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Abstract 

In the nineteen-eighties, synthetic workloads such as Whetstone and Dhrystone fell out of 

favor as benchmarks of computer performance because they became unrepresentative of the 

performance of continuously-evolving applications. Hand-coded synthetic benchmarks take work 

to develop and maintain, are language feature specific, and are subject to compiler optimizations 

that eliminate code meant to make a significant contribution to performance. 

We present an automatic benchmark synthesis method that addresses these problems. The 

method automatically creates C-code that, when compiled and executed, is representative of the 

features of a target application but executes in a fraction of the original runtime. Our benchmark 

synthesis technique takes an actual executable, performs control flow analysis and workload 

characterization, and generates a representative synthetic benchmark. The representative 

sequences of instructions are instantiated as in-line assembly-language instructions in the 

synthetic benchmark.  

We synthesize versions of the SPEC95 and STREAM benchmarks with both perfect 

branching and a simple branching model. We find that benchmarks can be synthesized to an 

average IPC within 3.9% of the average IPC of the target benchmarks with remarkably similar 

instruction mix, cache access characteristics, RUU occupancies, and dependency characteristics. 

In addition, the change in IPC for a synthetic benchmark due to a design change is found to be 

proportional to the change in IPC for the original application. The synthesized versions of the 

SPEC95 benchmarks execute in 0.1% of the original execution time. 

1. Introduction 
Hand-coded synthetic benchmarks such as Whetstone [CURN76] and Dhrystone [WEIK84] 

were developed to represent the new language features of ever-evolving workloads running on 

increasingly complex microarchitectures. The benchmarks were portable to multiple platforms, 

but they were quickly outmoded as the falling price of system memory enabled the proliferation 

of applications using lots of memory, unusual and inefficient coding styles, new language 

paradigms, standard code libraries and object-oriented features. A major problem was that 

compilers would cheat and eliminate code specifically included to test machine performance but 

not contributing to a functional result [WEIK95]. Other problems included a lack of standards 

related to compiler parameters, input dataset use, and performance metrics [HENN96]. 
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Microbenchmarks were developed from representative computational units [WONG88] 

[SREE74] [WILL76] but the techniques are ad-hoc in nature and still subject to compiler 

elimination, and like synthetic kernel programs [MCMA86], were not representative of any 

complete application. The consolidation of multiple applications into a small representative 

synthetic benchmark was hampered by rapid obsolescence and maintenance difficulties. 

As a result, researchers have relied heavily on the runtimes of real applications to assess 

computer performance [HENN96]. Recently there has been an explosion of applications in use as 

benchmarks. A partial list is given in [LILJ00]. A designer would like to use all benchmarks to 

evaluate his design, but execution times even on the fastest event-driven simulators can amount to 

days to evaluate a single design choice for one application [SHER02] [WUND03] [EECK03]. 

Reduced input datasets have been studied [KLEI00], but results to date have been mixed 

[TODI01]. 

Recent work has shown that running benchmarks in suites like SPEC cover the same 

redundant workload characteristics [SAAV92] [DUJM98] [EECK03] [VAND04]. Redundancy 

internal to programs, in the form of phases [SHER02] and sufficient trace samples [WUND02], 

has also been identified. Nevertheless, even the fastest trace sampling techniques require hours to 

evaluate a single design choice [WUND03]. Trace-driven simulation reduces runtime, but traces 

can be prohibitively large and are not easily modified for design spaces exploration. So statistical 

simulation has been developed [CARL98] [OSKI00] [NUSS01] [EECK03] [EECK04 ] 

[BELL04].  

Statistical simulation systems use workload characteristics from execution-driven 

simulations to generate statistics that are then used to create a dynamic input trace for a flexible 

execution engine. Studies have focused on achieving absolute correlation with respect to 

instructions-per-cycle (IPC) versus execution-driven simulators, and absolute errors below 5% 

have been achieved with much reduced runtimes [EECK04]. Good relative accuracy has also 

been achieved; i.e. the difference in machine performance found for a microarchitectural change 

in statistical simulation is proportional to the difference found using execution-driven simulation 

[EECK03].  

The traces used in statistical simulation are not easily portable to various platforms, they 

cannot be executed on hardware, emulation systems, functional models, or execution-driven 

simulators, and they cannot accurately model specific locking mechanisms and data sharing in the 

increasingly sophisticated designs of multiprocessor systems. Chip complexity [TEND02] is 

driving a trend toward more accurate execution-driven and functional model simulation, but the 

benchmark explosion and long simulation times make comprehensive design studies prohibitive. 
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What is needed is a method to synthesize benchmarks with the flexibility of source-code, the 

representativeness of actual applications, and the efficiency of statistical simulation. An 

automatic method would eliminate the problem of benchmark obsolescence. The design 

community recognizes the need for synthetic benchmarks and an automatic way to generate them 

[SKAD03], but no such method has been forthcoming.  

The major contribution of this paper is just such an automatic method. The method generates 

synthetic benchmarks from actual application executables. The core of the technique is to use 

graph analysis and workload characterization to capture the essential structure of the program. 

The benchmarks are generated in C-code with low-level instructions instantiated as asm 

statements. We show that synthetic benchmarks created using this method have an absolute IPC 

within 3.9% on average of the IPCs of the SPEC95 and STREAM benchmarks. Also, the IPC 

change for a synthetic benchmark due to a design change is proportional to the IPC change for the 

original application. The runtimes are generally three orders of magnitude shorter than those of 

the original application. 

The rest of this paper is organized as follows. Section 2 presents the conceptual framework 

for our benchmark synthesis method. Section 3 describes the synthesis approach in detail. Section 

4 presents experimental results using the system. Section 5 presents related work, Section 6 

presents the drawbacks of the method and future work, and the last sections present conclusions 

and references. 

2. Representative Synthetic Benchmarks 
We make a distinction between benchmark representativeness at a high functional level and 

representativeness at a low execution level. The most popular synthetic benchmarks were written 

in a high-level language to be representative of both the static high-level language features and 

dynamic low-level instruction frequencies of an application [WEIK95]. The fact that they were 

written at the same functional level as the original application had advantages: the code could be 

ported to multiple platforms, rewritten in different languages, and it would respond to compiler 

optimizations. None of these attributes, however, is relevant to the main purpose of the synthetic 

benchmark, which is to represent the machine response of the original workload. As soon as 

representative code is ported to another machine or language, or compiled with new compiler 

technology, even if the static high-level language characteristics are maintained, the code is most 

likely no longer representative of the low-level execution characteristics of the application 

undergoing the same transformation. A better outcome would be obtained by first transforming 

the application, executing it, then writing a new synthetic benchmark to represent the new 

workload characteristics of the application.  
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We propose that low-level, execution-based representativeness is a more useful focus for the 

development of synthetic benchmarks. The execution characteristics used in the generation of the 

synthetic benchmark can be built from a low-level workload characterization of the compiled and 

executing application. We make the following key observation: the statistical flow graphs in 

[OSKI00][EECK04][BELL04] are reduced representations of the control flow instructions of the 

application – a compact representative program. We combine the reduced representative trace 

from a detailed statistical simulation analysis with novel synthesis algorithms to automatically 

generate a simple but flexible benchmark in the C language, using asm statements to support low-

level operations. Some flexibility is lost because the code targets a particular machine language, 

but the benchmark can easily be transformed for use on machines with similar ISAs.  

We then benefit from the speed and flexibility of statistically generated traces while solving 

the shortcomings associated with the presence of traces, including portability to execution-driven 

simulators and hardware and simulation of multiprocessor locking mechanisms. At synthesis-

time, parameters can be used to modify workload characteristics to study predicted trends of 

future workloads. At runtime, parameters can be used to switch between sections of code, 

consolidating multiple benchmark phases into a single benchmark.  

The synthesis method can also be thought of as a code abstraction capability. Gone are 

questions of high-level programming style, language, or library routines that plagued the 

representativeness of the early synthetic benchmarks. Code abstraction also motivates increased 

code sharing between industry and academia, effectively hiding the functional meaning of 

proprietary code. 

3. Automatic Benchmark Synthesis Approach 
With reference to Figure 1, a code generator was built into a modified version of HLS 

[BELL04] that augments the data structures and information that already exist. After workload 

characterization analyzes the workload and produces a sequence of basic blocks that gives good 

simulation correlation as in [BELL04], the code generator takes the representative instructions 

and outputs a single module of C-code that contains calls to assembly-language instructions in the 

pisa language [BURG97]. Each instruction, including branches, maps one-to-one to a single 

assembly language call in the C-code. 

The default synthesis mode is for perfect branch prediction. In that case, the basic blocks are 

synthesized into a single loop with both taken and not-taken targets of any branch configured to 

be the first instruction in the next sequential basic block.  
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We also synthesize with a simple branching model. In this scheme, we calculate the 

branches that will have taken-targets based on the global branch predictability, BR, of the original 

application. An integer instruction that is not used as a memory access counter or a loop counter 

is converted into an invert instruction operating on a particular register every time it is 

encountered. If the register is set, the branch jumps past the following basic block in the default 

loop. The invert mechanism causes a branch to have a predictability of 50% for most branch 

predictors, so the target BR must be equal to (F*N + (1-F)*N*(0.5))/N, where (1-F) is the fraction 

of branches in the synthetic benchmark that are configured to use the invert mechanism and N is 

the total number of synthesized branches. Solving for (1–F), we find the fraction of branches that 

must be configured to be (2*BR – 1). We use a uniform random variable over this fraction to 

decide which branches are configured. 

Table 1: L1 and L2 Hit Rates versus Stride 
L1 Hit Rate L2 Hit Rate Stride 

0.0000 0.000 16 
0.0000 0.0625 15 
0.0000 0.1250 14 
0.0000 0.1875 13 
0.0000 0.2500 12 
0.0000 0.3125 11 
0.0000 0.3750 10 
0.0000 0.4375 9 
0.0000 0.5000 8 
0.1250 0.5000 7 
0.2500 0.5000 6 
0.3750 0.5000 5 
0.5000 0.5000 4 
0.6250 0.5000 3 
0.7500 0.5000 2 
0.8750 0.5000 1 
1.0000 N/A 0 

Figure 1: Benchmark Synthesis and Simulation Overview
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 For both perfect branch prediction and the branching model, we use the configured I-cache 

size to implement the largest number of basic blocks such that the Icache miss rate for sequential 

code access is equivalent to the miss rate in the original workload. Synthesizing the Icache miss 

rate, IMR, depends on the cache configuration and the instruction size. An example IMR 

calculation is given in Section 4. The basic blocks and number of instructions synthesized for 

each benchmark are shown in Table 3. 

The memory accesses for data are modeled using the 16 simple stream access classes shown 

in Table 1. The stride for a memory access is determined first by matching the L1 hit rate, after 

which the L2 hit rate for the stream is predetermined. The table was generated based on an L1 

line size of 32 bytes, and an L2 line size of 64 bytes, and the stride is shown in 4 byte increments.  

 After the workload has been characterized, there are three major phases to the synthesis 

approach: graph analysis, register assignment and code generation. In the graph analysis phase, 

all instruction input dependencies are assigned. The starting dependence is exactly the dependent 

instruction chosen for input during statistical simulation. The issue then becomes operand 

compatibility: if the dependency is not compatible with the input type of the dependent 

instruction, then another instruction must be chosen. The algorithm is to move forward and 

backward from the starting dependency through the list of instructions in sequence order until the 

dependency is compatible. The average number of moves per instruction input is shown in Table 

3 in column dependency moves. If more than a certain number of instructions are checked and a 

dependency cannot be made compatible, the program ends with an error. The exception is a store 

or branch that is operating on external data that was not generated in the program. An additional 

variable of the correct data type is created for this case. 

 Table 2 shows the compatibility of instructions in the pisa assembly language. The 

dependent-inputs column gives the pisa instruction inputs that are being tested for compatibility. 

For loads and stores, the memory access register must be an integer type. When found, it is 

labeled as a memory access counter for special processing during the code generation phase. 

Table 2: Dependence Compatibility Chart 

Dependent Instruction Inputs Dependence Compatiblity Comment 

Integer 0/1 Integer, Load-Integer  

Float 0/1 Float, Load-Float  

Load-Integer/Float 0 Integer dep0 is addr resolution input 

Store-Integer 0 Integer, Load-Integer dep0 must be integer 

Store-Float 0 Float, Load-Float dep0 must be float 

Store-Integer/Float 1 Integer dep1 is addr resolution input 

Branch-Integer 0/1 Integer, Load-Integer  

Branch-Float 0/1 Float, Load-Float  
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 When all instructions have compatible dependencies, a search is made for an additional 

integer instruction that is labeled as the loop counter and assigned a unique output register. The 

branch in the last basic block in the program checks the loop counter to determine when the 

program is complete. The number of executed loops, loop iterations in Table 3, is chosen to be 

large enough to assure IPC convergence. In general, this means that the number of loops must be 

larger than the longest memory access stream pattern of any memory operation. In practice, the 

number of loops does not have to be much larger than one hundred to characterize simple stream 

access patterns. When the branching model is enabled, an additional integer instruction is chosen 

to invert the branching register on each loop iteration and another register is reserved for it. 

All register usages in the program are assigned exactly during the register assignment phase. 

The compiler requires that registers 1 to 5 and 28 to 31 of the 32 available registers be reserved, 

and register 0 is zero, so the rest of the 22 registers are split between memory access stream 

counters or code use. Memory access streams are pooled according to their stream access 

characteristics and a register is reserved for each class (stream pools in Table 3). For the 

benchmarks under study, the number of registers available for code use averages about 10 (code 

registers in Table 3). The minimum is 4, since there are only 16 possible stream classes and two 

registers are reserved for the loop counter and the branching register. Synthesis has the capability 

of reducing the number of stream pools and thus increasing the number of available registers for 

code use by combining the pools for the least frequently used streams, but in practice this 

procedure does not improve quality for the synthetic benchmarks in this study. High quality is 

defined as a high correspondence between the instructions in the compiled benchmark and the 

original synthetic C-code instructions. With too few or too many registers available for code use, 

the compiler may insert stack operations into the binary. The machine characteristics may not 

suffer from a few stack operations, but for this study we chose to synthesize code without them. 

In the code generation phase, the C-code main header is generated. Sequencing through all 

of the instructions, special variable declarations are generated to link registers to memory access 

variables, the loop variable, the branching variable, and pointers to the correct memory type for 

the memory access instructions. Then malloc calls for the memory access stream data are 

generated with size based on the number of iterations per program loop. Then we generate 

initializations for each memory access register to the head of the memory access stream data. The 

register assigned to a stream access will be incremented in the code after each access according to 

the stride appropriate for the stream class.  

The loop counter register is initialized to the number of times the instructions will be 

executed. The instructions are then generated as calls to pisa assembly language instructions. 
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Each call is given an associated unique label. Memory access counters are generated using addiu, 

adding the stride to its variable value. The loop counter is generated as an addi with -1 as the 

decrement value. Long latency floating point operations are generated using mul.s and short 

latency operations are generated using add.s. Loads and stores use lw, sw, l.s or s.s depending on 

the type. Branches use the beq type, and can have either integer or float operands. The basic 

blocks are analyzed and code is generated to print out unconnected output registers depending on 

a switch value. The switch is never set, so no code is eliminated during compilation. Code to free 

the malloced memory is generated, and finally a C-code footer is generated.  

Figure 2 shows the synthetic version of the saxpy benchmark [MCCA95] used in this work. 

For comparison, Figures 3 and 4 show the original source code and disassembled loop after gcc 

compilation with optimization –O. Saxpy is relatively simple, but the same automatic process 

int main(int argc, char* argv[]) { /* saxpy */ 
   int doprint; 
   float* data_8; float* data_9; 
   register int vout_8 asm ("8"); /* integer */ 
   float vout_22; float vout_24; float vout_26; float vout_28; float vout_30;  
   register int vout_7 asm ("7"); /* branch invert cntr */ 
   register int vout_6 asm ("6"); /* loop cntr */ 
   register int vout_9 asm ("9"); /* integer */ 
 
   data_8 = (float*)malloc(553333 * sizeof(float)); 
   data_9 = (float*)malloc(553333 * sizeof(float)); 
 
   vout_8 = (int)&(data_8[0]); 
   __asm__ __volatile__ ("add $8,%0,$0" : "=r" (vout_8) : "r" (vout_8)); 
   vout_9 = (int)&(data_9[0]); 
   __asm__ __volatile__ ("add $9,%0,$0" : "=r" (vout_9) : "r" (vout_9)); 
 
   if(!strcmp(argv[0], "print")) doprint = 1; else doprint = 0; 
 
   vout_7 = 0; __asm__ __volatile__ ("add $7,%0,$0" : "=r" (vout_7) : "r" (vout_7)); 
   vout_6 = 33334; __asm__ __volatile__ ("add $6,%0,$0" : "=r" (vout_6) : "r" (vout_6)); 
 
   instr0: /* Index 0 */ __asm__ __volatile__ ("addiu %0,%0,4" : "=r" (vout_8) : "r" (vout_8)); 
   instr1: __asm__ __volatile__ ("l.s $f2,0(%1)" : "=f" (vout_24), "=r" (vout_8) : "f" (vout_24), "r" (vout_8)); 
   instr2: __asm__ __volatile__ ("mul.s $f4,$f0,$f2" 
      : "=f" (vout_26), "=f" (vout_22), "=f" (vout_24) 
      : "f" (vout_26), "f" (vout_22), "f" (vout_24)); 
   instr3: __asm__ __volatile__ ("l.s $f6,0(%1)" : "=f" (vout_28), "=r" (vout_9) : "f" (vout_28), "r" (vout_9)); 
   instr4: __asm__ __volatile__ ("add.s $f8,$f4,$f6" 
      : "=f" (vout_30), "=f" (vout_26), "=f" (vout_28) 
      : "f" (vout_30), "f" (vout_26), "f" (vout_28)); 
   instr5: __asm__ __volatile__ ("nor $7,$7,$0" : "=r" (vout_7) : "r" (vout_7)); 
   instr6: __asm__ __volatile__ ("addi $6,$6,-1" : "=r" (vout_6) : "r" (vout_6)); 
   instr7: __asm__ __volatile__ ("s.s $f8,0(%1)" : "=f" (vout_30), "=r" (vout_9) : "f" (vout_30), "r" (vout_9)); 
   instr8: __asm__ __volatile__ ("addiu %0,%0,4" : "=r" (vout_9) : "r" (vout_9)); 
   instr9: if (vout_6 > 0) goto instr0; 
 
   if(doprint) {  
      printf("vout_%d %d\n", 9, vout_9); printf("vout_%d %d\n", 6, vout_6);  
   } 
   free(data_8); free(data_9); 
} 
                                                 Figure 2: SAXPY Synthetic Benchmark 
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analyzes and synthesizes code for the complex SPEC95 benchmarks.  

Table 3 gives the synthesis information described in this section for each of the benchmarks. 

The ratio is the runtime of the original benchmark for one billion instructions divided by the 

runtime of the synthetic benchmark. The loop iterations has not been tuned for the benchmarks, 

i.e. loop iterations is approximately 400K/(number of instructions), so the ratio can probably be 

increased without affecting representativeness by decreasing loop iterations. This is definitely the 

case for the STREAM benchmarks. Future work will seek to tune this variable. 

 

Table 3: Synthetic Benchmark Properties 

Name Number of  
Basic Blocks

Number of 
Instructions

Stream
Pools 

Code 
Registers 

Loop 
Iterations

Dependency
Moves 

Actual 
Runtime (s)

Synthetic 
Runtime (s) Ratio 

gcc 677 2481 6 8 111 0.661 5777.09 1.38 4186.30
perl 438 2274 5 6 93 1.83 5754.99 1.07 5378.50

m88ksim 422 2174 6 6 143 0.299 5076.3 1.41 3600.21
ijpeg 368 1924 5 6 175 0.208 2644.69 1.47 1799.11

vortex 468 2512 6 6 76 0.911 6382.39 1.1 5802.17
compress 421 2130 4 8 501 0.42 4746.88 4.35 1091.24

go 477 2360 9 6 162 0.217 5256.64 1.76 2986.73
li 391 1650 11 8 147 0.935 902.78 1.38 654.19 

tomcatv 650 2549 5 8 159 1.644 5785.63 1.99 2907.35
su2cor 633 2537 4 6 130 0.83 5537.71 1.61 3439.57

hydro2d 322 2201 9 6 192 0.49 12823.84 2.27 5649.27
mgrid 21 2031 8 10 131 1.025 5679.83 1.34 4238.68
applu 104 2151 9 8 215 0.218 6719.31 1.91 3517.96
turb3d 107 2088 9 8 234 0.217 4950.21 1.91 2591.73
apsi 97 2152 13 6 164 0.826 6611.47 1.93 3425.63

wave5 376 2184 8 6 223 0.91 5403.51 2.42 2232.86
fpppp 52 2862 6 6 65 1.203 7176.41 1.17 6133.68
swim 53 1213 9 6 276 0.321 6037.54 1.49 4052.04
saxpy 1 10 2 12 33334 0 124.41 2.09 59.53 
sdot 1 9 2 12 50001 0 546.07 2.55 214.15 
sfill 1 5 1 12 100001 0 21.22 1.72 12.34 

scopy 1 7 2 12 50001 0 43.98 1.89 23.27 
ssum2 1 6 1 12 100001 0 22.2 2.99 7.42 
sscale 1 8 2 12 50001 0 91.05 2.24 40.65 
striad 1 11 3 12 33334 0 65.59 2.12 30.94 
ssum1 1 10 3 12 33334 0 36.61 1.85 19.79 

start:       addu $2, $3, $6 
l.s $f2, 0($2) 
mul.s $f2, $f4, $f2 
l.s $f0, 0($3) 
add.s $f2, $f2, $f0 
addiu $4, $4, 1 
slt $2, $5, $4 
s.s $f2, 0($3) 
addiu $3, $3, 4 
beq $2, $0, start 
 

Figure 4 : Disassembled SAXPY Loop 

   int main() { 
   #define LIM 1000000 
   int k; float q, z[LIM], z[LIM]; 
      q = 3.0; 
      for (k = 0; k < LIM; k++) 
         z[k] = z[k] + q*x[k]; 
      printf(“%f”, q); 
   } 
 
Figure 3: SAXPY Source Code 
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4. Benchmark Synthesis Results 
In this section we present the benchmark synthesis experimental results, first with perfect 

branch prediction and later using a synthetic branching function. 

4.1. Experimental Setup and Benchmarks 
The modified HLS system used in this study was presented in [BELL04]. We extend their 

system with the benchmark synthesis capability described here. SimpleScalar Release 2.0 

[BURG97] was downloaded as well as the SPEC95 pisa binaries found at [SOHI03]. The 

applications were executed with the default SimpleScalar configuration in sim-outorder on the 

first reference dataset for up to one billion instructions. In addition, single-precision versions of 

the STREAM and STREAM2 benchmarks [MCCA95] with a one million-loop limit were 

compiled using the SimpleScalar pisa cross-compiler and executed.  

Code generation was enable and C-code was produced using the synthesis method of Section 

3. The synthetic benchmarks were cross-compiled to the pisa language [BURG97] using gcc with 

optimization level -O and executed to completion in SimpleScalar.  

4.2. Synthesis Results using Perfect Branch Prediction 
The following figures show results for both the original applications, actual, and the 

synthetic benchmarks, synthetic. Figure 5 shows the IPC for the benchmarks. The average error 

for the synthetic benchmarks is 3.9%, with a maximum error of 13.2% for compress. We discuss 

the reasons for the errors in the context of the figures below. 

Figure 6 compares the average instruction percentages over all benchmarks for each class of 

instructions. The average error is 4.2%. Figure 7 shows that the basic block size varies per 

benchmark with an average error of 8.8%. The errors are caused by variations in the fractions of 

specific basic block types in the synthetic benchmark with respect to the original workload. This 

is a direct consequence of selecting a limited number of basic blocks during synthesis.  
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The number of synthetic basic blocks is determined by the I-cache configuration. In our 

experiments, the I-cache is a 16KB direct mapped cache with 32B lines, giving 512 lines. In the 

pisa language, each instruction is 8 bytes, so the I-cache can contain 2048 instructions without 

missing. Since there are four instructions per cache block, there will be two misses per loop for 

every four instructions over 2048 in the workload. To generate a specific benchmark miss rate, 

IMR, the synthetic benchmark must therefore be composed of 2048 instructions plus an additional 

(2*2048*IMR)/(1-2*IMR) instructions. Using this calculation with IMR set to the miss rate of the 

original benchmark, the instruction counts for the synthetic benchmarks are within 2% on average 

of the expected instruction counts. The miss rates are shown in Figure 8. 

The errors are due to the process of choosing a small number of basic blocks with specific 

block sizes to synthesize the workload. For miss rates close to zero, a number of instructions less 

than 2048 is used, up to the number needed to give an appropriate instruction mix for the 

benchmark. For the STREAM loops, only one basic block is needed to meet the IMR and 

instruction mix requirements. 

One consequence of synthesizing a small number of basic blocks to meet an IMR is shown in 

Figure 9. The synthetic benchmarks are generated from runs with perfect branch prediction, but 
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Figure 8: Actual vs. Synthetic IL1 Miss Rates
Perfect Branch Prediction 
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Figure 10: Actual vs. Synthetic 
DL1 Miss Rates

Perfect Branch Prediction 
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Figure 9: Actual vs. Synthetic 
Branch Predictability
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they are executed with a real branch predictor in order to assess the capability of synthesizing a 

benchmark with perfect predictability when running on hardware. The branch predictability of the 

synthetic benchmarks can vary depending on the interaction of their few branches with a real 

branch predictor. The lower predictabilities for mgrid through swim (except for wave5) are due to 

the relatively larger basic block sizes for those benchmarks as shown in Figure 7.  

The L1 data cache miss rates are shown in Figure 10. In spite of using a very simple cache 

access model with only 16 different possible access patterns, the correlation with the original 

workloads is quite similar. For miss rates greater than 0.05, the trends using the synthetic 

benchmarks clearly correspond with those of the original workloads. Again, there is some 

variation for smaller miss rates, but the execution impact is also small. 

In Figure 11, the unified L2 miss rates are shown. The large errors due to the simple memory 

access model are often mitigated by small L1 miss rates. A good example is li. Exceptions 

include compress; but compress has the highest fraction of integer instructions among the 

benchmarks, and its high L2 miss rate is offset by the relatively long integer dependency 

distances in the synthetic benchmarks.  
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Figure 11: Actual vs. Synthetic 
UL2 Miss Rates

Perfect Branch Prediction 
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Figure 14: Actual vs. Synthetic IPC
Dispatch Window 32
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Figure 12 shows the effect. The increased dependency distances are due to the conversion of 

many integer instructions to memory access stride counters. A stride counter overrides the 

original function of the integer instruction and causes dependency relationships to change. 

Another source of error is the movement of dependencies during the search for compatible 

dependencies in the synthesis process. The average movement is less than one position, as shown 

in the dependency moves column of Table 3.  

In spite of the dependency distance errors, Figure 13 shows that the average register update 

unit (RUU) occupancies are similar to those of the original benchmarks with an average error of 

6.3%. 

4.3. Using Synthetic Benchmarks to Assess Design Changes 
We now study design changes using the same synthetic benchmarks. Figures 14 and 15 show 

the absolute IPCs using an RUU size of 32 and 64 with average errors of 3.2% and 3.1%, 

respectively. Figure 16 graphs the IPC prediction errors for each benchmark. Most errors are 

below 5%. 

Figures 17 and 18 show the absolute change in IPC, delta IPC, as the same benchmarks are 

executed first with the default configuration (RUU size of 16) and then with the RUU sizes 

changed to 32 and 64 respectively. The average relative errors [EECK04] are 2.1% and 2.7%, 

respectively. The graphs show that, when an application change is large with respect to the 

changes in the other applications, the synthetic benchmark change is also large relative to the 

change in the other synthetic benchmarks. These IPC changes would be large enough to trigger 

additional studies using a detailed cycle-accurate simulator. Chip designers are looking for cases 

in a large design space in which a design change may improve or worsen a design. In the case of 

the RUU studies, the results would trigger further cycle-accurate studies of ijpeg, compress, and 
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Figure 15: Actual vs. Synthetic IPC
for Dispatch Window 64
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several of the SPECfp applications. Alternatively, the designers might be curious why the change 

did not help a benchmark like gcc, resulting in an additional study.  

Figure 19 shows the delta IPC error as the L1 D-cache latency is decreased from 8 to 1. The 

average absolute IPC error is 8.9% and the delta IPC relative error is 6.9%. Figure 20 shows the 

delta IPC as the issue width increases from 1 to 4. The average absolute error is 2.6%, and the 

relative error is 4.1%. Similar studies for a commit width change from 4 to 8 give an absolute 

error of 3.7% and a relative error of 1.1%. Doubling the L1 D-cache configuration gives an 

absolute error of 4.3% and a relative error of 2.1%. Doubling the L1 I-cache configuration gives 

an absolute error of 9.8% and a relative error of 8.2%. Again, all of these runs use the same 

benchmark synthesized from the default SimpleScalar configuration, not a resynthesized 

benchmark. 

4.4. Synthesis Results using the Simple Branch Predictor Model 
Additional studies were carried out using the simple branch predictor model described in 

Section 3. Figure 21 shows the absolute IPC error for the default SimpleScalar configuration. The 

average error is 2.4%. Because only the branch predictability changes, the I-cache and D-cache 

miss rates are the same as before. The average instruction mix error increases from 4.2% to 4.8% 
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Figure 17: Actual vs. Synthetic Delta IPC
Dispatch Window Increased from 16 to 32
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Figure 20: Base vs. Synthetic Delta IPC
as  Issue Width Increases from 1 to 4

Perfect Branch Prediction
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Figure 19: Actual vs. Synthetic Delta IPC
as DL1 Latency Decreases from 8 to 1
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Figure 18: Actual vs. Synthetic Delta IPC
Dispatch Window Increased from 16 to 64
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due to branching around basic blocks in the branch predictability model. For the same reason, the 

average RUU occupancy error increases from 6.3% to 9.2%. The graph of dynamic dependency 

distances per input changed only slightly.  

Figure 22 shows the branch predictability results using the simple model. The model does 

well, with an average absolute error of 3.9%.  

 As design elements are changed, the IPC prediction errors are low, similar to the perfect 

branch predictability case, and in some cases lower. Tables 4 and 5 summarize the results for both 

synthetic benchmark models and include the delta IPC relative errors versus the base case (default 

SimpleScalar configuration). The errors are similar but not identical to those found with perfect 

branch prediction. As an example, Figure 23 shows the delta IPC as the RUU size is changed 

from 16 to 32. 

 

 

Table 4: Average Synthetic IPC Errors and Delta IPC Errors vs. Actual Applications 

Commit 
Width 8 

Commit 
Width 1 

L1 D-cache 
256:64:8 

L1 I-cache 
1024:64:2 Model 

IPC Delta IPC IPC Delta IPC IPC Delta IPC IPC Delta IPC 
Perfect Branch 

Prediction 3.7% 1.1% 2.8% 4.2% 4.3% 2.1% 9.8% 8.2% 

Branch Prediction 
Function 2.6% 1.4% 3.2% 3.9% 3.2% 2.4% 8.7% 7.5% 

Table 5: Average Synthetic IPC Errors and Delta IPC Errors vs. Actual Applications 
RUU  

16 32 64 
DL1  

Latency 8 
Issue  

Width 1 Model 
IPC IPC Delta IPC IPC Delta IPC IPC Delta IPC IPC   Delta IPC 

Perfect Branch 
Prediction 3.9% 3.2% 2.1% 3.1% 2.7% 8.9% 6.9% 2.6% 4.1% 

Branch Prediction 
Function 2.4% 3.1% 2.2% 3.3% 2.4% 11.1% 10.4% 2.1% 2.2% 
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Figure 21: Actual vs. Synthetic IPC
Branch Prediction Function
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5. Related Work 
Several ad-hoc techniques to synthesize workloads have been developed [WONG88] 

[SREE74] [WILL76]. In [WONG88], a linear combination of microbenchmarks is found that, 

when combined in a process called replication and executed, duplicates the LRU hit function of 

the target benchmark. There is no clear way to incorporate other execution characteristics like 

instruction mix into the technique. 

 In [HSIE98], assembly programs are generated that have the same power consumption 

signature as applications. However, all workload characteristics are modeled as 

microarchitecture-dependent characteristics, so the work is not useful for studies involving design 

trade-offs [EECK03]. In particular, the instruction sequences and dependency relationships of the 

synthetic programs are not representative of the original workload, unlike in the present work. 

The cache access and branch predictor models in [HSIE98] are useful as high-level ideas or 

starting points, but the specific implementations in that work allow and rely on modifications to 

the workload features shown to be required for representative performance. 

The primary focus in program synthesis is on mathematical theorem-provers or frameworks 

for synthesizing high-performance programs from formal specifications [MANN80][BAUM02]. 

Workload characteristics of existing programs are not considered.  

The well-organized microarchitectures of ASICs and DSPs lend themselves to automatic 

code scheduling from simple code specifications [CHEN94]. The goal is to schedule instructions 

to maximize performance with complete knowledge of the machine resources and pipeline 

structure, and no attempt is made to generate programs based on the workload characteristics of 

other programs. 
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Figure 23: Actual vs. Synthetic Delta IPC
as Dispatch Window Increased from 16 to 32
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6. Drawbacks of the Approach and Future Work 
The main drawback of the approach is that the microarchitecture independent workload 

characteristics, and thus the synthetic workload, are dependent on the particular compiler 

technology used. As discussed earlier, this is a natural result of requiring the execution 

characteristics of the synthetic benchmark to be representative of those of the original application. 

However, if the synthetic benchmark targets an ISA similar to the ISA used for the compilation, 

the asm statements can be easily substituted for the target machine. As instruction sets continue 

the current trend towards RISC-like primitive operations [HENN96], retargeting for another ISA 

becomes less of an issue.  

Another drawback is that only features specifically modeled among the workload 

characteristics appear in the synthetic benchmark. This will be addressed over time as researchers 

uncover additional features needed to correlate with execution-driven simulation or hardware, 

although the present state-of-the-art is quite good [EECK04][BELL04]. In the future, synthesis 

parameters could be used to incorporate or not incorporate features as needed. 

One consequence of the present method is that dataset information is assimilated into the 

final instruction sequence of the synthetic benchmark. For applications with multiple datasets, a 

family of synthetic benchmarks must be created. We argue that this is a requirement for 

representativeness, and the automatic process makes doing so possible, but future research could 

seek to find the workload features related to changes in the dataset and model those changes as 

runtime parameters to the synthetic benchmark. 

Our cache access and branch predictor models are simplistic. Models with less impact on 

dependency distances need to be developed. More research is needed to make use of advanced 

models [SORE02][THIE89], but those that have been developed to date may not model all access 

streams well. The benchmark synthesis approach presented in this paper provides a framework 

for the investigation of advanced cache access and branching models each independently of the 

other. 

Our benchmarks use a small number of instructions in order to satisfy the IMR. The small 

number causes small but noticeable variations in workload characteristics, including basic block 

size, with corresponding changes in instruction mix, dependency relationships, and RUU 

occupancies. One solution is to instantiate additional basic blocks using replication and repetition 

[WONG89] [DJUM04]. Multiple sections of representative synthetic code could be synthesized 

and concatenated together into a single benchmark. Each section would satisfy the IMR, but the 

number of basic blocks would increase substantially to more closely duplicate the instruction mix. 

Similarly, multiple sections of synthetic code, and possibly initialization code, could be 
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concatenated together to recreate program phases [SHER02]. Similarly, phases from multiple 

benchmarks could be consolidated together. 

7. Conclusions 
We propose a method for synthesizing representative benchmarks from the workload 

characteristics of an executing application. The target application’s executable is analyzed in 

detail and representative sequences of instructions are instantiated as in-line assembly-language 

instructions inside synthetic C-code. 

Unlike prior benchmark synthesis efforts, we focus on the low-level workload characteristics 

of the compiled and executing binary to create workloads that are truly representative of the 

effects of the application in the machine. Multiple synthetic benchmarks are necessary if the 

application is executed on multiple machines or significantly different ISAs, but we argue that 

representativeness cannot be ensured otherwise. The automatic process minimizes the cost of 

creating new benchmarks and enables consolidation of multiple representative phases into a 

single small benchmark. Other benefits include portability, future workload generation, and code 

abstraction. 

We use the method to synthesize representative benchmarks for the SPEC95 and STREAM 

benchmarks with both perfect branching and a simple branching model. We find that benchmarks 

can be synthesized to an average IPC within 3.9% of the average IPC of the target applications 

with remarkably similar instruction mix, cache access characteristics, RUU occupancies, and 

dependency characteristics, while runtimes are often three orders of magnitude shorter. In 

addition, the change in IPC for a synthetic benchmark due to a design change is found to be 

proportional to the IPC change for the original application and relative errors are small. The 

resulting synthetic benchmarks are flexible and can be parameterized at synthesis-time and run-

time. 
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