
Effective Use of Performance Monitoring Counters for
Run-Time Prediction of Power

W. L. Bircher, J. Law, M. Valluri, and L. K. John
Laboratory for Computer Architecture

Department of Electrical and Computer Engineering
The University of Texas at Austin

{bircher, law, valluri, ljohn}@ece.utexas.edu

ABSTRACT
Power dissipation and energy consumption have recently become
first-order design constraints for microprocessors. In this paper
we present the measured power dissipation of several SPEC
benchmarks executing on a Pentium 4 processor. Using on-chip
performance monitoring counters, we dynamically correlate
relevant performance metrics such as instructions per cycle,
second-level cache hits, and bogus/non-bogus instructions retired
to the measured power. This quantitative analysis lends insight
into selecting metrics to be used for predicting power. We found
that incorrectly predicted branches had the strongest correlation,
of 0.8979, to power dissipation, while execution time had the
highest correlation to total energy consumption, 0.99.

1. INTRODUCTION
Processor design trends continue to pursue a performance-centric
approach resulting in increasing microarchitectural complexities,
clock frequencies and die sizes, all of which are pushing power
dissipation and energy consumption close to the tolerance limits.
Power dissipation impacts circuit reliability and packaging costs,
while total energy consumption is a crucial metric in battery-
limited systems such as laptops and other mobile devices.

Recently, several microarchitectural techniques such as dynamic
adaptation of processor resources [1][2][3], dynamic voltage and
frequency scaling [4][5], etc have been proposed to alleviate the
power dissipation and energy consumption problems. Typically,
these techniques estimate dynamic processor power dissipation by
relying on information that can be obtained from the processor's
performance monitoring counters. For example, the scheme
proposed in [1] uses the IPC (instructions per cycle) of the
executing application to manipulate the size of the issue queue. In
this paper, we perform a detailed and quantitative analysis on the
suitability of different performance counters for estimating
processor power dynamically. We examine the correlation of
power dissipation and energy consumption with performance
metrics such as instructions retired per cycle, number of
instructions squashed, L2 hits, L2 misses, number of branch
mispredictions.

Our experimental setup includes: a clamp on current probe that
measures the energy delivered to the voltage regulator modeul
(VRM) and thus to the processor, the Brink/Abyss toolset for
capturing data from performance monitoring counters, and tools
we wrote to analyze the collected data.

Our evaluation using 6 SPEC CPU2000 benchmarks shows that:

• IPC alone is not an accurate indicator of power
dissipation for all workloads.

• Any measure of IPC should include speculative
instructions.

• When IPC is above 0.5 it can generate a good rough
estimate of power dissipation, below 0.5 other metrics
become more important.

It has been shown that compiler optimizations [6][7][16] can have
a dramatic effect on total energy. We further show that for
different compiler optimizations the correlation between any
given metric and power varies significantly.

The rest of the paper is organized as follows. Section 2 describes
prior research that is related to this work. The measurement
methodology and experimental setup is explained in Section 3.
We present our results in Section 4, followed by our final
conclusions in Section 5.

2. RELATED WORK
In this section we present some of the prior research that is related
to our work.

Valluri et al. [6] study the effect of compiler optimizations on
power dissipation using the SimpleScalar simulator coupled with
the Wattch architecture level model. However, this approach is
based purely on simulation. Extending this work to the physical
world, Seng and Tullsen [7] performed a similar analysis using a
Pentium 4 system instrumented for power measurement. They
use two series resistors in Vcc supply traces to measure the
current delivered to the processor. However, they only present
the average values of power dissipation for the complete
execution of each benchmark. Furthermore, they only recorded
the total number of micro-ops retired, instead of other interesting
architectural metrics.

As in the Valluri paper, Li and John examine power dissipation
using simulation in [8]. Their experiments showed that operating
system power dissipation is strongly correlated to the easily
observable metric, IPC. They also showed that a model
composed of a few metrics obtained from performance
monitoring counters estimates energy to within 1% of the
simulated quantity. Kandemir et al examined the effect of several
compiler optimizations on the energy consumption of multimedia
benchmarks in [15]. Their study looked at energy consumed in
both the processing core and in the memory subsystem as
modeled by the SimplePower toolset.

Isci and Martonosi [9][10] present a runtime power modeling
methodology based on using hardware performance counters to
estimate component power breakdowns for the Intel Pentium 4
processor. Their approach involves measuring and using multiple
metrics to perform intensive calculations to accurately produce
live total and subunit breakdowns of Pentium 4 power dissipation.

Bellosa measured total energy consumption and qualitatively
compared that to data gathered using performance monitoring
counters in [11]. Their approach examined micro-ops executed,
floating-point operations, L2 references and L2 misses, but
neglected other relevant events. Their comparisons are also
limited only to total energy consumption, not dynamic power
dissipation. A strong correlation was noticed between total
energy consumption and the measured events, but this correlation
is not quantified. Also, as shown in [7] total energy is most
directly related to execution time.

Unlike previous studies, which have only considered average
values of power and IPC for an entire workload, we consider the
correlation with a finer granularity. Additionally, we quantify our
results using correlation coefficients. We present the correlation
of average power during a benchmark’s execution to several
interesting metrics across multiple benchmarks and compiler
optimizations, and the correlation of a trace of the power
dissipation to a trace of the metric as the benchmark executes.
Based on this data we can provide insight into the selection of
easily observable metrics to predict power dissipation.

3. METHODOLOGY
This section explains the measurement methodology we utilized.
Section 3.1 describes the power and energy measurement setup
and Section 3.2 describes the performance measurement setup.
Section 3.3 describes the benchmarks and the compiler options we
used to create our workload.

3.1 Power and Energy Measurement
The two primary sources of experimental data required for our
analysis are: processor power dissipation and easily observable
processor performance metrics. Processor power dissipation
refers to the rate of energy delivered to the Pentium 4 Xeon
processor and no other support circuitry. For example, system
memory, i/o bridges and disk drive power dissipation are not
included here. On-chip level one and two caches are considered
part of processor power. Isolation of processor power is easily
performed due to the power supply implementation used on our
target system. The conductors that supply current to the processor
voltage regulator modules (VRM), supply current to no other
components. No other devices obtain energy through these
conductors. A diagram of the power measurement setup can be
seen in Figure 1.

Figure 1: Power Measurement Setup

The power measurement shown is at the two power supply
conductors supplying 12VDC to the processor VRM. An Agilent
1146A current probe reports the sum of current in these two
conductors as a voltage (100mV/A). This probe detects current in
a conductor by observing the magnetic field produced by the
current. The observed conductors do not have to be cut/spliced,
nor are shunt resistors needed. One issue of note regarding the
location of the current probe is that a portion of the energy
reported as being consumed by the processor is consumed by the
VRM. For these modules the efficiency is on the order of 85%-
90%. The reader should consider the 10%-15% loss when
comparing results to manufacturer reported power dissipation.
The voltage provided by the current probe is sampled at 10KHz
by a National Instruments AT-MIO-16E-2 data acquisition card.
The voltage trace can be interpreted by the LabVIEW software
tool or as in our case it is written to a binary file.

3.2 On-Chip Counters
The second source of data is the on-chip performance monitoring
counters (PMC) provided by the Pentium 4 Xeon processor.
These counters provide a non-intrusive mechanism for observing
a comprehensive set of metrics. Compared to the previous
generation PMCs which had a similar number of observable
metrics, these PMCs allow the concurrent observation of up to 18
distinct metrics [14]. All of the events used in this analysis were
of the aggregate type. They report the aggregate count of the
requested event between the assertion and deassertion of a
software controlled enable flag. The event-based counters were
not used here. Since configuration of the PMCs is restricted to
operating system or privileged processes, a device driver is
required for access by user-mode applications. The device driver
used in our experiments is provided with the Brink/Abyss toolset
[12]. This toolset runs under the Linux operating system and
provides tools for simplifying PMC configuration and data
acquisition. For our experiments the selected PMC are sampled
and cleared at a rate of 50Hz and recorded by Brink/Abyss in
ASCII type files.

3.3 Benchmarks and Compiler Optimizations
We chose several benchmarks from the SPEC CPU2000 suite that
have been shown to have dissimilar execution characteristics [17].
Integer benchmarks included: gzip, eon, equake, and mcf. We
also examined the floating-point benchmarks: mesa and vortex.

To compile the benchmarks we used gcc version 2.96 from a
standard Red Hat 7.1 installation. We used similar optimization
options as in [6]. Here is a brief description:

-O0 No optimizations performed.

-O1 The compiler turns on many local and a few global
optimizations such as common subexpression elimination, copy
propagation, code motion, and some minimal code scheduling.

-O2 Turns on all optional optimizations except for loop
unrolling, function inlining, and register renaming, but will not
perform optimizations that involve a space-speed tradeoff.

-O3 Optimize yet more. -O3 turns on all optimizations
specified by -O2 and also turns on loop unrolling, function
inlining, and register renaming.

-finline-functions Integrate all simple functions into their
callers. The compiler heuristically decides which functions are
simple enough to be worth integrating in this way.

-fschedule-insns If supported for the target machine, attempt to
reorder instructions to eliminate execution stalls due to required
data being unavailable.

-fschedule-insns2 Similar to `-fschedule-insns', but requests an
additional pass of instruction scheduling after register allocation
has been done. This is especially useful on machines with a
relatively small number of registers and where memory load
instructions take more than one cycle.

-funroll-loops Perform the optimization of loop unrolling.
This is only done for loops who’s number of iterations can be
determined at compile time or run time.

All benchmarks are written in C except eon, which is written in
C++ [13]. The specific compile options where not invoked when
we compiled eon so they do not appear. Also, -fschedule-insns
did not generate a working binary for mesa, so it does not appear.

4. RESULTS
Section 4.1 and 4.2 show the two methods we used to validate our
measurement techniques. Section 4.3 presents results for
interesting metrics observed using the PMCs and shows how they
are correlated to the average power dissipation for each
benchmark. Section 4.4 looks in depth at a single metric, IPC,
presenting the IPC trace to instantaneous power trace correlation.
The last section presents insights helpful in developing a more
accurate understanding of the Pentium 4 Xeon power
characteristics.

4.1 Basic Power Characterization
To validate our measurement techniques we first measured the
idle, minimum, and maximum power of the processor and
compared our measurements with known quantities from [7]. Idle
power was found using two techniques. The first was to observe
power dissipation with no user-mode applications active.
Operating system processes were still active. A second approach
was used to validate this information. A small application was
written which issued the Unix sleep() function for several
seconds. Similar results were found for both cases and average
power was approximately 10W. To determine minimum power
we wrote a small program that had an IPC of 0.09. While

executing this program the processor was forced out of any power
savings mode. The average measured power was roughly 30W.
Determination of maximum power was more challenging since
none of the normal workloads tested utilized the processor
sufficiently to reach maximum power. Our approach was to write
a small, highly customized code sequence which scheduled
instructions to optimally utilize the Pentium 4 resources. The best
case found yielded an IPC of 2.25 and power dissipation of 50W.
All of these measurements are inline with expected power
dissipation for the 2.2GHz Pentium 4 Xeon processor.

4.2 Compiler Optimizations
To further validate our method of measuring the power
dissipation by non-invasively measuring the current supplied to
the VRM and thus the power dissipated by the processor we
reproduced the results of [7]

Figure 2 presents the reduction in power as different compiler
optimizations are invoked. The columns show normalized power.
These results are typical of all results we found for integer and
floating-point workloads. Power dissipation is largely insensitive
to compiler optimizations. Observed variations showed a
maximum of 5% difference in average power dissipation.
Average power dissipation is not significantly affected by any of
the compile options we examined. However, we found that
energy consumption is clearly dependent on the use of any
compiler optimizations. This is due to a combination of the major
effect optimizations have on application execution time and the
minor effect they have on power dissipation.

Figure 2: Average power of benchmarks by optimizations
Largely these results support the findings in [6] which use a
simulated processor power model, and duplicate the measured
results of [7]. The primary deviation is magnitude of the effect
compiler optimizations have on power dissipation. For similar
workloads (integer compression) the simulated model predicts
average power reductions of about 10%. The experimental
approach showed reductions closer to 1%. Not surprisingly,
execution time reductions were consistent.

4.3 Interesting Metrics
Using the PMCs we measured event counts such as instructions
retired, micro-ops retired (uop), L2 hits and misses, branch
mispredictions, types of branches retired, loads and stores retired,
and trace cache activity. Using this data, metrics such as IPC,
uPC, L1 miss rate, L2 miss rate, and branch mispredictions per

Average Power vs Optimization Across Benchamrks

0
5

10
15
20
25
30
35
40
45
50

O0 O1 O2 O3

inl
ini

ng

sc
he

d

sc
he

d 2

un
ro

llin
g

A
ve

ra
ge

 P
ow

er
 (W

)

gzip
vortex
mesa
equake
eon
mcf

instruction can be developed. While we were gathering the PMC
data we also recorded the average power dissipation. Presented
below in Figure 3 is the correlation of the average power
dissipation for each benchmark to each metric across all of the
benchmarks we examined.

Figure 3: Correlation coefficient of performance metrics to

average power
We expected IPC to have the strongest correlation to power of all
metrics that we observed, so we considered three cases of
measured IPC. The first version of IPC (IPC_nb) counts only
non-bogus instructions, or the instructions that complete to
retirement without being squashed. The second version of IPC
(IPC_b), counts just the bogus instructions that existed in the
pipeline at some time. The last version of IPC (IPC_t) counts all
instructions, whether they are bogus or not. We expected IPC_t
and IPC_nb to have the strongest relationship to power, but we
found IPC_b to have the strongest relationship. The correlation
coefficient of IPC_t is 0.7052, of IPC_nb is 0.5735, and of IPC_b
is 0.7929.

We also measured uPC or micro-ops retired per cycle. The same
trend occurs with uPC as does with IPC. The correlation
coefficients to the average power are: uPC_t = 0.5654, uPC_nb =
0.4397, and uPC_b = 0.6741. It is surprising that uPC as a metric
is not more closely related to power than IPC. This leads us to
recommend using IPC instead of uPC as a performance metric for
estimating power dissipation.

The strong correlations to power of mispredicted branches per
instruction (0.8979) and conditional branches per instruction
(0.7985), reinforces the importance of a highly accurate branch
predictor.

Another important metric we observed is L1 misses per cycle.
We found this to be more closely related to power than the L2 hit
rate. This shows that the penalty for missing the L1 is important
in both performance and power dissipation, i.e. good L2 cache
performance is necessary and a metric to capture this is important
in predicting power. We present a further proof of this in Section
4.5.

4.4 Correlating Power Traces to IPC Traces
In this section we will show that an easily observable metric such
as Instructions Per Cycle (IPC) can be used to model
microprocessor power dissipation. For a non-speculative

processor the selection of IPC is intuitive. Performing logical
work in the functional units at a given rate should require energy
consumed at a directly proportional rate. Unfortunately, this
intuitive model doesn’t really hold for a speculative processor.
The metric IPC doesn’t represent the quantity of instructions
which were fully or partially executed, but were later cancelled
due to a branch misprediction. For a combination of processor
and an application that attains a very high prediction accuracy it is
reasonable to neglect power due to incorrectly speculated
instructions. Fortunately, in this study, we were able to improve
accuracy of the power-IPC model by improving the assumption
about mis-speculated instructions. Because the Pentium 4
provides visibility to the number of mis-speculated instructions as
well as completed instructions, we were able to capture the effect
of the mis-speculated instructions. Our model assumes that
cancelled instructions are detected late enough in the pipeline that
they consume a quantity of energy similar to that of a committed
instruction. This seems reasonable considering the large amount
of logic in the front-end of x86 processors required for decoding.

To further solidify our understanding of the relationship of power
to IPC we correlated the power trace to the IPC trace. It is
important to note that this is different than correlating average
power to average IPC as presented above. Table 1 shows this
correlation coefficient for each version of the benchmarks we
examined.

Table 1. Power Trace to IPC Trace Correlation Coefficients
gzip eon equake mcf mesa vortex

O0 0.734572 0.756487 0.897633 0.621187 0.691433 0.751876
O1 0.288616 0.621848 0.615983 0.577581 -0.17307 0.536567
O2 0.617906 0.553813 0.597922 0.575241 -0.00519 0.117081
O3 0.60198 0.771191 0.810057 0.251721 0.075371 0.643934
inlining 0.568419 n/a 0.758938 0.315535 0.084092 0.67633
sched 0.567632 n/a 0.382067 0.586439 n/a 0.707083
sched 2 0.32482 n/a 0.825607 0.594623 0.07331 0.611635
unrolling 0.563678 n/a 0.644375 0.585459 0.064383 0.673443

We expected the trace-to-trace correlation to be higher for all
benchmarks than the average correlation. This was not the case.
Table 1 shows that looking at just a single case for each
benchmark would not give the full picture. For example, looking
simply at the O0 optimization point, IPC alone would appear to
be a useful metric for predicting power dissipation. However, any
of the other optimization points show that IPC alone does not
consistently correlate to power.

To help understand visually what Table 1 is describing, the power
and IPC traces for the integer benchmark Vortex are given in
Figure 4. The samples shown are normalized to one for clear
comparison. The graph shows a distinct phase behavior, which is
very similar between the two traces. One of the more significant
differences is the range of values taken by the traces. The IPC
trace varies greatly, swinging from the unnormalized peak of
almost one to almost zero. Conversely, the power trace rarely
drops below 60% of its peak value. Using the results for idle
power in Section 4.1, it is clear that the minimum steady state
power dissipation is lower than the instantaneous values observed
in 4.3. The likely difference in the two measurements is due to
the presence of capacitance in the power supply and processor
transistors. When processor utilization changes rapidly, short
deficits or surpluses of energy are provided or stored by the
various capacitances in the system. Therefore, the VRM is not

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

IP
C

_b

IP
C

_n
b

IP
C

_t

uP
C

_b

uP
C

_n
b

uP
C

_t

L1
 M

is
se

s

L2
 H

its

L2
 M

is
se

s

L2
 H

it
R

at
e

Lo
ad

s
R

et

B
P

U

M
is

pr
ed

ic
te

d
B

ra
nc

h

In
di

re
ct

 B
ra

nc
h

R
et

ur
n

B
ra

nc
h

C
al

l B
ra

nc
h

C
on

di
tio

na
l B

ra
nc

h

S
to

re
s

R
et

ire
d

TC
 B

ui
ld

TC
 D

el
iv

er

C
or

re
la

tio
n

 C
o

ef
fi

ci
en

t

required, nor able, to provide or absorb the extra energy
instantaneously. The very brief minimum and maximum currents
are being filtered from our view.

Power and IPC Traces for Vortex

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4999 9999 14999 19999 24999 29999

Sample

N
or

m
al

iz
ed

 V
al

ue

Power
IPC

Figure 4: A sample of power and IPC traces for Vortex

Correlation coefficient = 0.7518

Figure 5 also depicts a relationship between IPC and power
dissipation. In this chart normalized power is plotted on the
vertical axis while normalized IPC is on the horizontal axis. For
IPC above 0.5 there is a clear positive correlation (0.697).
However, IPC values less than 0.5 show almost no relation to
power.

Vortex

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized IPC

N
or

m
al

iz
ed

 P
ow

er

Figure 5: A sample graph of power compared to IPC

 It is interesting to note that though the average correlations
presented above in Section 4.3 show a strong relationship between
IPC and power several of the benchmarks show little correlation
when compared trace to trace. In fact, mesa seems to be almost
completely uncorrelated. In Figure 6, looking more closely at a
portion of the mesa traces representing just a few seconds of the
entire benchmark’s execution, we can see why the trace-to-trace
correlations for mesa are so low. When optimized, mesa’s power
and IPC traces are very flat, and the variations from the mean are
relatively small. To the eye it appears that there is a pattern in
both traces and further examination using a FFT might be
appropriate. Mesa is the only benchmark we noted that had this
characteristic, so we did not look into this further.

Figure 6: Portion of a Mesa trace showing small variations

Correlation coefficient = 0.0754

4.5 Other Observations
When more in depth measurements were taken on the different
optimization levels we found that when the largest improvements
were made in execution time and hence total energy, the branch
prediction accuracy, the L2 hit rate, and the percentage of issued
instructions that were not squashed all increased. In other words,
the speculation performed was more accurate.

In order to gain a lower CPI the amount of speculative
instructions that end up being squashed must be reduced. These
wasted instructions incur a performance penalty as well as an
energy and power penalty. Improving branch prediction accuracy
through compiler optimizations helps reduce incorrect
speculation.

For example, for the equake benchmark compiled with –O3, the
number of bogus instructions that were squashed is less than half
that of the O0 case. Both equake and gzip compiled with –O3
show the largest energy/performance improvement, i.e. the total
energy and the execution time is half that for the O0 case. For
both benchmarks, the number of mispredicted branches is reduced
by over half. For mesa and vortex, benchmarks which show
roughly a 20 percent performance improvement, the number of
mispredicted branches is reduced by 10 percent or less.

We found that the branch predictor is almost always better than
90 percent accurate. For the floating-point benchmarks and gzip
the accuracy hardly varies even from the O0 case, though the
energy shows a dramatic improvement beyond O0. Even these
small variations are highly related to the average power. We
observed correlations as high as 0.8979. A single branch
misprediction leads to several speculative instructions that only
waste energy.

Figure 7 below shows the average power compared to average
IPC. Note that mcf stands out from the other benchmarks in this
graph even though it does not in Table 1, and mesa blends in with
the rest of the benchmarks here even though it stands out in Table
1. Examining the execution characteristics of mcf in more depth
we found that the low IPC is primarily caused by a high L1 miss
rate and poor L2 performance. In fact, the L2 hit rate for mcf was
the lowest of all observed at 61.7%. Equake had an L2 hit rate of
74.5% but the L1 hit rate was much higher than mcf’s. This
reinforces the fact that L1 miss rate is a metric that should be
included in a power model. All other benchmarks had an L2 hit

Portion of a Mesa Trace

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2000 4000 6000 8000 10000
Sample

N
or

m
al

iz
ed

 V
al

ue
s

Normalized IPC
Nomalized Power

rate of over 90%. With mcf included in the correlation of average
power to IPC over all of the benchmarks the result is 0.72.
Removing mcf improves the correlation coefficient to 0.91. This
shows the danger of looking at only a limited set or workloads.

Figure 7: Average power compared to IPC_t

5. CONCLUSION
We have shown that microprocessor power dissipation can be
predicted at a fine resolution using an easily observable metric
such as IPC, given that the IPC is higher than 0.5. Also, it is
important that any IPC measure include speculative instructions.
Using additional PMC information such as the L1 miss rate and
the branch misprediction rate, we were able to extend the
accuracy of the power estimation. Finally, we provide insight
into selecting easily observable metrics for estimating power or
developing a power model.

6. REFERENCES
[1] D.Folegnani and A.Gonzalez. Energy-effective issue logic. In 28th
International Symposium on Computer Architecture, Jun. 2001.

[2] A.Buyuktosunoglu, S.Schuster, D.Brooks, P.Bose, P.Cook, and
D.Albonesi. An adaptive issue queue for reduced power at high
performance. In Workshop on Power-Aware Computers Systems, held in
conjunction with ASPLOS, Nov 2000.

[3] F. Bellosa. The benefits of event-driven energy accounting in power-
sensitive systems. In Proceedings of 9th ACM SICOPS European
Workshop, September 2000.

 [4] Alexander Klaiber, The Technology Behind Crusoe Processors,
Transmeta Corporation, Jan 2001.

[5] Intel StrongARM SA-1100 Microprocessor Developer's Manual, Intel
Corporation, April 1999.

[6] M. Valluri and L. John. Is Compiling for Performance == Compiling
for Power? In Proceedings of the 5th Annual Workshop on Interaction
between Compilers and Computer Architectures, Jan. 2001.

[7] J. S. Seng and D. M. Tullsen. The Effect of Compiler Optimizations on
Pentium 4 Power Consumption. In Proceedings of the 7th Annual
Workshop on Interaction between Compilers and Computer Architectures,
Feb. 2003.

[8] Tao Li and Lizy John. “Run-Time Modeling and Estimation of
Operating System Power Consumption”, Sigmetrics ‘03, June 10-14,
2003.

[9] C. Isci and M. Martonosi. Identifying Program Power Phase Behavior
Using Power Vectors. In Proceedings of the 6th Annual IEEE
International Workshop on Workload Characterization, Oct. 2003.

[10] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. In Proceedings of the 36th
International Symposium on Microarchitecture, Dec 2003.

[11] F. Bellosa. The benefits of event-driven energy accounting in power-
sensitive systems. In Proceedings of 9th ACM SICOPS European
Workshop, September 2000.

[12] B. Sprunt. Brink and Abyss: Pentium 4 Performance Counter Tools
for Linux, Oct. 2003.
http://www.eg.bucknell.edu/~bsprunt/emon/brink_abyss/brink_abyss.shtm

[13] The Standard Performance Evaluation Corporation. SPEC CPU2000
Suite, Sept. 2003. http://www.specbench.org/osg/cpu2000/.

[14] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro,
22(4):72-82, Jul/Aug 2002.

[15] M. Kandemir, N.Vijaykrishnan, M. Irwin, and W. Ye. Influence of
compiler optimizations on system power. In Design Automation
Conference, July 2000.

[16] L. Chakrapani, P. Korkmaz, V. Mooney, K. Palem, K. Puttaswamy,
and W. Wong. The emerging power crises in embedded processors: What
can a (poor) compiler do? In CASES 2001, Nov. 2001.

[17] A. Phansalkar and L. K. John. Analyzing Program Behavior of
SPECint2000 Benchmark Suite using Principal Components Analysis.
Tech. Report TR-040122-01, Laboratory for Computer Architecture, The
University of Texas at Austin, January 2004

30
32

34
36

38
40

42
44

46

48

0 0.2 0.4 0.6 0.8 1

IPC

W
at

ts

gzip

vortex
mesa
equake
eon
mcf

