Using Statistical Theory to Study Issuesin Microprocessor Simulation

Yue Luo and Lizy K. John

Department of Electrical and Computer Engineering
The University of Texas at Austin
luo@ece.utexas.edu ljohn@ece.utexas.edu

IBM Technical Contact: Alex Mericagrocessor Performance, Systems Group

Abstract benchmarks on detailed microarchitecture simulation
models can take prohibitively large simulation times.
Simulation of benchmarks has been the most importantT&b'G 1 shows the time to simulate selected SPECint2000

tool for computer architects to evaluate computer designs.benchmarks on a 1GHz Pentium Ill machine with sim-
In this paper, we employ statistical theory to study sver outorder, the detailed out-of-order superscalar simulator
key issues in microprocessor simulation. Sampling is anfrom the SimpleScalar 3.0 tool set [2]. It usually takes
effective technique to reduce simulation time. SomesSeveral days to simulate one program. Some berrkbma
approaches in the past use large number of small samplesin the suite, which we could not afford to fully study,
while some other approaches use fewer numbers of largefequire weeks of simulation time.

samples. While fewer numbers of larger chunks is Table 1. Number of instructions and simulation
convenient, we study autocorrelation in programs and time of selected SPECint2000 benchmarks with

demonstrate that large chunks of continuous instructions reference data set. The data set name is
do not capture additional information from the instruction integrated with the benchmark name.
stream. The high autocqrrelatipn demonstrated by Benchmark Number of | Simulation
programs favors small sampling units. ingructions | time (days)
Simulation is often used to evaluate the speedup of some (million)
microarchitectural enhancement. By applying ratio gcc-166 46,917 2.2
estimator in sampling theory we quantify the error of bzip2-source 108,878 4.4
speedup measurements. Our result shows that speedup has eon-rushmeier 57,870 27
smaller sampling error than CPI. gzip-graphic 103,70¢ 7.2
Next, we examine the validity of several reduced data vortex-1 118,976 4.6
sets for SPECint 2000. Using reduced data sets is an vpr-route 84,068 4.1
alternative to sampling, when one wants to reduce crafty 191,882 9.3

simulation time. Although the reduced data sets show CPIs

vastly different from the reference data sets, the speedup Since full simulation is impractical, a popular praciite

from the reduced data set is not statistically differeotfr ~ computer architecture research is to fast forwaribb#l of

the speedup from the reference data set. Confidencanstructions to skip initialization phase of the progrand

interval of speedup should be used as a guide to set targethen simulate in detail several hundred million camigs

accuracy for designing new simulation techniques. Suchinstructions. However, previous work has shown that this

future research needs to focus on more efficient andpractice often results in large errors with respectutb

accurate warm-up mechanisms. simulation [12, 16]. To reduce simulation time yehiret
good accuracy, researchers have employed many other
technigues. Sampling and using reduced input sets are two

1. Introduction of them.

Simulation of standard benchmarks has been the most Sampling techniques simulate multiple chunks of
popular method for computer architects to study the designcontinuous instructions selected from the complete
tradeoffs. Modern benchmarks are no longer small kernelgnstruction stream. The instruction stream for sirtiote
or synthesized toy programs. Instead, they are Vesgc remains the same as the original, but only a smattifra
to real world programs and often take a long time to Of the original instruction stream is actually simulated i
execute. Moreover, modern superscalar microprocessoréletail resulting in greatly reduced simulation times. oA |
are becoming increasingly complex; and so are theof work has been done in this area. However, much

simulators modeling the processors. As a result, runningrésearch work follows an ad-hoc approach: the newly
proposed technique is evaluated solely experimentally in a

few test cases to demonstrate its accuracy. Conss. ¢4] implications. As discussed in Section 5, it providegdar
applied sampling theory to processor simulation. They accuracies for designing new simulation methods.
show how to calculate the confidence interval to quantify . . L

the error. Recently, Wunderlich et. al. [17] used sampling 2- AUtO?OrreIat'on and itsimplication on

theory as guidance to design systematic samplingSamplesize

simulation. These statistical sampling approaches alow

confidence interval to be calculated to quantify the Before going on, we first C|arify some basic termiWo
accuracy of the simulation without simulating the whole because the same terms are often used differenﬂy in
instruction stream. different research papers. We follow the established
MinneSPEC [11] is representative of the reduced inputterminology in statistical sampling theory. The oridifodi
set approach. It consists of a set of reduced inputt@ets instruction stream is divided intd&N non-overlapping
SPECcpu 2000 benchmarks. Therefore, when MinneSPEChunks ofm continuous instructions. Each chunk is a basic
is used, even though the benchmark programs remain theimulation unit, or aampling unit The sampling unit size
same, the dynamic instruction stream is smaller thanof is the number of instructions in each chunk).(The
the reference data set. KleinOsowski et. al [11] alyef populationrefers to all the chunks that constitute the full
profiled the SPEC programs and crafted the reduced inpuinstruction stream.Population sizes the total number of
set so that MinneSPEC shows a program path profile verysampling units in the full instruction stream, dendieth
similar to that of the reference data set. this paper. Asampleconsists of selected chunks that are
In this paper, we employ statistical sampling theory to actually simulated and measured (In practice, more
study several important issues in microprocessorinstructions are simulated for warming up
simulation. First, we examine the problem of samplinig microarchitecture). The number of sampling units in a
size. That is, we try to determine how large a chuhk (t sample is thesample sizeexpressed as. The ratio of
basic sampling unit) should be to achieve certain simoalat sample size and the population size is swmpling
accuracy while simulating as few instructions as passibl fraction, denoted by the lettér (=n/N).
Some approaches in the past use large number of small For convenience, systematic sampling is often used but
samples [17], while some other approaches use fewelis shown to be equivalent to simple random sampling in
numbers of larger samples [16]. While fewer numbers of processor microarchitectural simulation [17]. The @PI
larger chunks is convenient, it is important to know each sampled unit is measurgd, (=1, .., n). The CPI of

whether increasing the chunk size really capturesvamg the full simulation (population mean,) is estimated as
information than a smaller chunk. We study . (eq 2.1)
Y=y= HZ Yi '
i=1

autocorrelation in programs to investigate the infation
content of the instruction stream and its variatior winhe.
Our investigation indicates high autocorrelation in the)) ~] .
studied programs, favoring small sampling units. confidence interval ol at confidence level (&) is
Another contribution of the paper is the use of ratio (Y= 201280, Y+ 2012Sy) (eq 2.2)
estimator to quantl_fy accuracy of common metrics usgd iNwhere z,_,, is the (1e/2) quantile of a unit normal
simulation. ~ Traditionally, analysis of simulaton _ .
methodologies has been based on achieving accurate CHlistribution, ands is the standard deviation of .

(Cycles Per Instruction). However, the goal of most The final error of sampling simulation comes fromot
simulation is to quantify the impact of some sources. The first source is the measurement éeor
microarchitectural enhancement. Often, the final restlt inaccuracy in measuring the CPI of each samplinit).un
simulation is the speedup, not the absolute value of @PI. T get the accurate CPI of a sampling unit, thee st@all
section 3, we show how to use sampling theory to design amjcroarchitectural structures in the simulator mibst
experiment to quantify the accuracy of speedup. We showcorrect at the beginning of the sampling unit.piactice, a
that the sampling error in speedup estimation isnymber of instructions before the sampling unit are
significantly less than the error in CPI estimation. simulated tavarm upthe structure to obtain approximately
Next, we compare different reduced input sets to answercorrect microarchitectural states. Currently, theosm
the question: which data set is the most represeetafiv. 5ccurate warm up is by functionally simulating esland
the reference data set. We view SPECint 2000 as a samplgranch predictor throughout the full instructioream [10,
from all CPU intensive integer programs. We obse_rvt? tha 17]. We assume that the measurement error is iiteglig
none of the reduced input sets are statistically thjs section. The second type of error, whictésfocus of
representative enough for CPI estimations, but athe this paper, comes from sampling itself, which igidated

are suffic_iently representative for s_pegdqp estimates. by the variancesz. Similarly, we use theoefficient of
The view that a benchmark suite is just a sample from v

the set of programs that it represents has importamvariation (cov=sy/y) to indicate the relative error. For

When normal distribution assumption applies, the

example, following Equation 2.2 at confidence lewél
99% the relative error of measured CPI is less tha&ov.
In sampling simulation of microprocessors, we face

million instructions, whereas the sampling unitesig 100
million instructions in Figure 1b.
It is clear that the autocorrelation curve is diffe for

unique question: we need to determine the number ofdifferent benchmarks on different scales. Mosichemarks

instructions in a sampling unitmf. For example, if we
have a budget of simulating 500 million instructpro
achieve a small error, should we simulate 5 chufk00
million instructions each, or 5000 chunks of 100,00
instructions each? And why?

In this study, we assume that the warm up overl®ad
constant. Although rarely true in practice, thiswemsption

show a decreasing autocorrelation with increasing
distances, but some exhibit periodicity in theirl @&lues.
In this study we focus on the sign of the autodatien.
Most benchmarks show high positive autocorrelatigh.
few benchmarks exhibit some negative autocorrelatio
values but the negative values have smaller maimiieLg.
gzip-graphic in Figure la, bzip2-source in Figub3. 1At

enables us to focus on the inherent property of thesmall lags all the benchmarks show high positive

benchmark instruction stream instead of beingdiaan to

a particular warm up scheme. We begin by studyiirey
autocorrelation of the instruction stream. The GPéach
sampling unit is measured. The sequence of thes,CPI
ordered in time, becomes a time seri@stocorrelation
function of a time serieg, y», ..., \ is defined as

A =§(M M —y)/i(yi —y)? (eq 2.3)

Autocorrelation is the correlation coefficient betm
neighbor sampling units with a lag (distance.of

Autocorrelation

1.0
08 \..%
os] 4 A“\‘-\ W”“‘W»WW

zf)w\xji&j’&%& NANAA

X Do G R X

-0.2
0 20 40 60 80 100
million instructions
——gcc-166 —=—bzip2-source . crafty eon-rushmeier|
—%— gzip-graphic —es— vortex-1 —+— \pr-route

Figure la. Autocorrelation of CPI with 1 million

Autocorrelation

1.0
0.8
AXAMAxAL
0.6%& h“"‘i\\ JA“*AHAT‘AAAAAAAA?\AAAAAAAAAA
0.4 Rl]
0.2 g 1o%s sk ohspbhgteooh |_ioEonineetiodes
0.0 7 & 4
-0.2
-0.4
-0.6 T T T T
0 10 20 30 40 50
100 million instructions
—o—gce-166 —s—bzip2-source a crafty eon-rushmeier|
—x— gzip-graphic =~ —e—\ortex-1 —+— vpr-route

Figure 1b. Autocorrelation of CPI with 100 million
instruction sampling unit

The full simulations of the 7 benchmarks in Tablaré
divided into sampling units. Figure 1 shows the
autocorrelation of CPl of the sampling units fore th
benchmarks. The two sub-figures show the autdedioe
of different scale. In Figure 1a, each sampling im1

autocorrelation, which means that the CPI of omapsiag
unit is closely related to the units in its closgghborhood.
The sign of autocorrelation especially at small slag
determines the effectiveness of larger samplingsprais
shown next.

As we have pointed out earlier, the standard dewviatdf
the sample meanss() is used to evaluate the accuracy of

the sample design. The smaller the standard dewjatie
more accurate the sample result is. We ¢jgg to denote

our baseline standard deviation: sampling unit sizen
instructions and sample size ofunits. To evaluate the
benefit of larger sampling unit, we compare two
approaches of reducing the standard deviatiornthdrfirst
approach, we choose a sampling unit size thattimes
larger (*m instructions) whiling keeping the sample size
constant an. Let s,()) denote the standard deviation in

this case. In the second approach, the samplinngiaga is
not changed, but we takéimes more units.s'y(j) is used

to denote the new standard deviation. Pleasethatghe
two approaches have the same number of measured
instructions jfm*n). It can be shown [1] that

5,(J) = \y/(,)B WhereB_m (eq 2.4)

and

5@ (eq 2.5)
S =
y(1)= i

Equation 2.4 and 2.5 show that the benefit of iasirey
sampling unit size is decided by the autocorretatip If
the neighbor sampling units are uncorrelatgg=@), then
the two approaches give the same accurgywx=%(j)).

If neighbor sampling units show positive correlatio
(0>0), then increasing sample unit size is not effiti
(s;(j)>s;(j))- On the other hand, if neighbor sampling

units are negatively correlategp,€0), then increasing
sample unit size gives more accurate result thereasing
sample size § (j)<s,(j)). Please also note that the

autocorrelationo, with different lagh has different weight
on the final result. The smaller the ldgis, the larger
impact it has on the final result.

As shown in Figure 1, the autocorrelations are yost
positive especially when the lag is small, resgltim
s;(j)>s;(j)- Therefore, using larger sampling unit size is

does not give good improvement in accuracy. Talsse
the conclusion, we calculate (j) and s (j) from their

definition (not from Equation 2.4 and 2.5). Theuea
normalized to%a) is plotted in Figure 2. The base

sampling unit is 1 million instructions in Figurea 2
(m=10°), and 100 million instructions in Figure 2ib107).
The x-axis isj, the normalized number of measured
instructions. Because different benchmarks shdferdnt
autocorrelation, thesy(j) curve is different for each

benchmark. But all benchmarks share the same)

curve (with legend “small-unit” in the figure). dtires 1
and 2 clearly reflect the relationship between
autocorrelation and standard deviation of CPI emtid by
Equation 2.4.
autocorrelation. As a result, it shows the larggahdard
deviation as the sampling unit size increases gurgi 2a.
On the other hand, the autocorrelation of bzipZw®us
the lowest in Figure la. Thus it exhibits the Istve
standard deviation in Figure 2a for larger sampling. At
the granularity of 100 million instructions, bzigBurce
shows some negative autocorrelation in Figure tbitss
standard deviation is very low in Figure 2b, everrtap
the “small-unit” line for some points. This medhat up to
600 millions, increasing the sampling unit size ds
effective as taking more sampling units. Part oftex’s
autocorrelation is also negative, but the negatiakies
come too late. The positive autocorrelation with small
lag has larger weight, resulting in relative highnslard
deviation for large sampling size in Figure 2b. W can
see from Figure 2, except for a couple of pointdZip2-
source, larger sampling unit does not give as mercbr
reduction in any of the benchmarks. Take crafgymfr
Figure 2b as an example. Suppose we use a chub®Oof
million instructions as a sampling unit and the 95%
confidence interval i when simulating crafty. If we
increase the chunk size to 1 billion instructiomsl &eep
the number of chunks the same, then we can onlgagxp
limit the error to 0.8, a marginal gain. However, if we
keep the chunk size as 100 million instructionst bu
sampling 10 times more chunks, then our error limit
reduced to 0.32 even though the total number of
measured instructions stays the same as in theéopsev
case.

To understand this result, we can consider coroalas
similarity or predictability. @ To get good sampling
accuracy, we want CPIs of our sample to cover ashnas
possible the CPI range of the population. Howeifea,
sampling unit shows high correlation to its neighkiben
adding its neighbor to the simulation provides Iditt
additional information or coverage because the himig
unit is very similar to the original sampling urand its

behavior is highly predictable with what we haveeatly

sampled. Therefore, simulating larger chunks of
instructions is not effective at improving sampling
accuracy.

One may expect the high autocorrelation to be ¢lsalt
of phase behavior. If a program exhibits phasetieh, a
sampling unit will show very similar CPI to its ghbor
units in the same phase. However, our experimenys
that high autocorrelation is more universal tharaggh
behavior. Figure 3 shows the CPI of every 100 iomll
instruction sampling unit for two benchmarks: verieand
crafty. Vortex-1 has been the subject of many ehas
behavior researches, whereas the CPI graph ofycsaft
close to noise to human’s eyes. However, bothhraadks
exhibit high autocorrelation as shown in Figure 1b.

We believe that the underlying reason for high
autocorrelation is temporal locality. Because eshporal
locality, a sampling unit executes similar code andesses

In Figure la, gcc-166 has the highes similar data as its close neighbor, which resuitsvery

similar CPI as its neighbor. Temporal locality Haeen
proven to be a basic behavior of all programs amrcists

on a wide range of scales (e.g. microprocessor ecach
hierarchy). Therefore, it is no surprise to sée timiversal
non-negligible autocorrelation in the instructiotream
simulation.

Normalized Standard Deviation

1

08 : S A A o
0.6

KW
S~

M

0 T T T T

0 20 40 60 80 100
Normalized number of sampled instructions (j)

—e—gcc-166

|| —— bzip2-source

crafty

eon-rushmeier

—=— gzip-graphic

0.4
—e—\ortex-1

—+— \pr-route

0.2
—=— small-unit

(a) Base unit size is 1 million instructions

Normalized Standard Deviation

—— gece-166

—s— bzip2-source
—a— crafty

eon-rushmeier
—x— gzip-graphic
—e—\ortex-1
—+— \pr-route
—— small-unit

0 10 20 30 40 5
Normalized number of sampled instructions (j)

Figure 2. Normalized standard deviation CPI for
different sampling unit sizes

vortex-1

1.6
14

12 "‘h A A ‘ r k
. b l |

%08 \
0.6

0.4

0.2
0 T T T T T

0 200 1000

400 . 600 800 1200
instructions (100 million)

Figure 3a. CPI of every 100 million instruction
unit for vortex-1
Crafty

25

2

_15 l
o
)

1

0.5

0

0 500 1500 2000

1000
instructions (100 million)
Figure 3b. CPI of every 100 million instruction
unit for crafty

In summary, the instruction stream shows high p@sit
autocorrelation between close neighbor samplintsuwe
have demonstrated mathematically that the
autocorrelation favors small sampling unit. Ousule
shows that simulating larger and larger continucusnks
of instructions is not an effective way to impraecuracy.
Because of the ubiquity of temporal locality, this
conclusion is expected to hold true for almospedigrams.

A word of caveat may be in order here. In the abov
discussion, we assume that the overhead of warns-up
constant.
increases if we reduce the sampling unit size aotkase
the sample size. As such, the sampling unit dipailld be
a trade-off between accuracy and the simulatiomheaesl
depending on the specific warm-up scheme.

3. SAMPLING ERRORSIN SPEEDUP AND

CPI

Previous research on sampled simulation of
microprosessor generally focuses on the accuraGypobr
IPC. However, the goal of a simulation is usudlhy
evaluate the benefit of some architectural enharngnin
which case, the absolute value of CPI may not kelpv
important. Instead, an accurate estimate of teedyp is
often a more desired metric. We define the speé&lap
the ratio of the CPI before the enhancement toaitei the
enhancement when the same benchmark is run. There
nothing wrong with pursuing accurate CPI value beea
more accurate estimation of CPI will naturally desn
better accuracy of speedup. However, the accdoadhe
two metrics show different properties as we stesl Iater.

In reality, the warm-up overhead usually 4,

We employ the ratio estimator in sampling theory to
calculate the speedup and to quantify its erroor dach
sampling unit, there are two characteristicsandx (i=1,

2, ..., N). We randomly take a sample of simeand
measure; andx of each sampled unii1, 2, ...,n). Our
goal is to estimat®&, the ratio of the population meanyof

to the population mean of (R=Vy /X = N y,/ N x)

Based on sampling theot,is estimated as

R:%:Zn:yi Zn:x1 (eq 31)
i=1 i=1
Its variance is estimated as
V(R) = Lﬂ;p (& +Rs-2Rs,), (€93.2)
DY =V -X)
Wheresyx -2 (eq 3.3)

n-1

If the sample is large enough so that the normal
approximation applies, the confidence intervalRaran be
obtained as

(é_zl—alzvv(é) ’|i+ Zl—a/z\lv(é))' (eq 34)

Based on the above theory, we propose the following

high steps to calculate the speedup and quantify its.err

1. Divide the full instruction stream inté chunks ofm
continuous instructions. Take a systematic sample
random sample of size
Measure the CPI of each sampled unit before the
architectural enhancement. Record all the CR)is (
Measure the CPI of treamesampled units after the
enhancement. Record all the CBjf% (
Calculate the speedup, its standard deviatioh an
confidence interval with equations 3.1 through 3.4.
The key point is to make sure the same sampled unit
are measured in the two simulation steps. Two lpno®
can potentially prevent us from achieving thisrsty, the
instruction stream may be different in each ruthefsame
benchmark. For a user mode simulator like Sima&8c
this is caused by operating system calls (e.grgettiday)
returning different result in each run. For exaenjih two
runs of gcc-166, the difference in the number afalyic
instructions was 332,372. Although this differermgy
accounted for 0.00071% of the total instructionsceked,
it would cause different units to be sampled intthie runs
because of the small sampling unit size (1,000 ;00D
instructions). To solve this problem, one must enaldre
that the dynamic instruction stream in each ruexactly
the same. In our experiment, we first captureeflodrace
with SimpleScalar sim-eio utility. Then all the lsbmark
programs are run with the eio trace to guaranteesime
instruction sequence. Secondly, the architectinnalation
events are aligned with clock cycles, not instardi This
can cause problem for simulating superscalar psoces
which are capable of committing multiple instruoan a
single clock cycle. Suppose that one sample gnitdm

2.

3.

instruction #100 to #199. In the first simulation, size for the speedup is only a small fraction et flor CPI.
instructions #98-#101 are committed in the saméecyn It will take fewer simulated instructions to acheethe
the second simulation with the microarchitectural same accuracy for speedup than for absolute Chéval
enhancement, instructions #99-#103 are committegh Table 2. Processor configurations

cycle. Obviously, the sampling units cannot bectly the

. . Par ameter 8-way (baseline) 16-way
same in the two runs if we count whole cycles. réhae Machine Width| 8 16
two ways to solve the partial cycle problem. e first RUU/LSQ size| 128/64 256/128
solution, ifi instructions are committed in one cycle, we 32KB 2-way L1 1& |64KB 2-way L1 1& D,
(artificially) allocate 1¥/ cycle to every instruction in this | Memory System D, 2 ports, 4 ports,

cycle. In the above example, instruction #100 #h@ll in

Unified 1M 4-way L2

Unified 2M 8-way L2

the first run will be counted as 2/4=0.5 cycles.isTh

4-way 128 entries

4-way 128 entries

approach strictly meets the ratio estimation resu@nt but ITLB/DTLB |4Way 256 entries | 4-way 256 entries
requires some additional book keeping. The otimeplsr 200 cycle miss 200 cycle miss penalt
approach, which we opted for in our experiment,suse - penalty
larger sample unit size. We start and stop meagat the Latency Y11/121100 cycles 1/16/100 cycles
bogndary of c;lock cycles, but bgcagse of the |lmayaple 2 TALU 16 FALU
un!t (;0,000 mstructl'ons) the_ misalignment of gwmple) |2 -muLDIV 8 I-MUL/DIV
units in the two runs is negligible. Functional Units 5 -5 ' 16 FP-ALU

We conducted an experiment to show the validity of 1 FP-MUL/DIV 4 FP-MUL/DIV

applying ratio estimation theory to sampled sirtioka
Eight benchmarks from SPECcpu 2000 are simulatesd in
modified SimpleScalar 3.0 sim-outorder simulatohialu
performs the above systematic sampling proceduEesh

Branch Predictor

Combined 2K tables
7 cycle misprediction
penalty

1 prediction/cycle

Combined 8K tables
10 cycle mispredictiorn
penalty

2 predictions/cycle

sampling unit is 10,000 instructions and 3,000 it
every benchmark are simulated. Caches and branch
predictors are continuously warmed up functionaklyin

[10, 17]. 4,000 instructions before every sampling are
simulated with cycle accurate simulator to warmatiper
microarchitecture structure. An 8-way and a 16-wait o
of-order superscalar processor are simulated touleaé g
the speedup. The microarchitecture configuratians ?
given in Table 2 [17].

The results are shown in Table 3. Table 3a shbes t
CPI result for the 8-way configuration. “Sampliresult”
column shows the CPI computed by sampling whereas
“True value” is the CPI from the full simulation lsym-
outorder. The actual relative error is shown ie thst
column. The estimated coefficient of variation Qs
shown in column 3. Table 3b shows the result way
configuration in the same format. The resultssjpeedup
of 16-way machine vs 8-way machine are shown ineTab
3c. The second column is the speedup calculatad fr
Equation 3.1 whereas the “True value” is calculatedhe
ratio of the true CPIs of the two configurationSOV for
speedup is shown in column 3.

First, we examine the coefficient of variation, @i
indicates the error solely due to sampling. In all
benchmarks the speedup invariably shows smaller COV
than the CPI. The resultant benefit is that toieeh a
specific limit of relative error, even fewer samgiunits
need to be measured than in CPIl. Suppose thabwethe
relative error to be within 2% at the confidenceeleof
95%. The required sample size can be calculated f
Equation 2.2 for CPI and Equation 3.4 for speedilpe
result is shown in Figure 4. Though required sangite
varies greatly from benchmark to benchmark, thepdam

18000
16000

@ 8-way cpi
m 16-way cpi|—
O speedup

o M. [m |

art equake

lucas

bzip2-
source

Figure 4. Sample size required to achieve 2%
relative error at 95% confidence level

This conclusion may seem counter-intuitive at firthe
speedup is calculated as the ratio of two CPIsras i
Equation 3.1. Then how could the speedup be more
accurate than each CPI? The answer lies in thetHat
different parts of the benchmark program usuallgefi¢
similarly from the microarchitectural enhancemenere
though the absolute value of CPI may vary widelyirdy
the execution. COV is an indicator of the degree of
variation in the population. The value of speedsipiore
uniform among the sampling units than the valu€Ht,
resulting in a smaller COV, and a tighter confidenc
interval for the speedup.

Next, we look at the actual error, which considtthe
sampling error discussed above and the error due to
inaccuracy in the measurement of the CPI of eanipka
unit. The latter is mostly caused by inadequatewap of
large microarchitecture structure. The most ateurarm-
up scheme [10, 17] in the literature is used in our
experiment. The caches and the branch predicter ar

gcc-166 vpr-route gzip-
random

vortex-1

warmed up throughout the full simulation, but tiaeg only

functionally simulated for most of the time.

speculative behavior is not modeled except forrduthe
units that are simulated in detail. In some berants) this
measurement error becomes dominant. For exanipén g
a sample size of 3000, the COV for vpr-route issswall
that at 99% confidence level, the relative errothef CPI
on the 16-way machine should be within 1.91%. Hamxe
the actual error is about 4%, so it is almost @eitzat the
final error mainly consists of the measurementrerrbhe
error due solely to sampling decreases quickly wiven
increase the sample size. If we can accurately unedsst
30 million instructions (0.02%-0.06% of total dyniam
instructions), the error in speedup will be below% for

all benchmarks except gcc.

The

used to evaluate computer performance. However, th
reference data set takes such a long time to raniths
impractical to use it to evaluate multiple micrdatectural
alternatives by simulation. Besides sampling, cedwdata
set is another approach to reduce simulation tini&e
same program is executed and cycle accurate sionist
done throughout the whole execution. But the ingata
set to the benchmark program is reduced resultirguch
shorter simulation time. Reduced data sets for C3RE
2000 include train, test and MinneSPEC. Test is not
intended to perform any simulations, while MinneEPE
a small data set specifically designed for micropssor
simulation. Previous research evaluate the reduleed
sets by comparing one program by one program the

However, in reality the absolute value of CPIl and other microarchitectustrics

measurement error due to imperfect warm-up quickly between the reduced data set and the referencesetaj,
becomes a limiting factor on the accuracy. Theegfo
future research on new simulation methodology needs
focus on more efficient and accurate warm-up tesnes.
Table 3a. CPI for 8-way configuration

Benchmark Sampling | COV True Relative
result (%) value | error (%)
art 1.0451] 0.7112 1.0442 0.0869
equake 1.3438 0.7937 1.3448 0.0707
lucas 24237 1.2774 2.4931 2.7825
bzip2-source 0.6008 1.3915 0.5959 0.7322
gcc-166 0.5057 1.5814 0.5042 0.3037
vpr-route 15603 0.2233 1.5410 1.2502
gzip-random 0.4243 0.8194 0.42p4 0.4608
vortex-1 1.0451] 0.7112 1.0442 0.0869
Table 3b. CPI for 16-way configuration
Benchmark Sampling | COV True Relative
result (%) value | error (%)
art 0.5866| 0.681(0.5923 0.9586
equake 0.9309 0.6480 0.9318 0.1006
lucas 2.2679 1.4612 2.3525 3.5973
bzip2-source 0.4866 1.6046 0.47P1 1.5581
gcc-166 0.2816 2.4210 0.2714 3.7609
vpr-route 1.3519 0.2430 1.3301 1.6409
gzip-random 0.3500 0.8923 0.3458 1.2279
vortex-1 0.3235 0.7408 0.3103 4.2485
Table 3c. Speedup (16-way vs 8-way)
Benchmark Sampling | COV True Relative
result (%) value | error (%)
art 1.7816| 0.277(1.7630 1.0556
equake 14437 0.3558 1.4482 0.0300
lucas 1.0687 0.2745 1.0598 0.8452
bzip2-source 1.2337 0.4950 1.2438 0.8132
gcc-166 1.7959 1.121p 1.8578 3.3318
vpr-route 11541 0.1300 1.1586 0.3844
gzip-random 1.2123 0.14883 1.2215 0.7577
vortex-1 1.5689 0.2807 1.5962 1.7003

4. Comparing reduced data sets

7].

In this section, we take a different approach taleate
the reduced data sets. Firstly, we recognizethigagoal of
a simulation experiment is to assess some aramitgct
improvement. Therefore, the accuracy in speedufités
more important than the accuracy in absolute CRieva
We will compare both CPI value and speedup. Sdgpnd
we do not base our conclusion on one to one cosyaunf
benchmarks or on the “average” error. Instead\visw
SPECint 2000 as a sample from all the CPU intensive
integer programs in the world (the population). &gsume
that SPECint 2000 is a simple random sample. @&dnle
there is some randomness in the sampling, no t&tatis
theory can be developed for the approach and ristidal
conclusion can be made about the population).
comparing the reduced data sets, we are tryinigidiodut if
they represent the same “population” as the referelata
set does. As long as the populations are the stHme,
reduced data sets are equivalent to the refereaize st
when used to evaluate the performance improvemeént o
computer designs.

If the populations are the same, then the mediahef
population should be the same. This question & be
answered by hypothesis testing. Because we d&rmoot
the distribution of the CPI, we choose Wilcoxonnsid
rank test, which does not assume normal distributio
test the equality of the population median. Thst te
requires that the sampling units be independen¢aah
other. However, in some data set, one benchmadtam
is run with several input sets. For example, th@od
program has 3 input sets in the reference dataPsetvious
research [5] has shown that the performance mefwics
these input sets to the same benchmark programbmay
quite similar; thus their CPl and speedup are not
independent of each other. If a program takes ipheilt
input sets within one data set, we calculate tlitbraetic
mean as the value for this program. As we canifiatcbato
fully simulate the reference data set in sim-outordie use

By

SPECcpu 2000 comes with three data sets: referencethe sampling method in the previous section to jathe
train, and test. Only the reference data setgpased to be

speedup and CPI for reference data set. The gagnpli

method will incur some small errors, but they aggligible
compared to most errors in the reduced data sdie T

Table 4 Wilcoxon signed rank test of different
reduced data sets

relative errors in CPI and speedup of the differexiuced

data sets are plotted in Figure S5ome benchmarks show
very large errors when reduced input sets are usemhin
we see the repeated pattern: the error in speedofien

much smaller than the error in CPI. It is als@iiasting to
note that the average error of test, train and FBREC
data set are close, with MinneSPEC showing an edthe

speedup estimation. Then we use Wilcoxon signall ra
test to test if the median of the two populations tne
same. Each reduced data set (test, train and BIFIBE) is

Metrics Reduced data set p-value

CPI on &way Test 0.06445
Train 0.02734
MinneSPEC 0.04883

Test 0.03711

Cpr'nc;'lﬁi?]';"’ay Train 0.01953
MinneSPEC 0.03711

Test 0.999

Speedup (16-way Train 0.375
vs. 8-way) MinneSPEC 0.695

tested against the reference dataset in terms bbERB-
way machine, CPIl on 16-way machine, and the speedup
The Wilcoxon test result is summarized in Table We
choose a significance level of 0.05. Except fertdst data
set on the 8-way machine, which barely passesetteat
this significance level, none of the reduced data bas the
same median CPI as the reference data set. Howedler
the p-values for the speedup are above the significance
level. Therefore, using the reduced data set atuate the
speedup in our experiment is not statisticallyedéht from
using the reference data set.

By comparing different data set, we are not only
interested in the population mean, but also we wastee
whether the populations follow the same distributid¢f the
population distribution is the same, then the ittigtion of
the sample mean will also be the same. To visishibw
the distribution of sample mean, we employ boopgtirg
[6], a modern computer-simulated, nonparametric
technique to statistical inference. In our experin we
draw 10,000 resamples. The histograms of the @RI a
speedup are shown in Figure 6. The x-axis is eediely
drawn on the same scale for easy comparison.olii®us
that the distribution of the sample mean CPI fdenence
data set is far from normal. Furthermore, diff¢régata set
shows vastly different distributions. The multipleaks in
sample mean CPI distribution of reference datasethe
result of several programs (notably, mcf) showing
distinctively higher CPI than others. This propeigynot
retained in test and MinneSPEC, where the CPIdl dfiea
benchmarks are closer to each other resulting irowar
and single-peak distribution. However, for the more
important metrics, the speedup, the distributionfs o
different data set are more similar to each othdn
addition, the distribution of the sample mean efspeedup
also looks more like normal distribution. A quéei
guantile plot of the reference speedup against alorm
distribution (Figure 7) shows that the distributiof the
speedup of reference data set is fairly close ¢ontbrmal
distribution (but with slightly shorter tails).

1 we were not able to run perlbmk or parser in tineutator, so we have
results for out of 12 SPECint benchmarks. Fordoedtatistical result,
more benchmarks are needed.

Relative error in CPl on 8-way machine

0.9
0.8 o test
0.7 W train
0.6 O MinneSPEC
0.5
0.4
0.3
0.2 I
ot il Il ol
0,
d S &R E RS LS
Q1>Q 0\'?"\ @ SR AR N S \,\0\) e
K
Relative error in CPl on 16-way machine
1
0.9
08 Eneslt =
0.7 | train
061 O MinneSPEC
0.5
0.4 |
0.3
0.2
0.1
0,
N - & N S @ &
»L\Q(L *5&\ e &Q %& &\Q &® & 0<\Q' &0& D
¢S D &
K 3
05 Relative error in speedup (16-way vs 8-way)
0.45 O test
0.4 i
0.35 | B train
0.3 0O MinneSPEC
0.25
0.2
0.15 A
0.1
0.05
0
Q . &0 S+ e Q@
R AR R e
S 9 3 & ,8\‘2’
<N

Figure 5. Relative errors of different reduced data
sets

In summary, none of the reduced data set (tesh, tra
MinneSPEC) represents the reference data setrirs tef
CPI. However, one can use any of the reduced s#tto
evaluate the speedup and draw the statisticallyesam
conclusion about the performance of the procesddris
interesting observation is currently based only aur
experiment of two processor configurations. Althlowe
expect that the reduced data set and referencesefavaill

show more similarity in speedup than in CPIl, more confidence interval of the speedup. We show thahea
experiments are needed to test its general apjiigab same accuracy level, speedup requires smaller sasigd
than CPI, so it is more efficient to estimate toafitence
interval directly with our method. Wunderlich al. also
showed that smaller sampling unit is more effectivan
Computer designers run benchmarks to evaluaterdesiglarge sampling unit that had been commonly used in
alternatives, but no user runs these benchmarkkein previous research. The evolution of SimPoint alduibits
everyday work. Therefore, the real question a agmp the trend of smaller sampling units. The precursbr
designer is trying to answer is: how well will themputer ~ SimPoint [15] simulated a large chunk (300 millicof)
design perform for all CPU intensive workload ie torld instructions. The original SimPoint [16] used saved00
based on the result of the SPECcpu suite? Toearihe million instruction chunks. In Variance Simpoird#], the
question, we view SPECint as a random sample fribm a latest version of SimPoint, on average about 1@Mks of
CPU-intensive integer programs and calculate thel million instructions are simulated. ~We confirmed
confidence interval for the mean speedup. Theique Wunderlich et. al's conclusion but we have further
section has shown that the mean speedup approkmate explored the underlying reason by studying the
follows the normal distribution. Therefore, Eqoati2.2 autocorrelation of the instruction stream. We slioat this
can be used to calculate the confidence intergalother phenomenon is caused by high autocorrelation intside
method is to use bias corrected bootstrappingviéjch instruction stream, which is an expected resutenfporal
does not rely on the assumption of a particularedgithg locality.
distribution. The results are shown in Table 5. e Tast

5. Confidenceinterval of speedup

column is the limit of relative error converted rfrothe
confidence interval. We can see that bias comlecte

Table 5. The confidence interval of speedup on a

16-way processor vs 8-way processor

bootstrapping often results in tighter interval. Confidence | Estimation | Confidence | Equivalent
The confidence interval can serve as guidanceafget level method interval relative

accuracy when the computer architecture researcher error limit

designs future simulation techniques. If the liofitelative Normal | (1.214, 1.441) 8.59

error is 8%, then the error in simulating each bemark 95% distribution

programs should be much smaller than 8% (e.g 1€%). Bias (1.232, 1.449) 8.29

the other hand, we should not shoot for unnecessary Corrected -

accuracy such as an error of 0.1%, which will betefal digtcr)irbr?;i“on (1.179, 1.476) 11

of simulation resources. The current sampling kitian 99% Bias (1.208, 1.485) 109

gives an error below 4% (Table 3). It is closarteet the Corrected e

requirement but smaller errors are still desirable.

Furthermore, most of today's microarchitectural

enhancement in literature does not offer a speaduprge
as the difference between a 16-way processor aBenaay
processor. Therefore, the confidence intervattferwhole
benchmark suite will be tighter and even smalleorerin
each benchmark program simulation are required.

6. Related work

Wunderlich et. al. [17] proposed using multiple 8ma
sampling units to get accurate simulation CPI. yThe
employed sampling theory to calculate the confidenc
interval and to select the sample size at a givauracy
requirement. SimPoint is another recently proposed
sampling simulation scheme. It uses cluster aizahased
on basic block vector to select representative Isition
chunks. The latest version allows the user to tifyatie
error in CPI with a confidence interval on the ora
architecture for which the full simulation was dor@ur
work focuses on measuring speedup instead of Qthw
is more important to computer designers. More
sophisticated sampling theory is employed to cateuthe

Normal G-Q Plot

Sample Guantiles

Hsu et. al. [8] compared the IPC and path profileest,
train, and reference data set.

Theoretical Guantiles

Figure 7. Quantile-quantile plot of the speedup of

reference data set against normal distribution.

The line, which passes through the 1% and 3™
guartiles, is for comparison.

They studied hosv th

Test CP18—way Test CPl 16—way

Test Speedup 16-way

| SN S N I N E—
%?

Density
oz 4 & & 10 12 14
6

Density
0oz 4 & 8 10 12

r T T T 1
0s 1.0 15 20 25

Train CPI 16-way

M\m h
) 1‘0 1.‘5

Train CPI 8-way

| mJ»
.
d T T T
1 2 3

Density
Density

001 2 3 4 5 6

i
1 k.

r
4 0.

CPI crl
MinneSPEC CPl 16-way

MinneSPEC CPI8-way

Density
o1 2z 3 4 5 6 7
Density
0 2 4 6

Density
05 1.0 158 20

oo

Figure 6. Bootstrapped distribution of sample mean of CPI

difference will affect the effectiveness of profileased instead of comparing program by program. While our
optimization. They found that the test data sdatisrom study confirms that the CPI is quite different betw the

the reference data set. Although the train ddtésdeetter reference and reduced data sets, we show that using
than the test data set, it still differs from tlederence data reduced data set to evaluate speedup will not trésul
set significantly. Haskins et. al. [7] studied tli#erence statistically different conclusion.

in IPC, L1 data cache miss rate, and branch migpiedadl Viewing the small set of benchmark programs as anly
rate between train, MinneSPEC and reference ddta sesample, and calculating the confidence intervajuantify
They concluded that the reduced input simulation ca the result of performance have been demonstrated in
produce significant errors in important program textbooks for computer architects [9, 13]. Howewbis
characteristics. Eeckhout et. al [5] did similamparison technique has seldom been used when researchers rep
with principal component analysis and clusteringlgsis. their results based on a benchmark suite. We shew
They concluded that for some benchmark programs theconfidence interval using bootstrapping method @ittthe
reduced data set is representative of the referdatzeset normal distribution assumption. The confidenceerivel
whereas for others the behavior of reduced datss sgitite can guide researchers to set target accuracy wesgnihg
different. Recognizing the importance of speedug w new simulation techniques.

compare the reduced data sets with reference @éten s

terms of both CPI and speedup. We employed statist

theory to compare the population each data seesepts

7. Conclusion

In this paper, we employ statistical theory to gtud
several topics in microprocessor simulation. We moi@ (5]
the autocorrelation within the instruction streamnptove
that a small sampling unit (1,000 — 10,000 instons) is
more effective than large sampling unit at imprgvin
simulation accuracy, as long as the warming up heasi [6]
has not become the limiting factor. We show
mathematically that the exhibited autocorrelati@mdyvior
favors small sampling units.

We have applied ratio estimator and extended pusvio
sampling simulation method to calculate the speewitip
guantifiable accuracy. Our result shows thatduieve a
specified accuracy, it is not necessary to meaSiieat the
same accuracy. Speedup can be accurately measitined
fewer instructions sampled than CPI.

We have compared different reduced data set {tast,
and MinneSPEC). We view the SPECint suite as daman
sample from the population of all CPU intensiveegsr
benchmarks it represents. We tested the populatean of
each reduced data set against the reference daande
plotted the distribution of sample mean by bootgtitag.
We found that none of the reduced data sets caesent
the reference data set in terms of CPI because ghey
different median values and widely different distitions.
However, in our experiment, reduced data sets ate n
statistically different from the reference datawken used
to evaluate the speedup. In addition, the sampglannof
the speedup approximately follows the normal digtion.
Confidence interval is useful for the users to estd the
performance of computers, and for researcherst tmgget
accuracy when designing new simulation methods.

Ideally, only a tiny portion of the full dynamic
instruction stream is needed to get accurate speedu
estimation, and the sampling error can be easilyaed by
increasing the sample size. In reality, howeuse, warm-
up overhead is dominant in simulation time. Th®remn
the measurement of each sampling unit due to iregerf
warm-up quickly becomes the limiting factor on aeay.
Future research in sampling simulation methodologgds
to focus on more efficient and accurate warm-up
mechanisms.

[7]

(8]

(9]

8. References

Banks, J., Carson, J.S., and Nelson, B.L. BedEvent
System Simulation. 2nd ed. Prentice Hall, 1999.

Burger, D. and Austin, T.M. The SimpleScalaoltset,
version 2.0. Technical Report 1342, Computer $eign
Department, University of Wisconsin-Madson, Jun@719

[1]
(2]

[3] Cochran, W.G. Sampling Techniques, 3rd ed.nJaliley &

Sons, 1977.

Conte, T. M., Hirsch, M. A. and Menezes, K.Reducing
state loss for effective trace sampling of supdasca

[4]

processors. In Proceedings of the 1996 Interndtiona
Conference on Computer Design (ICCD) (October 1,996)
468-477.

Eeckhout, L., Vandierendonck, H. and Bosschi&rB,
Quantifying the impact of input data sets on progra
behavior and its applications. Journal of Instarctievel
Parallelism, Volume 5, April 2003

Efron, B. and Tibshirani, R.J. An IntroductitmThe
Bootstrap. Chapman & Hall. New York 1993.

Haskins, J. W. Jr., KleinOsowski, A. J., Skadri. and
Lilja, D. J. Techniques for accurate, accelergredessor
simulation: analysis of reduced inputs and samglifigech
Report CS-2002-01, University of Virginia Dept. of
Computer Science, Jan. 2002.

Hsu, W.C., Chen, H., and Yew, P.C. On the preadiility of
program behavior using different input data sets, |
Proceedings of the 6th Workshop on Interaction betw
Compilers and Computer Architectures, (Februarn200b-
53.

Jain, R.. The Art of Computer Systems Perforogan
Analysis. John Wiley & Sons, Inc. 1991.

[10] Jimeno-Ochoa, L.M., Ibez, P. and Vials, V. Middime

sampling: fast and accurate simulation of cache omgnin
Proceedings of the 22nd. Euromicro International
Conference (September 1996), 39-44.

[11] KleinOsowski, A.J. and Lilja, D.J. MinneSPEEnew

SPEC benchmark workload for simulation-based coerput
architecture research, Computer Architecture Lstter
Volume 1, June, 2002.

[12] Lafage, T. and Seznec, A. Choosing represeatatices of

program execution for microarchitecture simulatiods
preliminary application to the data stream. In Beatings of
the Third IEEE Annual Workshop on
Characterization (September 2000), 102-110.

[13] Lilja, D.J. Measuring Computer Performance: A

Practitioner's Guide. Cambridge University PressyNork,
NY, 2000

[14] Perelman, E., Hamerly, G. and Calder, B. Rigki

statistically valid and early simulation points Rroceedings
of the International Conference on Parallel Ardttitees and
Compilation Techniques (September 2003), 244-255.

[15] Sherwood, T., Perelman, E., and Calder, Bidalsck

distribution analysis to find periodic behavior asichulation
points in applications. In Proceedings of the Imaional
Conference on Parallel Architectures and Compitatio
Techniques (September 2001), 3-14.

[16] Sherwood T., Perelman E., Hamerly G., and &aRi

Automatically characterizing large scale prograravéor.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (October 2002), 45-57.

[17] Wunderlich, R.E., Wenisch, T.F., Falsafi, 8xd Hoe, J.C.

SMARTS: Accelerating microarchitecture simulatioa v
rigorous statistical sampling. In Proceedings ef36th
Annual International Symposium on Computer Archiitee
(June 2003), 84-95.

Workload

