
Experiments with SPEC CPU 2017: Similarity,
Balance, Phase Behavior and SimPoints

Shuang Song, Qinzhe Wu, Steven Flolid,
Joseph Dean, Reena Panda, Junyong Deng,

Lizy K. John
songshuang1990, qw2699, stevenflolid,

jd45664, reena.panda, jd47372@utexas.edu, ljohn@ece.utexas.edu

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas at Austin

TR-180515-01

This work was partially supported by National Science Foundation (NSF)
under grant numbers 1725743 and 1745813, the Texas Advanced Computing Center (TACC)

and by an Intel unrestricted gift. Any opinions, findings,
conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of NSF or other sponsors.

CONTENTS

I Introduction 3

II CPU2017 Benchmarks: Overview & Characterization 3
II-A Benchmark Overview . 4
II-B Performance Characterization . 4
II-C Performance Bottleneck Analysis . 5
II-D Scalability . 5

III Methodology 6

IV Redundancy in CPU2017 Benchmark Suite 7
IV-A Subsetting the CPU2017 Benchmarks . 7
IV-B Evaluating Representativeness of Subsets . 8
IV-C Selecting Representative Input Sets . 8
IV-D Are Rate and Speed Benchmarks Different? . 9
IV-E Benchmark Classification based on Branch and Memory Behavior . 10
IV-F Difference Between Benchmarks from Same Application Area . 10

V Balance in the SPEC CPU2017 Benchmark Suites 11
V-A Comparing Performance Spectrum of

CPU2017 & CPU2006 Suites . 11
V-B Comparison of Application Domains . 12
V-C Comparing Power Consumption . 12
V-D Case Study on EDA Applications . 12
V-E Case Study on Database Applications . 13
V-F Case Study on Graph Applications . 13
V-G Sensitivity of CPU2017 Programs to Performance Characteristics . 13

VI Large Scale Phase Analysis 14
VI-A Phase-level Variability . 14
VI-B Simulation Points . 16

VII Related Work 16

VIII Conclusion 16

IX Acknowledgements 18

References 18

Appendix 19
A Supplemental Graphs and Tables . 19

Abstract—The recently released SPEC CPU2017 benchmark
suite has already started receiving a lot of attention from
both industry and academic communities. However, due to
the significantly high size and complexity of the benchmarks,
simulating all the CPU2017 benchmarks for design trade-off
evaluation is likely to become extremely difficult. Simulating a
randomly selected subset, or a random input set, may result in
misleading conclusions. This paper analyzes the SPEC CPU2017
benchmarks using performance counter based experimentation
from seven commercial systems, and uses statistical techniques
such as principal component analysis and clustering to iden-
tify similarities among benchmarks. Such analysis can reveal
benchmark redundancies and identify subsets for researchers
who cannot use all benchmarks in pre-silicon design trade-off
evaluations. The benchmarks in the CPU2017 suite are compared
to others in the suite and also with CPU2006. Additionally, to
evaluate the balance of CPU2017 benchmarks, we analyze the
performance characteristics of CPU2017 workloads and compare
them with emerging database, graph analytics and electronic
design automation (EDA) workloads. One of the major changes
in the new suite is the addition of multithreaded benchmarks, and
hence we analyze the scalability of the multithreaded programs.
We also study the phase behavior and variability of the programs,
and identify large scale phases and simulation points that
researchers can use if the whole program cannot be used for
the experimentation.

I. INTRODUCTION

Since its formation in 1988, SPEC has carefully chosen
benchmarks from real world applications and periodically
distributed these benchmarks to the semiconductor community.
The last SPEC CPU benchmark suite was released in 2006 and
has been widely used by industry & academia to evaluate the
quality of processor designs. In the last 10+ years, the process-
ing landscape has undergone a significant change. For instance,
the size of processor components (caches, branch predictors,
TLBs, etc.) and memory have increased significantly. To keep
pace with technological advances and emerging application
domains, the 6th generation of SPEC CPU benchmarks have
just been released.

The SPEC CPU2017 suite [1] consists of 43 benchmarks,
separated into 4 sub-suites, corresponding to “rate” and
“speed” versions of the integer and floating point programs
(summarized in Table I). Benchmarks in CPU2017 have up
to ∼10X higher dynamic instruction counts than those in
CPU2006; such an increase in the program size is bound to
exacerbate the simulation time problem on detailed perfor-
mance simulators [2], [3], [4], [5], [6]. To keep the simulation
times manageable, researchers often use a subset of the
benchmarks. However, arbitrarily selected subsets can result in
misleading conclusions. Understanding program behavior and
their similarities can help in selecting benchmarks to represent
target workload spaces. In this paper, we first conduct a
detailed characterization of the CPU2017 benchmarks using
performance counter based experimentation from several state-
of-the-art systems and extract critical insights regarding the
micro-architectural bottlenecks of the programs. Next, we
leverage statistical techniques such as Principal Component
Analysis (PCA) and clustering analysis to understand the
(dis)similarity of benchmarks and identify redundancies in the
suite. We demonstrate that using less than one-third of the
benchmarks can predict the performance of the entire suite

with ≥93% accuracy.
For the first time, SPEC has also provided separate

“speed” and “rate” versions of benchmarks (see Table I,
5nn.benchmark r for the rate version and 6nn.benchmark s
for the speed version) in their CPU suite. SPECspeed always
runs one copy of each benchmark, and SPECrate runs multiple
concurrent copies of each benchmark. We observe that the
CPU2017 speed benchmarks have up to 8x higher instruction
counts than their rate equivalents. SPEC’s web page indicates
that such benchmarks differ in terms of the workload sizes,
compilation flags, etc. However, are they truly different in
the performance spectrum? Our analysis indicates that most
benchmarks (except a few cases, e.g., imagick, f otonik3d)
have very similar performance characteristics between the rate
and speed versions.

SPEC CPU2006 benchmarks [7] have long been the de
facto benchmark for studying single-threaded performance.
The SPEC CPU2017 benchmark suite has replaced many
of the benchmarks in the SPEC CPU2006 suite with larger
and more complex workloads; compared to the CPU2006
programs, it is not known whether the CPU2017 workloads
have different performance demands or whether they stress
machines differently. How much of the performance spectrum
is lost due to benchmark removal? Do the newly added
benchmarks expand the performance spectrum? We perform
a detailed comparison between the two suites to identify key
differences in terms of performance and power consumption.

While CPU2017 suite has introduced or expanded several
application domains (e.g., artificial intelligence), many appli-
cation domains have been removed (e.g., speed recognition,
electronic design automation) or not included (e.g., graph an-
alytics). We further investigate the application domain balance
and coverage of the CPU2017 benchmarks using statistical
techniques. Specifically, we explore whether the CPU2017
workloads have performance features that can exercise com-
puter systems in a similar manner as emerging data-serving
and graph analytics workloads.

The rest of this paper is organized as follows. Section II
gives an overview of the CPU2017 benchmarks and analyzes
their micro-architectural performance. This section also dis-
cusses the scalability of the CPU2017 benchmarks since that
is one of the primary difference with the earlier CPU2006
suite. Section III discusses the methodology used to measure
program (dis)similarity. Section IV proposes representative
subsets and input sets of the programs. Section V evaluates
balance in the CPU2017 suite. Section VI presents the phase
behavior and simulation points for the CPU2017 suite. Finally,
we discuss related work and conclude in Sections VII and VIII,
respectively.

II. CPU2017 BENCHMARKS: OVERVIEW &
CHARACTERIZATION

In this section, we will first provide an overview of the
CPU2017 benchmarks. We will also characterize their micro-
architectural behvaior, while focusing on single-core CPU
performance. This characterization is performed on an Intel
Skylake machine (3.4 GHz, i7-6700 processor, 8MB last-level
cache) running Ubuntu 14.04. Benchmarks are compiled using

0%

20%

40%

60%

80%

100%

50
0.p

er
lbe

nc
h_

r

50
2.g

cc_
r

50
5.m

cf_
r

52
0.o

mn
etp

p_
r

52
3.x

ala
nc

bm
k_

r

52
5.x

26
4_

r

53
1.d

ee
ps

jen
g_

r

54
1.l

ee
la_

r

54
8.e

xc
ha

ng
e2

_r

55
7.x

z_
r

50
3.b

wa
ve

s_
r

50
7.c

ac
tu

BS
SN

_r

50
8.n

am
d_

r

51
0.p

are
st_

r

51
1.p

ov
ray

_r

51
9.l

bm
_r

52
1.w

rf_
r

52
6.b

len
de

r_r

52
7.c

am
4_

r

53
8.i

ma
gic

k_
r

54
4.n

ab
_r

54
9.f

ot
on

ik3
d_

r

55
4.r

om
s_

r

Fra
cti

on
 of

 CP
I

Front-End Bound L1 Bound L2 Bound L3 Bound DRAM Bound Others Retiring

Fig. 1: Cycles per instruction (CPI) stack of CPU2017 rate benchmarks.

gcc compiler with SPEC recommended optimization flags. The
performance counter measurements are carried out using the
Linux perf [8] tool.
A. Benchmark Overview

Unlike its predecessors, the CPU2017 suite [1] is divided
into four categories: speed integer (SPECspeed INT), rate
integer (SPECrate INT), speed floating point (SPECspeed FP)
and rate floating point (SPECrate FP), as shown in Table
I. The SPECspeed INT, SPECspeed FP and SPECrate INT
groups consist of 10 benchmarks each, while the SPECrate FP
group consists of 13 benchmarks. In addition, the CPU2017
benchmarks are still written in C, C++ and Fortran languages.

Several new benchmarks and application domains have been
added in the CPU2017 suite. In the FP category, nine new
benchmarks have been added: parest implements a finite
element solver for biomedical imaging; blender performs 3D
rendering; cam4, pop2 and roms represent the climatology
domain; imagick is an image manipulation application; nab is
a floating-point intensive molecular modeling application rep-
resenting the life sciences domain; f otonik3d and cactuBSSN
represents the physics domain. In the INT category, the
most notable enhancement has been made in the artificial
intelligence domain with three new benchmark additions
(deeps jeng, leela and exchange2). Two other compression-
related benchmarks, x264 (video compression) and xz (general
data compression) have also been added. We will analyze the
application domain coverage of CPU2017 suite in detail in
Section IV.
B. Performance Characterization

Table I shows the dynamic instruction count, instruction
mix, and CPI of each CPU2017 benchmark. The dynamic
instruction count of the benchmarks is in the order of tril-
lions of instructions. In general, the speed benchmarks have
significantly higher dynamic instruction count than the rate
benchmarks. The ratio of dynamic instruction count in speed to
rate categories is ∼8x (avg) for the floating-point benchmarks
and ∼2x (avg) for the integer benchmarks. Compared to the
CPU2006 FP benchmarks, the CPU2017 FP benchmarks have
∼10x higher dynamic instruction count. This steep increase
in instruction counts will further exacerbate the problem of
benchmark simulation time on most state-of-the-art simulators
[2], [3], [5].

TABLE I: Dynamic Instr. Count, Instr. Mix and CPI of the
43 SPEC CPU2017 benchmarks (Intel Skylake).
Benchmark Icount Loads Stores Branches CPI

(Billion) (%) (%) (%)
SPECspeed Integer — 10 benchmarks

600.perlbench s 2696 27.20 16.73 18.16 0.42
602.gcc s 7226 40.32 15.67 15.60 0.58
605.mcf s 1775 18.55 4.70 12.53 1.22

620.omnetpp s 1102 22.76 12.65 14.55 1.21
623.xalancbmk s 1320 34.08 7.90 33.18 0.86

625.x264 s 12546 37.21 10.27 4.59 0.36
631.deepsjeng s 2250 19.75 9.37 11.75 0.55

641.leela s 2245 14.25 5.32 8.94 0.80
648.exchange2 s 6643 29.61 20.22 8.67 0.41

657.xz s 8264 13.34 4.73 8.21 1
SPECrate Integer — 10 benchmarks

500.perlbench r 2696 27.20 16.73 18.16 0.42
502.gcc r 3023 34.51 16.64 14.96 0.59
505.mcf r 999 17.42 6.08 11.54 1.16

520.omnetpp r 1102 22.10 12.27 14.12 1.39
523.xalancbmk r 1315 34.26 8.07 33.26 0.86

525.x264 r 4488 23.03 6.47 4.37 0.31
531.deepsjeng r 1929 19.61 9.10 11.61 0.57

541.leela r 2246 14.28 5.33 8.95 0.81
548.exchange2 r 6644 29.62 20.24 8.69 0.41

557.xz r 1969 17.33 3.87 12.24 1.22
SPECspeed Floating-point — 10 benchmarks

603.bwaves s 66395 31.00 4.42 13.00 0.34
607.cactuBSSN s 10976 43.87 9.50 1.80 0.68

619.lbm s 4416 29.62 17.68 1.40 0.87
621.wrf s 18524 23.20 5.80 9.48 0.77

627.cam4 s 15594 20 14 10.92 0.68
628.pop2 s 18611 21.71 8.41 15.13 0.48

638.imagick s 66788 18.16 0.46 9.30 1.17
644.nab s 13489 23.49 7.51 9.55 0.68

649.fotonik3d s 4280 33.99 13.89 3.84 0.78
654.roms s 22968 32.02 8.02 7.53 0.52

SPECrate Floating-point — 13 benchmarks
503.bwaves r 5488 34.92 4.77 9.51 0.42

507.cactuBSSN r 1322 43.62 9.53 1.97 0.69
508.namd r 2237 30.12 10.25 1.75 0.41
510.parest r 3461 29.51 2.50 11.49 0.48
511.povray r 3310 30.30 13.13 14.20 0.42

519.lbm r 1468 28.35 15.09 1.05 0.53
521.wrf r 3197 22.94 5.93 9.48 0.81

526.blender r 5682 36.10 12.07 7.89 0.53
527.cam4 r 2732 19.99 8.37 11.06 0.56

538.imagick r 4333 22.55 7.97 10.94 0.90
544.nab r 2024 23.70 7.46 9.65 0.69

549.fotonik3d r 1288 39.12 v12.07 2.52 0.96
554.roms r 2609 34.57 7.57 6.73 0.48

In terms of instruction mix, we can make several interesting
observations. For the integer benchmarks (rate and speed), the
fraction of branch instructions is roughly ≤15%, with sev-
eral benchmarks (e.g., 625.x264 s, 641.leela s, 525.x264 r)
having ≤8% branch instructions. This behavior is in contrast

to the CPU2006 integer programs, which have an average of
20% branches in their dynamic instruction stream [9]. The
xalancbmk benchmark, which is one of the four C++ programs
in the INT category, has the highest fraction of branch instruc-
tions (33%). The other C++ programs (omnet pp, leela and
deeps jeng) have ≤15% branches. For the FP categories, most
benchmarks have much lower fraction of control instructions
(≤9% on average) than the integer benchmarks, with several
benchmarks having as low as 1% branches. The large dynamic
basic block size of the FP programs can be an opportunity
for the underlying micro-architectures to exploit higher degree
of parallelism. In terms of memory operations, the CPU2017
benchmarks are memory-intensive, with several benchmarks
(e.g., 602.gcc r, 507.cactuBSSN r) having ∼50% fraction of
memory (load and store) instructions. Later in this section,
we will show that a significant fraction of the execution time
of these benchmarks is spent in servicing cache and memory
requests, which limits their performance.

Table II shows the range of a few performance metrics of the
CPU2017 benchmarks measured using hardware performance
counters on the Skylake micro-architecture. The magnitude
difference between the min and max values shows that there
is a lot of diversity in the performance characteristics across
different benchmarks. The older SPEC CPU benchmarks have
often been criticized because they do not have sufficient
instruction cache miss activity as some of the emerging
cloud and big-data applications [10], [11]. Interestingly, many
CPU2017 benchmarks do not suffer from high instruction
cache miss rates, even though the workload sizes have in-
creased significantly.
C. Performance Bottleneck Analysis

In this section, we conduct micro-architectural bottleneck
analysis of the CPU2017 applications using cycle per in-
struction (CPI) stack statistics. A CPI stack breaks down
the execution time of an application into different micro-
architectural activities (e.g., accessing cache), showing the
relative contribution of each activity. Optimizing the largest
component(s) in the CPI stack leads to the largest performance
improvement. Therefore, CPI stacks can be used to identify
sources of micro-architecture inefficiencies. We follow the top-
down performance analysis methodology to collect the CPI
stack information [12]. Table I also shows the actual CPI
numbers for the benchmarks.

Figure 1 shows the CPI stack breakdown of the CPU2017
rate applications (see Table I for the CPI values). The front-
end bound category includes the instruction fetch and branch

TABLE II: Range of important performance characteristics
of SPEC CPU2017 benchmarks.

Rate INT Speed INT Rate FP Speed FP
Metric Range (Min - Max)

L1D$ MPKI1 ∼0 - 56 ∼0 - 54.7 2 - 95.4 5.5 - 98.4
L1I$ MPKI ∼0 - 5.1 ∼0 - 5.2 ∼0 - 11.3 0.1 - 11.6
L2D$ MPKI ∼0 - 20.5 ∼0 - 20.7 ∼0 - 7 0.2 - 8.6
L2I$ MPKI ∼0 - 0.9 ∼0 - 0.9 ∼0 - 1.2 ∼0 - 1.2
L3$ MPKI ∼0 - 4.5 ∼0 - 4.6 ∼0 - 4.3 ∼0 - 5

Branch misp. 0.9 - 8.3 0.5 - 8.4 0 - 2.5 0.01 - 2.5
per kilo inst.

1MPKI stands for Misses Per Kilo Instructions.

misprediction related stall cycles. The ‘other’ category in-
cludes resource stalls, instruction dependencies, structural de-
pendencies, etc. Several interesting observations can be made
from the CPI stack breakdown. In most cases, more than
50% of the total execution time is spent on various types
of on-chip micro-architectural activities, with 505.mc f r and
520.omnet pp r having the highest CPI among all the bench-
marks. Several benchmarks (e.g., 541.leela r, 505.mc f r,
557.xz r) spend a significant fraction of their execution time
on front-end stalls as they suffer from higher branch mis-
prediction rates. The 505.mc f r benchmark further suffers
from high instruction cache miss rate, aggravating its front-end
performance bottleneck. In general, the integer benchmarks
suffer from higher branch misprediction rates than the floating-
point benchmarks, leading to higher branch mis-speculation
related stalls. In terms of back-end (cache and memory)
performance, 520.omnet pp r, 523.xalancbmk r, 505.mc f r
and 549. f otonik3d r benchmarks spend a significant fraction
of their execution time servicing cache and memory requests.
For 526.blender r and 538.imagick r benchmarks, high inter-
instruction dependencies are the major cause of pipeline stalls.
Most speed benchmarks (not shown here due to space limit)
also have similar performance correlations.
D. Scalability

The SPEC CPU benchmarks have traditionally been single-
threaded, however, multithreading is introduced to the SPEC
CPU benchmark suite for the first time in the 2017 suite.
Hence, it would be interesting to explore the scalability of
SPEC CPU 2017 benchmarks. Of the 47 benchmarks offered
in SPEC 2017, only the SPECspeed FP benchmarks and
the SPECspeed Integer benchmark, 657.xz s, allow to define
the number of threads to run on. This section summarizes
the runtime of these benchmarks and provides a scalability
analysis. This study is performed on an Intel Xeon machine
with 6 cores and 12 thread slots.

TABLE III: Runtime of multi-threaded SPEC CPU2017
speed benchmarks (in seconds)

Number of Threads

Speed 2017 FP 1 2 4 6 12

603.bwaves s 11684 6512 4360 3370 2804
607.cactuBSSN s 4407 2379 1185 853 846
619.lbm s 1962 1189 1135 1101 1049
621.wrf s 6515 3474 1913 1405 1154
627.cam4 s 4906 2644 1468 1038 810
628.pop2 s 4852 2507 1378 978 808
638.imagick s 30729 15661 7732 5181 2708
644.nab s 4427 3535 1805 1214 879
649.fotonik3d s 1539 940 849 827 826
654.roms s 6053 3249 2031 1632 1494

Number of Threads

Speed 2017 FP 1 2 4 8 16 32

603.bwaves s 9625 4795 3168 1868 1060 607
607.cactuBSSN s 2458 1247 699 394 239 155
619.lbm s 1553 790 459 266 186 158
621.wrf s 4262 2325 1311 741 468 366
627.cam4 s 2909 1537 854 533 342 217
628.pop2 s 2972 1503 830 495 314 279
638.imagick s 23047 11686 5917 3054 1623 866
644.nab s 4250 2592 1355 677 341 191
649.fotonik3d s 1284 671 371 224 168 149
654.roms s 4192 2165 1097 569 305 191

TABLE IV: Speedup of multi-threaded SPEC CPU2017
speed benchmarks

Number of Threads

Speed 2017 FP 2 4 6 12

603.bwaves s 1.794 2.679 3.467 4.166
607.cactuBSSN s 1.852 3.718 5.166 5.209
619.lbm s 1.650 1.728 1.782 1.870
621.wrf s 1.875 3.405 4.637 5.645
627.cam4 s 1.855 3.340 4.637 5.645
628.pop2 s 1.935 3.521 4.961 6.056
638.imagick s 1.962 3.974 5.931 11.347
644.nab s 1.252 2.452 3.646 5.036
649.fotonik3d s 1.637 1.812 1.860 1.863
654.roms s 1.863 2.980 3.708 4.051

Number of Threads

Speed 2017 FP 2 4 8 16 32

603.bwaves s 2.007 3.038 5.153 9.080 15.857
607.cactuBSSN s 1.971 3.516 6.239 10.285 15.858
619.lbm s 1.966 3.383 5.838 8.349 9.829
621.wrf s 1.833 3.251 5.752 9.107 11.645
627.cam4 s 1.893 3.406 5.458 8.506 13.406
628.pop2 s 1.977 3.581 6.004 9.465 10.652
638.imagick s 1.972 3.895 7.546 14.200 26.613
644.nab s 1.640 3.137 6.278 12.463 22.251
649.fotonik3d s 1.914 3.461 5.732 7.643 8.617
654.roms s 1.936 3.821 7.367 13.744 21.948

TABLE V: Decreasing Order of Scalability of SPEC FP
benchmarks (speed version)

2−threads 4−threads 6−threads 12−threads

638.imagick s 638.imagick s 638.imagick s 638.imagick s
628.pop2 s 607.cactuBSSN s 607.cactuBSSN s 627.cam4 s
621.wrf s 628.pop2 s 628.pop2 s 628.pop2 s
654.roms s 621.wrf s 627.cam4 s 621.wrf s
627.cam4 s 627.cam4 s 621.wrf s 607.cactuBSSN s
607.cactuBSSN s 654.roms s 654.roms s 644.nab s
603.bwaves s 603.bwaves s 644.nab s 603.bwaves s
619.lbm s 644.nab s 603.bwaves s 654.roms s
649.fotonik3d s 649.fotonik3d s 649.fotonik3d s 619.lbm s
644.nab s 619.lbm s 619.lbm s 649.fotonik3d s

2−threads 4−threads 8−threads 16−threads 32−threads

603.bwaves s 638.imagick s 638.imagick s 638.imagick s 638.imagick s
628.pop2 s 654.roms s 654.roms s 654.roms s 644.nab s
638.imagick s 628.pop2 s 644.nab s 644.nab s 654.roms s
607.cactuBSSN s607.cactuBSSN s607.cactuBSSN s607.cactuBSSN s607.cactuBSSN s
619.lbm s 649.fotonik3d s 628.pop2 s 628.pop2 s 603.bwaves s
654.roms s 627.cam4 s 619.lbm s 621.wrf s 621.wrf s
649.fotonik3d s 619.lbm s 621.wrf s 603.bwaves s 628.pop2 s
627.cam4 s 621.wrf s 649.fotonik3d s 627.cam4 s 619.lbm s
621.wrf s 644.nab s 627.cam4 s 619.lbm s 649.fotonik3d s
644.nab s 603.bwaves s 603.bwaves s 649.fotonik3d s 627.cam4 s

TABLE VI: Level of Scalability.
High 638.imagick s, 654.roms s, 607.cactuBSSN s

Moderate 628.pop2 s, 644.nab s, 619.lbm s, 603bwaves s
Minimal 649.fotonik3d s, 621.wrf s, 627.cam4 s,

High 638.imagick s, 628.pop2 s, 607.cactuBSSN s
Moderate 621.wrf s, 654.roms s, 627.cam4 s, 644.nab s
Minimal 649.fotonik3d s, 619.lbm s, 603.bwaves s

Table III illustrates the runtime of the multithreaded pro-
grams from the CPU 2017 suite with thread counts increasing
to the maximum number of threads supported by the platform
studied. The corresponding speedups are in Table IV. It is
observed that not all SPECspeed 2017 FP benchmarks scale
in the same manner. Benchmark 638.imagick s has near-
perfect scaling. 619.lbm s and 649. f otonik3d s gain almost
no speedup from multi-threading. Apart from 638.imagick s,

TABLE VII: Program characteristics for similarity analysis.
Characteristics Metrics

Cache L1I/D MPKI, L2I/D MPKI, L3 MPKI
TLB L1I/D TLB MPMI2,

Last level TLB MPMI3, Page Walks per MI
Branch Branch MPKI, Branch taken MPKI

predictor
Inst Mix Percentage of Kernel, User, INT, FP

Load, Store, Branch, SIMD
Power Core, LLC and Memory Power

619.lbm s and 649. f otonik3d s, other benchmarks show scal-
ability up to 6-thread, and have small increase at 12-thread.

The 638.imagick s is an image manipulation/image process-
ing benchmark, which exhibits a large amount of parallelism.
Hence, its high scalability is to be expected. In contrast,
649. f otonik3d s is a computational benchmark with multiple
sequential steps in its code, making parallel execution harder.
Many other benchmarks scale almost linearly up to 6-threads,
but only have minor performance improvement going to 12-
threads. This can be explained with the resource sharing
structure of the machine used for the experiment. The ex-
perimental machine has 6 physical cores, which supports up
to 12 threads in the SMT (Simultaneous Multi-Threading)
form. But executing in the 12-thread configuration leads to
much more resource contention than the 6-thread one, because
many resources are shared in the SMT mode. This is the
main influence that prevents benchmarks from yielding a good
scalability at 12-thread. Table V presents the benchmarks in
decreasing order of scalability. The programs with the highest
and lowest scalability are identified in Table VI.

III. METHODOLOGY

To perform a comprehensive analysis of the CPU2017
benchmark suite, we collect and use a large range of program
characteristics, related to instruction and data locality, branch
predictability, and instruction mix. The profiled characteristics
are micro-architecture dependent, which can cause the results
to be biased by features of a particular machine. Thus, in order
to minimize this bias, measurements are collected on seven
commercial machines with three different ISAs (machine
details are summarized in Table VIII). The differences in
micro-architecture, ISA, and compiler help to eliminate any
micro-architectural dependency and allows to capture only
the true differences among the benchmarks. The performance
metrics used in any subsequent analysis are listed in Table VII.
Some of the hardware performance counter data used in this
study were measured by the authors, while other data were
collected by various SPEC companies on their machines with
advanced compilers.

As we perform measurements on seven different machines,
we treat each performance counter-machine pair as a metric.
Overall, we measure 20 performance-related metrics for each
benchmark on every machine, leading to a total of 140
metrics. However, it is difficult to manually look at all the
data and conduct meaningful analysis. Hence, we leverage the

2MPMI stands for Misses Per Million Instructions.
3Depends on the profiled machine, this can be unified or individual.

TABLE VIII: Hardware configurations of 7 machines (Intel,
AMD, and Oracle) used in the experiments
Processor ISA L1(KB) L2(KB) LLC(MB)

Intel Core i7-6700 x86 2x32 256 8
Intel Xeon E5-2650 v4 x86 2x32 256 30
Intel Xeon E5-2430 v2 x86 2x32 256 15

Intel Xeon E5405 x86 2x32 2x6MB N/A
SPARC-IV+ v490 SPARC 2x64 2MB 32

SPARC T4 SPARC 2x16 128 4
AMD Opteron 2435 x86 2x64 512 6

Principal Components Analysis (PCA) technique [13], [14] to
first remove any correlations among the variables (e.g., when
two variables measure the same benchmark property). PCA
converts i variables X1, X2,...,Xi into j linearly uncorrelated
variables Y1, Y2,...,Yj, called Principal Components (PCs). Each
PC is a linear combination of various features or variables with
a certain weight, known as loading factor (see Equation 1).

Y1 =
i

∑
k=1

a1kXk ;Y2 =
i

∑
k=2

a2kXk ... (1)

PCA transformation has many interesting properties, the
first PC covers most of the variance while other PCs cover
decreasing variances. Dimensionality of the data-set can be
reduced by removing components with lower variance values.
We use the Kaiser Criterion to choose PCs, where only top
few PCs are retained, with eigenvalues ≥ 1. After performing
PCA, we use another statistical technique called hierarchi-
cal clustering to analyze the similarity among benchmarks.
The similarity between benchmarks is measured using the
Euclidean distance of program characteristics. The results
produced by this clustering technique can be presented as a
tree or dendrogram. Linkage distances shown in a dendrogram
represent similarity between programs (e.g. Figure 2).

IV. REDUNDANCY IN CPU2017 BENCHMARK SUITE

A. Subsetting the CPU2017 Benchmarks
We discussed in Section II-B that the dynamic instruction

counts of the CPU2017 benchmarks have increased up to
10x versus its predecessor. Such a significant increase in
the runtime of benchmarks will make it virtually impossible
to perform architectural analysis for the entire CPU2017
benchmark suite on detailed performance simulators in a
reasonable time. If similar information can be obtained using a
subset of the CPU2017 benchmark suite, it can help architects
and researchers to make faster design trade-off analysis. In
this section, we study the (dis)similarities between different
benchmarks belonging to the SPECrate INT, SPECspeed INT,
SPECrate FP and SPECspeed INT categories individually.
Linkage distance is used to identify representative subsets of
the CPU2017 sub-suites.

Figure 2 shows the dendrogram plot for the SPECspeed
INT benchmarks (SPECrate INT, not shown due to space
considerations, has a very similar dendrogram). Seven PCs
that cover more than 91% of the variance are chosen based on
the Kaiser criterion. The x-axis shows the linkage distance be-
tween different benchmarks (y-axis). Smaller linkage distance
between any two benchmarks indicates that the benchmarks
are close, and vice versa. The ordering of benchmarks on

631.deepsjeng_s

641.leela_s

657.xz_s

625.x264_s

648.exchange2_s

600.perlbench_s

602.gcc_s

620.omnetpp_s

623.xalancbmk_s

605.mcf_s

12 14 16 18 20
Linkage Distance

K	 =	 3631.deepsjeng_s

641.leela_s

657.xz_s

625.x264_s

648.exchange2_s

600.perlbench_s

602.gcc_s

620.omnetpp_s

623.xalancbmk_s

605.mcf_s

12 14 16 18 20

Fig. 2: Dendrogram showing similarity between SPECspeed
INT benchmarks.

621.wrf_s

644.nab_s

627.cam4_s

628.pop2_s

638.imagick_s

603.bwaves_s

654.roms_s

619.lbm_s

649.fotonik3d_s

607.cactuBSSN_s

12 14 16 18 20 22
Linkage Distance

K	 =	 3621.wrf_s

644.nab_s

627.cam4_s

628.pop2_s

638.imagick_s

603.bwaves_s

654.roms_s

619.lbm_s

649.fotonil3d_s

607.cactuBSSN_s

12 14 16 18 20 22

Fig. 3: Dendrogram showing similarity between SPECspeed
FP benchmarks.

the y-axis has no special significance. We can observe that
the 605.mc f s and 505.mc f r benchmarks have the most
distinct performance features among all the INT benchmarks.
The dendrogram plot shown in Figure 2 can be used to
identify a representative subset of the SPECspeed INT suite.
For instance, if a researcher wants to reduce his simulation
time budget to only three benchmarks for the SPECspeed INT
category, a vertical line drawn at a linkage distance of 17.5 in
Figure 2 can yield a subset of three benchmarks (605.mc f s,
623.xalancbmk s and 641.leela s). For clusters having more
than two benchmarks, the benchmark with the shortest linkage
distance is chosen as the representative benchmark. Such
analysis can be done at varying linkage distances to select the
appropriate number of benchmarks when simulation time is
constrained. To subset the SPECrate INT benchmark category,
we use a similar approach. Overall, only simulating the
suggested subsets (summarized in Table IX) can reduce the
total simulation time by 5.6× and 4.5× for SPECspeed INT
and SPECrate INT suites, respectively.

The dendrograms for the SPECspeed FP and SPECrate FP
benchmarks are shown in Figures 3 and 4 respectively. The
607.cactuBSSN s and 507.cactuBSSN r benchmarks have the
most distinctive performance characteristics among all the FP
benchmarks. Further analysis into the performance character-
istics of the two benchmarks reveals that they have unique
behavior in terms of their memory and TLB performance. The
two vertical lines drawn in Figures 3 and 4 show the points at
which 3-benchmark subsets are formed for both the FP suites.
Using the benchmark subsets summarized in Table IX reduces

508.namd_r

544.nab_r

538.imagick_r

503.bwaves_r

510.parest_r

554.roms_r

511.povray_r

526.blender_r

521.wrf_r

527.cam4_r

519.lbm_r

549.fotonik3d_r

507.cactuBSSN_r

10 12 14 16 18 20 22
Linkage Distance

K	 =	 3

12 14 16 18 20 2210

508.namd_r

544.nab_r
538.imagick_r
503.bwaves_r
510.parest_r
554.roms_r

511.povray_r
526.blender_r

521.wrf_r
527.cam4_r
519.lbm_r

549.fotonik3d_r
507.cactuBSSN_r

Fig. 4: Dendrogram showing similarity between SPECrate
FP benchmarks.

TABLE IX: Representative subsets of the CPU2017
sub-suites.

SPECspeed INT 605.mcf s, 641.leela s,
Subset of 3 Benchmarks 623.xalancbmk s

SPECrate INT 505.mcf r, 523.xalancbmk r,
Subset of 3 Benchmarks 531.deepsjeng r,

SPECspeed FP 607.cactuBSSN s, 621.wrf s
Subset of 3 Benchmarks 654.roms s

SPECrate FP 507.cactuBSSN r, 549.fotonik3d r
Subset of 3 Benchmarks 544.nab r

the simulation time by 4.5× and 6.3× for the SPECspeed
and SPECrate FP sub-suites, respectively. It is interesting
to observe that the chosen subsets contain several newly
added benchmarks such as, 544.nab r, 507.cactuBSSN r,
654.roms s, and 607.cactuBSSN s. It should be noted that
although this subsetting approach can identify reduced subsets
in terms of hardware performance characteristics, it does not
guarantee a coverage of all the different application domains
of the benchmark suite.
B. Evaluating Representativeness of Subsets

Next, we evaluate the usefulness of the subsets (identified in
the last section) to estimate the performance of the CPU2017
benchmark suites on commercial systems, whose results are
already published on SPEC’s web page.

For this analysis, we record the performance of differ-
ent benchmarks on different commercial computer systems’
(speedup over a ref machine) from SPEC’s database. Then, we
compute the overall performance score (geometric mean) of
the benchmark subsets and compare it against the performance
score (geometric mean) of all the benchmarks in that sub-
suite. For example, for the SPECspeed INT category, we
compute the average performance score using the 3-benchmark
subset and compare it against the average performance score
using all 10 benchmarks belonging to the SPECspeed INT
category. Since CPU2017 suite is released very recently, very
few companies have submitted the results for all speed and rate
categories. Therefore, the different commercial systems used
for validating the four benchmark categories are not exactly
identical. But, we include all the submitted results obtained
from SPEC’s web page.

Figure 5 shows the validation results for the SPECspeed
INT and SPECrate INT sub-suites. The average error for
the SPECspeed INT category is ≤1% across 4 systems. For
the SPECrate INT category, using a subset of 3 benchmarks

TABLE X: Accuracy comparison among proposed subsets
and random subsets.

Identified subsets Rand set1 Rand set2
SPECspeed INT <1% 28.2% 23.4%
SPECrate INT 7% 22.4% 21.7%
SPECspeed FP 3% 49.7% 25.6%
SPECrate FP 4.5% 39.1% 27.1%

achieves an average error of 7% (maximum 12.9%) in terms
of speedup as compared to using all the benchmarks. Figure 6
shows similar validation results for the FP categories. Using 3
out of the 10 SPECspeed FP benchmarks produces an average
error of 3%, and 3 out of the 13 SPECrate FP benchmarks
leads to a 4.5% speedup estimation error. To further evaluate
the effectiveness of the proposed subsets, we compare their
speedup estimation accuracy with respect to two randomly
selected subsets. Results are shown in Table X, where random
sets 1 and 2 result in an average error of 34.85% and 24.45%
respectively.

The above analysis shows that the identified subsets can
accurately predict the performance speedup of the entire
benchmark suite. Including more benchmarks in the subset
can reduce the prediction error, but will also increase the
simulation time significantly. However, only a third of the
benchmark suite can be used to predict the performance of
the entire benchmark suite reasonably well.
C. Selecting Representative Input Sets

Similar to CPU2006 benchmarks, many CPU2017 bench-
marks have multiple input sets. For example, 502.gcc r and
525.x264 r benchmarks have five and three different input
sets, respectively. For a reportable run of such benchmarks,
SPEC requires aggregating results across all the different
input sets. However, simulating all possible input sets for a
benchmark for design trade-off studies can take a prohibitive
amount of time. In this section, we want to systematically
evaluate differences among the performance characteristics of
different input sets belonging to the same benchmark. Such
analysis can help researchers to select representative input sets
of each benchmark for their evaluation studies, rather than
choosing an input set in an ad hoc manner.

Figure 7 shows the dendrogram plot for different INT
benchmarks and their input sets. Benchmarks having a sin-
gle input set are represented by their original names, while
benchmarks with multiple input sets are numbered based

0

200

400

600

800

1000

1200

1400

0

1

2

3

4

5

6

7

In
te

gr
ity

Su
pe

rd
om

e
X

Pr
oL

ia
nt

D
L5

80
 G

en
9

Pr
oL

ia
nt

M
L3

50
 G

en
9

Su
n

Fi
re

 V
49

0

In
te

gr
ity

Su
pe

rd
om

e
X

A
SU

S
Z1

70
M

-P
LU

S
Su

n
Fi

re
 V

49
0

1-
Ch

ip
 V

M
SP

A
RC

 M
7

Po
w

er
Ed

ge
R9

30
PR

IM
ER

G
Y

RX
25

60
 M

2
H

3C
R4

90
0

G
2

In
sp

ur
N

F5
28

0M
4

Sp
ee

du
p

Sp
ee

du
p

Using all benchmarks

Using subset of 3 benchmarks

SPECspeed_INT SPECrate_INT

Fig. 5: Validation of SPECspeed and SPECrate INT subsets
using performance scores of commercial systems from

SPEC’s web page.

0

200

400

600

800

1000

1200

1400

0

1

2

3

4

5

6

7

8

In
te

gr
ity

Su
pe

rd
om

e
X

Pr
oL

ia
nt

M
L3

50
 G

en
9

Su
n

Fi
re

 V
49

0

Po
w

er
Ed

ge
R9

30
PR

IM
ER

G
Y

RX
25

60
 M

2
H

3C
R4

90
0

G
2

In
te

gr
ity

Su
pe

rd
om

e
X

 P
ro

Li
an

t
D

L3
60

 G
en

9
Pr

oL
ia

nt
D

L3
80

 G
en

9
In

sp
ur

N
F5

28
0M

4
A

SU
S

Z1
70

M
-P

LU
S

Su
n

Fi
re

 V
49

0
1-

Ch
ip

 V
M

SP
A

RC
 M

7

Sp
ee

du
p

Sp
ee

du
p

Using all benchmarks

Using subset of 3 benchmarks

SPECspeed_FP SPECrate_FP

Fig. 6: Validation of SPECspeed FP and SPECrate FP
subsets using performance scores of commercial systems

from SPEC’s web page.

on the output of the specinvoke tool. For this analysis, ten
PCs are chosen covering 94% of variance using the Kaiser
criterion. We can see that for all the benchmarks, different
input sets have very similar characteristics. For example, the
five different input sets of 502.gcc r are clustered together in
the dendrogram plot. This is in contrast to more pronounced
variations between the various inputs for 403.gcc benchmark
in the CPU2006 [14].

We perform similar analysis on the different input sets
of the floating-point benchmarks. The 603.bwaves s and

Fig. 7: Dendrogram showing similarity between program
input sets of each SPEC 2017 INT benchmark.

Fig. 8: Dendrogram showing similarity between input sets of
each SPEC 2017 FP benchmark.

TABLE XI: List of representative input sets of CPU2017
benchmarks.

SPECrate INT benchmarks SPECspeed INT benchmarks
500.perlbench r - input set 1 600.perlbench s - input set 1

502.gcc r - input set 2 602.gcc s - input set 1
525.x264 r - input set 3 625.x264 s - input set 3

557.xz r - input set 1 657.xz s - input set 1
SPECrate FP benchmarks SPECspeed FP benchmarks
503.bwaves r - input set 1 603.bwaves s - input set 1

502.bwaves r benchmarks are the only two floating-point
benchmarks with multiple input sets. Figure 8 shows the
similarity between different input sets of the FP programs for
both rate and speed categories. Twelve PCs covering 94% of
the variance are used for this analysis. To identify the most
representative input set of each benchmark, we choose the
input set that is closest to the aggregated benchmark run. The
most representative input set of each benchmark is summarized
in Table XI. This analysis can help researchers in selecting the
most representative input set for each benchmark.
D. Are Rate and Speed Benchmarks Different?

So far, our analysis has considered the rate and speed bench-
marks separately. With the exception of a few benchmarks
(508.namd r, 510.parest r, 511.povray r, 526.blender r and
628.pop2 s), most benchmarks are included in both rate
and speed categories. Based on the information provided on
SPEC’s web page, rate and speed benchmarks differ in terms
of the workload sizes, compilation flags and run rules. For
example, SPEC’s web page suggests that the 603.bwaves s
benchmark has a memory usage of 11.2 GB versus the
0.8GB usage of the 503.bwaves r benchmark. Similarly, the
605.mc f s and 649. f otonik3d s benchmarks also have sig-
nificantly higher memory usage than their rate versions. Fur-
thermore, the speed benchmarks have much higher dynamic

instruction counts and runtime than the rate benchmarks.
However, do these differences translate into low-level micro-
architectural performance variations?

In this section, we use PCA and hierarchical clustering
analysis to compare performance characteristics of the rate
and speed benchmarks. We will use the dendrogram plots
in Figures 7 and 8 for performing this analysis. From the
dendrogram plot for the INT benchmarks in Figure 7, we
can observe that most benchmarks belonging to the rate and
speed categories have very similar performance characteristics.
Only three benchmarks (620.omnet pp s, 623.xalancbmk s
and 625.x264 s) have higher linkage distances to their respec-
tive rate versions. On the other hand, for the FP benchmarks,
many benchmarks have significant differences between the
rate and speed versions. The most notable example is the
638.imagick s benchmark, which has ≥30% higher misses in
all cache levels than the 538.imagick r benchmark, resulting
in the largest linkage distance between the two. Also, the high
memory usage of 603.bwaves s makes its cache performance
significantly different from its rate version. FP benchmarks
such as 644.nab s, 621.wr f s, 607.cactuBSSN s etc. have
similar performance as their rate equivalents. It should be
noted that we consider only single-core performance of the rate
and speed benchmarks (we suppress all OPENMP directives
in the speed benchmarks).

E. Benchmark Classification based on Branch and Memory
Behavior

So far, we have looked at the aggregate performance char-
acteristics of CPU2017 benchmarks based on all the metrics
shown in Table VII. However, many times, researchers are
interested in studying only particular aspects of program
performance, e.g., the control-flow predictor performance,
cache performance etc. In this section, we compare different
CPU2017 benchmarks in terms of the branch characteristics,
data cache and instruction cache performance. This similarity
analysis can help to identify important programs of interest
when performing branch predictor or cache related studies. We
analyze all the CPU2017 benchmarks from the speed and rate
categories without classifying them into integer and floating-
point groups.

Figure 9 shows the scatter-plot based on the first two
PCs of the branch characteristics, covering over 94% of
the variance. PC2 is dominated by branch mispredictions
per kilo instructions and PC1 is dominated by the fraction
of branch instructions and fraction of taken branches. The
541.leela r, 641.leela s, 505.mc f r and 605.mc f s bench-
marks have a higher fraction of difficult-to-predict branches,
and thus suffer from the highest branch misprediction rates
among the different CPU2017 programs. In the CPU2017
suite, 505.mc f r, 605.mc f s, 502.gcc r and 602.gcc r bench-
marks have the highest fraction of taken branches. It is also
interesting to observe that a majority of C++ benchmarks
(e.g., 623.xalancbmk s, 523.xalancbmk r, 620.omnet pp s,
520.omnet pp r) have a higher fraction of taken branches.
Also, most floating-point benchmarks are clustered together,
while the integer programs show greater diversity in terms of
control-flow behavior.

628.pop2_s

541.leela_r
641.leela_r

657.xz_s

523.xalancbmk_r

605.mcf_s

623.xalancbmk_s

505.mcf_r

519.lbm_r

603.bwaves_s

619.lbm_s

520.omnetpp_r

602.gcc_s

620.omnetpp_s

525.x264_r
631.deepsjeng_s

531.deepsjeng_r

CPU2017 Speed

CPU2017 Rate

Fig. 9: Comparing CPU2017 benchmarks in the PC
workload space based on branch performance metrics.

The PC1 values are dominated by high L1 and L2 data
cache miss rates. Thus, benchmarks having higher PC1 values
have poor data locality. The benchmarks that experience the
highest data cache miss rates among the CPU2017 suite are
605.mc f s, 505.mc f r, 607.cactuBSSN s, 507.cactuBSSN r,
649. f otonik3d s and 549. f otonik3d r. Out of these bench-
marks, the cactuBSSN and f otonik3d benchmarks have been
recently introduced in the CPU2017 suite. The PC2 values are
dominated by high data cache accesses. The 500.perlbench r,
600.perlbench s and 607.cactuBSSN s, 507.cactuBSSN r
benchmarks from CPU2017 suite have a high number of data
cache accesses. In the PC3-PC4 plot (see Figure 10), the
PC4 values are dominated by instruction cache accesses and
misses. SPEC CPU benchmarks have often been criticized
as they do not have as much instruction cache activity and
misses as some of the emerging big-data and cloud workloads
[10], [15], [11]. In general, CPU2017 benchmarks also do
not have very high instruction cache miss rates (instruc-
tion cache MPKI ranges between 0-11). Nonetheless, the
500.perlbench r, 600.perlbench s, 502.gcc r and 602.gcc r
benchmarks have the highest instruction cache access and miss
activity.

Although this analysis helps in identifying benchmarks that
exercise a certain performance metric, care should be exercised
when selecting benchmarks for any particular study so that the
chosen benchmarks cover the entire workload space. Selecting
outlier benchmarks will only emphasize the best-case or worst-
case performance behavior, which may lead to misleading
conclusions.

F. Difference Between Benchmarks from Same Application
Area
In this section, we classify the CPU2017 benchmarks based

on their application domain (see Table XII) and seek to
find (dis)similarities between different benchmarks belonging
to the same category. The benchmarks that are marked in
bold in the table have distinct performance behaviors and
should be used to cover the performance spectrum for their

503.bwaves_r

600.perlbench_s

638.imagick_s

502.gcc_r

620.omnetpp_s

603.bwaves_s

500.perlbench_r

602.gcc_s

507.cactuBSSN_r

523.xalancbmk_r

607.cactuBSSN_s

605.mcf_s

623.xalancbmk_s

511.povray_r

619.lbm_s

520.omnetpp_r

629.pop2_s

505.mcf_r

CPU2017 Speed

CPU2017 Rate

(a) PC1 vs PC2

619.lbm_s

519.lbm_r

549.fotonik3d_r
649.fotonik3d_s

508.namd_r

602.gcc_s

638.imagick_s

502.gcc_r

627.cam4_s

527.cam4_r

619.lbm_s

507.cactuBSSN_r

607.cactuBSSN_s
619.lbm_s

500.perlbench_r

600.perlbench_s

520.omnetpp_r

620.omnetpp_s

623.xalancbmk_s

503.bwaves_r

523.xalancbmk_r

CPU2017 Speed

CPU2017 Rate

(b) PC3 vs PC4

Fig. 10: CPU2017 (rate and speed) benchmarks in the PC
workload space using data and instruction cache

characteristics

respective application domain. For those benchmarks which
have similar performance behavior in the rate and speed mode,
we mark only the rate versions in the table (as they are short-
running). For example, in the compiler/interpreter application
domain, 502.gcc r and 500.perlbench r have distinct perfor-
mance characteristics, but are similar to their respective speed
equivalents. Thus, running the 502.gcc r and 500.perlbench r
benchmarks can represent the performance spectrum of that
application domain. As we discussed before, many CPU2017
benchmarks exhibit different behaviors in the rate and speed
versions. For example, for the fluid dynamics and climatology
domains, both speed and rate versions of the bwaves, roms,
lbm benchmarks should be used to achieve comprehensive
domain coverage.

TABLE XII: Classification of benchmarks based on
application domains.

INT Benchmarks
App domain SPEC 2017
Compiler 502.gcc r, 602.gcc s

500.perlbench r, 600.perlbench s
Compression 525.x264 r,557.xz r, 625.x264 s, 657.xz s
AI 531.deepsjeng r, 631.deepsjeng s, 541.leela r,

641.leela s, 548.exchange2 r, 648.exchange2 s
Combinatorial 505.mcf r, 605.mcf s
optimization
DE Simulation 520.omnetpp r, 620.omnetpp s
Doc Processing 523.xalancbmk r, 623.xalancbmk s

FP Benchmarks
App domain SPEC 2017
Physics 507.cactuBSSN r, 549.fotonik3d r,

607.cactuBSSN s, 649.fotonik3d s
Fluid 519.lbm r, 503.bwaves r.
dynamics 619.lbm s, 603.bwaves s
Molecular 508.namd r,544.nab r, 644.nab s
dynamics
Visualization 511.povray r,526.blender r,

538.imagick r,638.imagick s
Biomedical 510.parest r
Climatology 521.wrf r, 527.cam4 r, 628.pop2 s, 554.roms r

621.wrf s, 627.cam4 s, 654.roms s

V. BALANCE IN THE SPEC CPU2017 BENCHMARK
SUITES

This section compares the CPU2017 benchmarks with the
CPU2006 benchmarks and with popular workloads from other
domains, such as graph analytics, EDA and data-serving
applications. Finally, we also analyze the sensitivity of the
CPU2017 benchmarks to different micro-architectural perfor-
mance characteristics.
A. Comparing Performance Spectrum of

CPU2017 & CPU2006 Suites
The CPU2017 suite has revamped many of the benchmarks

in the SPEC CPU2006 suite or replaced them with larger/more
complex workloads in order to allow stress-testing of powerful
modern-day processors and their successors. However, it is
not known whether these workloads have different perfor-
mance demands or whether they stress machines differently
compared to CPU2006 benchmarks. Have the new CPU2017
benchmarks managed to expand the workload design-space
beyond the CPU2006 benchmarks? Did removing or replacing
any CPU2006 benchmarks cause a loss in coverage of the
performance spectrum?

Figure 11 shows the scatter plot comparing the CPU2006
and CPU2017 benchmarks based on the top four PCs (covering
80% of the variance), using the performance metrics shown in
Table VII. In terms of the PC1-PC2 spectrum, CPU2017 only
slightly expands the coverage area; however, more than 25%
of the CPU2017 benchmarks fall outside the space covered
by the CPU2006 programs. In terms of PC3-PC4 spectrum,
the 2017 benchmarks cover twice as much area as the 2006
benchmarks. From these results, we can conclude that the
CPU2017 benchmarks are spread farther in the workload
space as compared to the CPU2006 benchmarks in terms of
performance characteristics, thereby expanding the envelope of
the workload design space. The newly added benchmarks, such
as 507.cactuBSSN r, 654.roms s, 638.imagick s, 641.leela s,
etc., contribute significantly to this increased diversity.

It is also interesting to note that with the exception of a few
CPU2017 programs (e.g., 520.omnet pp r and 503.bwaves r),

429.mcf

607.cactuBSSN_s

507.cactuBSSN_r

471.omnetpp
605.mcf_s

505.mcf_r

523.xalancbmk_r

623.xalancbmk_s

641.leela_s

519.lbm_r

541.leela_r

654.roms_s

638.imagick_s

508.namd_r
470.lbm

CPU2017 Speed

CPU2017 Rate

CPU2006

(a) PC1 vs PC2

654.roms_s

429.mcf

521.wrf_r
523.xalancbmk_r

502.gcc_r

602.gcc_s

648.exchange2_s
548.exchange2_r

507.cactuBSSN_r

605.mcf_s
505.mcf_r

541.leela_r

454.calculix

CPU2017 Speed

CPU2017 Rate

CPU2006

(b) PC3 vs PC4

Fig. 11: CPU2017 (rate and speed) and CPU2006 benchmarks in the PC workload space.

which have been retained from the CPU2006 suite, most
benchmarks have quite different overall performance charac-
teristics as compared to their predecessors. This implies that
the benchmarks have been changed to not only have a higher
instruction count and bigger data footprint, but they have
also undergone changes in control-flow, instruction and data
locality behavior. As an exception, the 429.mc f benchmark
from the CPU2006 suite, a highly popular benchmark to
evaluate cache and memory behavior, exerts the data caches
(all cache-levels) more than the mc f benchmarks from the
CPU2017 suite (the 505.mc f r and 605.mc f s programs).

B. Comparison of Application Domains

Comparing the application domains of the CPU2017 (see
Table XII) and CPU2006 benchmarks, we can see that many
new application domains have been introduced or greatly
expanded in the CPU2017 suite. For example, the artificial in-
telligence domain has been expanded in the CPU2017 suite to
include three new benchmarks. Similarly, 510.parest r bench-
mark is added to represent the biomedical category. On the
other hand, many application domains from the CPU2006 suite
have been omitted as well: speech recognition (483.sphinx3),
linear programming (450.soplex), quantum chemistry (e.g.,
416.gamess, 465.tonto), etc.

Loss of an application domain does not necessarily imply
a loss in the performance spectrum. Any two benchmarks
from different application domains may have similar behavior
if they stress similar micro-architectural structures. Similarly,
two benchmarks from the same application domain can have
very different performance characteristics. Using PCA and
hierarchical clustering (see cluster plots in Figure 11), we ana-
lyzed every benchmark of the CPU2006 suite, which have been
removed from the CPU2017 suite and identify those CPU2006
benchmarks whose performance characteristics are not covered
by the CPU2017 benchmarks. Interestingly, we find that only
three benchmarks (429.mc f , 445.gobmk and 473.astar) are

not covered. The workload space of the remaining removed
benchmarks is covered by the CPU2017 benchmarks.
C. Comparing Power Consumption

Next, we compare the power characteristics of the CPU2017
and CPU2006 benchmarks. Power is measured by using
RAPL counters available on three different Intel-based micro-
architectures (Skylake, Ivybridge, and Broadwell). Figure 12
shows the scatter-plot based on first two PCs (covering
more than 84% of the variance). PC1 is dominated by the
power spent in DRAM memory and PC2 is dominated by
the power spent in the processor cores. Overall, we ob-
serve that the CPU2017 benchmarks have much higher cov-
erage space as compared to the CPU2006 benchmarks. It
should be noted that many newly added benchmarks (e.g.,
648.exchange2 s, 548.exchange2 r, 641.leela s, 554.roms r,
557.xz r, and 538.imagick r) contribute to this broader cover-
age. In general, CPU2006 benchmarks exhibit greater diversity
in the PC1 spectrum as compared to the PC2 spectrum. On the
other hand, over 20 benchmarks from the CPU2017 suite have
significant variations in terms of core power consumption. To
the best of our knowledge, CPU2017 benchmarks are more
computationally-intensive. This results in the higher diversity
in the core power consumption. Therefore, we can conclude
that CPU2017 benchmarks can be more useful than CPU2006
benchmarks for power/energy efficiency related studies.
D. Case Study on EDA Applications

Applications from the Electronic Design Automation (EDA)
domain were included in early SPEC CPU benchmark suites
(e.g., CPU2000). However, EDA benchmarks were removed
from the CPU2006 suite. Nonetheless, it has been shown by
prior research that CPU2006 suite contains several benchmarks
that show similar behavior as the EDA benchmarks [14],
which makes the CPU2006 suite balanced even without the
EDA applications. No EDA application is included in the
CPU2017 suite either. Do the CPU2017 benchmarks cover the

CPU2006

CPU2017 Speed

CPU2017 Rate

Fig. 12: CPU2017 (rate and speed) benchmarks in the PC
workload space using power characteristics.

performance spectrum of the EDA applications? To answer
this, we select two benchmarks from the CPU2000 suite:
175.vpr and 300.twol f . Figure 13 shows the dendrogram plot
comparing the CPU2017 benchmarks, EDA benchmarks and
several graph analytics and database applications (which we
will discuss next). From the figure, we can clearly see that the
EDA benchmarks are close to many CPU2017 applications
(especially 505.mc f r and 605.mc f s). Therefore, although
the EDA application domain is still not included in new
CPU2017 suite, the hardware behavior of the EDA applica-
tions are well covered.
E. Case Study on Database Applications

The big-data revolution has created an unprecedented de-
mand for efficient data management solutions. While the
traditional data management systems were primarily driven
by relational database management systems based on the
structured query language (SQL), recent years have seen a rise
in the popularity of NoSQL databases. Several prior research
studies have compared the CPU2006 benchmarks with the
database applications and have concluded that their perfor-
mance characteristics are highly different [15], [16], [10]. In
this section, we compare the performance of the CPU2017
benchmarks with a popular NoSQL database, Cassandra [17]
running the Yahoo! Cloud Serving Benchmark (YCSB) [18]
benchmarks. Figure 13 shows that the database applications
(cas−WA and cas−WC) also have very different characteris-
tics than the CPU2017 benchmarks. Deep diving into their
performance characteristics, we can see that the difference
between the two application classes is primarily caused by
their instruction cache and instruction TLB performance.
F. Case Study on Graph Applications

Graph processing workloads [19], [20], [21], [22], [23] have
recently gained attention from both system and architecture
researchers. Many architects have proposed various hardware
accelerators [24], [25] to solve the problem of random mem-
ory access from hardware side, as it is one of the major
bottlenecks for most graph workloads. To test the balance
of SPEC 2017 benchmarks, we compare two popular graph
analytics workloads with two real-world graphs. Figure 13
shows that pagerank (pr) has distinct program characteristics

641.leela_s
541.leela_r

631.deepsjeng_s
531.deepsjeng_r

657.xz_s
557.xz_r

graph-CC-lj
graph-CC-orkut

525.x264_r
621.wrf_s
521.wrf_r

644.nab_s
544.nab_r

538.imagick_r
527.cam4_r
654.roms_s
554.roms_r

503.bwaves_r
510.parest_r
628.pop2_s
508.namd_r

519.lbm_r
600.perlbench_s
500.perlbench_r

511.povray_r
602.gcc_s
502.gcc_r

648.exchange2_s
548.exchange2_r

625.x264_s
526.blender_r

627.cam4_s
620.omnetpp_s
520.omnetpp_r

605.mcf_s
505.mcf_r

175.vpr
300.twolf

619.lbm_s
649.fotonik3d_s
549.fotonik3d_r

603.bwaves_s
638.imagick_s

623.xalancbmk_s
523.xalancbmk_r

graph-PR-lj
graph-PR-orkut

607.cactuBSSN_s
507.cactuBSSN_r

cas-WA
cas-WC

0 5 10 15 20 25

Linkage Distance

Fig. 13: Similarity among CPU2017, EDA, graph analytics,
and database applications.

with both graph inputs, having high linkage distance due to
high L1 TLB activity caused by random data requests [26],
[27]. However, Connected Components (cc) has very similar
hardware performance behavior to SPEC benchmarks, such as
the speed and rate versions of leela, deeps jeng and xz. This
shows that the newly added benchmarks improve the balance
of the suite. Therefore, missing graph applications in CPU2017
suite have not significantly impacted the overall balance of the
CPU2017 suite.
G. Sensitivity of CPU2017 Programs to Performance Char-

acteristics
In this section, we present a classification of different

CPU2017 programs based on their sensitivity to branch predic-
tors, data cache and TLB configurations across four different
machines. To measure the sensitivity of a program to different
branch predictor, cache and TLB configurations, we ranked the
different CPU2017 programs based on these characteristics on
every machine. The difference in ranks of the same benchmark
across all machines is used as an indicator of the sensitivity
of the benchmark for a specific characteristic.

Table XIII shows the classification of different CPU2017

TABLE XIII: Sensitivity to branch misprediction rate, L1
D-cache miss rate and TLB miss rate. Benchmarks with low

sensitivity are not listed.
Branch Prediction

High 603.bwaves s, 503.bwaves r

Medium
544.nab r, 521.wrf r, 511.povray r, 527.cam4 r,
648.exchange2 s, 623.xalancbmk s, 621.wrf s,
602.gcc s, 627.cam4 s, 628.pop2 s

L1 D-cache
High 549.fotonik3d r, 649.fotonik3d s

Medium
548.exchange2 r, 505.mcf r, 519.lbm r,
648.exchange2 s, 627.cam4 s, 607.cactuBSSN s & 628.pop2 s,

L1 D TLB

High
503.bwaves r, 507.cactuBSSN r,
557.xz r, 511.povray r,
657.xz s, 649.fotonik3d s, 607.cactuBSSN s

Medium

526.blender r, 544.nab r, 508.namd r,
549.fotonik3d r, 500.perlbench r, 521.wrf r,
541.leela r, 527.cam4 r, 531.deepsjeng r
631.deepsjeng s, 621.wrf s, 641.leela s,
600.perlbench s, 603.bwaves s,

programs based on their sensitivity to branch predictor, L1 data
cache and TLB configurations. For every characteristic, bench-
marks are categorized into low, medium and highly sensitive
categories. The most important observations are as follows:
both 503.bwaves r and 603.bwaves s show a lot of variation
in terms of branch performance. In terms of data cache
performance, 549. f otonik3d r and 649. f otonik3d s show
significant performance variability across different machines.
In terms of the data TLB performance, the 503.bwaves r,
507.cactuBSSN r, 557.xz r, 511.povray r, 649. f otonik3d s
and 607.cactuBSSN s benchmarks experience the greatest
variability. One should note that having the highest sensi-
tivity to a parameter does not imply that the benchmark
has the worst/best behavior in terms of that parameter. For
example, 541.leela s, 641.leela r, 657.xz s and 605.mc f s
benchmarks have low sensitivity to branch predictors, because
they perform similarly poor across the different machines. In
fact, they suffer from the highest misprediction rates across
all the systems.

VI. LARGE SCALE PHASE ANALYSIS

A. Phase-level Variability
In this section, we explore the phase behavior of the SPEC

CPU2017 speed benchmarks, and the same experiments are
conducted on the SPEC CPU2006 benchmarks as well for
comparison. The prior generations of SPEC CPU benchmarks
have exhibited large scale phases [28], [29]. We investigate
whether the large scale phases in the SPEC CPU 2017
benchmarks have many fluctuations or are they largely stable.

The analysis is based on statistics of performance counter
sampling. We periodically (e.g., 100 milliseconds) read per-
formance event counts (e.g., instructions, cycles) then record
them. Later using all the samples from the execution of
a benchmark, we calculate three statistical measures: mean,
standard deviation and coefficient variation (COV). Mean
is the average of a set of samples, and standard deviation
quantifies the amount of dispersion of the samples. COV is
also known as relative standard deviation, because it is the
ratio of the standard deviation to the mean. To some extent,
COV removes the influence caused by the differences existing
in means, and tries to make the comparison in a fairer manner.
(For metrics that is always no less than zero, like IPC and

MPKI, standard deviation is somehow proportional to mean.)
Programs with large COV indicate more fluctuations.

TABLE XIV: Variability in SPEC CPU2017 speed
benchmarks
IPC L1 D$ MPKI

Benchmarks mean stdev2 COV3 mean stdev COV

600.perlbench s 2.90 0.12 0.04 1.43 0.74 0.52
602.gcc s 1.81 0.34 0.19 12.16 6.09 0.50
605.mcf s 0.70 0.22 0.31 91.79 67.60 0.73
620.omnetpp s 1.07 0.13 0.12 29.67 2.69 0.09
623.xalancbmk s 1.58 0.45 0.28 44.84 6.60 0.15
625.x264 s 2.75 0.06 0.02 0.98 0.63 0.64
631.deepsjeng s 1.82 0.23 0.13 5.92 23.11 3.90
641.leela s 1.25 0.04 0.03 4.01 1.04 0.26
648.exchange2 s 2.41 0.03 0.01 0.01 0.00 0.00
657.xz s 1.50 0.45 0.30 12.48 40.41 3.24

Average of INT 1.78 0.21 0.14 20.33 14.89 1.00

603.bwaves s 3.11 0.93 0.30 9.17 15.10 1.65
607.cactuBSSN s 1.27 0.27 0.21 108.50 52.31 0.48
619.lbm s 0.86 0.15 0.17 80.92 14.67 0.18
621.wrf s 1.29 0.16 0.12 12.76 11.04 0.87
627.cam4 s 1.81 0.09 0.05 11.73 3.03 0.26
628.pop2 s 1.97 0.08 0.04 26.03 6.05 0.23
638.imagick s 0.85 0.20 0.24 10.83 3.40 0.31
644.nab s 1.47 0.15 0.10 9.80 3.09 0.32
649.fotonik3d s 1.41 0.72 0.51 42.38 25.13 0.59
654.roms s 1.73 0.50 0.29 32.67 20.85 0.64

Average of FP 1.58 0.33 0.20 34.48 15.47 0.55

Table XIV lists statistics on IPC of SPEC CPU2017 speed
applications. Additionally, L1 data cache MPKI is studied as
well, because Table II shows that among all the important
characteristics having influence on performance, L1 data cache
MPKI has the the greatest variation between benchmarks. We
choose speed version here, because it only runs single copy
of the program as what SPEC CPU2006 does. Hence, we can
get rid of such a concern that rate version has more variation
because of the interference between multiple copies. For those
programs having more than one input, the representative one
(see the Table XI) is used. According to our experiments,
we observe that some of the new programs, for instance
exchange2, have a stable behavior in terms of IPC and L1
data cache MPKI, while some benchmarks, like 605.mc f s
and 603.bwaves s, have more performance variations. Such
phase-level analysis reveals a great diversity on the variation
level among programs. This phenomenon is observed in SPEC
CPU2006 as well.

Benchmarks such as 605.mc f s, 623.xalancbmk s,
657.xz s show high variations, 600.perlbench s, 641.leela s,
648.exchange2 s show very low variations, and others
are medium. Among the FP programs, 603.bwaves s,
607.cactusBSSN s, 649. f otonik3d s, and 654.roms s show
high fluctuations, while 627.cam4 s, 628.pop2 s are very
stable.

To facilitate the comparison of CPU2017 with CPU 2006,
Table XVI shows the statistics for SPEC CPU2006 bench-
marks. In general, the variability of the two suites are
comparable. The CPU2017 suite includes some programs
(631.deeps jeng s and 657.xz s) with very high COV in L1

2stdev stands for standard deviation.
3COV stands for Coefficient Of Variation.

TABLE XV: Level of Phase Variations in the SPEC CPU
2017 Integer and FP Programs (based on IPC). The omitted

ones have medium level of variability.
High (INT) 605.mcf s, 623.xalancbmk s, 657.xz s
Low (INT) 600.perlbench s, 641.leela s, 648.exchange2 s

High (FP) 603.bwaves s, 607.cactusBSSN s, 649.fotonik3d s, 654.roms s
Low (FP) 627.cam4 s, 628.pop2 s

TABLE XVI: Variability in SPEC CPU2006 benchmarks
IPC L1 D$ MPKI

Benchmarks mean stdev COV mean stdev COV

400.perlbench 2.69 0.18 0.07 4.20 1.47 0.35
401.bzip2 1.93 0.38 0.20 8.35 2.38 0.29
403.gcc 1.48 0.80 0.54 50.88 47.95 0.94
429.mcf 0.39 0.18 0.46 154.16 62.39 0.40
445.gobmk 1.38 0.12 0.09 4.96 1.77 0.36
456.hmmer 2.66 0.00 0.00 4.53 0.01 0.00
458.sjeng 1.66 0.07 0.42 2.36 0.60 0.25
462.libquantum 2.47 0.15 0.06 23.71 3.30 0.14
464.h264ref 2.50 0.16 0.06 13.26 4.01 0.30
471.omnetpp 0.86 0.13 0.15 35.95 4.94 0.14
473.astar 1.16 0.74 0.64 28.95 21.29 0.73
483.xalancbmk 1.91 0.61 0.32 27.28 4.53 0.17

Average of INT 1.75 0.29 0.22 29.88 12.89 0.34

410.bwaves 2.03 0.62 0.31 24.74 10.26 0.41
416.gamess 3.38 0.18 0.05 4.82 1.42 0.29
433.milc 0.83 0.34 0.41 26.10 5.27 0.20
434.zeusmp 1.74 0.43 0.25 24.78 11.63 0.47
435.gromacs 2.53 0.29 0.11 11.06 4.23 0.38
436.cactusADM 1.76 0.30 0.17 7.97 0.21 0.03
437.leslie3d 2.21 0.04 0.02 35.81 0.30 0.01
444.namd 2.15 0.16 0.07 10.46 1.95 0.19
447.dealII 2.34 0.91 0.39 15.84 23.04 1.45
450.soplex 1.16 0.08 0.07 53.08 9.27 0.17
453.povray 2.48 0.08 0.07 20.23 1.88 0.09
454.calculix 2.76 0.45 0.16 4.06 7.48 1.84
459.GemsFDTD 1.53 0.18 0.12 33.38 6.03 0.18
465.tonto 2.22 0.45 0.20 8.27 6.39 0.77
470.lbm 1.34 0.04 0.03 51.23 0.94 0.02
481.wrf 2.40 0.57 0.24 11.00 3.28 0.30
482.sphinx3 2.25 0.12 0.05 17.89 2.08 0.12

Average of FP 2.07 0.31 0.16 21.22 5.63 0.41

data cache MPKI compared to the COV in CPU2006 L1
MPKI. The program 456.hmmer, has COVs less than 0.01
on both IPC and L1 data cache MPKI. While programs like
473.astar, have a COV 2× larger compared to the average.

0 1000 2000 3000 4000 5000 6000 7000
100ms Interval

0.0

0.5

1.0

1.5

2.0

IP
C

mean=0.70 stdev=0.22
start 0.905s stop 725.183s

mcf

Fig. 14: IPC time varying graph of 605.mcf s

Here we present two example time varying graphs to
illustrate the phase level behaviors, but graphs for other bench-
marks could be found in the Appendix A.Figure 14 shows

that the average IPC (in a 100ms interval) of 605.mc f s. It
varies between 0.15 and 2.15. Obviously, there are several
periodical patterns, for example, the curve from about interval
2700 to interval 3300 looks like the curve from interval 3300
to interval 4100. Compared with the integer benchmarks, a
few of the floating point benchmarks appear to have frequent
fluctuations between a few values. In order to show the phase
behavior of those benchmarks, we use scatter plots (as in
Figure 15 , where samples are drawn as separated dots, instead
of connecting points with lines (with connected dots, there is
a large band making it difficult to know what the actual data
is) . For example, in the Figure 15 which illustrates the IPC
of 649. f otonik3d s, we could see there is a ”line” formed
by relatively denser samples around 2.0. But the ”line” is not
continuous and straight, for instance, before and after 5000
seconds, there are two short terms, when the ”line” gets broken
and promoted a bit more higher. Similarly, there are two more
”lines” around 2.5 and 0.8. But there are few samples left
apart from those three dense ”lines”. Graphs for the other
18 benchmarks in the SPEC CPU2017 Speed suite are in
Appendix A for readers’ further reference.

0 250 500 750 1000
time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
IP

C

mean=1.41 stdev=0.72
start 0.101s stop 1189.073s

fotonik3d_s

Fig. 15: IPC time varying graph of 649.fotonik3d s

In conclusion, we can find some periodically repeating
patterns and discrete performance levels from the time varying
graphs of SPEC CPU2017 benchmarks. Even averaged over
100ms intervals, there are recognizable differences between
phases.

Similar to what we did on SPEC CPU2017 speed bench-
marks, we analyze the variation and phase-level behavior of
SPEC CPU2006 for comparison. The time varying graphs
for 12 integer and 17 floating point benchmarks in SPEC
CPU2006 suite can be found in the Appendix A. Compared
with SPEC CPU2017 benchmarks, more benchmarks in SPEC
CPU2006 appear to have more obvious and interesting phase-
level behaviors. An interesting one is 473.astar, whose time
varying graph illustrate 4 very long phases in contrast to
frequently fluctuating phases in 454.calculix. Others like
401.bzip2, 416.gamess, 447.dealII and 465.tonto show pe-
riodically repeating patterns through the whole execution.

In summary, phase-level behaviors observed in SPEC
CPU2006 suite are similar to what is observed in SPEC
CPU2017 suite.

B. Simulation Points
Prior research [30] has shown that a small number of large

scale phases can capture the bulk of information in the earlier
SPEC CPU benchmark suites. This section presents generated
SimPoints of the SPEC CPU2017 benchmarks and compare
the SimPoints with prior SPEC CPU suites. Before presenting
the data for SPEC CPU2017, we will give a brief overview of
how the SimPoints are generated.

The SimPoint generator first slices the program into many
equal sized program chunks. For each region, SimPoint mea-
sures its Basic Block Vector (BBV), which is a count of how
many times a single basic block is executed within a region.
The multi-dimensional BBV is compressed into an approxi-
mately 16-dimensional vector through a linear transformation.
Using this reduced BBV, SimPoint then attempts to find the
optimal clustering of the programs regions using K-means
clustering with K varying up to a certain maximum value.
Once clustered, a single region is chosen from each cluster
as a representative SimPoint. More information on SimPoints
can be found in the original paper by Sherwood et al. [30].
SimPoint in effect compresses programs into representative
regions that can be used to accurately model the overall
program behavior with a significantly reduced simulation time.

We generated the SimPoints for SPEC CPU2017 using
standard configurations. The actual benchmark binaries are
compiled using the default flags outlined on SPEC’s website.
Once the binaries are compiled we ran the SimPoint generator
with the following settings. We set the region size to 100
million instructions and allow a maximum of 32 clusters. It
would be interesting to find out whether the new benchmarks
contain more distinct phases and will need more clusters to
represent the behavior.

We have posted the SimPoint results for SPEC CPU2017
online at our public GitHub repository 1.

Most of the benchmarks show phases with very diverse
behavior. Hence it is more appropriate to identify multiple
simulation points to capture the variety of behaviors. We ran
the SimPoint generator to identify multiple simulation points.
The starting instruction count of the SimPoints can be seen in
Table XVII. The percentage weights for each SimPoint is also
indicated. The SimPoints are presented in descending order
of weights. These SimPoints can be simulated in a simulator
that supports fast forwarding or by using pinplay replay tools.
Tables XVIII and XIX present the number of SimPoints for
SPEC CPU2017 and SPEC CPU 2006. The SimPoints are
available for download upload from the github repository [31].

Comparing CPU2017 with CPU2006 we can see the Sim-
Point counts have had minor changes. An interesting observa-
tion is that despite the approximately 10× increase in runtimes
in CPU 2017, the number of simulation points (distinct phases)
have largely stayed the same. The number of SimPoints in
the integer benchmarks range from 8 (620.omnet pp s) to 29
(641.leela s), but the average number of SimPoints for the
integer benchmarks increased slightly from 16.4 to 19. This
is a much smaller increase compared to the 10× increase in

1GitHub Repo URL: https://github.com/UT-LCA/Scalability-Phase-
Simpoint-of-SPEC-CPU2017/releases/tag/v1.0

the dynamic instruction count. This means that the programs
in SPEC CPU2017 have a similar number of phases as SPEC
CPU2006 but re-execute those phases repeatedly. This can also
be seen in the time varying graphs in Appendix A.

Although the dynamic instruction counts of the floating
point benchmarks are large, Table XIX shows that 90%
program coverage for floating point on average requires only
about 5 simulation points. This is less than half the number
needed for the integer benchmarks. There is also less variation
in the floating point benchmarks.

VII. RELATED WORK

Vandierendonck and Bosschere [32] analyzed the CPU2000
benchmarks and identified a smaller benchmark subset that
can accurately predict the performance of the entire suite.
Similarly, Giladi and Ahituv [33] found that reducing the
SPEC89 suite into 6 programs does not affect the SPEC rating.
Phansalkar et al. [14] analyzed the redundancy and benchmark
balance in CPU2006 suite. Eeckhout et al. [34], [35] leverage
PCA and clustering analysis to select representative program
inputs for processor design space exploration. Sherwood et
al. [29] proposed to use basic block distribution to find repre-
sentative simulation points for SPEC CPU 2000 benchmarks.
Nair et al. [36] leverage this method to generate simpoints
for SPEC CPU 2006 benchmark suite. Moreover, Eeckhout et
al. [37] studies the (dis)similarity among these benchmarks to
reduce the simulation time for entire suite.

Che et al. [38] compared GPU benchmarks from the Rodinia
suite to contemporary CMP benchmarks. Sharkawi et al. [39]
performed performance projection of HPC applications using
the SPEC CFP06 suite. Woodlee [40] compared the SPEC
CPU06 suite with SPEC OMP01 suite to study the trans-
ferability between them. Goswami et al. [41] and Ryoo et
al. [42] performed comprehensive analysis to explore GPGPU
workloads, analyzed their performance spectrum and studied
the similarity among different GPGPU benchmark suites.
Several research studies [43], [15], [10], [16] characterized
big-data benchmarks and found that these benchmarks cannot
fully represent real world big data workloads. Wu et al. [44],
[45] proposed benchmark suites for emerging mobile platform
and perform comprehensive studies in terms of energy, thermal
and performance.

VIII. CONCLUSION

In this paper, we studied the similarities and redundancies
among the CPU2017 benchmarks using performance counter
based characterization on several state-of-the-art machines.
Our analysis shows that using a subset of 3 programs can accu-
rately predict the performance of SPECrate INT, SPECspeed
INT, SPECrate FP, and SPECspeed FP sub-suites with ≥93%
accuracy. Moreover, we evaluated the representativeness of
different input sets of CPU2017 benchmarks, and identified
the most representative inputs. We also observed that rate
and speed versions of most benchmarks (except imagick,
f otonik3d etc.) have very similar performance characteristics.

To evaluate the balance in the CPU2017 suite, we com-
pared the application domain coverage, the performance and
power spectrum of CPU2017 benchmarks to the CPU2006
benchmarks. We observed that the included CPU2017 pro-

https://github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/releases/tag/v1.0
https://github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/releases/tag/v1.0

TABLE XVII: Multiple SimPoints of SPEC CPU2017
Benchmarks Start Instructions(100 million)/Weight(%)

600.perlbench s
(214681/28.85), (924424/12.60), (1277200/8.97), (1327590/7.96), (58779/7.77), (54633/5.43), (521547/5.39), (1233410/3.88), (752064/2.42), (701679/2.40),
(789265/2.19), (1258340/2.06), (236975/1.78), (48882/1.71), (482810/1.44), (467463/0.77), (478321/0.68), (29698/0.68), (199580/0.61), (607466/0.55),
(236842/0.54), (1339730/0.53), (1044350/0.30), (790578/0.30), (1141890/0.23)

602.gcc s (23077/48.65), (35817/23.62), (21069/12.00), (2812/5.28), (29282/3.60), (1353/1.36), (35911/1.21), (34118/0.87), (24369/0.84), (33794/0.82), (33733/0.69),
(36933/0.44), (27933/0.36), (27185/0.17), (910/0.09)

605.mcf s (5943/21.24), (16201/12.54), (6315/10.82), (14440/10.75), (587/7.69), (6563/6.97), (13680/6.04), (7430/5.14), (14107/3.40), (12030/3.36), (12099/2.41),
(9255/2.25), (7606/2.12), (14669/2.02), (7843/0.93), (15653/0.89), (12189/0.50), (17489/0.42), (9375/0.27), (15180/0.19), (1765/0.07)

620.omnetpp s (6053/32.56), (6737/30.32), (2966/15.25), (623/9.00), (1387/6.55), (9548/5.76), (10990/0.51), (10994/0.06)

625.x264 s (49503/16.54), (22073/14.94), (3910/12.74), (42644/12.32), (10435/12.03), (46339/10.83), (26034/5.69), (41393/4.04), (11557/4.00), (24352/3.17), (4650/1.17),
(11998/1.08), (53156/0.96), (31753/0.47)

631.deepsjeng s (17909/8.84), (21851/7.87), (84/7.02), (9700/7.00), (20151/6.98), (6204/6.37), (637/5.85), (7853/5.74), (20454/5.69), (15965/5.60), (14515/5.28), (9851/5.05),
(3602/4.01), (12151/3.94), (5259/3.73), (11812/2.92), (11347/2.76), (3900/2.53), (15357/2.39), (0/0.46)

641.leela s
(13198/8.63), (10150/7.15), (9272/6.85), (9870/6.75), (10635/6.57), (6871/5.64), (12252/5.49), (19208/4.29), (7341/4.17), (1830/3.90), (17685/3.67), (6004/3.59),
(4934/3.45), (17328/3.37), (4952/3.10), (923/2.66), (21528/2.52), (1463/2.50), (22193/2.40), (1105/2.03), (820/1.91), (12296/1.84), (13929/1.60), (15764/1.47),
(1193/1.36), (6041/1.15), (21296/0.98), (3514/0.96), (4/0.04)

648.exchange2 s (41189/9.81), (46142/9.62), (28949/9.02), (32593/7.77), (46603/7.71), (11758/7.30), (50970/7.10), (27060/6.76), (3146/6.75), (66198/4.31), (38948/3.81),
(17591/3.70), (31131/3.13), (20553/3.04), (9923/2.98), (56692/2.95), (424/1.68), (5824/1.63), (10190/0.95)

657.xz s (36567/13.00), (16895/9.39), (1400/8.92), (39442/8.76), (38731/6.97), (31742/6.59), (35941/6.33), (6913/5.80), (25357/5.25), (28962/4.09), (35764/3.86),
(22587/3.21), (10870/3.02), (45973/2.94), (29995/2.88), (39598/2.72), (45675/2.26), (40484/2.04), (38264/1.88), (18/0.07), (44672/0.02)

603.bwaves s (59291/71.46), (248007/14.61), (287430/5.89), (313019/3.23), (315053/2.21), (95707/1.67), (318138/0.34), (263763/0.31), (303136/0.28)

619.lbm s (7134/69.69), (10742/14.92), (43825/4.43), (11740/4.36),(6240/3.65), (9400/2.38),(8491/0.56), (0/0.01)

638.imagick s (551856/43.83), (394592/27.24), (467091/8.12), (28460/4.97), (91452/4.24), (4209/2.76), (41027/2.50), (515828/2.45), (72623/1.27), (656007/1.21),
(651005/0.78), (10504/0.54), (102890/0.04), (272722/0.04), (567401/0.04)

644.nab s (9237/34.24), (52046/22.75), (56855/17.91), (58776/9.76), (122599/7.45), (133757/6.91),(48950/0.26), (120710/0.25), (130263/0.16), (104620/0.14),
(76009/0.09), (84205/0.08)

649.fotonik3d s (19088/43.91), (2468/29.02), (56395/6.90), (1608/4.72), (11626/2.65), (53620/2.21), (17985/2.12), (33097/1.95), (35644/1.20), (38568/0.91), (31846/0.83),
(44869/0.83), (3563/0.80), (46262/0.64), (33943/0.49), (43842/0.41), (36949/0.41)

TABLE XVIII: SimPoints of SPEC CPU2006 benchmarks.
Benchmarks Simulation 90 percentile Instructions

Points Points (billions)
SPEC Integer

400.perlbench-splitmail 21 12 756.9
401.bzip2-combined 17 13 371.92
403.gcc-scilab 17 9 68.57
429.mcf 14 9 464.98
445.gobmk-trevord.tst 18 13 359.52
456.hmmer-retro.hmm 17 15 2472.91
458.sjeng 16 12 2654.13
462.libquantum 22 15 4534.27
464.h264ref-sss encoder main 20 14 3289.98
471.omnetpp 9 6 787.08
473.astar-rivers.cfg 8 6 961.44
483.xalancbmk 18 13 1401.34
Int Average 16.4 11.4 1510

SPECspeed Floating-point
410.bwaves 22 10 2780.95
416.games-triazolium 15 11 3717.7
433.milc 23 18 1649.57
434.zeusmp 26 19 2273.56
435.gromacs 20 19 2267
436.cactusADM 21 3 3115.92
437.leslie3d 22 20 4745.74
444.namd 26 18 3293.89
447.dealII 21 14 2809.95
450.soplex-ref.mps 21 17 414.17
453.povray 20 15 1287.36
454.calculix 10 7 8499.78
459.gemsFDTD 20 12 308.88
465.tonto 20 15 3002.2
470.lbm 21 12 1567.55
482.sphinx 20 16 3135.75
FP Average 20.5 14.1 2804

grams expand the workload coverage area in terms of both
performance and power, especially due to the addition of new
benchmarks. Furthermore, an analysis from the perspective

TABLE XIX: SimPoints of SPEC CPU2017 speed
benchmarks.

Benchmarks Simulation 90 percentile Instructions
Points Points (billions)

SPECspeed Integer
600.perlbench s 25 13 2696
602.gcc s 15 5 7226
605.mcf s 21 11 1775
620.omnetpp s 8 5 1102
625.x264 s 14 9 12546
631.deepsjeng s 20 16 2250
641.leela s 29 21 2245
648.exchange2 s 19 15 6643
657.xz s 21 15 8264
Int Average 19.1 12.22 4607

SPECspeed Floating-point
603.bwaves s 9 3 66395
619.lbm s 8 4 4416
638.imagick s 15 6 66788
644.nab s 12 5 13489
649.fotonik3d s 17 7 4280
FP Average 12.2 5 24204

of program characteristics shows that the CPU2017 programs
offer characteristics broader than the EDA programs’ space,
some overlap with graph analytics, but do not cover the
characteristics of the Cassandra workloads. Since addition of
the multithreaded programs is one of the major changes in
the CPU2017 suite compared to prior suites, we analyze the
scalability of the multithreaded programs. We grouped the
multithreaded programs into groups with high, medium, and
low scalability. We also study the large scale phases in the
programs and identify simulation points for simulation-based
computer architecture research.

IX. ACKNOWLEDGEMENTS

The authors express their gratitude to John Henning for
providing technical support/data and to Jeff W. Reilly for
facilitating the clustering analysis. The authors would also like
to thank Texas Advanced Computing Center (TACC) at UT
Austin for providing compute resources. The authors of this
work are supported partially by National Science Foundation
(NSF) under grant numbers 1725743 and 1745813. Any opin-
ions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of NSF or other sponsors.

REFERENCES

[1] “SPEC CPU2017.” https://www.spec.org/cpu2017.
[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, Aug. 2011.

[3] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marssx86: A full system
simulator for x86 cpus,” 2011.

[4] C. Jiang, Z. Yu, L. Eeckhout, H. Jin, X. Liao, and C. Xu, “Two-level
hybrid sampled simulation of multithreaded applications,” ACM Trans.
Archit. Code Optim., vol. 12, pp. 39:1–39:25, Nov. 2015.

[5] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in SC, 2011.

[6] C. Jiang, Z. Yu, H. Jin, C. Xu, L. Eeckhout, W. Heirman, T. E.
Carlson, and X. Liao, “Pcantorsim: Accelerating parallel architecture
simulation through fractal-based sampling,” ACM Trans. Archit. Code
Optim., vol. 10, pp. 49:1–49:24, Dec. 2013.

[7] “SPEC CPU2006.” https://www.spec.org/cpu2006.
[8] “Linux perf tool.” https://perf.wiki.kernel.org/index.php/Main Page.
[9] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring program

similarity: Experiments with spec cpu benchmark suites,” ISPASS,
pp. 10–20, 2005.

[10] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in ASPLOS, (New York, NY, USA), pp. 37–48, ACM, 2012.

[11] W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, Z. Li, J. Zhan, Y. Qi,
Y. He, S. Gong, X. Li, S. Zhang, and B. Qiu, “Bigdatabench: a big data
benchmark suite from web search engines,” CoRR, vol. abs/1307.0320,
2013.

[12] A. Yasin, “A top-down method for performance analysis and counters
architecture,” 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), vol. 00, pp. 35–44, 2014.

[13] G. Dunteman, Principal Component Analysis. Sage Publications, 1989.
[14] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy and

application balance in the spec cpu2006 benchmark suite,” in ISCA,
2007.

[15] R. Panda, C. Erb, M. Lebeane, J. Ryoo, and L. K. John, “Performance
characterization of modern databases on out-of-order cpus,” in IEEE
SBAC-PAD, 2015.

[16] R. Panda and L. K. John, “Data analytics workloads: Characterization
and similarity analysis.,” in IPCCC, pp. 1–9, IEEE, 2014.

[17] “Cassandra.” wiki.apache.org/cassandra/FrontPage.
[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in SoCC, pp. 143–
154, 2010.

[19] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John, “Data
partitioning strategies for graph workloads on heterogeneous clusters,”
in SC, 2015.

[20] S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda,
A. Gerstlauer, and L. K. John, “Proxy-guided load balancing of graph
processing workloads on heterogeneous clusters,” in ICPP, 2016.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
OSDI, 2012.

[22] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng, “Squeezing
out all the value of loaded data: An out-of-core graph processing system
with reduced disk i/o,” in 2017 USENIX Annual Technical Conference
(USENIX ATC 17), (Santa Clara, CA), pp. 125–137, USENIX Associa-
tion, 2017.

[23] M. Zhang, Y. Wu, K. Chen, X. Qian, X. Li, and W. Zheng, “Exploring
the hidden dimension in graph processing,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), (Savan-
nah, GA), pp. 285–300, USENIX Association, 2016.

[24] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim:
Enabling instruction-level pim offloading in graph computing frame-
works,” in HPCA, 2017.

[25] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016.

[26] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking tlb
designs in virtualized environments: A very large part-of-memory tlb,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17, (New York, NY, USA), pp. 469–480, ACM,
2017.

[27] Y. Marathe, N. Gulur, J. H. Ryoo, S. Song, and L. K. John, “Csalt:
Context switch aware large tlb,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17, (New York, NY, USA), pp. 449–462, ACM, 2017.

[28] A. A. Nair and L. K. John, “Simulation points for spec cpu 2006,” in
IEEE International Conference on Computer Design (ICCD), 2008.

[29] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in PACT, pp. 3–14, 2001.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS X, (New York, NY, USA),
pp. 45–57, ACM, 2002.

[31] “LCA github repository for Experiments with SPEC CPU 2017:
Similarity, Balance, Phase Behavior and SimPoints.” https:
//github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/
releases/tag/v1.0.

[32] H. Vandierendonck and K. De Bosschere, “Many benchmarks stress the
same bottlenecks,” in Workshop on Computer Architecture Evaluation
Using Commercial Workloads, vol. 2, pp. 57–64, 2004.

[33] R. Giladi and N. Ahitav, “Spec as a performance evaluation measure,”
Computer, vol. 28, pp. 33–42, Aug 1995.

[34] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere, “Workload
design: Selecting representative program-input pairs,” PACT, vol. 0,
p. 83, 2002.

[35] M. B. Breughe and L. Eeckhout, “Selecting representative benchmark
inputs for exploring microprocessor design spaces,” ACM Trans. Archit.
Code Optim., vol. 10, pp. 37:1–37:24, Dec. 2013.

[36] A. A. Nair and L. K. John, “Simulation points for spec cpu 2006,” in
2008 IEEE International Conference on Computer Design, pp. 397–403,
2008.

[37] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microar-
chitecture independent characteristics and phase behavior for reduced
benchmark suite simulation,” in IEEE IISWC, pp. 2–12, 2005.

[38] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the rodinia benchmark suite with
comparison to contemporary cmp workloads,” in IISWC, 2010.

[39] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu, “Performance projection of hpc applications using spec
cfp2006 benchmarks,” in IPDPS, 2009.

[40] E. Ould-Ahmed-Vall, K. A. Doshi, C. Yount, and J. Woodlee, “Charac-
terization of spec cpu2006 and spec omp2001: Regression models and
their transferability,” in ISPASS, 2008.

[41] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring gpgpu
workloads: Characterization methodology, analysis and microarchitec-
ture evaluation implications,” in IISWC, 2010.

[42] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K. John,
“Gpgpu benchmark suites: How well do they sample the performance
spectrum?,” in ICPP, pp. 320–329, 2015.

[43] W. Xiong, Z. Yu, Z. Bei, J. Zhao, F. Zhang, Y. Zou, X. Bai, Y. Li,
and C. Xu, “A characterization of big data benchmarks,” in 2013 IEEE
International Conference on Big Data, 2013.

[44] D. Pandiyan, S. Y. Lee, and C. J. Wu, “Performance, energy character-
izations and architectural implications of an emerging mobile platform
benchmark suite - mobilebench,” in IISWC, pp. 133–142, 2013.

[45] C. Gao, A. Gutierrez, M. Rajan, R. G. Dreslinski, T. Mudge, and C. J.
Wu, “A study of mobile device utilization,” in ISPASS, pp. 225–234,
2015.

https://www.spec.org/cpu2017
https://www.spec.org/cpu2006
https://perf.wiki.kernel.org/index.php/Main_Page
wiki.apache.org/cassandra/FrontPage
https://github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/releases/tag/v1.0
https://github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/releases/tag/v1.0
https://github.com/UT-LCA/Scalability-Phase-Simpoint-of-SPEC-CPU2017/releases/tag/v1.0

APPENDIX
In the Appendix, we want to include more insights and results gained from

experiments about the SPEC CPU2017. This section contains the benchmarks’ scalability
analysis, phase-level behaviors, and simulation points (SimPoints) we generated for
public uses.

A. Supplemental Graphs and Tables

0 100 200 300 400 500
100ms Interval

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

IP
C

mean=2.90 stdev=0.12
start 0.904s stop 57.860s

perlbench

Fig. 16: IPC time varying graph of 600.perlbench s

0 1000 2000 3000 4000 5000 6000 7000
100ms Interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

mean=1.81 stdev=0.34
start 0.904s stop 749.176s

gcc

Fig. 17: IPC time varying graph of 602.gcc s

0 500 1000 1500 2000 2500
100ms Interval

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

IP
C

mean=1.07 stdev=0.13
start 0.904s stop 293.216s

omnetpp

Fig. 18: IPC time varying graph of 620.omnetpp s

0 500 1000 1500 2000
100ms Interval

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

mean=1.58 stdev=0.45
start 0.905s stop 240.281s

xalancbmk

Fig. 19: IPC time varying graph of 623.xalancbmk s

0 1000 2000 3000 4000 5000
100ms Interval

2.4

2.5

2.6

2.7

2.8

2.9

IP
C

mean=2.75 stdev=0.06
start 0.101s stop 558.653s

x264

Fig. 20: IPC time varying graph of 625.x264 s

0 500 1000 1500 2000 2500 3000 3500
100ms Interval

0.0

0.5

1.0

1.5

2.0

IP
C

mean=1.82 stdev=0.23
start 0.906s stop 364.257s

deepsjeng

Fig. 21: IPC time varying graph of 631.deepsjeng s

0 1000 2000 3000 4000 5000
100ms Interval

1.2

1.3

1.4

1.5

1.6

1.7

1.8

IP
C

mean=1.25 stdev=0.04
start 0.905s stop 520.433s

leela

Fig. 22: IPC time varying graph of 641.leela s

0 1000 2000 3000 4000 5000 6000 7000 8000
100ms Interval

2.25

2.30

2.35

2.40

2.45

2.50

2.55

IP
C

mean=2.41 stdev=0.03
start 0.905s stop 811.354s

exchange2

Fig. 23: IPC time varying graph of 648.exchange2 s

0 2000 4000 6000 8000
100ms Interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IP
C

mean=1.50 stdev=0.45
start 0.905s stop 947.807s

xz

Fig. 24: IPC time varying graph of 657.xz s

0 5000 10000 15000 20000 25000 30000 35000 40000
100ms Interval

0

1

2

3

4

IP
C

mean=3.11 stdev=0.93
start 0.906s stop 4474.117s

bwaves

Fig. 25: IPC time varying graph of 603.bwaves s

0 5000 10000 15000 20000 25000
100ms Interval

1.0

1.5

2.0

2.5

IP
C

mean=1.81 stdev=0.09
start 0.904s stop 2818.128s

cam4

Fig. 26: IPC time varying graph of 627.cam4 s

0 50000 100000 150000 200000
100ms Interval

0

1

2

3

4

IP
C

mean=0.85 stdev=0.20
start 0.904s stop 23207.803s

imagick

Fig. 27: IPC time varying graph of 638.imagick s

0 600 1200 1800 2400
time (seconds)

0

1

2

3

4

IP
C

mean=1.27 stdev=0.27
start 0.101s stop 2562.878s

cactuBSSN_s

Fig. 28: IPC time varying graph of 607.cactuBSSN s

0 400 800 1200
time (seconds)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

IP
C

mean=0.86 stdev=0.15
start 0.101s stop 1516.799s

lbm_s

Fig. 29: IPC time varying graph of 619.lbm s

0 1000 2000 3000 4000
time (seconds)

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

mean=1.29 stdev=0.16
start 0.101s stop 4145.802s

wrf_s

Fig. 30: IPC time varying graph of 621.wrf s

0 600 1200 1800 2400
time (seconds)

1.6

1.8

2.0

2.2

2.4

2.6
IP

C

mean=1.97 stdev=0.08
start 0.101s stop 2764.493s

pop2_s

Fig. 31: IPC time varying graph of 628.pop2 s

0 600 1200 1800 2400
time (seconds)

1.2

1.4

1.6

1.8

2.0

IP
C

mean=1.47 stdev=0.15
start 0.101s stop 2741.027s

nab_s

Fig. 32: IPC time varying graph of 644.nab s

0 800 1600 2400 3200
time (seconds)

0

1

2

3

4

IP
C

mean=1.73 stdev=0.50
start 0.101s stop 3852.064s

roms_s

Fig. 33: IPC time varying graph of 654.roms s

0 200 400 600 800 1000
100ms Interval

2.0

2.5

3.0

3.5

IP
C

mean=2.69 stdev=0.18
start 0.904s stop 114.338s

perlbench

Fig. 34: IPC time varying graph of 400.perlbench

0 100 200 300 400 500 600 700
100ms Interval

1.0

1.5

2.0

2.5

IP
C

mean=1.93 stdev=0.38
start 0.907s stop 75.455s

bzip2

Fig. 35: IPC time varying graph of 401.bzip2

0 20 40 60 80 100
100ms Interval

0

1

2

3

4

IP
C

mean=1.48 stdev=0.80
start 0.905s stop 12.577s

gcc

Fig. 36: IPC time varying graph of 403.gcc

0 500 1000 1500 2000
100ms Interval

0.0

0.5

1.0

1.5

IP
C

mean=0.39 stdev=0.18
start 0.906s stop 218.264s

mcf

Fig. 37: IPC time varying graph of 429.mcf

0 100 200 300 400 500 600
100ms Interval

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

IP
C

mean=1.38 stdev=0.12
start 0.905s stop 64.201s

gobmk

Fig. 38: IPC time varying graph of 445.gobmk

0 500 1000 1500
100ms Interval

2.654

2.656

2.658

2.660

2.662

2.664

2.666

2.668

2.670
IP

C

mean=2.66 stdev=0.00
start 0.906s stop 200.035s

hmmer

Fig. 39: IPC time varying graph of 456.hmmer

0 500 1000 1500 2000 2500 3000 3500
100ms Interval

1.2

1.4

1.6

1.8

2.0

IP
C

mean=1.66 stdev=0.07
start 0.905s stop 389.520s

sjeng

Fig. 40: IPC time varying graph of 458.sjeng

0 50 100 150 200 250 300
100ms Interval

1.8

2.0

2.2

2.4

2.6

2.8

IP
C

mean=2.50 stdev=0.16
start 0.905s stop 35.168s

h264ref

Fig. 41: IPC time varying graph of 464.h264ref

0 500 1000 1500
100ms Interval

0.5

1.0

1.5

2.0

IP
C

mean=0.86 stdev=0.13
start 0.906s stop 187.234s

omnetpp

Fig. 42: IPC time varying graph of 471.omnetpp

0 500 1000 1500 2000
100ms Interval

0.5

1.0

1.5

2.0

2.5

IP
C

mean=1.16 stdev=0.74
start 0.905s stop 204.876s

astar

Fig. 43: IPC time varying graph of 473.astar

0 200 400 600 800 1000 1200 1400
100ms Interval

0.5

1.0

1.5

2.0

2.5

3.0

3.5

IP
C

mean=1.91 stdev=0.61
start 0.904s stop 153.247s

xalancbmk

Fig. 44: IPC time varying graph of 483.xalancbmk

0 500 1000 1500 2000 2500 3000
100ms Interval

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

mean=2.03 stdev=0.62
start 0.906s stop 330.282s

bwaves

Fig. 45: IPC time varying graph of 410.bwaves

0 100 200 300 400 500 600 700 800
100ms Interval

2.0

2.5

3.0

3.5

IP
C

mean=3.38 stdev=0.18
start 0.906s stop 84.007s

gamess

Fig. 46: IPC time varying graph of 416.gamess

0 500 1000 1500 2000 2500 3000 3500 4000
100ms Interval

0

1

2

3

4
IP

C

mean=0.83 stdev=0.34
start 0.906s stop 433.880s

milc

Fig. 47: IPC time varying graph of 433.milc

0 500 1000 1500
100ms Interval

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

IP
C

mean=2.21 stdev=0.04
start 0.905s stop 195.054s

leslie3d

Fig. 48: IPC time varying graph of 437.leslie3d

0 500 1000 1500 2000
100ms Interval

0

1

2

3

4

IP
C

mean=2.34 stdev=0.91
start 0.905s stop 239.580s

dealII

Fig. 49: IPC time varying graph of 447.dealII

0 100 200 300 400 500 600 700 800
100ms Interval

0.8

1.0

1.2

1.4

1.6

IP
C

mean=1.16 stdev=0.08
start 0.906s stop 86.831s

soplex

Fig. 50: IPC time varying graph of 450.soplex

0 200 400 600 800 1000
100ms Interval

2.3

2.4

2.5

2.6

2.7

2.8

IP
C

mean=2.48 stdev=0.08
start 0.905s stop 111.930s

povray

Fig. 51: IPC time varying graph of 453.povray

0 500 1000 1500 2000 2500 3000 3500
100ms Interval

1.5

2.0

2.5

3.0

IP
C

mean=2.22 stdev=0.45
start 0.905s stop 397.381s

tonto

Fig. 52: IPC time varying graph of 465.tonto

0 500 1000 1500 2000 2500
100ms Interval

1.25

1.30

1.35

1.40

1.45

1.50

1.55

IP
C

mean=1.34 stdev=0.04
start 0.906s stop 272.729s

lbm

Fig. 53: IPC time varying graph of 470.lbm

0 500 1000 1500 2000 2500 3000 3500 4000
100ms Interval

1.6

1.8

2.0

2.2

2.4

IP
C

mean=2.25 stdev=0.12
start 0.907s stop 437.795s

sphinx3

Fig. 54: IPC time varying graph of 482.sphinx3

0 60 120 180 240
time (seconds)

1.0

1.5

2.0

2.5

3.0

3.5
IP

C

mean=2.47 stdev=0.17
start 0.101s stop 268.934s

libquantum

Fig. 55: IPC time varying graph of 462.libquantum

0 60 120 180 240
time (seconds)

0.5

1.0

1.5

2.0

2.5

IP
C

mean=1.74 stdev=0.43
start 0.101s stop 298.614s

zeusmp

Fig. 56: IPC time varying graph of 434.zeusmp

0 60 120 180 240
time (seconds)

2.0

2.2

2.4

2.6

2.8

IP
C

mean=2.53 stdev=0.29
start 0.101s stop 274.505s

gromacs

Fig. 57: IPC time varying graph of 435.gromacs

0 100 200 300 400
time (seconds)

0.5

1.0

1.5

2.0

IP
C

mean=1.76 stdev=0.30
start 0.101s stop 448.211s

cactusADM

Fig. 58: IPC time varying graph of 436.cactusADM

0 80 160 240
time (seconds)

1.8

2.0

2.2

2.4

2.6

2.8

IP
C

mean=2.15 stdev=0.16
start 0.101s stop 302.392s

namd

Fig. 59: IPC time varying graph of 444.namd

0 150 300 450 600
time (seconds)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

mean=2.76 stdev=0.45
start 0.101s stop 640.899s

calculix

Fig. 60: IPC time varying graph of 454.calculix

0 60 120 180 240
time (seconds)

0.5

1.0

1.5

2.0

IP
C

mean=1.53 stdev=0.18
start 0.101s stop 289.644s

GemsFDTD

Fig. 61: IPC time varying graph of 459.GemsFDTD

0 80 160 240 320
time (seconds)

1.0

1.5

2.0

2.5

3.0

3.5

IP
C

mean=2.40 stdev=0.57
start 0.101s stop 364.851s

wrf

Fig. 62: IPC time varying graph of 481.wrf

	Introduction
	CPU2017 Benchmarks: Overview & Characterization
	Benchmark Overview
	Performance Characterization
	Performance Bottleneck Analysis
	Scalability

	Methodology
	Redundancy in CPU2017 Benchmark Suite
	Subsetting the CPU2017 Benchmarks
	Evaluating Representativeness of Subsets
	Selecting Representative Input Sets
	Are Rate and Speed Benchmarks Different?
	Benchmark Classification based on Branch and Memory Behavior
	Difference Between Benchmarks from Same Application Area

	Balance in the SPEC CPU2017 Benchmark Suites
	Comparing Performance Spectrum of CPU2017 & CPU2006 Suites
	Comparison of Application Domains
	Comparing Power Consumption
	Case Study on EDA Applications
	Case Study on Database Applications
	Case Study on Graph Applications
	Sensitivity of CPU2017 Programs to Performance Characteristics

	Large Scale Phase Analysis
	Phase-level Variability
	Simulation Points

	Related Work
	Conclusion
	Acknowledgements
	References
	Appendix
	Supplemental Graphs and Tables

