
1

Aashish Phansalkar Lizy Kurian John
Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin TX 78712
{aashish, ljohn}@ece.utexas.edu

Abstract—Reducing simulation time during the phase of design of a microprocessor has been one of the key issues discussed in

the community lately. This report tries to throw light on program behavior of the whole SPECint 2000 benchmark suite including

reference and train input sets using a statistical technique called Principal Components Analysis. Analyzing the results of Principal

Components Analysis and the raw data collected for the program-input pairs together helps to identify the similarity between

benchmarks. It also helps to choose few program-input pairs and hence reduce simulation time. The project also talks about how we

can associate program-input pairs to characteristics that are closely related to the performance of a microprocessor.

Index Terms—Performance Monitoring Counters, Principal Components Analysis, Program-Input pairs.

I. INTRODUCTION

The question of composing a representative workload consists of two parts: (i) which benchmarks to choose (ii) which input

data sets to select [1]. High-level architectural simulations are extremely slow. One of the solutions to this problem is that the

total number of benchmarks and input data sets should be reduced without affecting the evaluation process of the design.

SPECint 2000 is a very commonly used benchmark suite by many computer architects and others to demonstrate the gain in

performance due to the modification in design. Many of them cannot simulate all the program-input pairs of the benchmark suite

due to different reasons. Some of them face problems compiling all the programs. But majority of them want to reduce the size

of the workload and avoid running long simulations. When it comes to making a choice between the different program-input

pairs it should be fair and we should try to cover maximum workload space. If we know the relative position of each of the

program-input pair with respect to the other in the workload space made up of a selected workload characteristics we can make a

good choice.

Workload design space can be viewed as a n_-dimensional space with n number of important program characteristics that affect

performance, e.g., branch prediction accuracy, cache miss rates, etc. When we measure all the characteristics it is hard to read the

data, since we have a large table with many program-input pairs and a value for each of the characteristics. Also the values do

not lie in the same range. We cannot compare all these benchmarks by looking at the values of their characteristics. Correlation

exists between different variables, which make it even harder to find workload characteristics that affect the program behavior.

One of the solutions to this problem is Principal Components Analysis.

Principal Components Analysis is a statistical technique that linearly transforms an original set of variables into a

substantially smaller set of uncorrelated variables that represents most of the information in original set of variables. The goal is

to reduce dimensionality of the original data set. A small set of uncorrelated variables is much easier to understand and use in

the further analyses than a larger set of correlated variables. This method was first conceived by Pearson (1901) and

independently developed by Hotelling (1933) [2]. We will discuss Principal Components Analysis in detail in the later section

Analyzing Program Behavior of SPECint2000
Benchmark Suite using Principal Components Analysis

2

of this report. The data that we have will be reduced to fewer variables called Principal Components derived from the original set

of variables. This data can be plotted in two-dimensional space and can be observed for clusters. If we find a cluster of points in

the plot of these Principal Components we can say that these program-input pairs show similar workload behavior. Eeckhout et

al have verified this idea [3]. They also talk about how strong and weak clusters help us to select representative program-input

pairs. In this report we will see some more interesting conclusions which we can draw from Principal Components Analysis.

This report is organized as follows. In section 2, the program characteristics used are listed and the methodology of the

experiment is also discussed. In section 3, Principal components analysis, is discussed to give a clear idea about the technique.

Section 4 talks about data analysis Section 5 discusses previous work related to this project. Section 6 concludes the discussion.

II. WORKLOAD CHARACTERISTICS AND METHODOLOGY

A. Workload Characteristics

We selected eighteen different workload characteristics to measure for each program-input pair. These characteristics are listed

in Table 1. The workload characteristics are broadly classified into four types. (i) General Events (ii) Front End Events (iii)

Branch Events and (iv) Memory Events. The names in the middle column of Table 1 are used to represent these characteristics in

the rest of the paper. We used Pentium 4 performance monitoring counters to measure all these events. We used Brink and

Abyss tools [4]. Brink and Abyss tools provide high-level interface to the Pentium 4 performance counters on Linux Systems.

This is much faster approach than running simulations because the programs run on the actual hardware. There are some

disadvantages to it. One of the disadvantages is that the parameters e.g. cache size or branch predictor cannot be changed and we

cannot measure the change in behavior of the program for change in parameters of the microprocessor.

B. Methodology

All the experiments are run on a Pentium 4 Xeon processor. Most modern, high-performance processors have special, on-chip

hardware that can be used to monitor the performance of the processor. Data collected by the on-chip performance monitoring

hardware can be used to understand how applications, the operating system, and the processor are performing [5]. This data can

then be used to guide efforts to improve performance by tuning the algorithms used by the application and the operating system

and by tuning the code sequences used to implement those algorithms. Performance monitoring hardware is typically composed

of two components: performance event detectors and event counters. By properly configuring the event detectors and counters,

one can obtain counts of a variety of performance events under various conditions. Performance event detectors can be configured

to detect any one of a large number of performance events (e.g., cache misses or branch mispredictions). Often, event detectors

have an event mask field that allows further qualification of the event to be configured. For example, the Pentium 4 event to

count load accesses to the level 2 cache (L2_LD) has an event mask that allows further qualification by the state of the cache line

being accessed (i.e., modified, shared, exclusive, or invalid). The configuration of the event detector also allows qualification by

the current privilege level of the processor. The tool Brink and Abyss performs all the tasks of setting the fields for the event

detectors and counters. The data was collected for all the characteristics listed in Table 1. To avoid the effect of the length of

benchmark and to get all the program-input pairs to a comparable level, all the characteristics were measured per instruction for a

particular program-input pair. Then the data was normalized to zero mean and unit standard deviation for each characteristic. This

is done to give equal weight to all the characteristics. The difference in the values of different characteristics can be of the order

of 100. Normalization gets all the characteristics to a same level. We feed this normalized data to a ‘Matlab’ program, which

runs the Principal Components Analysis algorithm. The result is in the form of three matrices: (1) The scores of Principal

3

Components for each program-input pair (2) The factor loadings of each Principal Component (3) The Eigen Values of each

Principal Component which helps us to calculate the contribution of each of them towards the total variance in the data.

 We did not consider test input sets of SPECint 2000 benchmark suite in our experiment because the number of instructions for

each input is very small. The performance counter measurement error is significant for test input sets. This might lead to

misleading results.

III. PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) is a statistical data analysis technique that presents a different view on the measured data.

It builds on the assumption that many variables (in our case, program characteristics) are correlated and hence, they measure the

same or similar properties of the program-input pairs. PCA computes new variables, called principal components, which are

linear combinations of the original variables, such that all principal components are uncorrelated. PCA transforms the p

variables pXXX ,......,, 21 i Into _ pZZZ ,....,, 21 with ∑ =
=

p

j jiji XaZ
1

. These are the p principal components. This

transformation has the property Var[Z1] > Var[Z2]>….._ which means that 1Z contains the most information and pZ the least

which means that there is no information overlap between the principal components. Note that the total variance in the data

remains the same before and after the transformation.

As stated in the property in the previous paragraph, some of the principal components will have a high variance while others

will have a small variance. By removing the components with the lowest variance from the analysis, we can reduce the number

of program characteristics while controlling the amount of information that is thrown away. We retain q principal components

which are a significant information reduction since in most cases, q is typically about 2 to 4. In this study the _ original variables

are the program characteristics mentioned in section 2A. By examining the most important principal components, which are

linear combinations of the original program characteristics, meaningful interpretations can be given to these principal

components in terms of the original program characteristics.

The next step in the analysis is to display the various benchmarks as points in the q dimensional space built up by the

principal components. Computing the values of the q principal components for each program-input pair can do this.

IV. DATA ANALYSIS

As discussed in section 2B the results of Principal Components Analysis have three matrices. The first matrix gives the

Eigen values, which shows the variance covered by each Principal Component. Principal Component 1(PC1) covers 36.83% of

total variance. PC2 covers 17.81% of total variance, PC3 covers 14.34% of total variance and PC4 covers 11.45% of total

variance. The total percentage of variance covered by PC1-PC4 is 80.42%.

4

Type of event Name of the event Description

num_cycles Number of cycles

uops_retired Number of retired u-ops

stores_retired Number of retired stores

General

loads_retired Number of retired loads

Tcmiss Number of trace cache misses

itlb_reference Number of ITLB references

Front End Events

itlb_reference_hits Number of ITLB hits

branch_retired Number of branches retired

mpred_branch_retired Number of mis-predicted branches retired

pred_branch_retired Number of predicted branches retired

mpred_nt_branch_retired Number of NT mis-predicted branches retired

mpred_t_branch_retired Number of T mis-predicted branches retired

pred_nt_branch_retired Number of NT predicted branches retired

Branch events

predicted_t_branch_retired Number of T predicted branches retired

ld_miss_L1 Number of L1 cache load misses

ld_miss_L2 Number of L2 cache load misses

dtlb_miss Number of DTLB misses

Memory access events

mem_retired Number of memory operations retired

Table 1. Different types of events used in the analysis, which form a set workload characteristics. All the events were

measured using Pentium 4 Performance Monitoring Counters.

The second set of information we get from PCA is the factor loading matrix. The factor loadings are the coefficients of each

of these Principal Components. E.g. the factor lodaings of PC1, PC2, PC3 and PC4 are basically the coefficients of the linear

equation of PC1, PC2, PC3 and PC4 respectively. The factor loadings of first four Principal Components are shown in Figure

1. Looking at the factor loadings we can conclude that PC1 is positively dominated by the branch events and memory reference

events. The vertical names suggest the events each of the set of four principal components show. For example the branch retired

event has a factor loading of 2.7 and pred_nt_branch_retired event has a factor loading of close to 3 for the first Principal

Component. Similarly PC1 is negatively dominated by the front end events; refer to Table 1 and the general events. Thus PC1

shows a contrast of branch, memory events and front-end events. Similarly PC2 and PC3 can be analyzed with reduced

importance in this order.

Another set of information we collect from PCA is that about the scores of each program-input pair. The scores for each of

the retained Principal Components can be plotted on a two-dimensional plot considering two Principal Components at a time.

Figure 2 shows a plot of PC2 Vs PC1 for all the program-input pairs. From the factor loadings we can conclude that the

5

program-input pairs, which have a higher value for PC1, have higher counts for branch prediction events and memory access

events. So the program behavior of these program-input pairs is dominated by this characteristic. E.g. mcf shows very high

value for PC1 as compared to others, the gzip and the twolf. All the rest of program-input pairs are either near zero or show a

negative value for PC1. This means that their program behavior is either equally dominated by branch, memory and front events

or more by the front-end events. Same conclusions can be drawn from the factor loadings of PC2 PC3 and PC4.

Factor Loadings for reference
and train input-sets

-0.8000

-0.6000

-0.4000

-0.2000

0.0000

0.2000

0.4000

0.6000

n
o

.c
yc

le
s

uo
ps

 r
et

ire
d

st
or

es
_r

et
ir

ed

lo
ad

s_
re

tir
ed

tc
m

is
s

itl
b_

re
fe

re
nc

e_
hi

t

itl
b_

re
fe

re
nc

es

br
an

ch
_r

et
ire

d

m
pr

ed
_b

ra
nc

h_
re

tir
ed

pr
ed

_b
ra

nc
h_

re
tir

ed

m
pr

ed
_n

t_
br

an
ch

_r
et

ire
d

m
pr

ed
_t

_b
ra

nc
h_

re
tir

ed

pr
ed

_n
t_

br
an

ch
_r

et
ire

d

pr
ed

_t
_b

ra
nc

h_
re

tir
ed

ld
_m

is
s_

L1

ld
_m

is
s_

L2

dt
lb

_m
is

s

m
em

_r
et

ire
d

PC1

PC2

PC3

PC4

Figure 1. Factor loadings for reference and train input sets. These factor loadings were generated from the Principal Components

Analysis of the data for both reference and train input sets.

The plots for scores of Principal Components can also be used to do clustering of the program-input pairs and show qualitative

similarity between different program-input pairs. We can then assume that all the program-input pairs in a cluster show similar

behavior and hence only one representative pair out of the cluster can be selected as a part of target workload. Figure 2 and

Figure 3 show some obvious clusters. Rest of the clusters are not drawn to preserve the clarity of the plot. But many clusters

can be drawn which significantly reduce the number of program-input pairs to be selected as a part of the target workload. One of

the observations from Figure 2 and Figure 3 is that all the train program-input sets lie close to their respective reference

program-input pairs. E.g. in Figure 2 mcf, eon, gzip and crafty and all others show the same behavior. Figure 3 shows twolf,

perl.perfect and vpr.route. Again the rest of them are not shown to maintain the clarity of the plot. Also almost all the program-

input pairs of the same program are clustered except for perl. Perl is scattered in three out of the four quadrants of the plot in

Figure 2. This shows that the behavior of perl is dominated by the input set for the characteristics we measured in our

experiments. For all other programs, the input set does not make a lot of difference.

6

PC2 Vs PC1 (Reference and Train Input Sets Together)

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6 8 10

PC1

P
C

2 Reference

Train

perl.splitmail

gzip

mcftwolfcrafty
eon

perl.makerand

perl.deiffmail

perl.perfect

Figure 2. Plot for the scores of PC2 Vs PC1 for all the reference and train input sets.

PC3 Vs PC4 (Reference and Train Input sets together)

-5

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4 5

PC3

P
C

4

Reference

Train

eon

mcf

perl.perfect

vpr.route

twolf

perl.splitmail

Figure 3. Plot for scores of PC4 Vs PC3 for all the reference and train input sets.

7

We can use this information very well to select representative program-input pairs. Since the train inputs lay very close to

their respective reference program-input pairs we can very well choose train input sets because they have lesser number of

instructions. If there are more than one train input sets we can choose the smallest one out of the cluster. This also applies to the

reference input sets where their train input sets are not a very good representative of their behavior e.g. perl.splitmail is not

clustered with any of the perl train input sets but all the four perl.splitmail reference input sets are clustered.

Another analysis we can make by looking at the raw data and the above plots is that the behavior of program-input pairs with

higher values of PC1 is dominated by number of branch events and hence if we want to evaluate performance or measure

accuracy of a branch predictor we should definitely consider choosing program-input pairs with higher values of PC1 rather

choosing the ones with lower values of PC1 e.g. eon. Similarly, this is applicable to the study of memory behavior as well.

V. PREVIOUS WORK

There has been a significant work done by Lieven Eeckhout et al. in applying Principal Components Analysis to design target

workload. [1] [3] [4] [6]. He has also verified the idea of using clusters to find similarity between benchmarks [1].

He has also used Cluster Analysis in his experiments to quantify the similarity between benchmarks, but George [2]

suggests that Principal Components Analysis and Cluster Analysis show the same results and we do not need both the

techniques together. However the methodology and the workload characteristics chosen by him for the experiment are different

from our approach in this project. He collects data using cycle accurate simulator.

 Eeckhout et al [4] recently discussed about behavior of Java programs at microarchitectural level and concluded that their

behavior is dominated by the virtual machine used to run these programs. The program or the input set does not play a role in

dominating program behavior for a given microarchitecture. Our methodology closely follows the methodology in this paper but

has different set of characteristics. We also measured the data on per instruction basis, whereas he did it per cycle.

VI. CONCLUSION

This discussion throws light on the program behavior of SPECint 2000 benchmark suite. We used Principal Components

Analysis to show similarity between benchmarks. We can conclude that all the program-input pairs except perl show that the

train input sets can be treated as representative of their respective reference program-input pairs. For some reference input sets,

which do not have, a representative train set are clustered and a shorter input set can be selected from the cluster as a part of the

target workload. This will help to reduce simulation time. As discussed in the last part of the data analysis section we can also

choose program-input pairs based on which component of the microprocessor we are trying to evaluate. Different components of

a microprocessor can be simulated separately to find out their own accuracy or performance. While doing so Principal

Components Analysis can be used to select few program-input pairs out of all and hence reduce simulation time.

REFERENCES

[1] Lieven Eeckhout, Hans Vandierendonck and Koen De Bosschere, “Workload Design:Selecting Representative Program-Input pairs” PACT 2002

[2] George Dunteman “Principal Components Analysis” Sage Publications.

[3] Lieven Eeckhout, Hans Vandierendonck and Koen De Bosschere “Quantifying the Impact of Input Data Sets on Program Behavior and its

Applications.” Journal of Instruction-Level Parallelism (www.jilp.org), Volume 5, April 2003

[4] Lieven Eeckhout “How Java Programs Interact with Virtual Machines at Microarchitectural Level” OOPSLA 2003.

[5] Brinkley Sprunt “Performance Monitoring Features of Pentium 4 Processor” IEEE Micro Magazine 2002.

8

[6] Lieven Eeckhout, Hans Vandierndonck and Koen De Bosschere “Designing Computer Architecture Research Workloads” IEEE Computer magazine

Vol 36

