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Abstract—The configurable building blocks of current FPGAs
— Logic blocks (LBs), Digital Signal Processing (DSP) slices,
and Block RAMs (BRAMs) — make them efficient hardware
accelerators for the rapid-changing world of Deep Learning (DL).
Communication between these blocks happens through an inter-
connect fabric consisting of switching elements spread throughout
the FPGA. In this paper, a new block, Compute RAM, is
proposed. Compute RAMs provide highly-parallel processing-in-
memory (PIM) by combining computation and storage capabili-
ties in one block. Compute RAMs can be integrated in the FPGA
fabric just like the existing FPGA blocks and provide two modes
of operation (storage or compute) that can be dynamically chosen.
They reduce power consumption by reducing data movement,
provide adaptable precision support, and increase the effective
on-chip memory bandwidth. Compute RAMs also help increase
the compute density of FPGAs. In our evaluation of addition,
multiplication and dot-product operations across multiple data
precisions (int4, int8 and bfloat16), we observe an average savings
of 80% in energy consumption, and an improvement in execution
time ranging from 20% to 80%. Adding Compute RAMs can
benefit non-DL applications as well, and make FPGAs more
efficient, flexible, and performant accelerators.

I. INTRODUCTION

Deep Learning (DL) has become ubiquitous in today’s
world. The ever-increasing computational demands of DL ap-
plications has triggered an explosion of hardware acceleration
alternatives, ranging from ASICs to GPUs to FPGAs. FPGAs
are well-suited to the evolving needs of DL applications
because they provide customizable hardware with massive
parallelism and energy efficiency.

FPGAs contain fine-grained programmable logic (e.g.,
LBs), fixed-function math units (e.g., DSP slices), and embed-
ded memory structures (e.g., BRAMsS) that can be connected
by a configurable interconnection fabric. These building blocks
are very generic, making FPGAs a great solution to design
various accelerator, but this flexibility, unfortunately, limits the
performance we can achieve with FPGAs for DL applications.
In recent years, DL-optimized FPGA architectures have been
proposed and deployed, such as adding vector processors
[1] and integrating DL-specific blocks [2] [3] on the FPGA
chip. Most FPGA vendors have added support for smaller,
DL-friendly precisions (e.g., 8-bit fixed-point (int8) and
bfloatl16 [4]) in DSP slices.

Even so, there are still some limitations in current FPGA
architectures. Separation of compute units (LBs and DSPs)
from storage units (BRAMs) leads to a lot of data movement

to feed the compute units with input data and to store the
outputs back to the storage units. This is exacerbated for DL
applications because of the math-intensive nature of operations
involved in them. This data movement, although on-chip,
is expensive in terms of power consumption because the
movement happens through the FPGA interconnect which
comprises of numerous switches instead of hard connected
wires. This flexible but inefficient interconnect also leads to
slower frequencies for designs on FPGAs (typically 3-4x lower
than ASICs [5]).

BRAMs on FPGAs support a limited set of heights and
widths. For example, BRAMs in Intel Stratix 10 [6]] are 20
Kilobits in size and can be configured as 512x40, 1024x20 and
2048x10 bits, with only 1 or 2 read and write ports. Owing to
the parallel nature of DL applications, it is common to process
thousands of bits of data together. It is preferred for users to
split the data over multiple BRAMs for higher bandwidth, with
only a few rows of each block are utilized.

Another limitation is the limited number of precisions
supported by the DSP slices. For example, DSP slices in Intel
Agilex FPGAs [[7] support multiplication and MAC (multiply-
accumulate) operations in 9x9, 27x27, 18x19 fixed-point and
16-bit or 32-bit floating-point precisions. Although DSP slices
have become more complex over the years to support more
precisions, the precision requirements change rapidly, espe-
cially in the world of DL. Users have to implement math units
on LBs instead, reducing the number of LBs available for other
purposes and leaving DSPs unused.

In this paper, we propose adding a new type of block, called
Compute RAM, to FPGAs. A Compute RAM block enables
computation within the RAM array, without transferring
the data in or out of it. The implementation of these blocks is
based on an emerging Logic-in-Memory SRAM prototype by
Jeloka et. al. [[8]. Using this technology and its extensions (bit-
line computing [9] and bit-serial arithmetic [[10]), processing-
in-memory engines can be designed. For Compute RAMs, we
add components to such SRAMs to integrate them into the
FPGA fabric and make them configurable. Compute RAMs
can be programmed during FPGA configuration time or during
run-time. The user to perform math in any precision using
Compute RAMs. Every column of the memory performs the
same operation simultaneously, resulting in massive paral-
lelism and high throughput. An operation can be performed per
column in the Compute RAM, thereby dramatically reducing



the bandwidth limitations. Since there is no need to move the
data in and out of the block, the energy efficiency improves
drastically. A reduced dependency on FPGA interconnect also
means using Compute RAMs leads to faster frequencies. On
the top of these advantages, the blocks can still be used as
pure storage blocks as needed. A block diagram of an FPGA
with Compute RAMs is shown in Figure [I}
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Fig. 1: An FPGA with the proposed Compute RAM blocks

Here is the summary of the contributions of this paper:

1) Propose adding blocks called Compute RAMs to FPGAs

2) Describe the architecture of Compute RAM blocks and
their various features

3) Demonstrate the benefit of deploying Compute RAMs
for common DL operations

The rest of this paper is organized as follows. The next
section provides an overview of related work in the area of in-
memory compute and DL-optimized FPGAs. In Section [[TI} we
present the proposed Compute RAMs and its various aspects in
detail. Next, the methodology used to perform the evaluation
is detailed in Section [Vl We discuss the results for common
DL operations in Section [V] Finally, we conclude and briefly
mention future work in Section [VIl

II. RELATED WORK AND BACKGROUND
A. DL-Optimized FPGAs

In recent years, many DL-specific modifications to FPGA
architecture have been deployed by the industry. Xilinx Versal
family [1]] adds specialized vector processors for DL accelera-
tion. Intel’s Stratix 10 NX FPGAs integrate in-fabric Al tensor
blocks [2]. Achronix Speedster7t FPGAs [11] have embedded
machine learning processor (MLP) blocks that have an array
of multipliers, an adder tree and accumulators. The FlexLogix
nnMAX [12] inference IP also contains hard blocks to perform
convolutions. Native support for fpl6 and bfloatl6 data
types in DSP slices has also been added to recent FPGAs.

There have also been a number of academic research pro-
posals to optimize FPGA architectures for DL. Eldafrawy et
al. [13]] proposed several enhancements to the LB architecture,
including adding a shadow multiplier in them. In [14], the
Boutros et al. propose enhancing DSP blocks by efficiently

supporting low precision multiplications. Rasoulinezhad et al.
[15] have proposed DSP slice modifications such as including
a register file for data reuse and improvements to DSP-DSP
interconnect. Arora et al. [3] also proposed adding Tensor
slices in FPGAs.

To our knowledge, no existing work proposes adding
processing-in-memory (PIM) blocks to the FPGA fabric.

B. Processing-In-Memory

Proposals for Processing-In-Memory (PIM) [16] architec-
tures have been around for decades, but the products which
implement it can only be seen in the recent years, specifically
for DL acceleration. Memristor-based PIM accelerators like
ISAAC [17] and PRIME [18] were the early entrants in this
field, but recently many digital solutions have been proposed
as well, such as FloatPIM [19] which has support for floating
point operations. The main limitation of these architectures
is integrating them on the same Silicon die that uses a
standard CMOS-based process. Only some vertical stacked
architectures have been shown to work so far [20].

Samsung recently announced a DRAM product called
HBM-PIM |[21]] which integrates compute units onto a High
Bandwidth Memory chip. This paradigm is near-memory com-
pute instead of in-memory compute. Mythic AI’s Intelligent
Processing Unit (IPU) contains tiles that have analog matrix
multiplier which uses Flash memory transistors. Their design
requires DACs and ADCs for operation.

Jeloka et. al. [8] showcased a Logic-in-Memory SRAM
prototype. Multiple word lines are activated simultaneously
and the shared bit-lines can be sensed, effectively performing
logical AND and NOR operations on the data stored in
the activated rows. By lowering the word-line voltage, data
corruption due to multi-row access is prevented. Aga et al. [9]]
proposed deploying these bit-line computing enabled SRAMs
as caches in CPUs to create massively parallel compute
engines. They extend the technology to add the capability of
operations like compare, NOT, XOR, copy, search, etc.

Eckert et al. [10] combine this capability with bit-serial
arithmetic, which involves processing one bit of multiple data
elements every cycle, instead of processing multiple bits of
1 data element every cycle. Data is stored in a transposed
format in the array. That is, the bits of operands are stored in
one column (i.e. in multiple word lines). Some logic gates are
added near the sense amplifiers of each column (bit-line) to
make performing arithmetic operations easier. In the first half
of a clock cycle, two bits of operands are read, and logical
or arithmetic operations are performed on them. The result is
written back into the rows of the same column in the second
half of the same clock cycle. Figure [2]shows how a dot product
operation can be performed using this method.

In this paper, we propose Compute RAMs which extend
and enhance this technology for FPGAs. Note that Compute
RAMs are not limited to using this technology; any memory
technology as that provides bit-level computing can be used
to design Compute RAMs.
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Fig. 2: Performing a dot product based on the architecture in

III. PROPOSED ARCHITECTURE: COMPUTE RAM

Figure [3] shows the architecture of the proposed Compute
RAM block. The heart of the Compute RAM block is an
SRAM array (called the main array) that supports bit-line
computing, as prototyped in [§]. The instruction memory is
a small SRAM that contains the instructions for operation
to be performed on the data. For example, it could contain
the instruction sequence for performing int4 (4-bit fixed-
point) additions on the data in the array. This software-like
mechanism enables users to perform computations with any
precision while using Compute RAMs. A controller reads
and decodes the instruction sequence stored in the instruction
memory. Based on these instructions, it sends commands to
the array to perform the computations. Logic peripherals,
enhanced compared to are present in bit-line. This reduces
the length of instruction sequences required to perform more
complex operations.
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(WWL = Write Word Line, RWL = Read Word Line)

A. Details of Components

1) Main Array: The main array is an SRAM array that
supports logic-in-memory or bit-line computing. It’s operation
is briefly described in Section |II} This SRAM array is a drop-
in replacement of a typical BRAM on an FPGA. FPGAs
have additional circuitry to allow for configurable geometries
(height and width) [22]]. The same circuitry can be used here
without changing the operation of the Compute RAM. Because
the compute operations are done in parallel across columns, to
obtain the most parallelism, it is best to configure the Compute
RAM as wide as possible and as shallow as possible. We use
the same size and geometries as BRAMs in Intel FPGAs. The
main array in Compute RAM is 20 Kilobits in size and can
be configured in 512x40, 1024x20 and 2048x10 geometries.

2) Instruction Memory: An SRAM is provided to store the
sequence of instructions for the operations to be done on the
data in the main array and can be loaded in two ways:

o At FPGA configuration time. To allow this, we pro-
vide connection for this memory to talk to the FPGA
configuration interface. This method can be used when
the operation executed by the block is not expected to be
changed during execution time.

« At execution time. Sometimes, the operation that will
be performed on the data inside the array needs to
be changed dynamically. For e.g., when the instruction
sequences are longer than the capacity of this memory,
which can only hold 256 instructions. Writing into this
memory dynamically is made possible by sharing address
and data bus of the array.

To identify the size of this memory for our architecture,
we wrote the sequences for common operations like fixed-
point addition, multiplication and MAC, and floating-point
addition, multiplication and MAC. We found that the none of
the operations was more than 200 instructions. So, we provide



TABLE I: I/O interface of a Compute RAM block

Signal Direction Function

mode Input Compute mode or storage mode

start Input Start executing instructions
address Input Read/write address
data_in Input Write data
write_en Input Read or write
data_out Output Read data

done Output Instruction execution finished

space for 256 instructions. With each instruction being 16-bit
wide, the size of this memory is 4 Kilobits.

3) Controller: The controller in the Compute RAM block
is required to fetch, decode, and execute the instructions in the
instruction memory. It is implemented as a simple pipelined
processor. The main array serves as the data memory for this
processor. The number of registers in the register file is 8. In
the sequences of common operations we wrote, we never used
more than 5 registers at a time. The register file is implemented
using flip-flops instead of a RAM to save area and allow
multiple registers to be accessed at the same time.

From the viewpoint of this controller, the instructions are
of two types:

o Instructions executed by the controller’s execution unit.

For example, branch or add a value to a register.

« Instructions sent to the main array. For example, perform-
ing bitwise add operation on bits stored in two rows in
the main array.

The controller has a very simple execution unit - it only
has 1 adder, 1 comparator and 1 logical unit. It does not
have complex blocks like multipliers. We note that common
DL operations involve repetitive instructions requiring loops.
To reduce the number of instructions for an operation, the
controller employs zero-overhead branch processing using
dedicated hardware loop control, like in conventional DSP
processors [23]].

4) Logic Peripherals: Logic peripherals are present for
each bitline (each column) as in [10]. The single-ended sense
amplifiers sense the result from two cells A and B, in the same
bitline. BL gives A.B, while BLB gives A.B. To support float-
ing point operations, we need instruction execution predicated
on multiple conditions like the sign of a previous result. We
add a 4-to-1 mux that selects the predication condition from
among Carry, NotCarry and Tag.

B. Interface and Operation

Table [I| presents the name and description of the ports on
a Compute RAM block. Most of the ports are the same as
a BRAM (address, data_in, write_en, data_out).
We add some additional ports to the block to enable Compute
RAM functionality (start, mode, done). Only 3 additional
ports are added, minimizing the overhead of adding ports to
an FPGA block.

The mode input specifies whether a user wants to use the
Compute RAM block in compute mode or storage mode.
In storage mode (mode=0), the block works exactly like a
BRAM on an FPGA. The controller and logic peripherals

as well as both start and done signals are not used in
this mode. The instruction memory can be used as a regular
BRAM by the application. The non-utilized structures has area
overhead which is insignificant (~12%).

In a typical use case, logic external to the Compute RAM
(eg. a state machine implemented in LBs) will configure the
Compute RAM in storage mode first. The input data will then
be loaded into the array (e.g. from external DRAM). Then,
the mode will be changed to compute mode and the start
signal will be asserted. Instructions in the instruction memory
will execute in order. When the last instruction (signalled by
the presence of end instruction) is executed, the done signal
is asserted. The external logic will wait for assertion of done
before reading the results.

C. Advantages and Limitations

A computation performed using Compute RAM would have

be done using the following on a baseline FPGA:

+« A BRAM to store the input operands and results

o LBs implementing control logic to orchestrate the data

transfer and computation

o DSP slices or LBs to perform the actual computation

Compute RAM, on the other hand, provides the storage,

the computation capability and the control logic integrated
into one block. There are many advantages of using Compute
RAMs:

1) Because the computation happens inside the memory
block, no wire and switching energy is spent in sending
data to/from the compute units. Data movement between
various blocks on the FPGA is significantly reduced.
This leads to reduction in power consumption and an
increase in energy efficiency. Another impact of the
reduced dependence on the FPGA interconnect is that
designs can now operate at higher frequencies of oper-
ation, thereby resulting in speeding up applications.

2) Any custom operation with any custom precision can be
supported by a Compute RAM block. No hardware with
hardcoded support for specific operations and fixed num-
ber of precisions is involved in a Compute RAM. For
performing a different operation or for using a different
precision, the instruction sequence needs to be modified.
This can be done either at FPGA configuration time or
at execution time. Changing the instruction sequence at
execution time makes Compute RAMs programmable in
a software-like manner.

3) Using a Compute RAM for compute reduces the limita-
tions of the bandwidth available from a BRAM because
of the limited geometries and number of ports. In a
Compute RAM, there are as many operations in progress
at a time as many columns. Users can avoid splitting
data over multiple BRAMs to get more bandwidth and
using only a few rows of each blocks. Now, the array
can be fully utilized, and the total area of implementing
a circuit is greatly reduced.

4) Using Compute RAMs leads to reduced area to im-
plement a given circuit. In comparison to a BRAM, a



Compute RAM has an area overhead of the instruction
memory, controller and peripheral logic. However, this
area overhead is smaller than using a BRAM, a DSP
slice and several LBs for realizing a computation on a
baseline FPGA. This also leads to reduced power con-
sumption. More importantly, this means larger circuits
can now fit on the same FPGA chip. Adding Compute
RAMs to FPGAs leads to an increase in the compute
density of the FPGA (GOPS/mm?).

There are some limitations of adding Compute RAMs to
FPGAs. Adding a new block on an FPGA means more het-
erogeneity make mapping/synthesizing harder. But all BRAMs
can be replaced with Compute RAMs, thereby preserving the
heterogeneity that exists today. Also, for some operations like
floating point operations, Compute RAMs utilize some rows
to store temporary results, reducing the overall capacity of the
array. But these rows can be reused across all computations
in a column and can be repurposed dynamically. Adding
Compute RAMs to FPGAs means that users have to adopt a
different programming model (writing instruction sequences),
but this can be made easy by designing compilers and/or
creating libraries of common operation sequences.

IV. EXPERIMENTAL METHODOLOGY
A. Tools

We used the following tools to perform the experiments
described in this paper:

¢ VTR 8.0 for FPGA architecture exploration [24]

o Synopsys VCS 2018 for Verilog simulations [25]]

o Synopsys Design Compiler 2018 for ASIC synthesis [26]
o OpenRAM for estimating area and delays of SRAMs

VTR is an academic tool for exploration of FPGA architec-
tures. It takes two inputs - an FPGA architecture description
file and a Verilog design file. In the FPGA architecture
description file, the information of FPGA’s building blocks
and interconnect resources is provided. The Verilog design file
contains the circuit we intend to map onto the FPGA. VTR
synthesizes and implements the benchmark Verilog design for
a hypothetical FPGA with the given architecture, and generates
area and timing reports.

B. FPGA Architecture

For the experiments in this paper, we use an architecture
similar to Intel Agilex [7] used by Arora et al. in [3] as
the baseline FPGA. Some of the properties of this FPGA
architecture are as follows:

o Logic Block: The logic block contains 10 basic logic
elements. Each logic element consists of fracturable 6-
input LUT, a flip-flop, and 2 bits of arithmetic. There are
60 inputs and 40 outputs on a logic block.

o DSP Slice: The DSP slice supports addition (floating
point only), multiplication, and MAC operations, along
with some complex modes like a % b+ ¢ or (a 4+ b) * c.
The precisions supported are 8-bit, 18-bit and 27-bit fixed

point, and 16-bit (IEEE half precision and bfloat) and 32-
bit (IEEE full precision) floating point.

o« BRAM: The BRAMs are 20 Kilobits in size and can be
configured as 512x40, 1024x20 and 2048x10. Both single
port and dual port modes are supported.

o Interconnect: The routing channel width is 320. Wire
segments of length 4 and 16 are used. The switch block
is a Wilton Switch box with a flexibility of 3.

To this baseline FPGA architecture, we add Compute RAM
blocks to create the proposed FPGA architecture. We evaluate
the area and delay parameters of a Compute RAM block and
plug in the description of a Compute RAM block in the FPGA
architecture file. To find the area, we start from the BRAM
area from [3|]. We evaluate the area and delay of a 4 Kilobit
RAM (instruction memory) using OpenRAM [27]. For the
controller, we develop a simple pipelined processor in Verilog.
We also design a logic peripheral block in Verilog. We then
use Synopsys DC to synthesize these units and add a 15%
overhead of placement and routing [28]. Then, we add the
area of a BRAM, instruction memory, controller and logic
peripherals.

To evaluate the frequency of Compute RAM block, we
first note that none of the additional components added to
a BRAM impact it’s critical path delay. From [8]], we see that
the logic mode of the logic-in-memory RAM runs at a 34%
reduced frequency compared to the memory mode, owing to
the reduced voltage requirement. We apply the same factor
to the frequency of operation of the BRAM to obtain the
frequency of operation of Compute RAM.

C. Experimental Setup

The goal of our experiments is to evaluate the benefit of
using Compute RAMs instead of baseline FPGA blocks (LBs,
DSPs and BRAMs) for common operations like addition,
multiplication and dot product. We compare various metrics:
area consumed, energy and total time taken. We use the most
widely used precisions in FPGA DL accelerators: int4, int8
and bfloat16. However, it should be noted that Compute RAMSs
are fully adaptable to any precision.

The Verilog designs used for the experiments include:

o Memory to store the inputs and outputs.

o Compute units for performing the computation (LBs in
case of fixed-point addition, and DSPs in other cases).

o Control logic to coordinate movement of operands and
results between compute units and memory.

In case of a baseline FPGA, we assume the design con-
tains 1 BRAM (20 Kbits in 512x40 geometry) and that the
data is laid out in the BRAM in the most optimal way to
ensure maximum bandwidth usage. We also instantiate enough
compute units to saturate the bandwidth from 1 BRAM. For
example, for int4 addition operation, one row contains 3 input-
output tuples (operandl, operand2, result), one row is read
out in 1 cycle and the data is fed to 3 adders. For bfloatl6
multiplication operation, three rows contain the operands and
the results of 2 operations (rowl ->{operandl, operand2},



row2 ->{operand3, operand4}, row3 ->{resultl, result2}).
Only 1 bfloatl6 adder is enough to saturate the bandwidth
provided by the BRAM. This is the most optimal configuration
and ensures a fair comparison.

In case of the FPGA with Compute RAMs, most of the
design is absorbed in a Compute RAM block. A Compute
RAM block with 20 Kilobits capacity in the main array, with
a geometry of 512x40 is used. We assume that the data is laid
out in transpose format in the main array.

We run VTR with these designs and the baseline and
proposed architectures to observe the area, delay/frequency
and routing wirelength metrics. We run VTR without a target
frequency, which means it finds the fastest implementation
possible. We disable any I/O to register and register to /O
paths from timing analysis. All the areas and delays in our
results are based on the 22nm technology node. In some cases,
because of unavailability of 22nm standard cell libraries, we
used the 45nm GPDK library from Cadence, and scale the
delays and areas based on equations present in [29].

On a baseline FPGA, the total cycles for an operation to
complete include the time taken to read the inputs, perform
the computation and the write the results. In the case of
Compute RAM based FPGA, the total cycles for an operation
to complete are the cycles to execute all the instructions in the
instruction memory for a given operation.

For energy, we add transistor energy and wire energy. For
transistor energy, we use an activity factor of 0.1 and calculate
the energy based on the number of transistors in each block
(obtained from the area consumed by the block). For wire
energy, we use wire energy numbers (fJ/mm/bit) from [30],
scale them to 22nm technology node and multiply them with
the number of bits used for data transfer and the average net
length obtained from VTR.

V. RESULTS
A. Properties of Compute RAM

Table [T} compares the various properties of a Compute RAM
block with a DSP slice, a BRAM and a Logic block. We
observe that a Compute RAM has ~33% more area compared
to a BRAM. The additional overhead comes from the existence
of components like the instruction memory, controller and
peripheral logic. A DSP Slice has ~12% more area than a
Compute RAM block.

Compute RAMs are ~37% slower than BRAMs because
of the lower voltage requirement for logic mode operation.
But they are ~43% faster than DSPs in fixed-point mode and
~67% faster than DSPs in floating-point mode. DSP slice is
slow even though it is pipelined because it is a large block with
many I/O ports and has a large input crossbar in it. Compute
RAMs are smaller than DSP slices and have a smaller number
of inputs compared to a DSP slice leading to a smaller local
input crossbar and hence shorter delay. The path delay through
the main array of the Compute RAM is shorter than the
combinatorial delay through a DSP as well. The frequency
of operation of a Logic block varies with the size and nature
of the computation or logic mapped to it.

TABLE II: Comparison of Compute RAM, DSP, BRAM, and LB

. Compute . Logic
Metric RAM DSP Slice BRAM Block
Area (um?) 11072.5 12433 8311 1938
Frequency (MHz) 609.1 33%16'i ((g’(‘)i‘ti)) 9229 | Varies
Throughput (GOPS)
(int4/int8/bfloat 16) 4.8/2.7/0.3 0.7/0.5/0.2 0 1.4/0.6/-

The compute throughput (in giga operations per second
(GOPS)) for different precisions can also be seen in the
table. In baseline FPGA, fixed-point additions are mapped
to LBs, whereas other computations are mapped to DSPs
(mapping additions to DSPs is inefficient because of the
lower frequency). However, Compute RAMs are efficient for
all computations. The table shows the throughput value of
addition or multiplication, whichever is larger. BRAMs are
only used for storage, so their compute throughput is 0. We can
see that Compute RAMs have the highest throughput values
among all blocks.

B. Addition

Figure [4| shows the results for addition operation. We
compare various metrics for a baseline FPGA against an FPGA
with Compute RAMs. The total number of addition operations
in both cases are such that 20 Kilobits is required for storing
all the operands and the results.

Area consumed is the total areas of all the blocks (LBs,
DSPs, BRAMs, Compute RAMs) used by the circuit on the
FPGA. We observe significant reduction in area for both
precisions. This is because in a baseline FPGA, soft logic
(multiple LBs) is used for designing the control logic, but in
case of Compute RAMs, the controller is hardened.

The energy metric shows the dynamic energy consumed
by the circuits mapped to the baseline FPGA and the FPGA
with Compute RAMs. We see that energy consumed when
using Compute RAMs is ~20% of the energy consumed on
baseline FPGA. This is because of the much lower dependence
on FPGA interconnect fabric and also the reduced circuit area.

The overall time taken shown in Figure [] is the product
of cycles taken for the entire operation and the frequency
of the circuit. The frequency of operation of the circuit is
reported by VTR. The frequency of operation is 60-65% higher
when using Compute RAMs. This is because when using a
baseline FPGA, there are paths between multiple DSPs, LBs
and BRAMs through the interconnect fabric. These paths tend
to be long and circuitous. When using Compute RAM, a very
few short timing paths exist outside the Compute RAM.

For int8 precision, we see a significant reduction in time
taken, because the number of cycles taken by Compute RAM
is lower than the cycles taken on the baseline FPGA. However,
for bfloatl6, the time taken is only 20% smaller. The
number of cycles taken by Compute RAM is indeed larger in
this case, because floating point addition requires a lot of steps.
However, the overall time is still lower because the frequency
of operation is much higher for Compute RAM.
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Fig. 4: Comparing a baseline FPGA with an FPGA with Compute
RAMs for addition operation (RAM arrays are 512x40)

C. Multiplication

Figure [5] shows the results for multiplication operation.
The total number of multiplication operations is such that 20
Kilobits is required for storing all the operands and the results.

The area and energy results for multiplication are very
similar to addition. The total time taken for multiplication op-
erations is ~12% shorter for Compute RAMs than the baseline
FPGA. Because of the bit-serial nature of the computation
done by Compute RAMs, the number of cycles taken for
multiplications is quite high. However, the overall time is still
lower because the frequency of operation is much higher for
Compute RAM.
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Fig. 5: Comparing a baseline FPGA with an FPGA with Compute
RAMs for multiplication operation (RAM arrays are 512x40)

D. Dot Product

Dot product operation is the building block of neural
networks. It is used in matrix-matrix multiplication and matrix-
vector multiplication, which form 80-90% of all computations
in modern neural networks. Layers such as fully connected,
convolution and LSTM are all based on these operations. Many
FPGA-based hardware accelerators, ASIC chiplets and FPGAs
have dot product engines in them [33]. Dot product
operation involves MAC and reduction operations. Two vectors
are multiplied element-wise and the products are added to
produce a scalar output.

In this section, we show the results of a dot product
operation using int4 precision. The accumulation is performed
using 32-bits (typical for DL). We consider vector sizes that
ensure maximum utilization of the Compute RAM and the
BRAM on a normal FPGA. On a baseline FPGA, there are 5
multipliers and 4 adders for accumulation, to ensure bandwidth
provided by the BRAM is fully utilized.

The area and energy results are similar to the addition
and multiplication results. However, there is an interesting
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Fig. 6: Comparing a baseline FPGA with an FPGA with Compute
RAMs for dot product operation in int4 precision

observation pertaining to the overall time taken (referring
to the left half of Figure [6). Compute RAM takes more
time, even with the frequency of operation being higher.
This is because Compute RAM takes much larger number
of cycles compared to the baseline FPGA (1470 vs 480).
In the design implemented on the baseline FPGA, there is
enough parallelism. There are 5 4-bit multipliers running in
parallel and 4 int32 adders perfoming accumulation in a tree
structure. On top of that, all these compute units are pipelined.
In Compute RAM, however, the parallelism is limited to the
number of columns (bit lines), which is 40. To ensure maximal
data packing and utilization of the Compute RAM, we store
multiple input data items in one column. But within a column,
the operations are performed serially. And the number of serial
operations is relatively high in this case.

To reduce the time and improve the performance of Com-
pute RAMs, more parallelism is required. This implies that a
shallower and wider memory array will be required. BRAMs
in Xilinx FPGAs have wider configurations up to 72 columns
[34]. We experiment with using 72 columns. We evaluate the
impact of increasing the columns analytically and show it in
the right half of Figure |6} We observe that there is minor
impact on the area and energy metrics, but the total time is
now ~20% better than the baseline (because of almost 2x
the parallelism). Even more parallelism and speedup can be
achieved if we increase the number of columns even further
(say 40 rows x 512 columns, instead of 512 rows x 40
columns), but such a memory array will be expensive because
large number of I/O ports, leading to significant changes in
the interconnect architecture of the FPGA. We leave further
detailed investigation of this topic as future work.

VI. CONCLUSION

This paper proposes adding blocks called Compute RAMs
to FPGAs to improve their performance for DL applications.
A Compute RAM block enables processing-in-memory by
utilizing an emerging bit-line SRAM circuit technology cou-
pled with bit-serial arithmetic. Each individual operation is
performed serially, but multiple operations are done in parallel
in the same block. This unlocks performance benefits for
parallel compute-intensive operations which tend to involve
a lot of on-chip data movement if implemented on current
FPGAs using Logic Blocks, DSP slices and BRAM:s.

We present the architecture of Compute RAM blocks, pro-
pose adding them to FPGAs, and describe how computations



can be orchestrated using them. We demonstrate the efficacy
of these blocks for common DL math operations.

We believe that Compute RAMs can replace BRAMs
on existing FPGAs, and transform them into massively
parallel computation units, while still performing the
traditional role of acting as storage units. In the future, we
plan to evaluate the performance boost that can be obtained at
the application level (neural networks) by using these blocks.
We also plan to explore using shallower, wider RAMs to
increase the amount of parallelism and speedup.

Note that Compute RAMs are not limited to using this
technology; other memory technologies that support bit-level
computing can also be used to design Compute RAMs.
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