
Experiments in Automatic Benchmark Synthesis

Robert H. Bell, Jr. Lizy K. John
The University of Texas at Austin

Abstract

In the nineteen-eighties, synthetic workloads such as Whetstone and Dhrystone fell out of

favor as benchmarks of computer performance because they became unrepresentative of the

performance of continuously-evolving applications. Hand-coded synthetic benchmarks take work

to develop and maintain, are language feature specific, and are subject to compiler optimizations

that eliminate code meant to make a significant contribution to performance.

We present an automatic benchmark synthesis method that addresses these problems. The

method automatically creates C-code that, when compiled and executed, is representative of the

features of a target application but executes in a fraction of the original runtime. Our benchmark

synthesis technique takes an actual executable, performs control flow analysis and workload

characterization, and generates a representative synthetic benchmark. The representative

sequences of instructions are instantiated as in-line assembly-language instructions in the

synthetic benchmark.

We synthesize versions of the SPEC95 and STREAM benchmarks with both perfect

branching and a simple branching model. We find that benchmarks can be synthesized to an

average IPC within 3.9% of the average IPC of the target benchmarks with remarkably similar

instruction mix, cache access characteristics, RUU occupancies, and dependency characteristics.

In addition, the change in IPC for a synthetic benchmark due to a design change is found to be

proportional to the change in IPC for the original application. The synthesized versions of the

SPEC95 benchmarks execute in 0.1% of the original execution time.

1. Introduction
Hand-coded synthetic benchmarks such as Whetstone [CURN76] and Dhrystone [WEIK84]

were developed to represent the new language features of ever-evolving workloads running on

increasingly complex microarchitectures. The benchmarks were portable to multiple platforms,

but they were quickly outmoded as the falling price of system memory enabled the proliferation

of applications using lots of memory, unusual and inefficient coding styles, new language

paradigms, standard code libraries and object-oriented features. A major problem was that

compilers would cheat and eliminate code specifically included to test machine performance but

not contributing to a functional result [WEIK95]. Other problems included a lack of standards

related to compiler parameters, input dataset use, and performance metrics [HENN96].

 2

Microbenchmarks were developed from representative computational units [WONG88]

[SREE74] [WILL76] but the techniques are ad-hoc in nature and still subject to compiler

elimination, and like synthetic kernel programs [MCMA86], were not representative of any

complete application. The consolidation of multiple applications into a small representative

synthetic benchmark was hampered by rapid obsolescence and maintenance difficulties.

As a result, researchers have relied heavily on the runtimes of real applications to assess

computer performance [HENN96]. Recently there has been an explosion of applications in use as

benchmarks. A partial list is given in [LILJ00]. A designer would like to use all benchmarks to

evaluate his design, but execution times even on the fastest event-driven simulators can amount to

days to evaluate a single design choice for one application [SHER02] [WUND03] [EECK03].

Reduced input datasets have been studied [KLEI00], but results to date have been mixed

[TODI01].

Recent work has shown that running benchmarks in suites like SPEC cover the same

redundant workload characteristics [SAAV92] [DUJM98] [EECK03] [VAND04]. Redundancy

internal to programs, in the form of phases [SHER02] and sufficient trace samples [WUND02],

has also been identified. Nevertheless, even the fastest trace sampling techniques require hours to

evaluate a single design choice [WUND03]. Trace-driven simulation reduces runtime, but traces

can be prohibitively large and are not easily modified for design spaces exploration. So statistical

simulation has been developed [CARL98] [OSKI00] [NUSS01] [EECK03] [EECK04]

[BELL04].

Statistical simulation systems use workload characteristics from execution-driven

simulations to generate statistics that are then used to create a dynamic input trace for a flexible

execution engine. Studies have focused on achieving absolute correlation with respect to

instructions-per-cycle (IPC) versus execution-driven simulators, and absolute errors below 5%

have been achieved with much reduced runtimes [EECK04]. Good relative accuracy has also

been achieved; i.e. the difference in machine performance found for a microarchitectural change

in statistical simulation is proportional to the difference found using execution-driven simulation

[EECK03].

The traces used in statistical simulation are not easily portable to various platforms, they

cannot be executed on hardware, emulation systems, functional models, or execution-driven

simulators, and they cannot accurately model specific locking mechanisms and data sharing in the

increasingly sophisticated designs of multiprocessor systems. Chip complexity [TEND02] is

driving a trend toward more accurate execution-driven and functional model simulation, but the

benchmark explosion and long simulation times make comprehensive design studies prohibitive.

 3

What is needed is a method to synthesize benchmarks with the flexibility of source-code, the

representativeness of actual applications, and the efficiency of statistical simulation. An

automatic method would eliminate the problem of benchmark obsolescence. The design

community recognizes the need for synthetic benchmarks and an automatic way to generate them

[SKAD03], but no such method has been forthcoming.

The major contribution of this paper is just such an automatic method. The method generates

synthetic benchmarks from actual application executables. The core of the technique is to use

graph analysis and workload characterization to capture the essential structure of the program.

The benchmarks are generated in C-code with low-level instructions instantiated as asm

statements. We show that synthetic benchmarks created using this method have an absolute IPC

within 3.9% on average of the IPCs of the SPEC95 and STREAM benchmarks. Also, the IPC

change for a synthetic benchmark due to a design change is proportional to the IPC change for the

original application. The runtimes are generally three orders of magnitude shorter than those of

the original application.

The rest of this paper is organized as follows. Section 2 presents the conceptual framework

for our benchmark synthesis method. Section 3 describes the synthesis approach in detail. Section

4 presents experimental results using the system. Section 5 presents related work, Section 6

presents the drawbacks of the method and future work, and the last sections present conclusions

and references.

2. Representative Synthetic Benchmarks
We make a distinction between benchmark representativeness at a high functional level and

representativeness at a low execution level. The most popular synthetic benchmarks were written

in a high-level language to be representative of both the static high-level language features and

dynamic low-level instruction frequencies of an application [WEIK95]. The fact that they were

written at the same functional level as the original application had advantages: the code could be

ported to multiple platforms, rewritten in different languages, and it would respond to compiler

optimizations. None of these attributes, however, is relevant to the main purpose of the synthetic

benchmark, which is to represent the machine response of the original workload. As soon as

representative code is ported to another machine or language, or compiled with new compiler

technology, even if the static high-level language characteristics are maintained, the code is most

likely no longer representative of the low-level execution characteristics of the application

undergoing the same transformation. A better outcome would be obtained by first transforming

the application, executing it, then writing a new synthetic benchmark to represent the new

workload characteristics of the application.

 4

We propose that low-level, execution-based representativeness is a more useful focus for the

development of synthetic benchmarks. The execution characteristics used in the generation of the

synthetic benchmark can be built from a low-level workload characterization of the compiled and

executing application. We make the following key observation: the statistical flow graphs in

[OSKI00][EECK04][BELL04] are reduced representations of the control flow instructions of the

application – a compact representative program. We combine the reduced representative trace

from a detailed statistical simulation analysis with novel synthesis algorithms to automatically

generate a simple but flexible benchmark in the C language, using asm statements to support low-

level operations. Some flexibility is lost because the code targets a particular machine language,

but the benchmark can easily be transformed for use on machines with similar ISAs.

We then benefit from the speed and flexibility of statistically generated traces while solving

the shortcomings associated with the presence of traces, including portability to execution-driven

simulators and hardware and simulation of multiprocessor locking mechanisms. At synthesis-

time, parameters can be used to modify workload characteristics to study predicted trends of

future workloads. At runtime, parameters can be used to switch between sections of code,

consolidating multiple benchmark phases into a single benchmark.

The synthesis method can also be thought of as a code abstraction capability. Gone are

questions of high-level programming style, language, or library routines that plagued the

representativeness of the early synthetic benchmarks. Code abstraction also motivates increased

code sharing between industry and academia, effectively hiding the functional meaning of

proprietary code.

3. Automatic Benchmark Synthesis Approach
With reference to Figure 1, a code generator was built into a modified version of HLS

[BELL04] that augments the data structures and information that already exist. After workload

characterization analyzes the workload and produces a sequence of basic blocks that gives good

simulation correlation as in [BELL04], the code generator takes the representative instructions

and outputs a single module of C-code that contains calls to assembly-language instructions in the

pisa language [BURG97]. Each instruction, including branches, maps one-to-one to a single

assembly language call in the C-code.

The default synthesis mode is for perfect branch prediction. In that case, the basic blocks are

synthesized into a single loop with both taken and not-taken targets of any branch configured to

be the first instruction in the next sequential basic block.

 5

We also synthesize with a simple branching model. In this scheme, we calculate the

branches that will have taken-targets based on the global branch predictability, BR, of the original

application. An integer instruction that is not used as a memory access counter or a loop counter

is converted into an invert instruction operating on a particular register every time it is

encountered. If the register is set, the branch jumps past the following basic block in the default

loop. The invert mechanism causes a branch to have a predictability of 50% for most branch

predictors, so the target BR must be equal to (F*N + (1-F)*N*(0.5))/N, where (1-F) is the fraction

of branches in the synthetic benchmark that are configured to use the invert mechanism and N is

the total number of synthesized branches. Solving for (1–F), we find the fraction of branches that

must be configured to be (2*BR – 1). We use a uniform random variable over this fraction to

decide which branches are configured.

Table 1: L1 and L2 Hit Rates versus Stride
L1 Hit Rate L2 Hit Rate Stride

0.0000 0.000 16
0.0000 0.0625 15
0.0000 0.1250 14
0.0000 0.1875 13
0.0000 0.2500 12
0.0000 0.3125 11
0.0000 0.3750 10
0.0000 0.4375 9
0.0000 0.5000 8
0.1250 0.5000 7
0.2500 0.5000 6
0.3750 0.5000 5
0.5000 0.5000 4
0.6250 0.5000 3
0.7500 0.5000 2
0.8750 0.5000 1
1.0000 N/A 0

Figure 1: Benchmark Synthesis and Simulation Overview

Application
Workload

Characterization
using

SimpleScalar

Graph
Analysis

Synthetic
Benchmark

SimpleScalar
Execution

Comparison

Register
Assignment

Code
Generation

Available
Machine
Registers

Machine
Instruction

Format

 6

 For both perfect branch prediction and the branching model, we use the configured I-cache

size to implement the largest number of basic blocks such that the Icache miss rate for sequential

code access is equivalent to the miss rate in the original workload. Synthesizing the Icache miss

rate, IMR, depends on the cache configuration and the instruction size. An example IMR

calculation is given in Section 4. The basic blocks and number of instructions synthesized for

each benchmark are shown in Table 3.

The memory accesses for data are modeled using the 16 simple stream access classes shown

in Table 1. The stride for a memory access is determined first by matching the L1 hit rate, after

which the L2 hit rate for the stream is predetermined. The table was generated based on an L1

line size of 32 bytes, and an L2 line size of 64 bytes, and the stride is shown in 4 byte increments.

 After the workload has been characterized, there are three major phases to the synthesis

approach: graph analysis, register assignment and code generation. In the graph analysis phase,

all instruction input dependencies are assigned. The starting dependence is exactly the dependent

instruction chosen for input during statistical simulation. The issue then becomes operand

compatibility: if the dependency is not compatible with the input type of the dependent

instruction, then another instruction must be chosen. The algorithm is to move forward and

backward from the starting dependency through the list of instructions in sequence order until the

dependency is compatible. The average number of moves per instruction input is shown in Table

3 in column dependency moves. If more than a certain number of instructions are checked and a

dependency cannot be made compatible, the program ends with an error. The exception is a store

or branch that is operating on external data that was not generated in the program. An additional

variable of the correct data type is created for this case.

 Table 2 shows the compatibility of instructions in the pisa assembly language. The

dependent-inputs column gives the pisa instruction inputs that are being tested for compatibility.

For loads and stores, the memory access register must be an integer type. When found, it is

labeled as a memory access counter for special processing during the code generation phase.

Table 2: Dependence Compatibility Chart

Dependent Instruction Inputs Dependence Compatiblity Comment

Integer 0/1 Integer, Load-Integer

Float 0/1 Float, Load-Float

Load-Integer/Float 0 Integer dep0 is addr resolution input

Store-Integer 0 Integer, Load-Integer dep0 must be integer

Store-Float 0 Float, Load-Float dep0 must be float

Store-Integer/Float 1 Integer dep1 is addr resolution input

Branch-Integer 0/1 Integer, Load-Integer

Branch-Float 0/1 Float, Load-Float

 7

 When all instructions have compatible dependencies, a search is made for an additional

integer instruction that is labeled as the loop counter and assigned a unique output register. The

branch in the last basic block in the program checks the loop counter to determine when the

program is complete. The number of executed loops, loop iterations in Table 3, is chosen to be

large enough to assure IPC convergence. In general, this means that the number of loops must be

larger than the longest memory access stream pattern of any memory operation. In practice, the

number of loops does not have to be much larger than one hundred to characterize simple stream

access patterns. When the branching model is enabled, an additional integer instruction is chosen

to invert the branching register on each loop iteration and another register is reserved for it.

All register usages in the program are assigned exactly during the register assignment phase.

The compiler requires that registers 1 to 5 and 28 to 31 of the 32 available registers be reserved,

and register 0 is zero, so the rest of the 22 registers are split between memory access stream

counters or code use. Memory access streams are pooled according to their stream access

characteristics and a register is reserved for each class (stream pools in Table 3). For the

benchmarks under study, the number of registers available for code use averages about 10 (code

registers in Table 3). The minimum is 4, since there are only 16 possible stream classes and two

registers are reserved for the loop counter and the branching register. Synthesis has the capability

of reducing the number of stream pools and thus increasing the number of available registers for

code use by combining the pools for the least frequently used streams, but in practice this

procedure does not improve quality for the synthetic benchmarks in this study. High quality is

defined as a high correspondence between the instructions in the compiled benchmark and the

original synthetic C-code instructions. With too few or too many registers available for code use,

the compiler may insert stack operations into the binary. The machine characteristics may not

suffer from a few stack operations, but for this study we chose to synthesize code without them.

In the code generation phase, the C-code main header is generated. Sequencing through all

of the instructions, special variable declarations are generated to link registers to memory access

variables, the loop variable, the branching variable, and pointers to the correct memory type for

the memory access instructions. Then malloc calls for the memory access stream data are

generated with size based on the number of iterations per program loop. Then we generate

initializations for each memory access register to the head of the memory access stream data. The

register assigned to a stream access will be incremented in the code after each access according to

the stride appropriate for the stream class.

The loop counter register is initialized to the number of times the instructions will be

executed. The instructions are then generated as calls to pisa assembly language instructions.

 8

Each call is given an associated unique label. Memory access counters are generated using addiu,

adding the stride to its variable value. The loop counter is generated as an addi with -1 as the

decrement value. Long latency floating point operations are generated using mul.s and short

latency operations are generated using add.s. Loads and stores use lw, sw, l.s or s.s depending on

the type. Branches use the beq type, and can have either integer or float operands. The basic

blocks are analyzed and code is generated to print out unconnected output registers depending on

a switch value. The switch is never set, so no code is eliminated during compilation. Code to free

the malloced memory is generated, and finally a C-code footer is generated.

Figure 2 shows the synthetic version of the saxpy benchmark [MCCA95] used in this work.

For comparison, Figures 3 and 4 show the original source code and disassembled loop after gcc

compilation with optimization –O. Saxpy is relatively simple, but the same automatic process

int main(int argc, char* argv[]) { /* saxpy */
 int doprint;
 float* data_8; float* data_9;
 register int vout_8 asm ("8"); /* integer */
 float vout_22; float vout_24; float vout_26; float vout_28; float vout_30;
 register int vout_7 asm ("7"); /* branch invert cntr */
 register int vout_6 asm ("6"); /* loop cntr */
 register int vout_9 asm ("9"); /* integer */

 data_8 = (float*)malloc(553333 * sizeof(float));
 data_9 = (float*)malloc(553333 * sizeof(float));

 vout_8 = (int)&(data_8[0]);
 __asm__ __volatile__ ("add $8,%0,$0" : "=r" (vout_8) : "r" (vout_8));
 vout_9 = (int)&(data_9[0]);
 __asm__ __volatile__ ("add $9,%0,$0" : "=r" (vout_9) : "r" (vout_9));

 if(!strcmp(argv[0], "print")) doprint = 1; else doprint = 0;

 vout_7 = 0; __asm__ __volatile__ ("add $7,%0,$0" : "=r" (vout_7) : "r" (vout_7));
 vout_6 = 33334; __asm__ __volatile__ ("add $6,%0,$0" : "=r" (vout_6) : "r" (vout_6));

 instr0: /* Index 0 */ __asm__ __volatile__ ("addiu %0,%0,4" : "=r" (vout_8) : "r" (vout_8));
 instr1: __asm__ __volatile__ ("l.s $f2,0(%1)" : "=f" (vout_24), "=r" (vout_8) : "f" (vout_24), "r" (vout_8));
 instr2: __asm__ __volatile__ ("mul.s $f4,$f0,$f2"
 : "=f" (vout_26), "=f" (vout_22), "=f" (vout_24)
 : "f" (vout_26), "f" (vout_22), "f" (vout_24));
 instr3: __asm__ __volatile__ ("l.s $f6,0(%1)" : "=f" (vout_28), "=r" (vout_9) : "f" (vout_28), "r" (vout_9));
 instr4: __asm__ __volatile__ ("add.s $f8,$f4,$f6"
 : "=f" (vout_30), "=f" (vout_26), "=f" (vout_28)
 : "f" (vout_30), "f" (vout_26), "f" (vout_28));
 instr5: __asm__ __volatile__ ("nor $7,$7,$0" : "=r" (vout_7) : "r" (vout_7));
 instr6: __asm__ __volatile__ ("addi $6,$6,-1" : "=r" (vout_6) : "r" (vout_6));
 instr7: __asm__ __volatile__ ("s.s $f8,0(%1)" : "=f" (vout_30), "=r" (vout_9) : "f" (vout_30), "r" (vout_9));
 instr8: __asm__ __volatile__ ("addiu %0,%0,4" : "=r" (vout_9) : "r" (vout_9));
 instr9: if (vout_6 > 0) goto instr0;

 if(doprint) {
 printf("vout_%d %d\n", 9, vout_9); printf("vout_%d %d\n", 6, vout_6);
 }
 free(data_8); free(data_9);
}
 Figure 2: SAXPY Synthetic Benchmark

 9

analyzes and synthesizes code for the complex SPEC95 benchmarks.

Table 3 gives the synthesis information described in this section for each of the benchmarks.

The ratio is the runtime of the original benchmark for one billion instructions divided by the

runtime of the synthetic benchmark. The loop iterations has not been tuned for the benchmarks,

i.e. loop iterations is approximately 400K/(number of instructions), so the ratio can probably be

increased without affecting representativeness by decreasing loop iterations. This is definitely the

case for the STREAM benchmarks. Future work will seek to tune this variable.

Table 3: Synthetic Benchmark Properties

Name Number of
Basic Blocks

Number of
Instructions

Stream
Pools

Code
Registers

Loop
Iterations

Dependency
Moves

Actual
Runtime (s)

Synthetic
Runtime (s) Ratio

gcc 677 2481 6 8 111 0.661 5777.09 1.38 4186.30
perl 438 2274 5 6 93 1.83 5754.99 1.07 5378.50

m88ksim 422 2174 6 6 143 0.299 5076.3 1.41 3600.21
ijpeg 368 1924 5 6 175 0.208 2644.69 1.47 1799.11

vortex 468 2512 6 6 76 0.911 6382.39 1.1 5802.17
compress 421 2130 4 8 501 0.42 4746.88 4.35 1091.24

go 477 2360 9 6 162 0.217 5256.64 1.76 2986.73
li 391 1650 11 8 147 0.935 902.78 1.38 654.19

tomcatv 650 2549 5 8 159 1.644 5785.63 1.99 2907.35
su2cor 633 2537 4 6 130 0.83 5537.71 1.61 3439.57

hydro2d 322 2201 9 6 192 0.49 12823.84 2.27 5649.27
mgrid 21 2031 8 10 131 1.025 5679.83 1.34 4238.68
applu 104 2151 9 8 215 0.218 6719.31 1.91 3517.96
turb3d 107 2088 9 8 234 0.217 4950.21 1.91 2591.73
apsi 97 2152 13 6 164 0.826 6611.47 1.93 3425.63

wave5 376 2184 8 6 223 0.91 5403.51 2.42 2232.86
fpppp 52 2862 6 6 65 1.203 7176.41 1.17 6133.68
swim 53 1213 9 6 276 0.321 6037.54 1.49 4052.04
saxpy 1 10 2 12 33334 0 124.41 2.09 59.53
sdot 1 9 2 12 50001 0 546.07 2.55 214.15
sfill 1 5 1 12 100001 0 21.22 1.72 12.34

scopy 1 7 2 12 50001 0 43.98 1.89 23.27
ssum2 1 6 1 12 100001 0 22.2 2.99 7.42
sscale 1 8 2 12 50001 0 91.05 2.24 40.65
striad 1 11 3 12 33334 0 65.59 2.12 30.94
ssum1 1 10 3 12 33334 0 36.61 1.85 19.79

start: addu $2, $3, $6
l.s $f2, 0($2)
mul.s $f2, $f4, $f2
l.s $f0, 0($3)
add.s $f2, $f2, $f0
addiu $4, $4, 1
slt $2, $5, $4
s.s $f2, 0($3)
addiu $3, $3, 4
beq $2, $0, start

Figure 4 : Disassembled SAXPY Loop

 int main() {
 #define LIM 1000000
 int k; float q, z[LIM], z[LIM];
 q = 3.0;
 for (k = 0; k < LIM; k++)
 z[k] = z[k] + q*x[k];
 printf(“%f”, q);
 }

Figure 3: SAXPY Source Code

 10

4. Benchmark Synthesis Results
In this section we present the benchmark synthesis experimental results, first with perfect

branch prediction and later using a synthetic branching function.

4.1. Experimental Setup and Benchmarks
The modified HLS system used in this study was presented in [BELL04]. We extend their

system with the benchmark synthesis capability described here. SimpleScalar Release 2.0

[BURG97] was downloaded as well as the SPEC95 pisa binaries found at [SOHI03]. The

applications were executed with the default SimpleScalar configuration in sim-outorder on the

first reference dataset for up to one billion instructions. In addition, single-precision versions of

the STREAM and STREAM2 benchmarks [MCCA95] with a one million-loop limit were

compiled using the SimpleScalar pisa cross-compiler and executed.

Code generation was enable and C-code was produced using the synthesis method of Section

3. The synthetic benchmarks were cross-compiled to the pisa language [BURG97] using gcc with

optimization level -O and executed to completion in SimpleScalar.

4.2. Synthesis Results using Perfect Branch Prediction
The following figures show results for both the original applications, actual, and the

synthetic benchmarks, synthetic. Figure 5 shows the IPC for the benchmarks. The average error

for the synthetic benchmarks is 3.9%, with a maximum error of 13.2% for compress. We discuss

the reasons for the errors in the context of the figures below.

Figure 6 compares the average instruction percentages over all benchmarks for each class of

instructions. The average error is 4.2%. Figure 7 shows that the basic block size varies per

benchmark with an average error of 8.8%. The errors are caused by variations in the fractions of

specific basic block types in the synthetic benchmark with respect to the original workload. This

is a direct consequence of selecting a limited number of basic blocks during synthesis.

0
0.5

1
1.5

2
2.5

3

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 5: Actual vs. Synthetic Benchmark IPC
Perfect Branch Prediction

IP
C

actual synthetic

0

10

20

30

40

50

In
te

ge
r

Fl
oa

t

Lo
ad

S
to

re

B
ra

nc
h

Figure 6: Actual vs. Synthetic Benchmark
Average Instruction Percentage

Perfect Branch Prediction

P
er

ce
nt

ag
e

actual synthetic

 11

The number of synthetic basic blocks is determined by the I-cache configuration. In our

experiments, the I-cache is a 16KB direct mapped cache with 32B lines, giving 512 lines. In the

pisa language, each instruction is 8 bytes, so the I-cache can contain 2048 instructions without

missing. Since there are four instructions per cache block, there will be two misses per loop for

every four instructions over 2048 in the workload. To generate a specific benchmark miss rate,

IMR, the synthetic benchmark must therefore be composed of 2048 instructions plus an additional

(2*2048*IMR)/(1-2*IMR) instructions. Using this calculation with IMR set to the miss rate of the

original benchmark, the instruction counts for the synthetic benchmarks are within 2% on average

of the expected instruction counts. The miss rates are shown in Figure 8.

The errors are due to the process of choosing a small number of basic blocks with specific

block sizes to synthesize the workload. For miss rates close to zero, a number of instructions less

than 2048 is used, up to the number needed to give an appropriate instruction mix for the

benchmark. For the STREAM loops, only one basic block is needed to meet the IMR and

instruction mix requirements.

One consequence of synthesizing a small number of basic blocks to meet an IMR is shown in

Figure 9. The synthetic benchmarks are generated from runs with perfect branch prediction, but

0
10
20
30
40
50
60
70
80

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 7: Actual vs. Synthetic Basic Block Size
Perfect Branch Prediction

M
ea

n
B

lo
ck

 S
iz

e
actual synthetic

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 8: Actual vs. Synthetic IL1 Miss Rates
Perfect Branch Prediction

M
is

s
R

at
e

actual synthetic

0
0.05
0.1

0.15
0.2

0.25

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 10: Actual vs. Synthetic
DL1 Miss Rates

Perfect Branch Prediction

M
is

s
R

at
e

actual synthetic

0.9
0.92
0.94
0.96
0.98

1
1.02

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 9: Actual vs. Synthetic
Branch Predictability

Perfect Branch Prediction

B
ra

nc
h

P
re

di
ct

ab
ili

ty

actual synthetic

 12

they are executed with a real branch predictor in order to assess the capability of synthesizing a

benchmark with perfect predictability when running on hardware. The branch predictability of the

synthetic benchmarks can vary depending on the interaction of their few branches with a real

branch predictor. The lower predictabilities for mgrid through swim (except for wave5) are due to

the relatively larger basic block sizes for those benchmarks as shown in Figure 7.

The L1 data cache miss rates are shown in Figure 10. In spite of using a very simple cache

access model with only 16 different possible access patterns, the correlation with the original

workloads is quite similar. For miss rates greater than 0.05, the trends using the synthetic

benchmarks clearly correspond with those of the original workloads. Again, there is some

variation for smaller miss rates, but the execution impact is also small.

In Figure 11, the unified L2 miss rates are shown. The large errors due to the simple memory

access model are often mitigated by small L1 miss rates. A good example is li. Exceptions

include compress; but compress has the highest fraction of integer instructions among the

benchmarks, and its high L2 miss rate is offset by the relatively long integer dependency

distances in the synthetic benchmarks.

0

2

4

6

8

I0 I1 F0 F1 L0 S0 S1 B0 B1

Figure 12: Average Dependency Distance
for Instruction Inputs

Perfect Branch Prediction

D
is

ta
nc

e

actual synthetic

0
0.1
0.2
0.3
0.4
0.5
0.6

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 11: Actual vs. Synthetic
UL2 Miss Rates

Perfect Branch Prediction

M
is

s
R

at
e

actual synthetic

0
0.5

1
1.5

2
2.5

3

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 14: Actual vs. Synthetic IPC
Dispatch Window 32

Perfect Branch Prediction

IP
C

actual synthetic

0
1
2
3
4
5
6

Integer Float Load Store Branch

Figure 13: Average RUU Occupancy
 per Cycle by Type

Perfect Branch Prediction

A
ve

ra
ge

 O
cc

up
an

cy

actual synthetic

 13

Figure 12 shows the effect. The increased dependency distances are due to the conversion of

many integer instructions to memory access stride counters. A stride counter overrides the

original function of the integer instruction and causes dependency relationships to change.

Another source of error is the movement of dependencies during the search for compatible

dependencies in the synthesis process. The average movement is less than one position, as shown

in the dependency moves column of Table 3.

In spite of the dependency distance errors, Figure 13 shows that the average register update

unit (RUU) occupancies are similar to those of the original benchmarks with an average error of

6.3%.

4.3. Using Synthetic Benchmarks to Assess Design Changes
We now study design changes using the same synthetic benchmarks. Figures 14 and 15 show

the absolute IPCs using an RUU size of 32 and 64 with average errors of 3.2% and 3.1%,

respectively. Figure 16 graphs the IPC prediction errors for each benchmark. Most errors are

below 5%.

Figures 17 and 18 show the absolute change in IPC, delta IPC, as the same benchmarks are

executed first with the default configuration (RUU size of 16) and then with the RUU sizes

changed to 32 and 64 respectively. The average relative errors [EECK04] are 2.1% and 2.7%,

respectively. The graphs show that, when an application change is large with respect to the

changes in the other applications, the synthetic benchmark change is also large relative to the

change in the other synthetic benchmarks. These IPC changes would be large enough to trigger

additional studies using a detailed cycle-accurate simulator. Chip designers are looking for cases

in a large design space in which a design change may improve or worsen a design. In the case of

the RUU studies, the results would trigger further cycle-accurate studies of ijpeg, compress, and

0
0.5

1
1.5

2
2.5

3

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 15: Actual vs. Synthetic IPC
for Dispatch Window 64

Perfect Branch Prediction

IP
C

actual synthetic

0

5

10

15

20

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 16: Actual vs. Synthetic IPC Prediction
Error for Dispatch Window 16, 32 and 64

Perfect Branch Prediction

IP
C

 P
re

di
ct

io
n

E
rr

or
 (%

) RUU 16 RUU 32 RUU 64

 14

several of the SPECfp applications. Alternatively, the designers might be curious why the change

did not help a benchmark like gcc, resulting in an additional study.

Figure 19 shows the delta IPC error as the L1 D-cache latency is decreased from 8 to 1. The

average absolute IPC error is 8.9% and the delta IPC relative error is 6.9%. Figure 20 shows the

delta IPC as the issue width increases from 1 to 4. The average absolute error is 2.6%, and the

relative error is 4.1%. Similar studies for a commit width change from 4 to 8 give an absolute

error of 3.7% and a relative error of 1.1%. Doubling the L1 D-cache configuration gives an

absolute error of 4.3% and a relative error of 2.1%. Doubling the L1 I-cache configuration gives

an absolute error of 9.8% and a relative error of 8.2%. Again, all of these runs use the same

benchmark synthesized from the default SimpleScalar configuration, not a resynthesized

benchmark.

4.4. Synthesis Results using the Simple Branch Predictor Model
Additional studies were carried out using the simple branch predictor model described in

Section 3. Figure 21 shows the absolute IPC error for the default SimpleScalar configuration. The

average error is 2.4%. Because only the branch predictability changes, the I-cache and D-cache

miss rates are the same as before. The average instruction mix error increases from 4.2% to 4.8%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 17: Actual vs. Synthetic Delta IPC
Dispatch Window Increased from 16 to 32

Perfect Branch Prediction

D
el

ta
 IP

C

actual synthetic

0

0.5

1

1.5

2

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 20: Base vs. Synthetic Delta IPC
as Issue Width Increases from 1 to 4

Perfect Branch Prediction

D
el

ta
 IP

C

actual synthetic

0
0.2
0.4
0.6
0.8

1
1.2

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

e go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 19: Actual vs. Synthetic Delta IPC
as DL1 Latency Decreases from 8 to 1

Perfect Branch Prediction

D
el

ta
 IP

C

actual synthetic

0
0.2
0.4
0.6
0.8

1
1.2

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 18: Actual vs. Synthetic Delta IPC
Dispatch Window Increased from 16 to 64

Perfect Branch Prediction

D
el

ta
 IP

C

actual synthetic

 15

due to branching around basic blocks in the branch predictability model. For the same reason, the

average RUU occupancy error increases from 6.3% to 9.2%. The graph of dynamic dependency

distances per input changed only slightly.

Figure 22 shows the branch predictability results using the simple model. The model does

well, with an average absolute error of 3.9%.

 As design elements are changed, the IPC prediction errors are low, similar to the perfect

branch predictability case, and in some cases lower. Tables 4 and 5 summarize the results for both

synthetic benchmark models and include the delta IPC relative errors versus the base case (default

SimpleScalar configuration). The errors are similar but not identical to those found with perfect

branch prediction. As an example, Figure 23 shows the delta IPC as the RUU size is changed

from 16 to 32.

Table 4: Average Synthetic IPC Errors and Delta IPC Errors vs. Actual Applications

Commit
Width 8

Commit
Width 1

L1 D-cache
256:64:8

L1 I-cache
1024:64:2 Model

IPC Delta IPC IPC Delta IPC IPC Delta IPC IPC Delta IPC
Perfect Branch

Prediction 3.7% 1.1% 2.8% 4.2% 4.3% 2.1% 9.8% 8.2%

Branch Prediction
Function 2.6% 1.4% 3.2% 3.9% 3.2% 2.4% 8.7% 7.5%

Table 5: Average Synthetic IPC Errors and Delta IPC Errors vs. Actual Applications
RUU

16 32 64
DL1

Latency 8
Issue

Width 1 Model
IPC IPC Delta IPC IPC Delta IPC IPC Delta IPC IPC Delta IPC

Perfect Branch
Prediction 3.9% 3.2% 2.1% 3.1% 2.7% 8.9% 6.9% 2.6% 4.1%

Branch Prediction
Function 2.4% 3.1% 2.2% 3.3% 2.4% 11.1% 10.4% 2.1% 2.2%

0
0.5

1
1.5

2
2.5

3
gc

c
pe

rl
m

88
ks

im
ijp

eg
vo

rte
x

co
m

pr
es go

li
to

m
ca

tv
su

2c
or

hy
dr

o2
d

m
gr

id
ap

pl
u

tu
rb

3d
ap

si
w

av
e5

fp
pp

p
sw

im
sa

xp
y

sd
ot

sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 21: Actual vs. Synthetic IPC
Branch Prediction Function

IP
C

actual synthetic

0
0.2
0.4
0.6
0.8

1
1.2

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 22: Actual vs. Synthetic
Overall Branch Predictability
Branch Prediction Function

M
is

s
R

at
e

base synth

 16

5. Related Work
Several ad-hoc techniques to synthesize workloads have been developed [WONG88]

[SREE74] [WILL76]. In [WONG88], a linear combination of microbenchmarks is found that,

when combined in a process called replication and executed, duplicates the LRU hit function of

the target benchmark. There is no clear way to incorporate other execution characteristics like

instruction mix into the technique.

 In [HSIE98], assembly programs are generated that have the same power consumption

signature as applications. However, all workload characteristics are modeled as

microarchitecture-dependent characteristics, so the work is not useful for studies involving design

trade-offs [EECK03]. In particular, the instruction sequences and dependency relationships of the

synthetic programs are not representative of the original workload, unlike in the present work.

The cache access and branch predictor models in [HSIE98] are useful as high-level ideas or

starting points, but the specific implementations in that work allow and rely on modifications to

the workload features shown to be required for representative performance.

The primary focus in program synthesis is on mathematical theorem-provers or frameworks

for synthesizing high-performance programs from formal specifications [MANN80][BAUM02].

Workload characteristics of existing programs are not considered.

The well-organized microarchitectures of ASICs and DSPs lend themselves to automatic

code scheduling from simple code specifications [CHEN94]. The goal is to schedule instructions

to maximize performance with complete knowledge of the machine resources and pipeline

structure, and no attempt is made to generate programs based on the workload characteristics of

other programs.

0
0.1
0.2
0.3
0.4
0.5
0.6

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot
sf

ill
sc

op
y

ss
um

2
ss

ca
le

st
ria

d
ss

um
1

Figure 23: Actual vs. Synthetic Delta IPC
as Dispatch Window Increased from 16 to 32

Branch Prediction Function

D
el

ta
 IP

C

actual synthetic

 17

6. Drawbacks of the Approach and Future Work
The main drawback of the approach is that the microarchitecture independent workload

characteristics, and thus the synthetic workload, are dependent on the particular compiler

technology used. As discussed earlier, this is a natural result of requiring the execution

characteristics of the synthetic benchmark to be representative of those of the original application.

However, if the synthetic benchmark targets an ISA similar to the ISA used for the compilation,

the asm statements can be easily substituted for the target machine. As instruction sets continue

the current trend towards RISC-like primitive operations [HENN96], retargeting for another ISA

becomes less of an issue.

Another drawback is that only features specifically modeled among the workload

characteristics appear in the synthetic benchmark. This will be addressed over time as researchers

uncover additional features needed to correlate with execution-driven simulation or hardware,

although the present state-of-the-art is quite good [EECK04][BELL04]. In the future, synthesis

parameters could be used to incorporate or not incorporate features as needed.

One consequence of the present method is that dataset information is assimilated into the

final instruction sequence of the synthetic benchmark. For applications with multiple datasets, a

family of synthetic benchmarks must be created. We argue that this is a requirement for

representativeness, and the automatic process makes doing so possible, but future research could

seek to find the workload features related to changes in the dataset and model those changes as

runtime parameters to the synthetic benchmark.

Our cache access and branch predictor models are simplistic. Models with less impact on

dependency distances need to be developed. More research is needed to make use of advanced

models [SORE02][THIE89], but those that have been developed to date may not model all access

streams well. The benchmark synthesis approach presented in this paper provides a framework

for the investigation of advanced cache access and branching models each independently of the

other.

Our benchmarks use a small number of instructions in order to satisfy the IMR. The small

number causes small but noticeable variations in workload characteristics, including basic block

size, with corresponding changes in instruction mix, dependency relationships, and RUU

occupancies. One solution is to instantiate additional basic blocks using replication and repetition

[WONG89] [DJUM04]. Multiple sections of representative synthetic code could be synthesized

and concatenated together into a single benchmark. Each section would satisfy the IMR, but the

number of basic blocks would increase substantially to more closely duplicate the instruction mix.

Similarly, multiple sections of synthetic code, and possibly initialization code, could be

 18

concatenated together to recreate program phases [SHER02]. Similarly, phases from multiple

benchmarks could be consolidated together.

7. Conclusions
We propose a method for synthesizing representative benchmarks from the workload

characteristics of an executing application. The target application’s executable is analyzed in

detail and representative sequences of instructions are instantiated as in-line assembly-language

instructions inside synthetic C-code.

Unlike prior benchmark synthesis efforts, we focus on the low-level workload characteristics

of the compiled and executing binary to create workloads that are truly representative of the

effects of the application in the machine. Multiple synthetic benchmarks are necessary if the

application is executed on multiple machines or significantly different ISAs, but we argue that

representativeness cannot be ensured otherwise. The automatic process minimizes the cost of

creating new benchmarks and enables consolidation of multiple representative phases into a

single small benchmark. Other benefits include portability, future workload generation, and code

abstraction.

We use the method to synthesize representative benchmarks for the SPEC95 and STREAM

benchmarks with both perfect branching and a simple branching model. We find that benchmarks

can be synthesized to an average IPC within 3.9% of the average IPC of the target applications

with remarkably similar instruction mix, cache access characteristics, RUU occupancies, and

dependency characteristics, while runtimes are often three orders of magnitude shorter. In

addition, the change in IPC for a synthetic benchmark due to a design change is found to be

proportional to the IPC change for the original application and relative errors are small. The

resulting synthetic benchmarks are flexible and can be parameterized at synthesis-time and run-

time.

References
[BAUM02] G. Baumgartner, et al., “A High-Level Approach to Synthesis of High Performance
Codes for Quantum Chemistry,” Proceedings of the ACM/IEEE Conference on Supercomputing,
Nov. 2002.

[BELL04] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De Bosschere, “Deconstructing and
Improving Statistical Simulation in HLS,” Workshop on Debunking, Duplicating, and
Deconstructing, June20, 2004.

[BURG97] D. C. Burger and T. M. Austin, "The SimpleScalar Toolset," Computer Architecture
News, 1997.

[CARL98] R. Carl and J. E. Smith, "Modeling Superscalar Processors Via Statistical Simulation,"
Workshop on Performance Analysis and Its Impact on Design, June 1998.

[CHEN94] W. K. Cheng and Y. L. Lin, “Code Generation for a DSP Processor, “ Proceedings of

 19

the Seventh International Symposium on High Level Synthesis,” May 1994, pp. 82-87.

[CURN76] H. J. Curnow and B.A. Wichman, "A Synthetic Benchmark," Computer Journal, vol.
19, No. 1, February 1976, pp, 43-49.

[DUJM98] J. J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of SPEC Benchmarks,”
ACM Sigmetrics Performance Evaluation Review, Vol. 26, Issue 3, Dec. 1998, pp. 2-9.

[EECK03] L. Eeckhout, Accurate Statistical Workload Modeling, Ph.D. Thesis, Universiteit
Gent, 2003.

[EECK04] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and K. De Bosschere, “Improved
Statistical Simulation for Power/Performance Modeling,” International Symposium on Computer
Architecture, June 2004, to appear.

[HENN96] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 2nd Edition, Morgan Kauffman, 1996.

[HSIE98] C. T. Hsieh and M. Pedram, "Microprocessor power estimation using profile-driven
program synthesis," IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, Vol. 17, No. 11, November 1998, pp. 1080-1089.

[KLEI02] A.J. KleinOsowski and D.J. Lilja, “MinneSPEC: A new SPEC benchmark workload
for simulation-based computer architecture research,” Computer Architecture Letters, June 2002.

[LILJ00] D. J. Lilja, Measuring Computer Performance, Cambridge University Press, 2000.

[MANN80] Z. Manna and R. Waldinger, “A Deductive Approach to Program Synthesis,” ACM
Transactions on Programming Languages and Systems (TOPLAS), Volume 2 Issue 1, January
1980.

[MCMA86] F.H. McMahon, “Livermore FORTRAN Kernels: A Computer Test of the Numerical
Performance Range,” Lawrence Livermore National Laboratories, Livermore, CA, 1986.

[MCCA95] J. D. McCalpin, “Memory bandwidth and machine balance in current high
performance computers,” IEEE Technical Committee on Computer Architecture newsletter,
December 1995.

[NUSS01] S. Nussbaum and J. E. Smith, "Modelling Superscalar Processors Via Statistical
Simulation," Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, September 2001, pp. 15-24.

[OSKI00] M. Oskin, F. T. Chong and M. Farrens, "HLS: Combining Statistical and Symbolic
Simulation to Guide Microprocessor Design," Proceedings of the 27th Annual International
Symposium on Computer Architecture, June 2000, pp. 71-82.

[OSKI03] http://www.cs.washington.edu/homes/oskin/tools.html

[SHER02] T. Sherwood, E. Perleman, H. Hmaerly and B. Calder, “Automatically characterizing
large scale program behavior,” Proceedings of the International Conference on Architected
Support for Programming Languages and Operating Systems, October 2002.

[SKAD03] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja and V. S. Pai,
“Challenges in Computer Architecture Evaluation,” IEEE Computer, August 2003, pp. 30-36.

[SOHI03] http://www.cs.wisc.edu/~mscalar/simplescalar.html

[SORE02] E. S. Sorenson and J. K. Flanagan, “Evaluating Synthetic Trace Models Using
Locality Surfaces,” In Proceedings of the IEEE International Workshop on Workload
Characterization,” Nov. 2002, pp. 23-33.

 20

[SREE74] K. Sreenivasan and A.J. Kleinman, "On the Construction of a Representative Synthetic
Workload," Communications of the ACM, March 1974, pp.127-133.

[SPEC] http://www.spec.org

[TEND02] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B. Sinharoy, "POWER4
System Microarchitecture," IBM Journal of Research and Development, January 2002, pp. 5-25.

[THIE89] D. Thiebaut, “On the Fractal Dimension of Computer Programs and its Application to
the Prediction of the Cache Miss Ratio,” IEEE Transaction on Computers, Vol. 38, No. 7, July
1989, pp. 1012-1026.

[TODI01] R. Todi, “SPEClite: Using Representative Samples to Reduce SPEC CPU2000
Workload,” IEEE Workshop on Workload Characterization, December 2001, pp. 15-23.

[VAND04] H. Vandierendonck and K. De Bosschere, “Many Benchmarks Stress the Same
Bottlenecks,” IEEE CAECW 2004.

[WEIK84] R. P. Weiker, "Dhrystone: A Synthetic Systems Programming Benchmark,"
Communications of the ACM, October 1984, pp. 1013-1030.

[WEIK95] R. P. Weicker, “An Overview of Common Benchmarks,” IEEE Computer, December
1995, pp. 65-75.

[WILL76] J. N. Williams, ”The Construction and Use of a General Purpose Synthetic Program
for an Interactive Benchmark for on Demand Paged Systems,” Communications of the ACM,
1976, pp.459-465.

[WONG88] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis Using the LRU Cache Hit
Function," IEEE Transactions on Computers, Vol. 37, No. 6, June 1998, pp. 637-645.

[WUND02] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe, “SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical Sampling,” The International Symposium
on Computer Architecture, June 2002.

