.031786 28.250
apsi 1.1737 1.679349 0.021318 43.080

wave5 1.1619 1.400348 0.025185 20.521
fpppp 0.7117 0.709588 0.006782 0.294
swim 1.1813 1.348526 0.016732 14.155
saxpy 1.2878 1.518453 0.059191 17.909
sdot 1.2412 1.105377 0.032714 10.941
sfill 2.4769 2.993007 0.071628 20.835

scopy 1.5940 1.999458 0.092190 25.435
ssum2 1.4090 1.328866 0.054605 5.686
sscale 1.3875 1.745563 0.036771 25.805
striad 1.4165 1.318285 0.054329 6.932
ssum1 1.6621 1.392186 0.045314 16.238

All (mean/stdev) 16.370538 12.608257
SPECint (mean/stdev) 17.149875 15.630231
SPECfp (mean/stdev) 15.865400 13.210275
TECH (mean/stdev) 16.222625 7.297599
November 18, 2003 Page 12 of 27
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The number of basic blocks is relatively small. For SPEC benchmarks with small average block sizes, the p
tion of size aliases among the blocks that account for 50% or more of dynamic blocks is quite large. The a
loads and stores column is not the dynamic average but the static average found using all basic blocks. It is us
to help calculate information storage requirements. As future work, the system could be augmented to use bas
size as the granule of simulation as in [NUSS01] in order to quantify the impact of block size aliasing.

In the following run, the basic blocks are chosen from the cumulative frequency distribution maintained for
basic block. Dependences for each instruction in each basic block are still taken from the global statistics fou
the entire benchmark. For memory operations in a basic block, the L1 and L2 hit rates are still taken from the
statistics for each workload.

Table 14: Basic Blocks and Size Aliasing in 99% of Dynamic Basic Blocks

benchmark
number of
basic block

average static
basic block

length

number of blks in
50% or more of

the dynamic blks

block size aliases
in the top 50% of

dynamic blks

total number
of static block
size aliases

average static
loads and stores

per basic blk

gcc 696 10 7 3 662 5.00
perl 71 5 11 4 56 2.77

m88ksim 98 8 5 1 78 3.36
ijpeg 51 24 5 1 27 5.78

vortex 269 12 5 1 234 6.81
compress 10 7 3 0 1 0.90

go 550 13 12 4 507 4.49
li 72 6 5 1 58 3.49

tomcatv 143 8 8 3 118 3.45
su2cor 99 7 7 2 81 2.98

hydro2d 209 9 16 7 178 3.42
mgrid 32 39 2 0 5 12.00
applu 89 51 8 0 33 14.17
turb3d 77 15 6 0 45 4.62
apsi 314 19 20 3 249 7.36

wave5 68 9 8 3 44 2.59
fpppp 159 27 22 8 112 12.80
swim 40 14 6 0 20 4.53
saxpy 10 4 1 0  3 1.60
sdot 10 4 1 0  3 1.30
sfill 10 4 1 0  3 1.40

scopy 10 4 1 0  3 1.50
ssum2 10 4 1 0 4 1.20
sscale 10 4 1 0  3 1.50
striad 10 4 1 0  3 1.60
ssum1 10 4 1 0  3 1.60

average 120.2 12.4 6.3 1.6 97.4 4.32

Table 15: S-HLS using Basic Block Instruction Sequences

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9096 0.930754 0.024677 2.324
perl 1.1610 1.238857 0.038527 6.705

m88ksim 1.4586 1.395092 0.039903 4.353
ijpeg 1.8449 2.262868 0.093465 22.654

vortex 0.9422 0.879734 0.012541 6.628
compres 1.1290 1.604509 0.042010 42.116
November 18, 2003 Page 13 of 27
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There are several things to note. First, the correlation errors were reduced uniformly for the three benc
classes. However, some benchmarks such as compress andapsi, still show high correlation errors.

Second, a lot of information is maintained for each benchmark. Using Table 14, the average basic block
times the number of basic blocks gives the amount of information that needs to be maintained. There is also a
cost to S-HLS to read in the information and use it.

Third, the information varies in size depending on the workload. For the technical loops and compress, ver
information is maintained. For the technical loops only one basic block accounts for 99% of the basic blocks
For other benchmarks likeapsi andgcc, more information is kept. Because of the variety of workloads, it mak
sense to maintain more information for those that require it and less for those that do not. While HLS mainta
same small amount of information for every benchmark, there is a cost in terms of accuracy and the need to t
processor for each class of benchmarks. In a later section, we study the tradeoff between reducing the amoun
block information and reducing the correlation error.

In the next run, we include the use of dependence information for each basic block. Over the lifetime of the
load, a single basic block may have a variety of dependency relationships with other instructions. The granul
simulation includes both the basic block instruction sequence and its dependence sequence. In practice, how
dependencies that vary are those that extend to instructions external to the basic block. In this study, in order to
the amount of information maintained, we merge the dependences into the smallest dependency relationship
any basic block with the same instruction sequence.

go 0.9644 1.050701 0.022531 8.947
li 1.5442 1.798550 0.054339 16.470

tomcatv 0.9314 0.885911 0.017648 4.882
su2cor 1.0188 0.943626 0.019350 7.377

hydro2d 1.0888 1.267340 0.026856 16.396
mgrid 1.6826 1.781148 0.020237 5.855
applu 1.3779 1.562656 0.076503 13.407
turb3d 1.6288 1.898085 0.045452 16.531
apsi 1.1737 1.531739 0.030696 30.504

wave5 1.1619 1.278123 0.039632 10.001
fpppp 0.7117 0.671739 0.014222 5.613
swim 1.1813 1.264830 0.037038 7.070
saxpy 1.2878 1.354089 0.021920 5.146
sdot 1.2412 0.979834 0.013060 21.056
sfill 2.4769 2.480448 0.004016 0.141

scopy 1.5940 1.948808 0.029080 22.257
ssum2 1.4090 1.400508 0.023833 0.601
sscale 1.3875 1.596286 0.010458 15.046
striad 1.4165 1.313990 0.019275 7.235
ssum1 1.6621 1.446342 0.017716 12.980

All (mean/stdev) 12.011346 9.526510
SPECint (mean/stdev) 13.774625 12.417656
SPECfp (mean/stdev) 11.763600 7.500449
TECH (mean/stdev) 10.557750 8.070553

Table 16: S-HLS using Basic Block Dependency Information

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9096 0.879541 0.020545 3.303
perl 1.1610 1.248184 0.025940 7.508

Table 15: S-HLS using Basic Block Instruction Sequences

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)
November 18, 2003 Page 14 of 27
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The errors are reduced for the SPEC benchmarks, but overall error for the technical workloads do not impro
nificantly. On investigation, it was found that the global miss rate calculations do not correspond to the mis
from the viewpoint of the memory operations in a basic block. In the cache statistics, HLS pulls in the overall
miss rate number from SimpleScalar, which includes writebacks to the L2. Writebacks form a large percentage
L2 traffic for the benchmarks. But for individual memory operations in a basic block, the part of the L2 miss rat
to writebacks should not be included in the calculation. This is for two reasons. First, the writebacks generally
in parallel with the servicing of the miss so they do not contribute to the latency of the operation. Second, write
are not modelled in HLS. This argues for either a global L2 miss rate calculation that does not include writeba
the maintenance of miss rate information for each basic block. In addition, examination of the technical loops
that the miss rates for loads and stores are quite different. In SAXPY, for example, both loads miss to the L1,
stores hit.

Because of these considerations, in S-HLS, each basic block maintains L1 and L2 miss rates for both loa
stores. Here is a run with the addition of this information:

m88ksim 1.4586 1.393629 0.051280 4.453
ijpeg 1.8449 2.117462 0.075550 14.772

vortex 0.9422 0.878597 0.016402 6.749
compres 1.1290 1.382506 0.023606 22.453

go 0.9644 1.037899 0.022703 7.620
li 1.5442 1.646120 0.044311 6.600

tomcatv 0.9314 0.855831 0.022379 8.112
su2cor 1.0188 0.933190 0.027497 8.402

hydro2d 1.0888 1.225168 0.033493 12.523
mgrid 1.6826 1.769635 0.009705 5.171
applu 1.3779 1.520872 0.024841 10.375
turb3d 1.6288 1.885516 0.049102 15.760
apsi 1.1737 1.528396 0.034668 30.219

wave5 1.1619 1.118354 0.057583 3.746
fpppp 0.7117 0.673322 0.013711 5.391
swim 1.1813 1.258897 0.054098 6.567
saxpy 1.2878 1.461255 0.010959 13.468
sdot 1.2412 1.085607 0.012296 12.534
sfill 2.4769 2.480262 0.004075 0.134

scopy 1.5940 1.943272 0.015235 21.910
ssum2 1.4090 1.514421 0.015164 7.480
sscale 1.3875 1.612845 0.008474 16.240
striad 1.4165 1.388360 0.012554 1.985
ssum1 1.6621 1.533435 0.009739 7.740

All (mean/stdev) 10.046731 6.821220
SPECint (mean/stdev) 9.182250 5.938455
SPECfp (mean/stdev) 10.626600 7.390154
TECH (mean/stdev) 10.186375 6.819019

Table 17: S-HLS using Basic Block Load and Store Cache Miss Rates

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9096 0.883598 0.028198 2.857
perl 1.1610 1.178220 0.029753 1.482

m88ksim 1.4586 1.347716 0.040249 7.601

Table 16: S-HLS using Basic Block Dependency Information

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)
November 18, 2003 Page 15 of 27
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All benchmarks improved, but a few of the technical loops still have errors greater than 10%. The problem
the technical loops need information about how the load and store misses, or delayed hits, overlap. In most cas
misses overlap, but the random cache miss variables often cause them not to overlap, leading to an underestim
performance. Note that this is the reverse of the usual situation for statistical simulation. Normally the critical
are randomized to less critical paths, and performance is overestimated.

One solution is to keep overlap statistics. This will solve this particular problem, but does not provide for the
elling of additional memory operation features. In S-HLS, we chose to try to identify the streams that the me
operations define. We track the load and store L1 hit, L1 miss or L2 hit information for about 100 cycles near th
of the one billion instruction run. We use this stream information in the sequence order of the instructions in the
block to determine the miss characteristics of the memory operations during simulation. Note that this is a sim
way to operate. As future work, more sophisticated stream information could be gathered and made more co
Also, the stream access is not optimal, i.e. we start collecting miss values at a random cycle and stop collectin
about 100 cycles later. The following results are produced:

ijpeg 1.8449 1.698654 0.134561 7.926
vortex 0.9422 0.862149 0.019887 8.495

compres 1.1290 1.245927 0.063531 10.355
go 0.9644 0.985707 0.034733 2.208
li 1.5442 1.450064 0.057884 6.095

tomcatv 0.9314 0.873802 0.020739 6.183
su2cor 1.0188 0.912161 0.015182 10.466

hydro2d 1.0888 1.119110 0.095286 2.782
mgrid 1.6826 1.729715 0.058554 2.800
applu 1.3779 1.474173 0.082393 6.985
turb3d 1.6288 1.772929 0.089612 8.847
apsi 1.1737 1.386719 0.121742 18.148

wave5 1.1619 1.123232 0.054697 3.326
fpppp 0.7117 0.672129 0.008628 5.559
swim 1.1813 1.085897 0.041301 8.075
saxpy 1.2878 1.230181 0.089998 4.473
sdot 1.2412 1.191536 0.118701 4.000
sfill 2.4769 2.480206 0.003007 0.130

scopy 1.5940 1.823195 0.398821 14.377
ssum2 1.4090 1.412356 0.155133 0.236
sscale 1.3875 1.377914 0.105713 0.689
striad 1.4165 1.267905 0.149000 10.489
ssum1 1.6621 1.282134 0.113065 22.859

All (mean/stdev) 6.824731 5.349703
SPECint (mean/stdev) 5.877375 3.082663
SPECfp (mean/stdev) 7.317100 4.376375
TECH (mean/stdev) 7.156625 7.632725

Table 18: S-HLS using Detailed Stream Information

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9096 0.871076 0.043900 4.234
perl 1.1610 1.176667 0.022471 1.348

m88ksim 1.4586 1.327717 0.033566 8.972
ijpeg 1.8449 1.725202 0.180483 6.487

Table 17: S-HLS using Basic Block Load and Store Cache Miss Rates

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)
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All benchmarks are improved, but the technical loops improved significantly. The combined techniques se
give low errors and consistent results across all three suites.

The system as described above is flexible. Address or data information could be maintained if specific bran
diction or value prediction studies were to be undertaken. As future work, the branch predictor statistics co
maintained on a basic block granularity. This would probably improve correlation forcompress[NUSS01]. There are
many other workload characteristics that could be modelled [JOHN99]. Those would more or less help decrea
relation errors.

 We also ran S-HLS with a dispatch window of 32.

vortex 0.9422 0.860189 0.029202 8.703
compres 1.1290 1.249317 0.070983 10.655

go 0.9644 0.986819 0.016969 2.323
li 1.5442 1.479090 0.075880 4.215

tomcatv 0.9314 0.863170 0.017195 7.324
su2cor 1.0188 0.914685 0.017860 10.218

hydro2d 1.0888 1.059177 0.103037 2.719
mgrid 1.6826 1.777686 0.027317 5.650
applu 1.3779 1.435848 0.129544 4.204
turb3d 1.6288 1.727198 0.146318 6.040
apsi 1.1737 1.323856 0.097410 12.792

wave5 1.1619 1.120683 0.050583 3.546
fpppp 0.7117 0.664898 0.011435 6.575
swim 1.1813 1.065523 0.049969 9.800
saxpy 1.2878 1.375968 0.009551 6.845
sdot 1.2412 1.302454 0.026077 4.934
sfill 2.4769 2.480979 0.002906 0.161

scopy 1.5940 1.606451 0.044572 0.780
ssum2 1.4090 1.397683 0.041592 0.802
sscale 1.3875 1.365524 0.018724 1.582
striad 1.4165 1.493669 0.026799 5.446
ssum1 1.6621 1.632211 0.048951 1.797

All (mean/stdev) 5.313538 3.371519
SPECint (mean/stdev) 5.867125 3.149809
SPECfp (mean/stdev) 6.886800 3.044980
TECH (mean/stdev) 2.793375 2.383359

Table 19: S-HLS using a Dispatch Window of 32

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)

gcc 0.9178 0.896867 0.022793 2.279
perl 1.1627 1.217511 0.024213 4.713

m88ksim 1.4624 1.384089 0.029517 5.353
ijpeg 2.0443 2.038928 0.164339 0.260

vortex 0.9501 0.879853 0.010600 7.392
compres 1.2126 1.373960 0.094769 13.305

go 0.9928 1.029788 0.025797 3.724
li 1.5804 1.515755 0.067362 4.089

Table 18: S-HLS using Detailed Stream Information

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)
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Overall error is still low, but a few benchmarks, includingmgrid andapsi, do worse.

9. Implementation Costs

To achieve the performance in Table 18, a significant amount of information must be generated and main
about the dynamic basic blocks that make up 99% of the blocks encountered in the first one billion instructions
benchmark. We calculate the cost in bytes as function of the number of basic blocks (NBB), the average lengt
basic blocks (LBB), the number of loads and stores in the basic block (NLS), and the number of exact strea
used (NSD). The information is summarized in Table 20. NSD is NLS x 100 = 4.3 x 100 = 430 in our runs. Ave
over all of the benchmarks (see Table 14), NBB is 120.2, LBB is 12.4, and NLS is 4.3. The error reduction is the
age reduction in correlation error as each technique augments the previous technique using Tables 15 throu
the branch predictability is maintained, an additional cost of NBB x 1 x 1 x 4 bytes would need to be added.

tomcatv 0.9502 0.881076 0.011191 7.273
su2cor 1.0358 0.923782 0.018508 10.813

hydro2d 1.2736 1.319106 0.049834 3.572
mgrid 1.8161 2.219689 0.035524 22.221
applu 1.6507 1.811340 0.169709 9.730
turb3d 1.9772 2.001863 0.156067 1.246
apsi 1.3412 1.638326 0.112274 22.152

wave5 1.2482 1.212617 0.056180 2.849
fpppp 0.7143 0.674981 0.009063 5.503
swim 1.3620 1.302611 0.053179 4.359
saxpy 1.6621 1.872126 0.059424 12.635
sdot 1.7558 1.851868 0.045019 5.470
sfill 2.4771 2.481336 0.002432 0.170

scopy 1.6901 1.603003 0.042466 5.152
ssum2 1.6510 1.660596 0.045759 0.580
sscale 1.7469 1.788622 0.039245 2.387
striad 1.8094 1.921933 0.055989 6.218
ssum1 1.8126 2.016871 0.058391 11.268

All (mean/stdev) 6.719731 5.727280
SPECint (mean/stdev) 5.139375 3.658480
SPECfp (mean/stdev) 8.971800 7.181607
TECH (mean/stdev) 5.485000 4.288354

Table 20:  Error Reduction Costs

Information Cost Formula

Average
Cost per

Benchmark
(in Bytes)

Reduction
in Error

using the
Technique

Cost in
Bytes per

%Error
Reduction

Comment

Cumulative Frequencies NBB x 4 bytes 480 26.6% 46.1 1 float/BB
Instruction Sequences NBB x LBB x 1/2 byte 746 < 16 op types
Dependency Statistics NBB x LBB x 2 x 1 byte 2980 16.31% 92.7 any dep 0/1 < 255
Cache Miss Statistics NBB x 4 x 4 bytes 1924 32.14% 59.9 ld/st l1/l2 miss rates

Stream Data NBB x NLS x 1/4 byte x NSD 55562 47.16% 1178.16 2 bits per datum

Table 19: S-HLS using a Dispatch Window of 32

Benchmark
SimpleScalar

IPC
S-HLS IPC S-HLS Sigma Error (%)
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Clearly, including detailed stream data is inefficient on average compared to using the other techniques. N
particular benchmarks, such as the technical loops, have drastically smaller NSD values because the avera
and stores per basic block is small (see Table 14), and the amount of data necessary for complete characteri
the stream is small (see Table 1). In Section 12, we will explore additional techniques to reduce information s

In future work, a study of the effect of the relative error versus absolute error may indicate that errors need
as low as those achieved here to carry out useful studies, and therefore not all techniques need to be applied.
be particularly true in early design studies [EECK03].

10. Higher Level Modelling: Basic Block Maps

The basic block graph structure as used in HLS was shown to give equivalent simulation results as a single
basic blocks. But the graph structure can be extended to model multiple phases of a program more accurate
basic block maps. A basic block map is an ordered list of the usage frequency of the set of basic blocks ove
cycles of the program. For example, a basic block map might describe a program in the following way:

basic block numbers {2..23, 42, 56..96} with weights {0.50, 0.25, 0.25} used for the first 15% of cycles
basic block numbers {1..51, 65, 75..100} with weights {0.15, 0.70, 0.15} used for the next 23% of cycles
basic block numbers {2, 3, 89, 91} with weights {0.20, 0.20, 0.60} used for the last 62% of cycles

This framework models programs more accurately as phases in program execution are encountered
research will evaluate different mapping strategies: mapping blocks into groups inside the graph structure, m
blocks by changing the graph structure itself, or a combination of both.

As an example, a simple code created from the concatenation ofsdot and ssum1from Table 1 has correlation
errors of 39.4% and 19.3% in HLS and S-HLS, respectively. The error in S-HLS is due to the way basic bloc
generated. Given that 50% of the blocks are equivalent tosdotblocks, and 50% are equivalent tossum1blocks, the
resulting sequence of basic blocks is a jumble of both. The behavior of the resulting simulations tends to be pe
tic, with long-latency L2 cache misses forming a critical chain in the dispatch window. Using a basic block
inside the global graph loop with the first half of the blocks mapped tosdot and the second half mapped tossum1, an
error of 1.6% is obtained. Obviously, additional workload information must be generated and maintained to s
basic block maps.

In HLS, the large error is due to an effect similar to the basic block size aliasing discussed in Section 8. HL
no means of separating out the two kinds of blocks and executing the phases of the program, so large errors

11. Comparison of HLS to S-HLS

The following charts give a visual comparison of HLS to S-HLS using the SPEC95 benchmarks and the tec
loops. In this figure, the correlation error means for all benchmarks, SPECint95, SPECfp95, and the technica
are compared given a dispatch window of 16 or a dispatch window of 32. S-HLS is run with all techniques en
The chart shows that S-HLS correlates as well or better than HLS.

Note that S-HLS seems more consistent overall. The next chart gives the standard deviation for the same
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HLS has a more moderate deviation over all benchmarks than HLS. The deviation worsens somewhat for th
dispatch window.

The next chart plots the correlation error increase over the benchmark suites as the various strategies for r
error are removed.

12. Basic Block Information Reduction Techniques

In previous sections, our first strategy for reducing error was to create and maintain a list of all basic block
account for the top 99% of the dynamic basic blocks encountered in a run, each with its own instruction sequen
then added more detailed information to each basic block to reduce error, such as dependence as stream inf

In this section we are interested in techniques to reduce the number of basic blocks that are stored. If we so
merge or combine the information in basic blocks that have the same size, we are left with statistics similar to t
[NUSS01]. One technique we used above was to combine basic blocks that have the same size and ins
sequences but different dependency information. An alternative is to merge blocks with very similar instru
sequences and dependence information, but slightly different sizes. The techniques to do that would include
matching between the instruction sequences in basic blocks and ranking the match results, similar to techniq
rently used for mapping the human genome. Another approach would be to merge basic block information, b
on a graduated scale as the frequency of the blocks decreases, i.e. the most frequent blocks are more exact an
while the less frequent are merged together either by block size, dependencies or stream. Those studies ar
future research.

Instead of a graduated scale, we can simply merge information for fewer than the top 99% of the dynamic
blocks encountered in a run. The basic block type information is used for a percentage of the top dynamic
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encountered and the baseline global information is used for the rest. The following figure shows the mean cor
error for the three benchmark suites and overall as the percentage of basic blocks that use dynamic block info
is lowered.

On average, errors decrease from 15.07% to 5.63% when all dynamic block information is used. The te
loops, in which one basic block accounts for over 99% of all basic blocks encountered dynamically, are improv
most. For SPEC, errors are less than 10% when using 65% of local basic block information. The following
shows the standard deviation of the error as the local block information use increases.

For particular benchmark suites, the situation becomes more complex. The following figure shows the res

the SPECint benchmarks.Perl andgohave very low error, below 5%, when using 35% or more of the dynamic blo
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information.Gcc, m88ksim, vortexandli always have errors below 10%. However,ijpeg needs 70% of the dynamic
block information to achieve below 10% error. Forcompress, error ends up relatively high due to the use of glob
branch predictability information for all blocks. This could be improved by using local branch predictability infor
tion for each basic block [NUSS01].

For the SPECfp, the situation is more complicated.Tomcatv, mgrid and fppppdo well using no dynamic block

information.Swim, wave5andhydro2ddo well using 40% of dynamic block information.Su2cor, applu, turb3d, and
apsi need 90% or more to get consistently low errors.

13. Statistical Simulation Using Benchmark Suites

The previous sections demonstrate that the correlation of benchmarks using statistical simulation can be
many levels. The workload information used can be as detailed as necessary to obtain the required level of e
relation. Programs can be modelled at a high level using basic block maps. The basic blocks may contain d
information or no information.

Conversely, the point is made that low-information simulations may work for particular benchmarks, or for b
mark suites, but may not work for other benchmarks or suites.

One exciting area open to investigation is the use of information about workload characteristics found using
tical simulation to predict trends in future workloads. By analyzing at some level of detail the information in the
blocks or basic block maps of benchmark suites over time, and extrapolating the trends to the future, perhaps
tions about those characteristics can be made.

14. The Case for Synthetic Benchmarks based on Statistical Simulation Information

So far we have talked about statistical simulation as a way to quickly simulate workloads on an execution
during early system design phases. We abstracted the workload characteristics to some level of accuracy, and
created a graph of the resulting basic blocks. We also talked about creating and using basic block maps to abs
phase behavior of a benchmark. We then argued that the graph of basic blocks is really an abstraction of the
benchmark or program that converges to the correct IPC quickly.

In this section, we argue that the graph structure, really an abstracted program, can be used to generate
benchmarks that exhibit the some or all of the same characteristics of the original program when executed o
cessor.

There are many reasons that one might want to generate synthetic benchmarks from real code [WONG88
are a few:

1) Code Abstraction: Since the synthetic benchmark is an abstraction of a user program or benchmark, th
tional details of the code are hidden from the user of the synthetic benchmark, while the runtime characteris
interest are similar. This would allow a company to synthesize benchmarks of their most important code and th
seminate the benchmarks. This permits others to assess the code’s behavior on their computer system, or t
their current system designs to accommodate the benchmark. Benchmarks based on mission-critical indus
dard code would proliferate to the academic and design communities.

2) Portability: Some benchmarks, like TPCC, are very difficult to get up and running quickly on a particular
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tem. In early processor design phases, it is difficult to tell how the design will fare on the benchmark befo
machine is built. If these complex benchmarks can be abstracted to simple benchmarks that converge quic
result, their workload characteristics can be tested earlier in the design phase.

3) Combining Workloads: Synthetic benchmarks can be created that are built from the characteristics of m
benchmarks or benchmark suites. This would facilitate, for example, the creation of a benchmark exhibiting a
SPECint behavior.

4) Simulating Future Workloads on Current Designs: As mentioned above, one exciting are open to invest
is the use of information about workload characteristics found using statistical simulation to predict trends in
workloads. By analyzing at some level of detail the information in the basic blocks or basic block maps of benc
suites over time, and extrapolating the trends to the future, perhaps predictions about those characteristics
made. Then, benchmarks with those characteristics can be synthesized and studied on current processor de

15. Overview of Synthetic Code Generation in S-HLS and the Major Associated Problems

A code generator was built into S-HLS that uses the data structures and information that already exists for
cal simulation. At a high level, the code generator takes the basic blocks of instructions and outputs a single
of c-code which contains calls to assembly-language instructions (in the PISA language). Each instruction, inc
branches, in each basic block maps to a single assembly language instruction call in the c-code. The assem
guage instructions are each demarcated by labels in the code.

The code generator is simplified by the fact that the basic blocks are configured into a single loop as describ
viously, since the original HLS graph structure made no difference to the error correlation. Therefore the d
model is to generate c-code that executes all instructions in one giant loop for a fixed number of iterations. T
implications for the branch predictor locality, since both the taken and not taken paths of any branch are config
be to the next sequential basic block.

There are several possible ways to model branch predictability accurately at the basic block granularity.
scenario, a basic block is broken into a collection of basic blocks based on the predictability of its branch. Two
basic blocks are created, the taken set and the not-taken set, and the number of items in each set is determin
total number of basic blocks multiplied by the probability that a branch is taken or not-taken. Then in the code
ated for a basic block which jumps to the block, a simple unsigned counter accessing a jump table is used to
one of the basic blocks from the set. Over many iterations, even though the branch predictions will most like
match those of the original code, the instruction access profile will match that of the original code. One disadv
of this scheme is that studies targeting branch predictor design to improve performance of the original code ca
undertaken using the synthetic benchmark. Another disadvantage is that additional code (the jump table) is a
the synthetic benchmark which did not exist in the original code, skewing the instruction mix and IPC results. F
research can search for low-overhead predictability generating functions which, when implemented in the sy
code, cause the branch predictability to match that of the original code. For the present, we do not try to so
branch predictability problem and restrict our attention to codes which exhibit high branch predictability.

Another problem that must be solved is the problem of generating code that exhibits the same icache miss
the original code. One solution is to duplicate enough basic blocks such that the miss rate obtained matches
rate of the original code. Of course, the duplication must be done such that instruction mix and IPC results ma
original code. A simple way to achieve that is to only add multiples of the entire synthetic code. For the prese
do not try to solve the icache miss rate problem and restrict our attention to codes with low icache miss rates

Another problem that we do address in S-HLS is the dcache miss rate problem. The memory operations in t
thetic code must access data in the same manner as the original code so as to generate hits and misses in
way. As described above, S-HLS tracks the streaming behavior of the memory operations. This information is
determine the stride of the address incrementer that feeds each load or store instruction. Knowledge of the L1
cache blocksize is needed to properly assign the strides. For a stream of L1 hits, the increment is 0. For a stre
always misses in the L1 but hits 50% in the L2, if the L1 blocksize is 32 bytes and the L2 blocksize is 64 bytes
the increment to the memory operation is 32. Unless the streams are simple, it is difficult to assign a stride whi
rectly matches the miss rates in the original code. Future research can search for stream generating function
more closely match miss rates. For the present, we restrict our attention to codes which exhibit simple stream

The technical loops are ideal candidates for a first study of benchmark synthesis using statistical simulat
demonstrated in previous sections, modelling the technical loops is not trivial, yet the amount of code in the loo
nels is minimal, amounting to no more than a dozen instructions when compiled. In addition, the loops exhib
November 18, 2003 Page 23 of 27
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branch predictability, so that the branch predictability problem above does not have to be solved immediately
also have low icache miss rates, so the icache miss rate problem also does not have to be solved immediate
also lend themselves to studies of the dcache miss rate problem because they exhibit simple stream behavio

16. Benchmark Synthesis using S-HLS

This section describes code generation in S-HLS. There are two major phases: graph analysis and code ge
The goal is to take the statistically-generated instructions and dependence graph and create an object code th
translated into c-code with assembly-language calls that represent the workload. Each instruction is mapped
one and onto one assembly language call. Each instruction in a basic block has a unique output variable nam
are several reasons for using c-code instead of generating an assembly language program. First, the code is m
table to other machines. Second, c-code headers and variable declarations are easy to generate. Third, the co
prone to errors. One disadvantage is that a compiler may remove instructions that do not produce results that
later unless special precautions are taken, as described below. The instructions may not produce results that
later because the instructions were statistically generated, and no real function is being performed.

Starting with graph analysis, for each basic block in the graph, the input data structures are labelled accor
their functionality. If an instruction input was created which had no dependency, it is labelled as an imme
Branches with immediates are paired with previous compatible instructions. For convergence purposes, the gr
be traversed multiple times, and since we know we might access streams of memory, loop limits are created
guarantee memory will not be stepped on.

All instruction input dependencies are then created. The starting dependence is the dependent instruction
for statistical simulation. The issue iscompatibility: if the dependency is not compatible with the input type of th
dependent instruction, then another instruction must be chosen. The algorithm is to move forward and backwa
the starting dependency through the list of instructions in sequence order until the dependency is compati
alternative would be to have an algorithm to change the type of either the dependency or the dependent instru
match the dependency. For this study we chose not to change any instruction types except in the case of mem
tion access counters and the loop counter, as described below. An instruction is allowed to be dependent on
output. If more than 15 instructions are checked and a dependency cannot be made compatible, the program e
an error message. The one exception is a store that is operating on data which was not generated in the pro
external to it. An additional variable of the correct data type is created for the store.

Table 21 shows the compatibility of instructions in the PISA assembly language. Thedependent-inputscolumn
gives the PISA instruction inputs that are being tested for compatibility. For loads and stores, the memory lo
access register must be an integer type. When found, it is labelled as a memory access counter for special pr
during the code generation phase. When all instructions have compatible dependencies, a search is made for
tional integer instruction which is then labelled as the loop counter. The branch in the last basic block in the lis
the loop counter to determine when the program is complete. The number of loops is chosen large enough to
IPC convergence. In general, this means the number of loops must be larger than the longest memory acces
pattern of any memory operation. In practice, the number of loops does not have to be large to satisfy simple
access patterns.

The next phase of synthesis is code generation. First, the c-code main header is generated. Next, seq

Table 21:  Dependence Compatibility Chart

dependent
instruction

dependent inputs compatible with: comment

Int 0/1 Int, Ld-Int
Flt 0/1 Flt, Ld-Flt

Ld-Int/Flt 0 Int dep0 is addr resolution input
St-Int 0 Int, Ld-Int dep0 must store int
St-Flt 0 Flt, Ld-Flt dep0 must store float

St-Int/Flt 1 Int dep1 is addr resolution input
Br-Int 0/1 Int, Ld-Int
Br-Flt 0/1 Flt, Ld-Flt
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through all of the instructions, we generate the necessary variable declarations, including specialregister-increment
variables, the loop variable, and pointers to the correct memory type for the memory access instructions. N
generatemallocdeclarations for the memory access instructions with size based on the number of iterations th
gram will execute through the instructions. As an alternative, static memory can be assigned instead of using
but then the code size increases substantially at compile time.

Next, we generate initializations for each register-increment variable to a value dictated by the stream
accessed by its memory operations. The register-increment variable is assigned the value that will be adde
memory location counter after each access, i.e. the stride of the memory access. The following table, Table 2
the initialization value of the stride in 4 byte increments given the stream’s particular L1 and L2 hit rates. The
was generated based on an L1 line size of 32 bytes, and an L2 line size of 64 bytes.

So, for a stream that always hits in the L1, a stride of 0 is chosen. For a stream that hits half the time in the
half the time in the L2, a stride of 4x 4 = 16 isused. Note that not all combinations are possible, so for a particu
stream the stride that gives the L1 hit rate closest to the L1 hit rate of the statistically generated stream is cho
future work, multiple instructions in the code could be used to create more complex stream behavior to matc
tional L1 and L2 hit rate characteristics.

Next, the loop counter variable initialization is generated, and is set equal to the number of times the instru
will be executed.

Next, the instructions are generated as c-code calls to PISA assembly language instructions. Each call is g
associated unique label. Memory access counters are generated usingaddu, adding in the increment-register variabl
to its variable value. The loop counter is generated as anaddi with -1 as the decrement value. Floating point oper
tions can have long or short latency characteristics. Long latency operations are generated usingmul.sand short
latency operations are generated usingadd.s. Loads and stores uselw, sw, l.s or s.sdepending on the type. Currently
double types are not handled, but are easily added for future work. Branches use thebeq type, and can have either
integer or float operands. While strictly speaking assembly language is not portable, mapping the simple PISA
bly language calls to any assembly language is a straight-forward process.

Next, code is generated to print out some output variables depending on a switch value. At runtime, the
variable will never be set. This trick keeps assembly language instructions that produce no results that are us
from being optimized out of the compilation. For now, all instruction variables are put into this print block. This
implications for register spills for codes that are more than a few basic blocks long. As future research, eith
compiler can be flagged to not remove the assembly language instructions or variables will be consolidated
generated code and only a minimum number will be put in the print block.

Table 22: L1 and L2 Hit Rates versus Stride (in 4 Byte increments)

L1 Hit Rate L2 Hit Rate Stride

0.0000 0.5000 8
0.1172 0.4956 9
0.1250 0.5000 7
0.2422 0.4948 10
0.2500 0.5000 6
0.3672 0.4938 11
0.3750 0.5000 5
0.4922 0.4923 12
0.5000 0.5000 4
0.6172 0.4898 13
0.6250 0.5000 3
0.7422 0.4848 14
0.7500 0.5000 2
0.8672 0.4706 15
0.8750 0.5000 1
0.9922 0.0000 16
1.0000 0.0000 0
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Next, code to free the malloced memory is generated, and finally a c-code footer is generated.

17. Benchmark Synthesis Results for the Technical Loops

The technical loops were processed through S-HLS using all of the techniques to reduce correlation
described in previous sections. Code generation was enabled for those runs and c-code was produced using
thesis process described above. The c-code was then cross-compiled for the PISA language usinggccversion 2.95.3
with flag -O and a binary was generated. The binary was then run through SimpleScalar. It should be noted tha
the code represents a program and is not the original program, the overflow and underflow errors in Simple
were changed to warnings to prevent early program exits. In the following table, Table 23, the SimpleScalar
the original code is shown, followed by the IPC of the synthetic code, followed by the error.

The mean error is 3.31%, but several are above 5%. The major sources of error include the error in the wo
characteristics from which the code was generated and the error in the code generation process itself. As an
of the latter, in some cases instructions are used as memory operation address registers that were simple add
original code. The IPC can be subtly affected by these small differences in functionality.

One area of future research will investigate how to take the synthetic benchmark and make it more accurat
synthetic benchmark is run through SimpleScalar, and then that output is run through SimpleScalar again, and

As future work, benchmark synthesis will be attempted on more general-purpose workloads. Challenges t
racy include the branch predictability problem and the icache miss rate problem as previously described. The
provides a framework from which these problems can be investigated.

18. Conclusions

In this report, we show that accurate statistical simulation of technical loops requires more information than
ously modelled. We show that simulation of code blocks with a granularity on the order of the basic block imp
accuracy for technical loops and does not decrease accuracy for other workloads. The cost of the additional i
tion is quantified.

Higher-level basic block maps are proposed to model program phases and achieve higher accuracy. Th
block maps, implemented as a graph structure, represent an actual workload and achieve good correlation a
We show how to synthesize benchmarks from the graph. To do this, memory accesses are modelled as strea
synthetic benchmark. We give correlation results versus a cycle-accurate simulator for the technical loops. Id
synthesizing more accurate statistical benchmarks are discussed.

The system provides a flexible framework from which statistical simulation and benchmark synthesis c
investigated.
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	saxpy
	z[k] = z[k] + q * x[k]
	10
	16 x 3
	sdot
	q = q + z[k] * x[k]
	9
	16 x 2
	sfill
	z[k] = q
	5
	1
	scopy
	z[k] = x[k]
	7
	16 x 2
	ssum2
	q = q + x[k]
	6
	16 x 1
	sscale
	z[k] = q * x[k]
	8
	16 x 2
	striad
	z[k] = y[k] + q * x[k]
	11
	16 x 3
	ssum1
	z[k] = y[k] + x[k]
	10
	16 x 3
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	5. Setup and Procedure
	6. The HLS Graph Structure
	Table 2: Baseline SPECint95 Run for Graph Structure Studies


	gcc
	0.9096
	0.962255
	0.029882
	5.787
	perl
	1.1610
	1.23764
	0.052625
	6.600
	m88ksim
	1.4586
	1.401735
	0.041695
	3.897
	ijpeg
	1.8449
	1.884525
	0.067900
	2.146
	vortex
	0.9422
	0.925260
	0.025933
	1.796
	compress
	1.1290
	1.249695
	0.079047
	10.689
	go
	0.9644
	1.04897
	0.031119
	8.768
	li
	1.5442
	1.518960
	0.060196
	1.633
	Table 3: Fraction of Branches that are Backward versus Error for gcc

	0.05
	0.9096
	0.950270
	0.032830
	4.470
	0.10
	0.9096
	0.964385
	0.027900
	6.021
	0.15
	0.9096
	0.963525
	0.027856
	5.927
	0.20
	0.9096
	0.969035
	0.035735
	6.533
	0.30
	0.9096
	0.956085
	0.027676
	5.109
	0.40
	0.9096
	0.964090
	0.040602
	5.989
	0.50
	0.9096
	0.966575
	0.060843
	6.262
	0.60
	0.9096
	0.936545
	0.049673
	2.961
	0.70
	0.9096
	0.948450
	0.058764
	4.270
	0.80
	0.9096
	0.948605
	0.050113
	4.287
	0.90
	0.9096
	0.984435
	0.062481
	8.226
	Table 4: Backward Branch Mean Jump Distance versus Error for gcc

	1
	0.9096
	0.960260
	0.026757
	5.568
	2
	0.9096
	0.951070
	0.034218
	4.558
	3
	0.9096
	0.943925
	0.024706
	3.772
	4
	0.9096
	0.968600
	0.026717
	6.485
	5
	0.9096
	0.958100
	0.025197
	5.331
	6
	0.9096
	0.947485
	0.034427
	4.164
	7
	0.9096
	0.963295
	0.029373
	5.902
	8
	0.9096
	0.970905
	0.019472
	6.738
	9
	0.9096
	0.964240
	0.041481
	6.006
	10
	0.9096
	0.953565
	0.026938
	4.832
	11
	0.9096
	0.965455
	0.036890
	6.139
	12
	0.9096
	0.964835
	0.029053
	6.071
	13
	0.9096
	0.949805
	0.030311
	4.419
	14
	0.9096
	0.960670
	0.028884
	5.613
	15
	0.9096
	0.962885
	0.029452
	5.857
	16
	0.9096
	0.957170
	0.031255
	5.228
	Table 5: Forward Branch Mean Jump Distance versus Error for gcc

	1
	0.9096
	0.969510
	0.029858
	6.585
	2
	0.9096
	0.948625
	0.042222
	4.289
	3
	0.9096
	0.950420
	0.022023
	4.486
	4
	0.9096
	0.958320
	0.026656
	5.355
	5
	0.9096
	0.966225
	0.030679
	6.224
	6
	0.9096
	0.950215
	0.032600
	4.464
	7
	0.9096
	0.950880
	0.026010
	4.537
	8
	0.9096
	0.960470
	0.025520
	5.591
	9
	0.9096
	0.968590
	0.030637
	6.484
	10
	0.9096
	0.966165
	0.033810
	6.217
	11
	0.9096
	0.960370
	0.032818
	5.580
	Table 6: HLS Error When Randomizing the Not-Taken Branch

	gcc
	0.9096
	0.965660
	0.032898
	6.162
	perl
	1.1610
	1.193370
	0.111949
	2.787
	m88ksim
	1.4586
	1.421580
	0.064695
	2.537
	ijpeg
	1.8449
	1.929850
	0.176567
	4.603
	vortex
	0.9422
	0.928405
	0.027221
	1.463
	compress
	1.1290
	1.248515
	0.174408
	10.584
	go
	0.9644
	1.080000
	0.058706
	11.985
	li
	1.5442
	1.484475
	0.116028
	3.866
	Table 7: HLS Error Setting the Taken Branch to Next-Sequential

	gcc
	0.9096
	0.965210
	0.019936
	6.112
	perl
	1.1610
	1.219300
	0.030253
	5.020
	m88ksim
	1.4586
	1.426905
	0.037285
	2.171
	ijpeg
	1.8449
	1.920560
	0.039689
	4.100
	vortex
	0.9422
	0.926190
	0.030187
	1.698
	compress
	1.1290
	1.217400
	0.054286
	7.828
	go
	0.9644
	1.063855
	0.030351
	10.311
	li
	1.5442
	1.514995
	0.067419
	1.890
	Table 8: HLS Error Using Big Loop of Basic Blocks

	gcc
	0.9096
	0.972175
	0.026239
	6.878
	perl
	1.1610
	1.220555
	0.033056
	5.128
	m88ksim
	1.4586
	1.414640
	0.038046
	3.012
	ijpeg
	1.8449
	1.888350
	0.041286
	2.354
	vortex
	0.9422
	0.921780
	0.025405
	2.166
	compress
	1.1290
	1.230770
	0.049961
	9.013
	go
	0.9644
	1.068515
	0.025836
	10.794
	li
	1.5442
	1.511875
	0.041735
	2.092
	7. HLS Runs
	Table 9: Baseline HLS Run


	gcc
	0.9096
	0.962840
	0.032180
	5.852
	perl
	1.1610
	1.219825
	0.035786
	5.065
	m88ksim
	1.4586
	1.379890
	0.037567
	5.395
	ijpeg
	1.8449
	1.876680
	0.065075
	1.721
	vortex
	0.9422
	0.911755
	0.026343
	3.230
	compress
	1.1290
	1.261490
	0.063339
	11.734
	go
	0.9644
	1.070320
	0.031205
	10.981
	li
	1.5442
	1.506735
	0.068131
	2.425
	tomcatv
	0.9314
	1.166815
	0.019603
	25.274
	su2cor
	1.0188
	1.184175
	0.023817
	16.231
	hydro2d
	1.0888
	1.139675
	0.096239
	4.671
	mgrid
	1.6826
	1.171475
	0.039468
	30.376
	applu
	1.3779
	1.334175
	0.045145
	3.172
	turb3d
	1.6288
	1.655495
	0.070213
	1.637
	apsi
	1.1737
	1.361210
	0.053095
	15.974
	wave5
	1.1619
	1.488095
	0.051179
	28.073
	fpppp
	0.7117
	0.687255
	0.016716
	3.433
	swim
	1.1813
	1.096045
	0.034478
	7.216
	saxpy
	1.2878
	1.031680
	0.082820
	19.887
	sdot
	1.2412
	0.798475
	0.061000
	35.668
	sfill
	2.4769
	2.228660
	0.101467
	10.021
	scopy
	1.5940
	1.279990
	0.099503
	19.698
	ssum2
	1.4090
	0.901300
	0.104733
	36.031
	sscale
	1.3875
	1.149555
	0.109330
	17.148
	striad
	1.4165
	0.877010
	0.069869
	38.085
	ssum1
	1.6621
	0.927170
	0.060633
	44.215
	All (mean/stdev)
	15.508192
	12.760963
	SPECint (mean/stdev)
	5.800375
	3.489195
	SPECfp (mean/stdev)
	13.605700
	10.561481
	TECH (mean/stdev)
	27.594125
	11.523699
	Table 10: HLS using Only 1 Billion Sim-Fast Instructions

	perl
	1.1610
	1.200830
	0.038747
	3.429
	m88ksim
	1.4586
	1.426720
	0.035693
	2.184
	ijpeg
	1.8449
	1.874115
	0.067641
	1.582
	vortex
	0.9422
	0.926870
	0.023626
	1.626
	compres
	1.1290
	1.211340
	0.082729
	7.292
	go
	0.9644
	1.073670
	0.042132
	11.329
	li
	1.5442
	1.475600
	0.069037
	4.441
	tomcatv
	0.9314
	0.952090
	0.023910
	2.220
	su2cor
	1.0188
	0.990465
	0.027333
	2.780
	hydro2d
	1.0888
	1.168840
	0.076533
	7.350
	mgrid
	1.6826
	1.189765
	0.040772
	29.289
	applu
	1.3779
	1.355025
	0.034835
	1.659
	turb3d
	1.6288
	1.644165
	0.064775
	0.942
	apsi
	1.1737
	1.385880
	0.058306
	18.076
	wave5
	1.1619
	1.158195
	0.070632
	0.317
	fpppp
	0.7117
	0.700820
	0.018319
	1.527
	swim
	1.1813
	1.137020
	0.062677
	3.747
	saxpy
	1.2878
	0.992110
	0.124944
	22.959
	sdot
	1.2412
	0.759980
	0.052006
	38.769
	sfill
	2.4769
	2.287070
	0.099732
	7.663
	scopy
	1.5940
	1.281400
	0.095744
	19.610
	ssum2
	1.4090
	0.879885
	0.096139
	37.551
	sscale
	1.3875
	1.109400
	0.074767
	20.042
	striad
	1.4165
	0.892850
	0.078510
	36.966
	ssum1
	1.6621
	0.912170
	0.078307
	45.118
	All (mean/stdev)
	12.887846
	13.737734
	SPECint (mean/stdev)
	4.812375
	3.190147
	SPECfp (mean/stdev)
	6.790700
	9.001347
	TECH (mean/stdev)
	28.584750
	11.992705
	Table 11: HLS with Auto-Inc/Dec Instruction Bug Fix

	gcc
	0.9096
	0.980690
	0.029812
	7.814
	perl
	1.1610
	1.308385
	0.045983
	12.693
	m88ksim
	1.4586
	1.472850
	0.052602
	0.975
	ijpeg
	1.8449
	2.128685
	0.078539
	15.381
	vortex
	0.9422
	0.939565
	0.018257
	0.277
	compres
	1.1290
	1.288890
	0.080300
	14.161
	go
	0.9644
	1.088810
	0.034582
	12.900
	li
	1.5442
	1.703840
	0.064999
	10.337
	tomcatv
	0.9314
	0.963815
	0.022415
	3.479
	su2cor
	1.0188
	1.014700
	0.033177
	0.401
	hydro2d
	1.0888
	1.213430
	0.062992
	11.445
	mgrid
	1.6826
	1.576605
	0.085137
	6.298
	applu
	1.3779
	1.482015
	0.045743
	7.555
	turb3d
	1.6288
	1.709135
	0.063649
	4.931
	apsi
	1.1737
	1.608430
	0.058035
	37.038
	wave5
	1.1619
	1.290210
	0.066091
	11.042
	fpppp
	0.7117
	0.701545
	0.020937
	1.425
	swim
	1.1813
	1.216150
	0.053905
	2.949
	saxpy
	1.2878
	1.104650
	0.112750
	14.220
	sdot
	1.2412
	0.843590
	0.067161
	32.033
	sfill
	2.4769
	2.243655
	0.086004
	9.415
	scopy
	1.5940
	1.406540
	0.113086
	11.759
	ssum2
	1.4090
	0.913105
	0.091436
	35.193
	sscale
	1.3875
	1.276735
	0.122670
	7.982
	striad
	1.4165
	0.982945
	0.081332
	30.606
	ssum1
	1.6621
	1.022080
	0.133868
	38.505
	All (mean/stdev)
	13.108231
	11.455160
	SPECint (mean/stdev)
	9.317250
	5.466737
	SPECfp (mean/stdev)
	8.656300
	10.096836
	TECH (mean/stdev)
	22.464125
	11.936102
	Table 12: HLS using a Dispatch Window of 32

	gcc
	0.9178
	0.981825
	0.028521
	6.974
	perl
	1.1627
	1.241670
	0.052421
	6.790
	m88ksim
	1.4624
	1.443345
	0.059080
	1.301
	ijpeg
	2.0443
	1.891380
	0.048275
	7.479
	vortex
	0.9501
	0.935230
	0.026634
	1.564
	compres
	1.2126
	1.179490
	0.091150
	2.729
	go
	0.9928
	1.078000
	0.054173
	8.580
	li
	1.5804
	1.489775
	0.078504
	5.733
	tomcatv
	0.9502
	0.971220
	0.026506
	2.211
	su2cor
	1.0358
	1.012415
	0.037292
	2.256
	hydro2d
	1.2736
	1.253245
	0.073781
	1.597
	mgrid
	1.8161
	1.177150
	0.040049
	35.181
	applu
	1.6507
	1.353435
	0.058746
	18.007
	turb3d
	1.9772
	1.661580
	0.053740
	15.961
	apsi
	1.3412
	1.405510
	0.056961
	4.793
	wave5
	1.2482
	1.188670
	0.099693
	4.768
	fpppp
	0.7143
	0.706010
	0.016745
	1.159
	swim
	1.3620
	1.123050
	0.058747
	17.543
	saxpy
	1.6621
	1.014810
	0.092639
	38.943
	sdot
	1.7558
	0.819395
	0.059563
	53.331
	sfill
	2.4771
	2.245675
	0.099129
	9.341
	scopy
	1.6901
	1.267900
	0.098147
	24.979
	ssum2
	1.6510
	0.897710
	0.108843
	45.625
	sscale
	1.7469
	1.152055
	0.097205
	34.050
	striad
	1.8094
	0.922470
	0.071190
	49.016
	ssum1
	1.8126
	0.923840
	0.091264
	49.031
	All (mean/stdev)
	17.267000
	17.343272
	SPECint (mean/stdev)
	5.143750
	2.671159
	SPECfp (mean/stdev)
	10.347600
	10.551376
	TECH (mean/stdev)
	38.039500
	13.890552
	8. Improving Correlation Errors using S-HLS
	Table 13: S-HLS Baseline Run


	gcc
	0.9096
	0.967090
	0.016043
	6.319
	perl
	1.1610
	1.268023
	0.028371
	9.217
	m88ksim
	1.4586
	1.479110
	0.025797
	1.405
	ijpeg
	1.8449
	2.669050
	0.052241
	44.670
	vortex
	0.9422
	0.911880
	0.011047
	3.217
	compres
	1.1290
	1.589893
	0.036913
	40.822
	go
	0.9644
	1.094280
	0.018289
	13.466
	li
	1.5442
	1.823467
	0.033757
	18.083
	tomcatv
	0.9314
	0.938056
	0.014192
	0.713
	su2cor
	1.0188
	0.949989
	0.010429
	6.753
	hydro2d
	1.0888
	1.306746
	0.022473
	20.016
	mgrid
	1.6826
	1.711185
	0.014135
	1.697
	applu
	1.3779
	1.697247
	0.015573
	23.175
	turb3d
	1.6288
	2.088964
	0.031786
	28.250
	apsi
	1.1737
	1.679349
	0.021318
	43.080
	wave5
	1.1619
	1.400348
	0.025185
	20.521
	fpppp
	0.7117
	0.709588
	0.006782
	0.294
	swim
	1.1813
	1.348526
	0.016732
	14.155
	saxpy
	1.2878
	1.518453
	0.059191
	17.909
	sdot
	1.2412
	1.105377
	0.032714
	10.941
	sfill
	2.4769
	2.993007
	0.071628
	20.835
	scopy
	1.5940
	1.999458
	0.092190
	25.435
	ssum2
	1.4090
	1.328866
	0.054605
	5.686
	sscale
	1.3875
	1.745563
	0.036771
	25.805
	striad
	1.4165
	1.318285
	0.054329
	6.932
	ssum1
	1.6621
	1.392186
	0.045314
	16.238
	All (mean/stdev)
	16.370538
	12.608257
	SPECint (mean/stdev)
	17.149875
	15.630231
	SPECfp (mean/stdev)
	15.865400
	13.210275
	TECH (mean/stdev)
	16.222625
	7.297599
	Table 14: Basic Blocks and Size Aliasing in 99% of Dynamic Basic Blocks

	gcc
	696
	10
	7
	3
	662
	5.00
	perl
	71
	5
	11
	4
	56
	2.77
	m88ksim
	98
	8
	5
	1
	78
	3.36
	ijpeg
	51
	24
	5
	1
	27
	5.78
	vortex
	269
	12
	5
	1
	234
	6.81
	compress
	10
	7
	3
	0
	1
	0.90
	go
	550
	13
	12
	4
	507
	4.49
	li
	72
	6
	5
	1
	58
	3.49
	tomcatv
	143
	8
	8
	3
	118
	3.45
	su2cor
	99
	7
	7
	2
	81
	2.98
	hydro2d
	209
	9
	16
	7
	178
	3.42
	mgrid
	32
	39
	2
	0
	5
	12.00
	applu
	89
	51
	8
	0
	33
	14.17
	turb3d
	77
	15
	6
	0
	45
	4.62
	apsi
	314
	19
	20
	3
	249
	7.36
	wave5
	68
	9
	8
	3
	44
	2.59
	fpppp
	159
	27
	22
	8
	112
	12.80
	swim
	40
	14
	6
	0
	20
	4.53
	saxpy
	10
	4
	1
	0
	3
	1.60
	sdot
	10
	4
	1
	0
	3
	1.30
	sfill
	10
	4
	1
	0
	3
	1.40
	scopy
	10
	4
	1
	0
	3
	1.50
	ssum2
	10
	4
	1
	0
	4
	1.20
	sscale
	10
	4
	1
	0
	3
	1.50
	striad
	10
	4
	1
	0
	3
	1.60
	ssum1
	10
	4
	1
	0
	3
	1.60
	average
	120.2
	12.4
	6.3
	1.6
	97.4
	4.32
	Table 15: S-HLS using Basic Block Instruction Sequences

	gcc
	0.9096
	0.930754
	0.024677
	2.324
	perl
	1.1610
	1.238857
	0.038527
	6.705
	m88ksim
	1.4586
	1.395092
	0.039903
	4.353
	ijpeg
	1.8449
	2.262868
	0.093465
	22.654
	vortex
	0.9422
	0.879734
	0.012541
	6.628
	compres
	1.1290
	1.604509
	0.042010
	42.116
	go
	0.9644
	1.050701
	0.022531
	8.947
	li
	1.5442
	1.798550
	0.054339
	16.470
	tomcatv
	0.9314
	0.885911
	0.017648
	4.882
	su2cor
	1.0188
	0.943626
	0.019350
	7.377
	hydro2d
	1.0888
	1.267340
	0.026856
	16.396
	mgrid
	1.6826
	1.781148
	0.020237
	5.855
	applu
	1.3779
	1.562656
	0.076503
	13.407
	turb3d
	1.6288
	1.898085
	0.045452
	16.531
	apsi
	1.1737
	1.531739
	0.030696
	30.504
	wave5
	1.1619
	1.278123
	0.039632
	10.001
	fpppp
	0.7117
	0.671739
	0.014222
	5.613
	swim
	1.1813
	1.264830
	0.037038
	7.070
	saxpy
	1.2878
	1.354089
	0.021920
	5.146
	sdot
	1.2412
	0.979834
	0.013060
	21.056
	sfill
	2.4769
	2.480448
	0.004016
	0.141
	scopy
	1.5940
	1.948808
	0.029080
	22.257
	ssum2
	1.4090
	1.400508
	0.023833
	0.601
	sscale
	1.3875
	1.596286
	0.010458
	15.046
	striad
	1.4165
	1.313990
	0.019275
	7.235
	ssum1
	1.6621
	1.446342
	0.017716
	12.980
	All (mean/stdev)
	12.011346
	9.526510
	SPECint (mean/stdev)
	13.774625
	12.417656
	SPECfp (mean/stdev)
	11.763600
	7.500449
	TECH (mean/stdev)
	10.557750
	8.070553
	Table 16: S-HLS using Basic Block Dependency Information

	gcc
	0.9096
	0.879541
	0.020545
	3.303
	perl
	1.1610
	1.248184
	0.025940
	7.508
	m88ksim
	1.4586
	1.393629
	0.051280
	4.453
	ijpeg
	1.8449
	2.117462
	0.075550
	14.772
	vortex
	0.9422
	0.878597
	0.016402
	6.749
	compres
	1.1290
	1.382506
	0.023606
	22.453
	go
	0.9644
	1.037899
	0.022703
	7.620
	li
	1.5442
	1.646120
	0.044311
	6.600
	tomcatv
	0.9314
	0.855831
	0.022379
	8.112
	su2cor
	1.0188
	0.933190
	0.027497
	8.402
	hydro2d
	1.0888
	1.225168
	0.033493
	12.523
	mgrid
	1.6826
	1.769635
	0.009705
	5.171
	applu
	1.3779
	1.520872
	0.024841
	10.375
	turb3d
	1.6288
	1.885516
	0.049102
	15.760
	apsi
	1.1737
	1.528396
	0.034668
	30.219
	wave5
	1.1619
	1.118354
	0.057583
	3.746
	fpppp
	0.7117
	0.673322
	0.013711
	5.391
	swim
	1.1813
	1.258897
	0.054098
	6.567
	saxpy
	1.2878
	1.461255
	0.010959
	13.468
	sdot
	1.2412
	1.085607
	0.012296
	12.534
	sfill
	2.4769
	2.480262
	0.004075
	0.134
	scopy
	1.5940
	1.943272
	0.015235
	21.910
	ssum2
	1.4090
	1.514421
	0.015164
	7.480
	sscale
	1.3875
	1.612845
	0.008474
	16.240
	striad
	1.4165
	1.388360
	0.012554
	1.985
	ssum1
	1.6621
	1.533435
	0.009739
	7.740
	All (mean/stdev)
	10.046731
	6.821220
	SPECint (mean/stdev)
	9.182250
	5.938455
	SPECfp (mean/stdev)
	10.626600
	7.390154
	TECH (mean/stdev)
	10.186375
	6.819019
	Table 17: S-HLS using Basic Block Load and Store Cache Miss Rates

	gcc
	0.9096
	0.883598
	0.028198
	2.857
	perl
	1.1610
	1.178220
	0.029753
	1.482
	m88ksim
	1.4586
	1.347716
	0.040249
	7.601
	ijpeg
	1.8449
	1.698654
	0.134561
	7.926
	vortex
	0.9422
	0.862149
	0.019887
	8.495
	compres
	1.1290
	1.245927
	0.063531
	10.355
	go
	0.9644
	0.985707
	0.034733
	2.208
	li
	1.5442
	1.450064
	0.057884
	6.095
	tomcatv
	0.9314
	0.873802
	0.020739
	6.183
	su2cor
	1.0188
	0.912161
	0.015182
	10.466
	hydro2d
	1.0888
	1.119110
	0.095286
	2.782
	mgrid
	1.6826
	1.729715
	0.058554
	2.800
	applu
	1.3779
	1.474173
	0.082393
	6.985
	turb3d
	1.6288
	1.772929
	0.089612
	8.847
	apsi
	1.1737
	1.386719
	0.121742
	18.148
	wave5
	1.1619
	1.123232
	0.054697
	3.326
	fpppp
	0.7117
	0.672129
	0.008628
	5.559
	swim
	1.1813
	1.085897
	0.041301
	8.075
	saxpy
	1.2878
	1.230181
	0.089998
	4.473
	sdot
	1.2412
	1.191536
	0.118701
	4.000
	sfill
	2.4769
	2.480206
	0.003007
	0.130
	scopy
	1.5940
	1.823195
	0.398821
	14.377
	ssum2
	1.4090
	1.412356
	0.155133
	0.236
	sscale
	1.3875
	1.377914
	0.105713
	0.689
	striad
	1.4165
	1.267905
	0.149000
	10.489
	ssum1
	1.6621
	1.282134
	0.113065
	22.859
	All (mean/stdev)
	6.824731
	5.349703
	SPECint (mean/stdev)
	5.877375
	3.082663
	SPECfp (mean/stdev)
	7.317100
	4.376375
	TECH (mean/stdev)
	7.156625
	7.632725
	Table 18: S-HLS using Detailed Stream Information

	gcc
	0.9096
	0.871076
	0.043900
	4.234
	perl
	1.1610
	1.176667
	0.022471
	1.348
	m88ksim
	1.4586
	1.327717
	0.033566
	8.972
	ijpeg
	1.8449
	1.725202
	0.180483
	6.487
	vortex
	0.9422
	0.860189
	0.029202
	8.703
	compres
	1.1290
	1.249317
	0.070983
	10.655
	go
	0.9644
	0.986819
	0.016969
	2.323
	li
	1.5442
	1.479090
	0.075880
	4.215
	tomcatv
	0.9314
	0.863170
	0.017195
	7.324
	su2cor
	1.0188
	0.914685
	0.017860
	10.218
	hydro2d
	1.0888
	1.059177
	0.103037
	2.719
	mgrid
	1.6826
	1.777686
	0.027317
	5.650
	applu
	1.3779
	1.435848
	0.129544
	4.204
	turb3d
	1.6288
	1.727198
	0.146318
	6.040
	apsi
	1.1737
	1.323856
	0.097410
	12.792
	wave5
	1.1619
	1.120683
	0.050583
	3.546
	fpppp
	0.7117
	0.664898
	0.011435
	6.575
	swim
	1.1813
	1.065523
	0.049969
	9.800
	saxpy
	1.2878
	1.375968
	0.009551
	6.845
	sdot
	1.2412
	1.302454
	0.026077
	4.934
	sfill
	2.4769
	2.480979
	0.002906
	0.161
	scopy
	1.5940
	1.606451
	0.044572
	0.780
	ssum2
	1.4090
	1.397683
	0.041592
	0.802
	sscale
	1.3875
	1.365524
	0.018724
	1.582
	striad
	1.4165
	1.493669
	0.026799
	5.446
	ssum1
	1.6621
	1.632211
	0.048951
	1.797
	All (mean/stdev)
	5.313538
	3.371519
	SPECint (mean/stdev)
	5.867125
	3.149809
	SPECfp (mean/stdev)
	6.886800
	3.044980
	TECH (mean/stdev)
	2.793375
	2.383359
	Table 19: S-HLS using a Dispatch Window of 32

	gcc
	0.9178
	0.896867
	0.022793
	2.279
	perl
	1.1627
	1.217511
	0.024213
	4.713
	m88ksim
	1.4624
	1.384089
	0.029517
	5.353
	ijpeg
	2.0443
	2.038928
	0.164339
	0.260
	vortex
	0.9501
	0.879853
	0.010600
	7.392
	compres
	1.2126
	1.373960
	0.094769
	13.305
	go
	0.9928
	1.029788
	0.025797
	3.724
	li
	1.5804
	1.515755
	0.067362
	4.089
	tomcatv
	0.9502
	0.881076
	0.011191
	7.273
	su2cor
	1.0358
	0.923782
	0.018508
	10.813
	hydro2d
	1.2736
	1.319106
	0.049834
	3.572
	mgrid
	1.8161
	2.219689
	0.035524
	22.221
	applu
	1.6507
	1.811340
	0.169709
	9.730
	turb3d
	1.9772
	2.001863
	0.156067
	1.246
	apsi
	1.3412
	1.638326
	0.112274
	22.152
	wave5
	1.2482
	1.212617
	0.056180
	2.849
	fpppp
	0.7143
	0.674981
	0.009063
	5.503
	swim
	1.3620
	1.302611
	0.053179
	4.359
	saxpy
	1.6621
	1.872126
	0.059424
	12.635
	sdot
	1.7558
	1.851868
	0.045019
	5.470
	sfill
	2.4771
	2.481336
	0.002432
	0.170
	scopy
	1.6901
	1.603003
	0.042466
	5.152
	ssum2
	1.6510
	1.660596
	0.045759
	0.580
	sscale
	1.7469
	1.788622
	0.039245
	2.387
	striad
	1.8094
	1.921933
	0.055989
	6.218
	ssum1
	1.8126
	2.016871
	0.058391
	11.268
	All (mean/stdev)
	6.719731
	5.727280
	SPECint (mean/stdev)
	5.139375
	3.658480
	SPECfp (mean/stdev)
	8.971800
	7.181607
	TECH (mean/stdev)
	5.485000
	4.288354
	9. Implementation Costs
	Table 20: Error Reduction Costs


	Cumulative Frequencies
	NBB x 4 bytes
	480
	26.6%
	46.1
	1 float/BB
	Instruction Sequences
	NBB x LBB x 1/2 byte
	746
	< 16 op types
	Dependency Statistics
	NBB x LBB x 2 x 1 byte
	2980
	16.31%
	92.7
	any dep 0/1 < 255
	Cache Miss Statistics
	NBB x 4 x 4 bytes
	1924
	32.14%
	59.9
	ld/st l1/l2 miss rates
	Stream Data
	NBB x NLS x 1/4 byte x NSD
	55562
	47.16%
	1178.16
	2 bits per datum
	10. Higher Level Modelling: Basic Block Maps
	11. Comparison of HLS to S-HLS
	12. Basic Block Information Reduction Techniques
	13. Statistical Simulation Using Benchmark Suites
	14. The Case for Synthetic Benchmarks based on Statistical Simulation Information
	15. Overview of Synthetic Code Generation in S-HLS and the Major Associated Problems
	16. Benchmark Synthesis using S-HLS
	Table 21: Dependence Compatibility Chart


	Int
	0/1
	Int, Ld-Int
	Flt
	0/1
	Flt, Ld-Flt
	Ld-Int/Flt
	0
	Int
	dep0 is addr resolution input
	St-Int
	0
	Int, Ld-Int
	dep0 must store int
	St-Flt
	0
	Flt, Ld-Flt
	dep0 must store float
	St-Int/Flt
	1
	Int
	dep1 is addr resolution input
	Br-Int
	0/1
	Int, Ld-Int
	Br-Flt
	0/1
	Flt, Ld-Flt
	Table 22: L1 and L2 Hit Rates versus Stride (in 4 Byte increments)

	0.0000
	0.5000
	8
	0.1172
	0.4956
	9
	0.1250
	0.5000
	7
	0.2422
	0.4948
	10
	0.2500
	0.5000
	6
	0.3672
	0.4938
	11
	0.3750
	0.5000
	5
	0.4922
	0.4923
	12
	0.5000
	0.5000
	4
	0.6172
	0.4898
	13
	0.6250
	0.5000
	3
	0.7422
	0.4848
	14
	0.7500
	0.5000
	2
	0.8672
	0.4706
	15
	0.8750
	0.5000
	1
	0.9922
	0.0000
	16
	1.0000
	0.0000
	0
	17. Benchmark Synthesis Results for the Technical Loops
	Table 23: Correlation Error for Synthetic Benchmarks


	saxpy
	1.2878
	1.2220
	5.4%
	sdot
	1.2412
	1.2342
	0.8%
	sfill
	2.4769
	2.3853
	3.6%
	scopy
	1.5940
	1.5610
	1.9%
	ssum2
	1.4090
	1.3992
	0.7%
	sscale
	1.3875
	1.2943
	7.9%
	striad
	1.4165
	1.3370
	5.6%
	ssum1
	1.6621
	1.6482
	0.6%
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