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ABSTRACT 
Power dissipation and energy consumption have recently become 
first-order design constraints for microprocessors.  In this paper 
we present the measured power dissipation of several SPEC 
benchmarks executing on a Pentium 4 processor.  Using on-chip 
performance monitoring counters, we dynamically correlate 
relevant performance metrics such as instructions per cycle, 
second-level cache hits, and bogus/non-bogus instructions retired 
to the measured power.  This quantitative analysis lends insight 
into selecting metrics to be used for predicting power.  We found 
that incorrectly predicted branches had the strongest correlation, 
of 0.8979, to power dissipation, while execution time had the 
highest correlation to total energy consumption, 0.99. 

1. INTRODUCTION 
Processor design trends continue to pursue a performance-centric 
approach resulting in increasing microarchitectural complexities, 
clock frequencies and die sizes, all of which are pushing power 
dissipation and energy consumption close to the tolerance limits.  
Power dissipation impacts circuit reliability and packaging costs, 
while total energy consumption is a crucial metric in battery-
limited systems such as laptops and other mobile devices. 

Recently, several microarchitectural techniques such as dynamic 
adaptation of processor resources [1][2][3], dynamic voltage and 
frequency scaling [4][5], etc have been proposed to alleviate the 
power dissipation and energy consumption problems. Typically, 
these techniques estimate dynamic processor power dissipation by 
relying on information that can be obtained from the processor's 
performance monitoring counters. For example, the scheme 
proposed in [1] uses the IPC (instructions per cycle) of the 
executing application to manipulate the size of the issue queue. In 
this paper, we perform a detailed and quantitative analysis on the 
suitability of different performance counters for estimating 
processor power dynamically. We examine the correlation of 
power dissipation and energy consumption with performance 
metrics such as instructions retired per cycle, number of 
instructions squashed, L2 hits, L2 misses, number of branch 
mispredictions. 

Our experimental setup includes: a clamp on current probe that 
measures the energy delivered to the voltage regulator modeul 
(VRM) and thus to the processor, the Brink/Abyss toolset for 
capturing data from performance monitoring counters, and tools 
we wrote to analyze the collected data. 

Our evaluation using 6 SPEC CPU2000 benchmarks shows that:  

• IPC alone is not an accurate indicator of power 
dissipation for all workloads. 

• Any measure of IPC should include speculative 
instructions. 

• When IPC is above 0.5 it can generate a good rough 
estimate of power dissipation, below 0.5 other metrics 
become more important. 

It has been shown that compiler optimizations [6][7][16] can have 
a dramatic effect on total energy.  We further show that for 
different compiler optimizations the correlation between any 
given metric and power varies significantly.   

The rest of the paper is organized as follows.  Section 2 describes 
prior research that is related to this work. The measurement 
methodology and experimental setup is explained in Section 3.  
We present our results in Section 4, followed by our final 
conclusions in Section 5. 

2. RELATED WORK 
In this section we present some of the prior research that is related 
to our work. 

Valluri et al. [6] study the effect of compiler optimizations on 
power dissipation using the SimpleScalar simulator coupled with 
the Wattch architecture level model.  However, this approach is 
based purely on simulation.  Extending this work to the physical 
world, Seng and Tullsen [7] performed a similar analysis using a 
Pentium 4 system instrumented for power measurement.  They 
use two series resistors in Vcc supply traces to measure the 
current delivered to the processor.  However, they only present 
the average values of power dissipation for the complete 
execution of each benchmark.  Furthermore, they only recorded 
the total number of micro-ops retired, instead of other interesting 
architectural metrics. 

As in the Valluri paper, Li and John examine power dissipation 
using simulation in [8].  Their experiments showed that operating 
system power dissipation is strongly correlated to the easily 
observable metric, IPC.  They also showed that a model 
composed of a few metrics obtained from performance 
monitoring counters estimates energy to within 1% of the 
simulated quantity.  Kandemir et al examined the effect of several 
compiler optimizations on the energy consumption of multimedia 
benchmarks in [15].  Their study looked at energy consumed in 
both the processing core and in the memory subsystem as 
modeled by the SimplePower toolset.   



Isci and Martonosi [9][10] present a runtime power modeling 
methodology based on using hardware performance counters to 
estimate component power breakdowns for the Intel Pentium 4 
processor.  Their approach involves measuring and using multiple 
metrics to perform intensive calculations to accurately produce 
live total and subunit breakdowns of Pentium 4 power dissipation. 

Bellosa measured total energy consumption and qualitatively 
compared that to data gathered using performance monitoring 
counters in [11].  Their approach examined micro-ops executed, 
floating-point operations, L2 references and L2 misses, but 
neglected other relevant events.  Their comparisons are also 
limited only to total energy consumption, not dynamic power 
dissipation.  A strong correlation was noticed between total 
energy consumption and the measured events, but this correlation 
is not quantified.  Also, as shown in [7] total energy is most 
directly related to execution time.   

Unlike previous studies, which have only considered average 
values of power and IPC for an entire workload, we consider the 
correlation with a finer granularity.  Additionally, we quantify our 
results using correlation coefficients.  We present the correlation 
of average power during a benchmark’s execution to several 
interesting metrics across multiple benchmarks and compiler 
optimizations, and the correlation of a trace of the power 
dissipation to a trace of the metric as the benchmark executes.  
Based on this data we can provide insight into the selection of 
easily observable metrics to predict power dissipation. 

3. METHODOLOGY 
This section explains the measurement methodology we utilized.  
Section 3.1 describes the power and energy measurement setup 
and Section 3.2 describes the performance measurement setup.  
Section 3.3 describes the benchmarks and the compiler options we 
used to create our workload. 

 

3.1 Power and Energy Measurement 
The two primary sources of experimental data required for our 
analysis are: processor power dissipation and easily observable 
processor performance metrics.  Processor power dissipation 
refers to the rate of energy delivered to the Pentium 4 Xeon 
processor and no other support circuitry.  For example, system 
memory, i/o bridges and disk drive power dissipation are not 
included here.  On-chip level one and two caches are considered 
part of processor power.  Isolation of processor power is easily 
performed due to the power supply implementation used on our 
target system.  The conductors that supply current to the processor 
voltage regulator modules (VRM), supply current to no other 
components.  No other devices obtain energy through these 
conductors.  A diagram of the power measurement setup can be 
seen in Figure 1. 

 
Figure 1: Power Measurement Setup 

The power measurement shown is at the two power supply 
conductors supplying 12VDC to the processor VRM.  An Agilent 
1146A current probe reports the sum of current in these two 
conductors as a voltage (100mV/A).  This probe detects current in 
a conductor by observing the magnetic field produced by the 
current.  The observed conductors do not have to be cut/spliced, 
nor are shunt resistors needed.  One issue of note regarding the 
location of the current probe is that a portion of the energy 
reported as being consumed by the processor is consumed by the 
VRM.  For these modules the efficiency is on the order of 85%-
90%.  The reader should consider the 10%-15% loss when 
comparing results to manufacturer reported power dissipation.  
The voltage provided by the current probe is sampled at 10KHz 
by a National Instruments AT-MIO-16E-2 data acquisition card.  
The voltage trace can be interpreted by the LabVIEW software 
tool or as in our case it is written to a binary file. 

3.2 On-Chip Counters 
The second source of data is the on-chip performance monitoring 
counters (PMC) provided by the Pentium 4 Xeon processor.  
These counters provide a non-intrusive mechanism for observing 
a comprehensive set of metrics.  Compared to the previous 
generation PMCs which had a similar number of observable 
metrics, these PMCs allow the concurrent observation of up to 18 
distinct metrics [14].  All of the events used in this analysis were 
of the aggregate type.  They report the aggregate count of the 
requested event between the assertion and deassertion of a 
software controlled enable flag.  The event-based counters were 
not used here.  Since configuration of the PMCs is restricted to 
operating system or privileged processes, a device driver is 
required for access by user-mode applications.  The device driver 
used in our experiments is provided with the Brink/Abyss toolset 
[12].  This toolset runs under the Linux operating system and 
provides tools for simplifying PMC configuration and data 
acquisition.  For our experiments the selected PMC are sampled 
and cleared at a rate of 50Hz and recorded by Brink/Abyss in 
ASCII type files.   

3.3 Benchmarks and Compiler Optimizations 
We chose several benchmarks from the SPEC CPU2000 suite that 
have been shown to have dissimilar execution characteristics [17].  
Integer benchmarks included: gzip, eon, equake, and mcf.  We 
also examined the floating-point benchmarks: mesa and vortex.   



To compile the benchmarks we used gcc version 2.96 from a 
standard Red Hat 7.1 installation.  We used similar optimization 
options as in [6].  Here is a brief description: 

-O0 No optimizations performed. 

-O1 The compiler turns on many local and a few global 
optimizations such as common subexpression elimination, copy 
propagation, code motion, and some minimal code scheduling. 

-O2 Turns on all optional optimizations except for loop 
unrolling, function inlining, and register renaming, but will not 
perform optimizations that involve a space-speed tradeoff. 

-O3 Optimize yet more.  -O3 turns on all optimizations 
specified by -O2 and also turns on loop unrolling, function 
inlining, and register renaming. 

-finline-functions Integrate all simple functions into their 
callers.  The compiler heuristically decides which functions are 
simple enough to be worth integrating in this way. 

-fschedule-insns If supported for the target machine, attempt to 
reorder instructions to eliminate execution stalls due to required 
data being unavailable. 

-fschedule-insns2  Similar to `-fschedule-insns', but requests an 
additional pass of instruction scheduling after register allocation 
has been done. This is especially useful on machines with a 
relatively small number of registers and where memory load 
instructions take more than one cycle. 

-funroll-loops Perform the optimization of loop unrolling. 
This is only done for loops who’s number of iterations can be 
determined at compile time or run time. 

All benchmarks are written in C except eon, which is written in 
C++ [13].  The specific compile options where not invoked when 
we compiled eon so they do not appear.  Also, -fschedule-insns 
did not generate a working binary for mesa, so it does not appear. 

4. RESULTS 
Section 4.1 and 4.2 show the two methods we used to validate our 
measurement techniques.  Section 4.3 presents results for 
interesting metrics observed using the PMCs and shows how they 
are correlated to the average power dissipation for each 
benchmark.  Section 4.4 looks in depth at a single metric, IPC, 
presenting the IPC trace to instantaneous power trace correlation.  
The last section presents insights helpful in developing a more 
accurate understanding of the Pentium 4 Xeon power 
characteristics. 

4.1 Basic Power Characterization 
To validate our measurement techniques we first measured the 
idle, minimum, and maximum power of the processor and 
compared our measurements with known quantities from [7].  Idle 
power was found using two techniques.  The first was to observe 
power dissipation with no user-mode applications active.  
Operating system processes were still active.  A second approach 
was used to validate this information.  A small application was 
written which issued the Unix sleep() function for several 
seconds.  Similar results were found for both cases and average 
power was approximately 10W.  To determine minimum power 
we wrote a small program that had an IPC of 0.09.  While 

executing this program the processor was forced out of any power 
savings mode.  The average measured power was roughly 30W.  
Determination of maximum power was more challenging since 
none of the normal workloads tested utilized the processor 
sufficiently to reach maximum power.  Our approach was to write 
a small, highly customized code sequence which scheduled 
instructions to optimally utilize the Pentium 4 resources.  The best 
case found yielded an IPC of 2.25 and power dissipation of 50W.  
All of these measurements are inline with expected power 
dissipation for the 2.2GHz Pentium 4 Xeon processor. 

4.2 Compiler Optimizations 
To further validate our method of measuring the power 
dissipation by non-invasively measuring the current supplied to 
the VRM and thus the power dissipated by the processor we 
reproduced the results of [7] 

Figure 2 presents the reduction in power as different compiler 
optimizations are invoked.  The columns show normalized power.  
These results are typical of all results we found for integer and 
floating-point workloads.  Power dissipation is largely insensitive 
to compiler optimizations.  Observed variations showed a 
maximum of 5% difference in average power dissipation.  
Average power dissipation is not significantly affected by any of 
the compile options we examined.  However, we found that 
energy consumption is clearly dependent on the use of any 
compiler optimizations.  This is due to a combination of the major 
effect optimizations have on application execution time and the 
minor effect they have on power dissipation. 

 

Figure 2: Average power of benchmarks by optimizations   
Largely these results support the findings in [6] which use a 
simulated processor power model, and duplicate the measured 
results of [7].  The primary deviation is magnitude of the effect 
compiler optimizations have on power dissipation.  For similar 
workloads (integer compression) the simulated model predicts 
average power reductions of about 10%.  The experimental 
approach showed reductions closer to 1%.  Not surprisingly, 
execution time reductions were consistent. 

4.3 Interesting Metrics 
Using the PMCs we measured event counts such as instructions 
retired, micro-ops retired (uop), L2 hits and misses, branch 
mispredictions, types of branches retired, loads and stores retired, 
and trace cache activity.  Using this data, metrics such as IPC, 
uPC, L1 miss rate, L2 miss rate, and branch mispredictions per 
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instruction can be developed.  While we were gathering the PMC 
data we also recorded the average power dissipation.  Presented 
below in Figure 3 is the correlation of the average power 
dissipation for each benchmark to each metric across all of the 
benchmarks we examined.    

 
Figure 3: Correlation coefficient of performance metrics to 

average power 
We expected IPC to have the strongest correlation to power of all 
metrics that we observed, so we considered three cases of 
measured IPC.  The first version of IPC (IPC_nb) counts only 
non-bogus instructions, or the instructions that complete to 
retirement without being squashed.  The second version of IPC 
(IPC_b), counts just the bogus instructions that existed in the 
pipeline at some time.  The last version of IPC (IPC_t) counts all 
instructions, whether they are bogus or not.  We expected IPC_t 
and IPC_nb to have the strongest relationship to power, but we 
found IPC_b to have the strongest relationship.  The correlation 
coefficient of IPC_t is 0.7052, of IPC_nb is 0.5735, and of IPC_b 
is 0.7929.  

We also measured uPC or micro-ops retired per cycle.  The same 
trend occurs with uPC as does with IPC.  The correlation 
coefficients to the average power are: uPC_t = 0.5654, uPC_nb = 
0.4397, and uPC_b = 0.6741.  It is surprising that uPC as a metric 
is not more closely related to power than IPC.  This leads us to 
recommend using IPC instead of uPC as a performance metric for 
estimating power dissipation. 

The strong correlations to power of mispredicted branches per 
instruction (0.8979) and conditional branches per instruction 
(0.7985), reinforces the importance of a highly accurate branch 
predictor. 

Another important metric we observed is L1 misses per cycle.  
We found this to be more closely related to power than the L2 hit 
rate.  This shows that the penalty for missing the L1 is important 
in both performance and power dissipation, i.e. good L2 cache 
performance is necessary and a metric to capture this is important 
in predicting power.  We present a further proof of this in Section 
4.5. 

4.4 Correlating Power Traces to IPC Traces 
In this section we will show that an easily observable metric such 
as Instructions Per Cycle (IPC) can be used to model 
microprocessor power dissipation.  For a non-speculative 

processor the selection of IPC is intuitive.  Performing logical 
work in the functional units at a given rate should require energy 
consumed at a directly proportional rate.  Unfortunately, this 
intuitive model doesn’t really hold for a speculative processor.  
The metric IPC doesn’t represent the quantity of instructions 
which were fully or partially executed, but were later cancelled 
due to a branch misprediction.  For a combination of processor 
and an application that attains a very high prediction accuracy it is 
reasonable to neglect power due to incorrectly speculated 
instructions.  Fortunately, in this study, we were able to improve 
accuracy of the power-IPC model by improving the assumption 
about mis-speculated instructions.  Because the Pentium 4 
provides visibility to the number of mis-speculated instructions as 
well as completed instructions, we were able to capture the effect 
of the mis-speculated instructions.  Our model assumes that 
cancelled instructions are detected late enough in the pipeline that 
they consume a quantity of energy similar to that of a committed 
instruction.  This seems reasonable considering the large amount 
of logic in the front-end of x86 processors required for decoding. 

To further solidify our understanding of the relationship of power 
to IPC we correlated the power trace to the IPC trace.  It is 
important to note that this is different than correlating average 
power to average IPC as presented above.  Table 1 shows this 
correlation coefficient for each version of the benchmarks we 
examined. 

 

Table 1. Power Trace to IPC Trace Correlation Coefficients 
gzip eon equake mcf mesa vortex

O0 0.734572 0.756487 0.897633 0.621187 0.691433 0.751876
O1 0.288616 0.621848 0.615983 0.577581 -0.17307 0.536567
O2 0.617906 0.553813 0.597922 0.575241 -0.00519 0.117081
O3 0.60198 0.771191 0.810057 0.251721 0.075371 0.643934
inlining 0.568419 n/a 0.758938 0.315535 0.084092 0.67633
sched 0.567632 n/a 0.382067 0.586439 n/a 0.707083
sched 2 0.32482 n/a 0.825607 0.594623 0.07331 0.611635
unrolling 0.563678 n/a 0.644375 0.585459 0.064383 0.673443  
 

We expected the trace-to-trace correlation to be higher for all 
benchmarks than the average correlation.  This was not the case.  
Table 1 shows that looking at just a single case for each 
benchmark would not give the full picture.  For example, looking 
simply at the O0 optimization point, IPC alone would appear to 
be a useful metric for predicting power dissipation.  However, any 
of the other optimization points show that IPC alone does not 
consistently correlate to power. 

To help understand visually what Table 1 is describing, the power 
and IPC traces for the integer benchmark Vortex are given in 
Figure 4.  The samples shown are normalized to one for clear 
comparison.  The graph shows a distinct phase behavior, which is 
very similar between the two traces.  One of the more significant 
differences is the range of values taken by the traces.  The IPC 
trace varies greatly, swinging from the unnormalized peak of 
almost one to almost zero.  Conversely, the power trace rarely 
drops below 60% of its peak value.  Using the results for idle 
power in Section 4.1, it is clear that the minimum steady state 
power dissipation is lower than the instantaneous values observed 
in 4.3.  The likely difference in the two measurements is due to 
the presence of capacitance in the power supply and processor 
transistors.  When processor utilization changes rapidly, short 
deficits or surpluses of energy are provided or stored by the 
various capacitances in the system.  Therefore, the VRM is not 
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required, nor able, to provide or absorb the extra energy 
instantaneously.  The very brief minimum and maximum currents 
are being filtered from our view. 

Power and IPC Traces for Vortex
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Figure 4: A sample of power and IPC traces for Vortex 

Correlation coefficient = 0.7518 
 

Figure 5 also depicts a relationship between IPC and power 
dissipation.  In this chart normalized power is plotted on the 
vertical axis while normalized IPC is on the horizontal axis.  For 
IPC above 0.5 there is a clear positive correlation (0.697).  
However, IPC values less than 0.5 show almost no relation to 
power.   
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Figure 5: A sample graph of power compared to IPC 
 
 It is interesting to note that though the average correlations 
presented above in Section 4.3 show a strong relationship between 
IPC and power several of the benchmarks show little correlation 
when compared trace to trace.  In fact, mesa seems to be almost 
completely uncorrelated.  In Figure 6, looking more closely at a 
portion of the mesa traces representing just a few seconds of the 
entire benchmark’s execution, we can see why the trace-to-trace 
correlations for mesa are so low.  When optimized, mesa’s power 
and IPC traces are very flat, and the variations from the mean are 
relatively small.  To the eye it appears that there is a pattern in 
both traces and further examination using a FFT might be 
appropriate.  Mesa is the only benchmark we noted that had this 
characteristic, so we did not look into this further. 

 
Figure 6: Portion of a Mesa trace showing small variations 

Correlation coefficient = 0.0754 

4.5 Other Observations 
When more in depth measurements were taken on the different 
optimization levels we found that when the largest improvements 
were made in execution time and hence total energy, the branch 
prediction accuracy, the L2 hit rate, and the percentage of issued 
instructions that were not squashed all increased.  In other words, 
the speculation performed was more accurate.   

In order to gain a lower CPI the amount of speculative 
instructions that end up being squashed must be reduced.  These 
wasted instructions incur a performance penalty as well as an 
energy and power penalty.  Improving branch prediction accuracy 
through compiler optimizations helps reduce incorrect 
speculation. 

For example, for the equake benchmark compiled with –O3, the 
number of bogus instructions that were squashed is less than half 
that of the O0 case.  Both equake and gzip compiled with –O3 
show the largest energy/performance improvement, i.e. the total 
energy and the execution time is half that for the O0 case.  For 
both benchmarks, the number of mispredicted branches is reduced 
by over half.  For mesa and vortex, benchmarks which show 
roughly a 20 percent performance improvement, the number of 
mispredicted branches is reduced by 10 percent or less.   

We found that the branch predictor is almost always better than 
90 percent accurate.  For the floating-point benchmarks and gzip 
the accuracy hardly varies even from the O0 case, though the 
energy shows a dramatic improvement beyond O0.  Even these 
small variations are highly related to the average power.  We 
observed correlations as high as 0.8979.  A single branch 
misprediction leads to several speculative instructions that only 
waste energy. 

Figure 7 below shows the average power compared to average 
IPC.  Note that mcf stands out from the other benchmarks in this 
graph even though it does not in Table 1, and mesa blends in with 
the rest of the benchmarks here even though it stands out in Table 
1.  Examining the execution characteristics of mcf in more depth 
we found that the low IPC is primarily caused by a high L1 miss 
rate and poor L2 performance.  In fact, the L2 hit rate for mcf was 
the lowest of all observed at 61.7%.  Equake had an L2 hit rate of 
74.5% but the L1 hit rate was much higher than mcf’s.  This 
reinforces the fact that L1 miss rate is a metric that should be 
included in a power model.  All other benchmarks had an L2 hit 
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rate of over 90%.  With mcf included in the correlation of average 
power to IPC over all of the benchmarks the result is 0.72.  
Removing mcf improves the correlation coefficient to 0.91.  This 
shows the danger of looking at only a limited set or workloads. 

 

Figure 7: Average power compared to IPC_t 
 

5. CONCLUSION 
We have shown that microprocessor power dissipation can be 
predicted at a fine resolution using an easily observable metric 
such as IPC, given that the IPC is higher than 0.5.  Also, it is 
important that any IPC measure include speculative instructions. 
Using additional PMC information such as the L1 miss rate and 
the branch misprediction rate, we were able to extend the 
accuracy of the power estimation.  Finally, we provide insight 
into selecting easily observable metrics for estimating power or 
developing a power model. 
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