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Abstract 

 
Simulation of benchmarks has been the most important 

tool for computer architects to evaluate computer designs.  
In this paper, we employ statistical theory to study several 
key issues in microprocessor simulation.  Sampling is an 
effective technique to reduce simulation time. Some 
approaches in the past use large number of small samples, 
while some other approaches use fewer numbers of larger 
samples. While fewer numbers of larger chunks is 
convenient, we study autocorrelation in programs and 
demonstrate that large chunks of continuous instructions 
do not capture additional information from the instruction 
stream. The high autocorrelation demonstrated by 
programs favors small sampling units. 

Simulation is often used to evaluate the speedup of some 
microarchitectural enhancement.  By applying ratio 
estimator in sampling theory we quantify the error of 
speedup measurements.  Our result shows that speedup has 
smaller sampling error than CPI.  

Next, we examine the validity of several reduced data 
sets for SPECint 2000. Using reduced data sets is an 
alternative to sampling, when one wants to reduce 
simulation time. Although the reduced data sets show CPIs 
vastly different from the reference data sets, the speedup 
from the reduced data set is not statistically different from 
the speedup from the reference data set.  Confidence 
interval of speedup should be used as a guide to set target 
accuracy for designing new simulation techniques.  Such 
future research needs to focus on more efficient and 
accurate warm-up mechanisms.  
 

1. Introduction 
Simulation of standard benchmarks has been the most 

popular method for computer architects to study the design 
tradeoffs.  Modern benchmarks are no longer small kernels 
or synthesized toy programs.   Instead, they are very close 
to real world programs and often take a long time to 
execute.  Moreover, modern superscalar microprocessors 
are becoming increasingly complex; and so are the 
simulators modeling the processors.  As a result, running 

benchmarks on detailed microarchitecture simulation 
models can take prohibitively large simulation times.  
Table 1 shows the time to simulate selected SPECint2000 
benchmarks on a 1GHz Pentium III machine with sim-
outorder, the detailed out-of-order superscalar simulator 
from the SimpleScalar 3.0 tool set [2].  It usually takes 
several days to simulate one program.   Some benchmarks 
in the suite, which we could not afford to fully study, 
require weeks of simulation time. 

Table 1. Number of instructions and simulation 
time of selected SPECint2000 benchmarks with 

reference data set.  The data set name is 
integrated with the benchmark name. 

 

Since full simulation is impractical, a popular practice in 
computer architecture research is to fast forward billions of 
instructions to skip initialization phase of the program, and 
then simulate in detail several hundred million contiguous 
instructions.  However, previous work has shown that this 
practice often results in large errors with respect to full 
simulation [12, 16].   To reduce simulation time yet retain 
good accuracy, researchers have employed many other 
techniques.  Sampling and using reduced input sets are two 
of them.       

Sampling techniques simulate multiple chunks of 
continuous instructions selected from the complete 
instruction stream.  The instruction stream for simulation 
remains the same as the original, but only a small fraction 
of the original instruction stream is actually simulated in 
detail resulting in greatly reduced simulation times.  A lot 
of work has been done in this area.  However, much 
research work follows an ad-hoc approach: the newly 
proposed technique is evaluated solely experimentally in a 

Benchmark Number of 
instructions 

(million) 

Simulation 
time (days) 

gcc-166 46,917 2.2 
bzip2-source 108,878 4.4 

eon-rushmeier 57,870 2.7 
gzip-graphic 103,706 7.2 

vortex-1 118,976 4.6 
vpr-route 84,068 4.1 

crafty 191,882 9.3 



few test cases to demonstrate its accuracy. Conte et. al. [4] 
applied sampling theory to processor simulation.  They 
show how to calculate the confidence interval to quantify 
the error. Recently, Wunderlich et. al. [17] used sampling 
theory as guidance to design systematic sampling 
simulation.  These statistical sampling approaches allow a 
confidence interval to be calculated to quantify the 
accuracy of the simulation without simulating the whole 
instruction stream. 

MinneSPEC [11] is representative of the reduced input 
set approach.  It consists of a set of reduced input sets to 
SPECcpu 2000 benchmarks.  Therefore, when MinneSPEC 
is used, even though the benchmark programs remain the 
same, the dynamic instruction stream is smaller than that of 
the reference data set.  KleinOsowski et. al [11] carefully 
profiled the SPEC programs and crafted the reduced input 
set so that MinneSPEC shows a program path profile very 
similar to that of the reference data set.   

In this paper, we employ statistical sampling theory to 
study several important issues in microprocessor 
simulation.  First, we examine the problem of sampling unit 
size. That is, we try to determine how large a chunk (the 
basic sampling unit) should be to achieve certain simulation 
accuracy while simulating as few instructions as possible. 
Some approaches in the past use large number of small 
samples [17], while some other approaches use fewer 
numbers of larger samples [16]. While fewer numbers of 
larger chunks is convenient, it is important to know 
whether increasing the chunk size really captures any more 
information than a smaller chunk.  We study 
autocorrelation in programs to investigate the information 
content of the instruction stream and its variation with time. 
Our investigation indicates high autocorrelation in the 
studied programs, favoring small sampling units. 

Another contribution of the paper is the use of ratio 
estimator to quantify accuracy of common metrics used in 
simulation. Traditionally, analysis of simulation 
methodologies has been based on achieving accurate CPI 
(Cycles Per Instruction).  However, the goal of most 
simulation is to quantify the impact of some 
microarchitectural enhancement. Often, the final result of 
simulation is the speedup, not the absolute value of CPI.  In 
section 3, we show how to use sampling theory to design an 
experiment to quantify the accuracy of speedup. We show 
that the sampling error in speedup estimation is 
significantly less than the error in CPI estimation.  

Next, we compare different reduced input sets to answer 
the question: which data set is the most representative of 
the reference data set. We view SPECint 2000 as a sample 
from all CPU intensive integer programs.  We observe that 
none of the reduced input sets are statistically 
representative enough for CPI estimations, but all of them 
are sufficiently representative for speedup estimates. 

The view that a benchmark suite is just a sample from 
the set of programs that it represents has important 

implications. As discussed in Section 5, it provides target 
accuracies for designing new simulation methods. 

2. Autocorrelation and its implication on 
sample size 
 

Before going on, we first clarify some basic terminology 
because the same terms are often used differently in 
different research papers. We follow the established 
terminology in statistical sampling theory.  The original full 
instruction stream is divided into N non-overlapping 
chunks of m continuous instructions.  Each chunk is a basic 
simulation unit, or a sampling unit. The sampling unit size 
is the number of instructions in each chunk (m). The 
population refers to all the chunks that constitute the full 
instruction stream.  Population size is the total number of 
sampling units in the full instruction stream, denoted N in 
this paper.  A sample consists of selected chunks that are 
actually simulated and measured (In practice, more 
instructions are simulated for warming up 
microarchitecture).  The number of sampling units in a 
sample is the sample size, expressed as n.   The ratio of 
sample size and the population size is the sampling 
fraction, denoted by the letter f  (=n/N). 

For convenience, systematic sampling is often used but 
is shown to be equivalent to simple random sampling in 
processor microarchitectural simulation [17].  The CPI of 
each sampled unit is measured (yi , i=1, .., n).  The CPI of 
the full simulation (population mean, Y ) is estimated as �
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When normal distribution assumption applies, the 

confidence interval of Ŷ  at confidence level (1-α) is  
),( 2/12/1 yy szyszy αα −− +−           (eq 2.2) 

where 2/1 α−z  is the (1-α/2) quantile of a unit normal 

distribution, and ys  is the standard deviation of  Ŷ . 

The final error of sampling simulation comes from two 
sources.  The first source is the measurement error (i.e. 
inaccuracy in measuring the CPI of each sampling unit).  
To get the accurate CPI of a sampling unit, the state of all 
microarchitectural structures in the simulator must be 
correct at the beginning of the sampling unit.  In practice, a 
number of instructions before the sampling unit are 
simulated to warm up the structure to obtain approximately 
correct microarchitectural states. Currently, the most 
accurate warm up is by functionally simulating caches and 
branch predictor throughout the full instruction stream [10, 
17]. We assume that the measurement error is negligible in 
this section.  The second type of error, which is the focus of 
this paper, comes from sampling itself, which is indicated 
by the variance 2

ys .  Similarly, we use the coefficient of 

variation (cov= ysy / ) to indicate the relative error.  For 



example, following Equation 2.2 at confidence level of 
99% the relative error of measured CPI is less than 2.58cov.  

In sampling simulation of microprocessors, we face a 
unique question: we need to determine the number of 
instructions in a sampling unit (m).  For example, if we 
have a budget of simulating 500 million instructions, to 
achieve a small error, should we simulate 5 chunks of 100 
million instructions each, or 5000 chunks of 100,000 
instructions each? And why? 

In this study, we assume that the warm up overhead is 
constant. Although rarely true in practice, this assumption 
enables us to focus on the inherent property of the 
benchmark instruction stream instead of being tied down to 
a particular warm up scheme.  We begin by studying the 
autocorrelation of the instruction stream. The CPI of each 
sampling unit is measured.  The sequence of the CPIs, 
ordered in time, becomes a time series. Autocorrelation 
function of a time series y1, y2, …, yN is defined as � �−
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Autocorrelation is the correlation coefficient between 
neighbor sampling units with a lag (distance) of h. 
 

 

 

 

 

 

 

 

 

Figure 1a.  Autocorrelation of CPI with 1 million 
instruction sampling unit 

 

 

 

 

 

 

 

 

Figure 1b.  Autocorrelation of CPI with 100 million 
instruction sampling unit 

The full simulations of the 7 benchmarks in Table 1 are 
divided into sampling units.   Figure 1 shows the 
autocorrelation of CPI of the sampling units for the 
benchmarks.  The two sub-figures show the autocorrelation 
of different scale.  In Figure 1a, each sampling unit is 1 

million instructions, whereas the sampling unit size is 100 
million instructions in Figure 1b.  

It is clear that the autocorrelation curve is different for 
different benchmarks on different scales.  Most benchmarks 
show a decreasing autocorrelation with increasing 
distances, but some exhibit periodicity in their CPI values.  
In this study we focus on the sign of the autocorrelation.  
Most benchmarks show high positive autocorrelation.  A 
few benchmarks exhibit some negative autocorrelation 
values but the negative values have smaller magnitude (e.g. 
gzip-graphic in Figure 1a, bzip2-source in Figure 1b).  At 
small lags all the benchmarks show high positive 
autocorrelation, which means that the CPI of one sampling 
unit is closely related to the units in its close neighborhood.  
The sign of autocorrelation especially at small lags 
determines the effectiveness of larger sampling units, as 
shown next.  

As we have pointed out earlier, the standard deviation of 
the sample mean (

ys ) is used to evaluate the accuracy of 

the sample design. The smaller the standard deviation, the 
more accurate the sample result is.  We use )1(ys to denote 

our baseline standard deviation: sampling unit size of m 
instructions and sample size of n units.  To evaluate the 
benefit of larger sampling unit, we compare two 
approaches of reducing the standard deviation.  In the first 
approach, we choose a sampling unit size that is j times 
larger (j*m instructions) whiling keeping the sample size 
constant at n. Let )( jsy

 denote the standard deviation in 

this case.  In the second approach, the sampling unit size is 
not changed, but we take j times more units.  )( jsy′  is used 

to denote the new standard deviation.  Please note that the 
two approaches have the same number of measured 
instructions (j*m*n ).  It can be shown [1] that 
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Equation 2.4 and 2.5 show that the benefit of increasing 
sampling unit size is decided by the autocorrelation ρh.  If 
the neighbor sampling units are uncorrelated (ρh=0), then 
the two approaches give the same accuracy ()( jsy

= )( jsy′ ).  

If neighbor sampling units show positive correlation 
(ρh>0), then increasing sample unit size is not efficient 
( )( jsy

> )( jsy′ ).  On the other hand, if neighbor sampling 

units are negatively correlated (ρh<0), then increasing 
sample unit size gives more accurate result than increasing 
sample size ( )( jsy

< )( jsy′ ).  Please also note that the 

autocorrelation ρh with different lag h has different weight 
on the final result. The smaller the lag h is, the larger 
impact it has on the final result.  
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As shown in Figure 1, the autocorrelations are mostly 
positive especially when the lag is small, resulting in 

)( jsy
> )( jsy′ .  Therefore, using larger sampling unit size is 

does not give good improvement in accuracy.  To validate 
the conclusion, we calculate )( jsy

 and )( jsy′  from their 

definition (not from Equation 2.4 and 2.5).  The value 
normalized to )1(ys  is plotted in Figure 2.  The base 

sampling unit is 1 million instructions in Figure 2a 
(m=106), and 100 million instructions in Figure 2b (m=108).  
The x-axis is j, the normalized number of measured 
instructions.  Because different benchmarks show different 
autocorrelation, the )( jsy

 curve is different for each 

benchmark.  But all benchmarks share the same )( jsy′  

curve (with legend “small-unit” in the figure).  Figures 1 
and 2 clearly reflect the relationship between 
autocorrelation and standard deviation of CPI as dictated by 
Equation 2.4.  In Figure 1a, gcc-166 has the highest 
autocorrelation.  As a result, it shows the largest standard 
deviation as the sampling unit size increases in Figure 2a.  
On the other hand, the autocorrelation of bzip2-source is 
the lowest in Figure 1a.  Thus it exhibits the lowest 
standard deviation in Figure 2a for larger sampling unit.  At 
the granularity of 100 million instructions, bzip2-source 
shows some negative autocorrelation in Figure 1b, so its 
standard deviation is very low in Figure 2b, even overlap 
the “small-unit” line for some points.  This means that up to 
600 millions, increasing the sampling unit size is as 
effective as taking more sampling units.  Part of Vortex’s 
autocorrelation is also negative, but the negative values 
come too late.  The positive autocorrelation with the small 
lag has larger weight, resulting in relative high standard 
deviation for large sampling size in Figure 2b. As we can 
see from Figure 2, except for a couple of points in bzip2-
source, larger sampling unit does not give as much error 
reduction in any of the benchmarks.  Take crafty from 
Figure 2b as an example. Suppose we use a chunk of 100 
million instructions as a sampling unit and the 95% 
confidence interval is e when simulating crafty.  If we 
increase the chunk size to 1 billion instructions and keep 
the number of chunks the same, then we can only expect to 
limit the error to 0.89e, a marginal gain.  However, if we 
keep the chunk size as 100 million instructions, but 
sampling 10 times more chunks, then our error limit is 
reduced to 0.32e, even though the total number of 
measured instructions stays the same as in the previous 
case.   

To understand this result, we can consider correlation as 
similarity or predictability.  To get good sampling 
accuracy, we want CPIs of our sample to cover as much as 
possible the CPI range of the population.  However, if a 
sampling unit shows high correlation to its neighbor, then 
adding its neighbor to the simulation provides little 
additional information or coverage because the neighbor 
unit is very similar to the original sampling unit and its 

behavior is highly predictable with what we have already 
sampled.  Therefore, simulating larger chunks of 
instructions is not effective at improving sampling 
accuracy. 

One may expect the high autocorrelation to be the result 
of phase behavior.  If a program exhibits phase behavior, a 
sampling unit will show very similar CPI to its neighbor 
units in the same phase.  However, our experiment shows 
that high autocorrelation is more universal than phase 
behavior.  Figure 3 shows the CPI of every 100 million 
instruction sampling unit for two benchmarks: vortex-1 and 
crafty.  Vortex-1 has been the subject of many phase 
behavior researches, whereas the CPI graph of crafty is 
close to noise to human’s eyes.  However, both benchmarks 
exhibit high autocorrelation as shown in Figure 1b. 

We believe that the underlying reason for high 
autocorrelation is temporal locality.  Because of temporal 
locality, a sampling unit executes similar code and accesses 
similar data as its close neighbor, which results in very 
similar CPI as its neighbor.  Temporal locality has been 
proven to be a basic behavior of all programs and it exists 
on a wide range of scales (e.g. microprocessor cache 
hierarchy).  Therefore, it is no surprise to see this universal 
non-negligible autocorrelation in the instruction stream 
simulation.   
 

 

 

 

 

 

 

 

 

(a) Base unit size is 1 million instructions 
 

 

 

 

 

 

 

 

(b) Base unit size is 100 million instructions 

Figure 2. Normalized standard deviation CPI for 
different sampling unit sizes 
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Figure 3a.  CPI of every 100 million instruction 
unit for vortex-1 

 

 

 

 

 

 

Figure 3b.  CPI of every 100 million instruction 
unit for crafty 

In summary, the instruction stream shows high positive 
autocorrelation between close neighbor sampling units.  We 
have demonstrated mathematically that the high 
autocorrelation favors small sampling unit.  Our result 
shows that simulating larger and larger continuous chunks 
of instructions is not an effective way to improve accuracy.  
Because of the ubiquity of temporal locality, this 
conclusion is expected to hold true for almost all programs. 

A word of caveat may be in order here.  In the above 
discussion, we assume that the overhead of warm-up is 
constant.  In reality, the warm-up overhead usually 
increases if we reduce the sampling unit size and increase 
the sample size.  As such, the sampling unit size should be 
a trade-off between accuracy and the simulation overhead 
depending on the specific warm-up scheme. 

 

3. SAMPLING ERRORS IN SPEEDUP AND 
CPI 

 
Previous research on sampled simulation of 

microprosessor generally focuses on the accuracy of CPI or 
IPC.  However, the goal of a simulation is usually to 
evaluate the benefit of some architectural enhancement, in 
which case, the absolute value of CPI may not be overly 
important.  Instead, an accurate estimate of the speedup is 
often a more desired metric.  We define the speedup R as 
the ratio of the CPI before the enhancement to CPI after the 
enhancement when the same benchmark is run.  There is 
nothing wrong with pursuing accurate CPI value because 
more accurate estimation of CPI will naturally result in 
better accuracy of speedup.  However, the accuracy for the 
two metrics show different properties as we shall see later. 

We employ the ratio estimator in sampling theory to 
calculate the speedup and to quantify its error.  For each 
sampling unit, there are two characteristics, yi and xi (i=1, 
2, ..., N).  We randomly take a sample of size n and 
measure yi and xi of each sampled unit (i=1, 2, ..., n).   Our 
goal is to estimate R, the ratio of the population mean of y 

to the population mean of x ( ��
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If the sample is large enough so that the normal 
approximation applies, the confidence interval for R can be 
obtained as 

( )ˆ(ˆ
2/1 RvzR α−− , )ˆ(ˆ

2/1 RvzR α−+ ).         (eq 3.4) 

Based on the above theory, we propose the following 
steps to calculate the speedup and quantify its error. 

1. Divide the full instruction stream into N chunks of m 
continuous instructions.  Take a systematic sample or 
random sample of size n. 

2. Measure the CPI of each sampled unit before the 
architectural enhancement.  Record all the CPIs (xi). 

3. Measure the CPI of the same sampled units after the 
enhancement.  Record all the CPIs (yi). 

4. Calculate the speedup, its standard deviation and 
confidence interval with equations 3.1 through 3.4. 

The key point is to make sure the same sampled units 
are measured in the two simulation steps.  Two problems 
can potentially prevent us from achieving this.  Firstly, the 
instruction stream may be different in each run of the same 
benchmark.  For a user mode simulator like SimpleScalar, 
this is caused by operating system calls (e.g gettimeofday) 
returning different result in each run.  For example, in two 
runs of gcc-166, the difference in the number of dynamic 
instructions was 332,372. Although this difference only 
accounted for 0.00071% of the total instructions executed, 
it would cause different units to be sampled in the two runs 
because of the small sampling unit size (1,000 – 10,000 
instructions).  To solve this problem, one must make sure 
that the dynamic instruction stream in each run is exactly 
the same.  In our experiment, we first capture the eio trace 
with SimpleScalar sim-eio utility. Then all the benchmark 
programs are run with the eio trace to guarantee the same 
instruction sequence.  Secondly, the architecture simulation 
events are aligned with clock cycles, not instructions. This 
can cause problem for simulating superscalar processors, 
which are capable of committing multiple instructions in a 
single clock cycle.  Suppose that one sample unit is from 
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instruction #100 to #199.  In the first simulation, 
instructions #98-#101 are committed in the same cycle.  In 
the second simulation with the microarchitectural 
enhancement, instructions #99-#103 are committed in one 
cycle.   Obviously, the sampling units cannot be exactly the 
same in the two runs if we count whole cycles.  There are 
two ways to solve the partial cycle problem.  In the first 
solution, if i instructions are committed in one cycle, we 
(artificially) allocate 1/i cycle to every instruction in this 
cycle.  In the above example, instruction #100 and #101 in 
the first run will be counted as 2/4=0.5 cycles. This 
approach strictly meets the ratio estimation requirement but 
requires some additional book keeping.  The other simpler 
approach, which we opted for in our experiment, uses 
larger sample unit size.  We start and stop measuring at the 
boundary of clock cycles, but because of the large sample 
unit (10,000 instructions) the misalignment of the sample 
units in the two runs is negligible. 

We conducted an experiment to show the validity of 
applying  ratio estimation theory to sampled simulation.  
Eight benchmarks from SPECcpu 2000 are simulated in a 
modified SimpleScalar 3.0 sim-outorder simulator, which 
performs the above systematic sampling procedures.  Each 
sampling unit is 10,000 instructions and 3,000 units in 
every benchmark are simulated.  Caches and branch 
predictors are continuously warmed up functionally as in 
[10, 17].  4,000 instructions before every sampling unit are 
simulated with cycle accurate simulator to warm up other 
microarchitecture structure.  An 8-way and a 16-way out-
of-order superscalar processor are simulated to calculate 
the speedup.  The microarchitecture configurations are 
given in Table 2 [17]. 

The results are shown in Table 3.  Table 3a shows the 
CPI result for the 8-way configuration.  “Sampling result” 
column shows the CPI computed by sampling whereas 
“True value” is the CPI from the full simulation by sim-
outorder.  The actual relative error is shown in the last 
column.  The estimated coefficient of variation (COV) is 
shown in column 3.  Table 3b shows the result for 16-way 
configuration in the same format.   The results for speedup 
of 16-way machine vs 8-way machine are shown in Table 
3c.  The second column is the speedup calculated from 
Equation 3.1 whereas the “True value” is calculated as the 
ratio of the true CPIs of the two configurations.  COV for 
speedup is shown in column 3. 

First, we examine the coefficient of variation, which 
indicates the error solely due to sampling.  In all 
benchmarks the speedup invariably shows smaller COV 
than the CPI.  The resultant benefit is that to achieve a 
specific limit of relative error, even fewer sampling units 
need to be measured than in CPI.  Suppose that we want the 
relative error to be within 2% at the confidence level of 
95%.   The required sample size can be calculated from 
Equation 2.2 for CPI and Equation 3.4 for speedup. The 
result is shown in Figure 4.  Though required sample size 
varies greatly from benchmark to benchmark, the sample 

size for the speedup is only a small fraction of that for CPI.  
It will take fewer simulated instructions to achieve the 
same accuracy for speedup than for absolute CPI value. 

Table 2.  Processor configurations 

Parameter 8-way (baseline) 16-way 
Machine Width 8 16 
RUU/LSQ size 128/64 256/128 

Memory System 
32KB 2-way L1 I & 
D, 2 ports, 
Unified 1M 4-way L2 

64KB 2-way L1 I & D, 
4 ports, 
Unified 2M 8-way L2 

ITLB / DTLB 

4-way 128 entries 
4-way 256 entries 
200 cycle miss 
penalty 

4-way 128 entries 
4-way 256 entries 
200 cycle miss penalty 

L1/L2/Memory 
Latency 

1/12/100 cycles 1/16/100 cycles 

Functional Units 

4 I-ALU 
2 I-MUL/DIV 
2 FP-ALU 
1 FP-MUL/DIV 

16 I-ALU 
8 I-MUL/DIV 
16 FP-ALU 
4 FP-MUL/DIV 

Branch Predictor 

Combined 2K tables 
7 cycle misprediction 
penalty 
1 prediction/cycle 

Combined 8K tables 
10 cycle misprediction 
penalty 
2 predictions/cycle 

 

 

 

 

 

 

 

 

Figure 4.  Sample size required to achieve 2% 
relative error at 95% confidence level 

This conclusion may seem counter-intuitive at first.  The 
speedup is calculated as the ratio of two CPIs as in 
Equation 3.1.  Then how could the speedup be more 
accurate than each CPI?  The answer lies in the fact that 
different parts of the benchmark program usually benefit 
similarly from the microarchitectural enhancement even 
though the absolute value of CPI may vary widely during 
the execution. COV is an indicator of the degree of 
variation in the population. The value of speedup is more 
uniform among the sampling units than the value of CPI, 
resulting in a smaller COV, and a tighter confidence 
interval for the speedup. 

Next, we look at the actual error, which consists of the 
sampling error discussed above and the error due to 
inaccuracy in the measurement of the CPI of each sample 
unit.  The latter is mostly caused by inadequate warm-up of 
large microarchitecture structure.  The most accurate warm-
up scheme [10, 17] in the literature is used in our 
experiment.  The caches and the branch predictor are 
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warmed up throughout the full simulation, but they are only 
functionally simulated for most of the time.  The 
speculative behavior is not modeled except for during the 
units that are simulated in detail.  In some benchmarks, this 
measurement error becomes dominant.  For example, given 
a sample size of 3000, the COV for vpr-route is so small 
that at 99% confidence level, the relative error of the CPI 
on the 16-way machine should be within 1.91%.  However, 
the actual error is about 4%, so it is almost certain that the 
final error mainly consists of the measurement error.  The 
error due solely to sampling decreases quickly when we 
increase the sample size. If we can accurately measure just 
30 million instructions (0.02%-0.06% of total dynamic 
instructions), the error in speedup will be below 1.5% for 
all benchmarks except gcc.  However, in reality the 
measurement error due to imperfect warm-up quickly 
becomes a limiting factor on the accuracy.  Therefore, 
future research on new simulation methodology needs to 
focus on more efficient and accurate warm-up techniques. 

Table 3a.  CPI for 8-way configuration 

Benchmark Sampling 
result 

COV 
(%) 

True 
value 

Relative 
error (%) 

art  1.0451 0.7112 1.0442 0.0869 
equake  1.3438 0.7937 1.3448 0.0707 
lucas  2.4237 1.2774 2.4931 2.7825 
bzip2-source  0.6003 1.3915 0.5959 0.7322 
gcc-166  0.5057 1.5814 0.5042 0.3037 
vpr-route  1.5603 0.2233 1.5410 1.2502 
gzip-random  0.4243 0.8194 0.4224 0.4608 
vortex-1  1.0451 0.7112 1.0442 0.0869 

Table 3b.  CPI for 16-way configuration 

Benchmark Sampling 
result 

COV 
(%) 

True 
value 

Relative 
error (%) 

art  0.5866 0.6810 0.5923 0.9586 
equake  0.9309 0.6480 0.9318 0.1006 
lucas  2.2679 1.4612 2.3525 3.5973 
bzip2-source  0.4866 1.6046 0.4791 1.5581 
gcc-166  0.2816 2.4210 0.2714 3.7609 
vpr-route  1.3519 0.2430 1.3301 1.6409 
gzip-random  0.3500 0.8923 0.3458 1.2279 
vortex-1  0.3235 0.7408 0.3103 4.2485 

Table 3c.  Speedup (16-way vs 8-way) 

Benchmark Sampling 
result 

COV 
(%) 

True 
value 

Relative 
error (%) 

art  1.7816 0.2770 1.7630 1.0556 
equake  1.4437 0.3558 1.4432 0.0300 
lucas  1.0687 0.2745 1.0598 0.8452 
bzip2-source  1.2337 0.4950 1.2438 0.8132 
gcc-166  1.7959 1.1212 1.8578 3.3318 
vpr-route  1.1541 0.1300 1.1586 0.3844 
gzip-random  1.2123 0.1488 1.2215 0.7577 
vortex-1  1.5689 0.2807 1.5962 1.7093 

4. Comparing reduced data sets 
 
SPECcpu 2000 comes with three data sets: reference, 

train, and test.  Only the reference data set is supposed to be 

used to evaluate computer performance.  However, the 
reference data set takes such a long time to run that it is 
impractical to use it to evaluate multiple microarchitectural 
alternatives by simulation.  Besides sampling, reduced data 
set is another approach to reduce simulation time.  The 
same program is executed and cycle accurate simulation is 
done throughout the whole execution.  But the input data 
set to the benchmark program is reduced resulting in much 
shorter simulation time.  Reduced data sets for SPECint 
2000 include train, test and MinneSPEC. Test is not 
intended to perform any simulations, while MinneSPEC is 
a small data set specifically designed for microprocessor 
simulation.  Previous research evaluate the reduced data 
sets by comparing one program by one program the 
absolute value of CPI and other microarchitecture metrics 
between the reduced data set and the reference data set [5, 
7]. 

In this section, we take a different approach to evaluate 
the reduced data sets.  Firstly, we recognize that the goal of 
a simulation experiment is to assess some architectural 
improvement.  Therefore, the accuracy in speedup is often 
more important than the accuracy in absolute CPI value.  
We will compare both CPI value and speedup.  Secondly, 
we do not base our conclusion on one to one comparison of 
benchmarks or on the “average” error.  Instead, we view 
SPECint 2000 as a sample from all the CPU intensive 
integer programs in the world (the population).  We assume 
that SPECint 2000 is a simple random sample.  (Unless 
there is some randomness in the sampling, no statistical 
theory can be developed for the approach and no statistical 
conclusion can be made about the population). By 
comparing the reduced data sets, we are trying to find out if 
they represent the same “population” as the reference data 
set does.  As long as the populations are the same, the 
reduced data sets are equivalent to the reference data set 
when used to evaluate the performance improvement of 
computer designs. 

If the populations are the same, then the median of the 
population should be the same.  This question is best 
answered by hypothesis testing.  Because we do not know 
the distribution of the CPI, we choose Wilcoxon signed 
rank test, which does not assume normal distribution, to 
test the equality of the population median.  The test 
requires that the sampling units be independent of each 
other.  However, in some data set, one benchmark program 
is run with several input sets.  For example, the bzip2 
program has 3 input sets in the reference data set.  Previous 
research [5] has shown that the performance metrics for 
these input sets to the same benchmark program may be 
quite similar; thus their CPI and speedup are not 
independent of each other.  If a program takes multiple 
input sets within one data set, we calculate the arithmetic 
mean as the value for this program.  As we cannot afford to 
fully simulate the reference data set in sim-outorder, we use 
the sampling method in the previous section to gather the 
speedup and CPI for reference data set.  The sampling 



method will incur some small errors, but they are negligible 
compared to most errors in the reduced data set.  The 
relative errors in CPI and speedup of the different reduced 
data sets are plotted in Figure 51.  Some benchmarks show 
very large errors when reduced input sets are used.  Again 
we see the repeated pattern: the error in speedup is often 
much smaller than the error in CPI.  It is also interesting to 
note that the average error of test, train and MinneSPEC 
data set are close, with MinneSPEC showing an edge in the 
speedup estimation.  Then we use Wilcoxon signed rank 
test to test if the median of the two populations are the 
same.  Each reduced data set (test, train and MinneSPEC) is 
tested against the reference dataset in terms of CPI on 8-
way machine, CPI on 16-way machine, and the speedup.  
The Wilcoxon test result is summarized in Table 4.  We 
choose a significance level of 0.05.  Except for the test data 
set on the 8-way machine, which barely passes the test at 
this significance level, none of the reduced data sets has the 
same median CPI as the reference data set.  However, all 
the p-values for the speedup are above the significance 
level.  Therefore, using the reduced data set to evaluate the 
speedup in our experiment is not statistically different from 
using the reference data set. 

By comparing different data set, we are not only 
interested in the population mean, but also we want to see 
whether the populations follow the same distribution.  If the 
population distribution is the same, then the distribution of 
the sample mean will also be the same.  To visually show 
the distribution of sample mean, we employ bootstrapping 
[6], a modern computer-simulated, nonparametric 
technique to statistical inference.  In our experiment, we 
draw 10,000 resamples.  The histograms of the CPI and 
speedup are shown in Figure 6.  The x-axis is deliberately 
drawn on the same scale for easy comparison.  It is obvious 
that the distribution of the sample mean CPI for reference 
data set is far from normal.  Furthermore, different data set 
shows vastly different distributions.  The multiple peaks in 
sample mean CPI distribution of reference data set are the 
result of several programs (notably, mcf) showing 
distinctively higher CPI than others. This property is not 
retained in test and MinneSPEC, where the CPIs of all the 
benchmarks are closer to each other resulting in narrower 
and single-peak distribution. However, for the more 
important metrics, the speedup, the distributions of 
different data set are more similar to each other.  In 
addition, the distribution of the sample mean of the speedup 
also looks more like normal distribution.  A quantile-
quantile plot of the reference speedup against normal 
distribution (Figure 7) shows that the distribution of the 
speedup of reference data set is fairly close to the normal 
distribution (but with slightly shorter tails). 

                                                             
1 We were not able to run perlbmk or parser in the simulator, so we have 

results for out of 12 SPECint benchmarks.  For better statistical result, 
more benchmarks are needed. 

Table 4 Wilcoxon signed rank test of different 
reduced data sets  

Metrics Reduced data set p-value 
Test 0.06445 
Train 0.02734 

CPI on 8-way 

MinneSPEC 0.04883 
Test 0.03711 
Train 0.01953 

CPI on 16-way 
machine 

MinneSPEC 0.03711 
Test 0.999 
Train 0.375 

Speedup (16-way 
vs. 8-way) 

MinneSPEC 0.6953 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Relative errors of different reduced data 
sets  

In summary, none of the reduced data set (test, train, 
MinneSPEC) represents the reference data set in terms of 
CPI.  However, one can use any of the reduced data set to 
evaluate the speedup and draw the statistically same 
conclusion about the performance of the processor.  This 
interesting observation is currently based only on our 
experiment of two processor configurations.  Although we 
expect that the reduced data set and reference data set will 
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show more similarity in speedup than in CPI, more 
experiments are needed to test its general applicability. 

5. Confidence interval of speedup 
 

Computer designers run benchmarks to evaluate design 
alternatives, but no user runs these benchmarks in their 
everyday work.  Therefore, the real question a computer 
designer is trying to answer is: how well will the computer 
design perform for all CPU intensive workload in the world 
based on the result of the SPECcpu suite?   To answer the 
question, we view SPECint as a random sample from all 
CPU-intensive integer programs and calculate the 
confidence interval for the mean speedup.   The previous 
section has shown that the mean speedup approximately 
follows the normal distribution.  Therefore, Equation 2.2 
can be used to calculate the confidence interval.  Another 
method is to use bias corrected bootstrapping [6], which 
does not rely on the assumption of a particular underlying 
distribution. The results are shown in Table 5.  The last 
column is the limit of relative error converted from the 
confidence interval.  We can see that bias corrected 
bootstrapping often results in tighter interval. 

The confidence interval can serve as guidance for target 
accuracy when the computer architecture researcher 
designs future simulation techniques.  If the limit of relative 
error is 8%, then the error in simulating each benchmark 
programs should be much smaller than 8% (e.g 1%).  On 
the other hand, we should not shoot for unnecessary 
accuracy such as an error of 0.1%, which will be wasteful 
of simulation resources.  The current sampling simulation 
gives an error below 4% (Table 3).  It is close to meet the 
requirement but smaller errors are still desirable.  
Furthermore, most of today’s microarchitectural 
enhancement in literature does not offer a speedup as large 
as the difference between a 16-way processor and an 8-way 
processor.  Therefore, the confidence interval for the whole 
benchmark suite will be tighter and even smaller errors in 
each benchmark program simulation are required. 

 

6. Related work 
 
Wunderlich et. al. [17] proposed using multiple small 

sampling units to get accurate simulation CPI.  They 
employed sampling theory to calculate the confidence 
interval and to select the sample size at a given accuracy 
requirement.  SimPoint is another recently proposed 
sampling simulation scheme.  It uses cluster analysis based 
on basic block vector to select representative simulation 
chunks.  The latest version allows the user to quantify the 
error in CPI with a confidence interval on the original 
architecture for which the full simulation was done. Our 
work focuses on measuring speedup instead of CPI, which 
is more important to computer designers.  More 
sophisticated sampling theory is employed to calculate the 

confidence interval of the speedup.  We show that at the 
same accuracy level, speedup requires smaller sample size 
than CPI, so it is more efficient to estimate the confidence 
interval directly with our method.  Wunderlich et. al. also 
showed that smaller sampling unit is more effective than 
large sampling unit that had been commonly used in 
previous research.  The evolution of SimPoint also exhibits 
the trend of smaller sampling units.  The precursor of 
SimPoint [15] simulated a large chunk (300 million) of 
instructions.  The original SimPoint [16] used several 100 
million instruction chunks.  In Variance Simpoint [14], the 
latest version of SimPoint, on average about 100 chunks of 
1 million instructions are simulated.  We confirmed 
Wunderlich et. al’s conclusion but we have further 
explored the underlying reason by studying the 
autocorrelation of the instruction stream.  We show that this 
phenomenon is caused by high autocorrelation inside the 
instruction stream, which is an expected result of temporal 
locality. 

 
Table 5.  The confidence interval of speedup on a 

16-way processor vs 8-way processor 

Confidence 
level 

Estimation 
method 

Confidence 
interval 

Equivalent 
relative 

error limit 
Normal 

distribution 
(1.214, 1.441) 8.5% 

95% 
Bias 

Corrected 
(1.232, 1.449) 8.2% 

Normal 
distribution 

(1.179, 1.476) 11% 

99% 
Bias 

Corrected 
(1.208, 1.485) 10% 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Quantile-quantile plot of the speedup of 
reference data set against normal distribution.  
The line, which passes through the 1st and 3rd 

quartiles, is for comparison. 
 

Hsu et. al. [8] compared the IPC and path profile of test, 
train, and reference data set.  They studied how the 



difference will affect the effectiveness of profile based 
optimization.  They found that the test data set is far from 
the reference data set.  Although the train data set is better 
than the test data set, it still differs from the reference data 
set significantly.  Haskins et. al. [7] studied the difference 
in IPC, L1 data cache miss rate, and branch misprediction 
rate between train, MinneSPEC and reference data set.  
They concluded that the reduced input simulation can 
produce significant errors in important program 
characteristics.  Eeckhout et. al [5] did similar comparison 
with principal component analysis and clustering analysis.  
They concluded that for some benchmark programs the 
reduced data set is representative of the reference data set 
whereas for others the behavior of reduced data set is quite 
different. Recognizing the importance of speedup, we 
compare the reduced data sets with reference data set in 
terms of both CPI and speedup.  We employed statistical 
theory to compare the population each data set represents 

instead of comparing program by program.  While our 
study confirms that the CPI is quite different between the 
reference and reduced data sets, we show that using 
reduced data set to evaluate speedup will not result in 
statistically different conclusion. 

Viewing the small set of benchmark programs as only a 
sample, and calculating the confidence interval to quantify 
the result of performance have been demonstrated in 
textbooks for computer architects [9, 13].  However, this 
technique has seldom been used when researchers report 
their results based on a benchmark suite.  We show the 
confidence interval using bootstrapping method without the 
normal distribution assumption.  The confidence interval 
can guide researchers to set target accuracy when designing 
new simulation techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Bootstrapped distribution of sample mean of CPI  

 

 

 

 

 

 

 

 

 

 



7. Conclusion 
 
In this paper, we employ statistical theory to study 

several topics in microprocessor simulation. We compute 
the autocorrelation within the instruction stream to prove 
that a small sampling unit (1,000 – 10,000 instructions) is 
more effective than large sampling unit at improving 
simulation accuracy, as long as the warming up overhead 
has not become the limiting factor.  We show 
mathematically that the exhibited autocorrelation behavior 
favors small sampling units. 

We have applied ratio estimator and extended previous 
sampling simulation method to calculate the speedup with 
quantifiable accuracy.   Our result shows that to achieve a 
specified accuracy, it is not necessary to measure CPI at the 
same accuracy.  Speedup can be accurately measured with 
fewer instructions sampled than CPI. 

We have compared different reduced data set (test, train, 
and MinneSPEC).  We view the SPECint suite as a random 
sample from the population of all CPU intensive integer 
benchmarks it represents. We tested the population mean of 
each reduced data set against the reference data set and 
plotted the distribution of sample mean by bootstrapping.  
We found that none of the reduced data sets can represent 
the reference data set in terms of CPI because they show 
different median values and widely different distributions.  
However, in our experiment, reduced data sets are not 
statistically different from the reference data set when used 
to evaluate the speedup.  In addition, the sample mean of 
the speedup approximately follows the normal distribution.     
Confidence interval is useful for the users to evaluate the 
performance of computers, and for researchers to set target 
accuracy when designing new simulation methods. 

Ideally, only a tiny portion of the full dynamic 
instruction stream is needed to get accurate speedup 
estimation, and the sampling error can be easily reduced by 
increasing the sample size.  In reality, however, the warm-
up overhead is dominant in simulation time.  The error in 
the measurement of each sampling unit due to imperfect 
warm-up quickly becomes the limiting factor on accuracy.  
Future research in sampling simulation methodology needs 
to focus on more efficient and accurate warm-up 
mechanisms. 
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