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Abstract 
 
To minimize the surging power consumption of 

microprocessors, adaptive computing environments 
(ACEs) where microarchitectural resources can be 
dynamically tuned to match a program's runtime 
requirement and characteristics are becoming 
increasingly common. Adaptive computing environments 
usually have multiple configurable hardware units, 
necessitating exploration of a large number of 
combinatorial configurations in order to identify the most 
energy-efficient configuration. 

In this paper, we propose a scheme for efficient 
management of multiple configurable units, utilizing the 
inherent capabilities of dynamic optimization systems. 
Most dynamic optimizers typically detect dominant code 
regions (hotspots). We develop an ACE management 
scheme where hotpot boundaries are used for phase 
detection and adaptation. Since hotspots are of variable 
sizes and are often nested, program phase behavior which 
is hierarchical in nature is automatically captured in this 
technique. 

To demonstrate the usefulness and effectiveness of our 
framework, we use the proposed framework to 
dynamically adapt the sizes of L1 data and L2 caches that 
have different reconfiguration latencies and overheads. 
Our technique reduces L1D and L2 cache energy 
consumption by 47% and 58%, while a popular previously 
proposed technique only achieves reduction of 32% and 
52% respectively. 

 
 

1. Introduction 
 
The increasing power consumption in microprocessors 

raises concerns in both hardware and software 
communities. Among the efforts to reduce power 
consumption, one promising method is to dynamically 
adapt microarchitectural resources to match changing 
program requirements [1][2][4][6][12][18][22][27]. An 
application’s execution usually passes through phases with 
varying runtime characteristics and hardware requirements. 

Phase boundaries are thus suitable points for resource 
reconfigurations. Previously proposed resource adaptation 
approaches rely on diverse hardware and software schemes 
to detect distinct program phases that are associated with 
either successive program sampling intervals 
[6][9][15][17][20][22][24] or code positions [14]. Usually, 
upon a phase change, the schemes test all hardware 
configurations and select the most energy-efficient one. 

To achieve more energy reduction, an adaptive 
computing environment (ACE) usually has multiple 
configurable units (CUs). Typical configurable units 
include issue queue [12][22], reorder buffer [22], 
instruction and data caches [2][6][9], pipelines [4], filter 
cache [18], and function units [4], and each CU may have 
multiple fixed settings (e.g. four different cache sizes). 
Hardware units can hardly be adapted individually. With 
more configurable units, the total number of combinatorial 
configurations increases dramatically. Hence, the 
straightforward tuning strategy of testing all combinatorial 
configurations results in long tuning process and higher 
tuning overhead, and impairs performance. 

Meanwhile, dynamic optimization (DO) systems have 
grown in popularity. By dynamic optimization, we mean a 
software system’s ability to dynamically translate/optimize 
one type of program code to another form, even in the same 
ISA. Examples of DO systems include Transmeta CMS 
[19], IBM DAISY [11], HP Dynamo [5], Intel IA32EL [7], 
Java virtual machines [3][29], and Microsoft .NET’s CLR 
[30]. To amortize the overheads of runtime translation and 
further improve performance, most DO systems apply 
high-cost, high-quality optimizations only on frequently 
executed code sequences (hotspots). It has been shown that 
hotspots usually have stable runtime characteristics 
throughout program execution [26], and closely represent 
program behavior changes [14][21]. Therefore, DO 
systems are good platforms for adaptive computing 
environment management. 

In this paper, we propose a scheme for efficient 
management of multiple configurable units based on a 
generic dynamic optimization system. Exploiting the 
existing hotspot detection mechanism of the DO system, 
the proposed ACE framework adapts microarchitectural 
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resources at hotspot boundaries. Program hotspots are 
usually of variable sizes and invoked in a nested fashion. 
Smaller hotspots represent fine-grain phases nested within 
coarse-grain phases that appear as large hotspots. 
Intuitively, they closely represent hierarchical phase 
behavior. Thus, this framework automatically captures the 
hierarchical phase behavior by identifying nested hotspots. 
Utilizing this capability, the framework decouples the 
reconfiguration of different CUs in an adaptive computing 
environment by adjusting the granularity of adaptation 
based on each CU’s reconfiguration cost. This CU 
decoupling strategy significantly reduces the tuning 
process, and achieves better balance of benefit/overhead 
for each configurable hardware resource. 

To demonstrate the usefulness and effectiveness of our 
framework, we implement and evaluate the proposed ACE 
management framework using Jikes Research Virtual 
Machine [3] and Dynamic Simplescalar [16]. Performance 
is evaluated on the SPECjvm98 benchmark suite [28]. Our 
target configurable units are the L1 data cache and the L2 
cache. Our technique reduces L1D and L2 cache energy 
consumption by 47% and 58%, while a popular previously 
proposed technique only achieves reduction of 32% and 
52% respectively. 

The main contribution of this paper is that it 
demonstrates how inherent capabilities of a dynamic 
optimization system can be synergistically employed for 
efficient management of adaptive computing 
environments. The other contributions are the following: 
• The proposed scheme automatically detects 

hierarchical phase behavior of programs, and does not 
complicate hardware design. 

• It shows how multiple hardware resources with 
varying reconfiguration overheads can be managed 
simultaneously in an efficient fashion. 

• Significant power saving over one of the best 
performing phase adaptation schemes is observed. 

 
The remainder of the paper is organized as follows. 

Section 2 presents the background on hardware resource 
adaptation. Section 3 introduces our proposed ACE 
management framework. The experimental methodology is 
discussed in Section 4. The evaluation results are presented 
in Section 5, and Section 6 concludes the paper. 

 
2. Hardware resource adaptation 

 
Most resource adaptation schemes have two 

components: a phase detection mechanism that identifies 
when to adapt hardware resources, and a tuning algorithm 
to identify which units to configure and how to configure 
the units. In this section, we first introduce the terms 
reconfiguration overheads and intervals of CUs that are 
used throughout the paper. Then, we describe previously 
proposed resource adaptation schemes in terms of the 

above components and identify their key limitations on 
managing multi-CU ACEs efficiently. 

 
2.1. Reconfiguration overhead and interval 

 
Changing a hardware unit’s setting on the runtime 

usually incurs cycle-time reconfiguration overhead. For 
instance, to reduce a cache’s size, dirty cache lines must be 
written back to lower memory hierarchy, which may take 
thousands of cycles [9]. Hence, a program’s performance 
may be impaired by too frequent reconfigurations where 
reconfiguration overhead overcomes the benefit gained by 
the reconfigurations. To amortize the CU reconfiguration 
overhead, a configuration should be utilized for a certain 
minimum time interval, called the CU’s reconfiguration 
interval. Depending on its reconfiguration overhead, a 
configurable unit’s reconfiguration interval can vary from 
thousands (e.g. reorder buffer [22]) to millions (e.g. caches 
[24]) of instructions/cycles. 

 
2.2. Phase detection 

 
Accurate and timely identification of program phases is 

essential for improving the effectiveness of adaptation. For 
instance, in systems that contain CUs with large 
reconfiguration overheads, recurring phases may reuse 
configuration information to avoid repeated tunings, and 
improve performance. 

The phase detection schemes can be broadly divided 
into two categories: temporal and positional approaches 
[14]. In temporal approaches, dynamic execution stream is 
divided into sampling intervals with fixed or varying sizes. 
At the end of each sampling interval, characteristics, such 
as IPC [12][22], conditional branch counter [6], occupancy 
[22], basic block vectors [20][24], instruction working sets 
[9], and hardware-detected hotspots [21], are gathered and 
compared with preceding ones. A phase change is detected 
when two consequent intervals behave differently. The  
phase identification latency, defined as the number of 
sampling intervals required to recognize a new/recurring 
phase, is usually one sampling interval. Among those 
techniques, the Basic Block Vector (BBV) method [20][24] 
is shown to be one of the best [10]. It gathers dynamic basic 
block distributions through an array of counters, and then 
computes the Manhattan distances of BBVs to detect phase 
changes. 

Phases can be classified into stable and transitional ones 
[9]. Transitional phases have short lifetimes (e.g. last only 
one sampling interval), rarely recur, and are thus difficult to 
be tuned. Recognizing only stable phases that last two or 
more continuous intervals can improve the phase detection 
hardware utilization and increase phase detection accuracy 
considerably [9]. Figure 1 shows the distributions of stable 
and transitional phases of SPECjvm 98 benchmarks. The 
phases are identified by the BBV method with parameters 
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described in Section 4.1. As demonstrated by javac, 
ignoring transitional phases may considerably reduce the 
coverage of resource adaptation. In [20], Lau et al propose 
to filter out transition phases also. 
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Figure 1. Distribution of stable/transitional 
phases of SPECjvm 98 benchmarks (A phase 
is stable if it has two or more successive 
sampling intervals; otherwise it is an unstable 
phase) 

 
Differing from temporal approaches that detect phases 

at successive sampling intervals, the positional approach 
[14] captures phase changes at certain positions such as 
procedure boundaries, relying on the observation that 
program phase behavior is closely associated with program 
structures. Since it is hard to find procedure calls that start 
new phases by hardware at runtime, the positional 
approach simply adapts at boundaries of large procedures 
[14]. It has been shown that phase detection techniques 
based on large procedure boundaries do not perform as well 
as those based on the temporal approaches due to their 
inability to adapt to changes within the procedures [10]. 
Recently, Shen et al [23] propose to construct phases on 
their memory localities. The scheme predicts locality 
phases based on profiling information obtained via tracing 
a training input. The phase information is inserted into 
program code by a static compiler. 

 
2.3. Hardware tuning 

 
The tuning algorithms used in previous resource 

adaptation schemes [6][14][15][17] are similar in nature. In 
general, after a phase is found, the tuning algorithm tests 
different configurations of CUs in successive sampling 
intervals (the temporal approaches), or successive 
invocations of the same code (the positional approach). The 
tuning process completes when all the configurations have 
been tested or a performance threshold is reached. The best 
performing configuration is then selected for the phase. 
The tuning latency, the time taken to find the most 
energy-efficient configuration, is the number of sampling 
intervals required to test all the configurations.  

In resource adaptation, short tuning processes are 
always preferred over long ones. First, tuning latency 
represents a period of program execution where 
performance is impaired due to application of mostly 
sub-optimal configurations. Second, because of the CU 
reconfiguration overhead, longer tuning process incurs 
higher overhead. 

With multiple configurable units, the straightforward 
tuning strategy of testing all combinatorial configurations 
becomes inefficient. The length of the tuning process is 
proportional to the number of combinational 
configurations, which increases exponentially with more 
CUs. Moreover, in temporal approaches, the sampling 
interval size must be chosen to accommodate the largest 
CU reconfiguration interval. Thus, all CUs are adapted at 
the same pace, although some low-overhead CUs can be 
adapted more frequently, leading to lost reconfiguration 
opportunities. 

 
3. ACE management using a dynamic 
optimization system 

 
We have seen in Section 2 that in the presence of 

multiple CUs, especially those that have diverse 
reconfiguration overheads, existing resource adaptation 
schemes have considerable limitations. To efficiently 
manage multiple CUs, we develop an adaptive computing 
environment management framework based on a generic 
dynamic optimization system, and present it in this section. 
Although the idea of integrating hardware adaptation with a 
virtual machine is not new [9], to the best of our 
knowledge, this paper is the first one that utilizes the 
inherent capabilities of a general DO system for efficient 
management of multiple configurable hardware resources. 

Figure 2 shows the flowchart of the proposed 
management framework. In the figure, thin lines indicate 
program control flows, while thick lines represent data 
flows. Three main tasks are performed. Initially, the DO 
system monitors program execution and detects hotspots. 
After a hotspot is detected and JIT optimized, the DO 
system inserts tuning code at hotspot boundaries to identify 
the energy-efficient hardware configuration for the hotspot 
during its subsequent invocations. After the tuning finishes, 
the JIT compiler replaces the tuning code with the code that 
automatically adapts to the hotspot’s most energy-efficient 
configuration whenever it is invoked. The details of the 
framework are explained in the following subsections. 

 
3.1. Hotspot detection 

 
Program hotspots are frequently executed code 

sequences, such as procedures [3][29] or basic block 
groups [5][11][19]. To amortize the overheads of runtime 
translation and further improve performance, most DO 
systems apply high-cost, high-quality optimizations only 
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on hotspots. For instance, the Jikes research virtual 
machine [3] uses a low-overhead sampling method to 
detect execution frequencies of procedures, which are then 
used to determine the level of optimizations that are applied 
on the procedures. 

 

A DO system usually includes the following steps to 
detect and optimize hotspots. Initially, a program code 
block is interpreted [5][11][19][29] or quickly translated 
and instrumented [3]. The execution frequency information 
of the code block is then gathered by the interpreter or the 
profiling code instrumented at hotspot boundaries, and 
saved in the code block’s corresponding entry in the DO 
database that stores runtime profiling information for the 
DO system. The information is then examined to find 
frequently executed code blocks as hotspots, and advanced 
optimizations are applied on them. 

The hotspot detection mechanism in the DO system can 
be used directly for phase identification. Wu et al [26] 
indicate that the runtime characteristics of hotspots are 
usually stable throughout program execution, and Huang et 
al [14] and Merten et al [21] observe that program phase 
behavior is closely related with hotspot invocations. Hence, 

tuning and reconfiguring CUs at hotspot boundaries will 
accurately adapt to program changes. 

 
3.2. CU decoupling and hotspot tuning 

 
After a hotspot is detected, the CU decoupling technique 

is applied on the hotspot to reduce its tuning process. 
 

3.2.1. CU decoupling. In temporal approaches, the 
sampling interval size must be equal to or larger than the 
largest reconfiguration interval of all CUs (Section 2.3). 
This limits the minimum granularity at which hardware can 
be adapted, leading to significant loss of adaptation 
opportunities. 

In contrast, hotspots can be of diverse sizes. Hence, we 
can adapt low-overhead CUs at boundaries of small 
hotspots, while adapting high-overhead CUs at boundaries 
of large hotspots. This technique is called CU decoupling 
since it decouples the reconfigurations of different CUs in a 
multiple-CU system. In this paper, we examine 
configurable L1D/L2 caches with reconfiguration intervals 
of 100K/1M instructions respectively. Hence, the hotspots 
that can adapt the L1D cache (called L1D hotspots) have 
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Figure 2. Flowchart of the proposed ACE management framework based on a DO system 
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average sizes between 50K to 500K instructions, while the 
L2D hotspots are longer than 500K instructions. 

The effectiveness of CU decoupling relies on the 
properties of hotspots. Hotspots are typically nested, i.e., a 
large hotspot usually contains many small hotspots. Hence, 
when those small hotspots tune low-overhead CUs, those 
CUs are automatically tuned for the outside large hotspot. 
Consequently, adapting different CUs at different hotspots 
boundaries does not sacrifice the CUs’ reconfiguration 
opportunities.  

 
3.2.2. Hotspot tuning. After a hotspot is detected and JIT 
optimized, the subset of CUs is chosen for the hotspot, with 
the reconfiguration intervals of those CUs being in the 
same range as the hotspot size. Then, a list of configuration 
combinations of the selected CUs is created and added to 
the hotspot’s DO database entry, with an index initially 
pointing to the first list item. Next, the tuning code is 
inserted at the entry point of the hotspot and the profiling 
code at all exit points of the hotspot. Immediately after the 
hotspot’s invocation, the tuning code fetches the 
configuration pointed to by the list index and increments 
the index, and then adapts the hardware according to the 
fetched configuration. When leaving the hotspot, the 
hotspot’s performance characteristics under the current 
configuration are gathered. The configurations applicable 
to the hotspot are thus tested one by one until all 
configurations are tested or the performance is worse than 
performance_threshold (e.g. 2% IPC degradation). The 
most energy-efficient configuration is then selected to 
complete the hotspot’s tuning process. 

Contrary with previous tuning algorithms that test all 
interdependent CUs, our tuning algorithm adapts only a 
subset of all CUs for each hotspot. Consequently, this 
technique significantly reduces the tuning process, and 
allows multi-grain adaptation which further improves 
performance. 

 
3.3. Hardware reconfiguration 

 
Once the most energy-efficient configuration of a 

hotspot is found, the JIT compiler is invoked to perform the 
following two tasks. First, the tuning code at the beginning 
of the hotspot is replaced by the configuration code that sets 
the ACE to the hotspot’s most energy-efficient 
configuration. For each hotspot after the JIT compilation 
stage, CUs will be changed to the hotspot’s most 
energy-efficient configuration just prior to the hotspot’s 

execution. There will be no further tuning latency or phase 
identification latency incurred by the hotspot. 

Additionally, the profiling code at a hotspot’s exit is 
replaced by the sampling code which occasionally gathers 
performance statistics to detect the performance change 
between the hotspot’s current and prior invocations. A 
large performance change indicates that the hotspot’s 
behavior may have altered. Consequently, the hotspot is 
tuned again. As observed by [26], runtime characteristics of 
hotspots are usually stable throughout program execution, 
and thus such re-tunings are rare. 

 
3.4. Hardware support 

 
The proposed scheme is mainly a software approach. It 

relies on the underlying DO system to detect and adapt 
program hotspots. However, some minimal hardware 
support is needed. We assume that each CU has a control 
register, and the CU’s configuration can be changed by 
setting the register value. To allow resource adaptation by 
software, a special instruction is required to change the 
values of the control registers. Note that in this framework, 
the DO system configures hardware, which is potentially 
less error-prone than allowing user applications to control 
hardware adaptation directly. 

We maintain one hardware counter for each CU to hold 
its most recent reconfiguration time. Each time a CU’s 
configuration is changed, its last-reconfiguration counter is 
updated with the current time. When a CU reconfiguration 
request arrives, the time elapsed since the CU’s last 
reconfiguration is calculated. If the interval is shorter than 
the CU’s reconfiguration interval, the request is ignored 
without modifying the CU’s configuration. With this 
hardware support, the proposed framework is freed from 
the burden of maintaining the minimal reconfiguration 
interval for each CU. 

 
3.5. Comparison with prior approaches 

 
Table 1 qualitatively compares the temporal approaches 

and the proposed framework with their respective latencies. 
The better performing approach for each metric is 
emphasized in bold italics. The DO-based approach 
exceeds the temporal approaches for two out of three. 

In temporal approaches, a phase change cannot be 
identified immediately. It can only be detected after the 
phase change lasts one or more sampling intervals, which is 
called the identification latency. Recurring phases in those 
temporal approaches incur phase identification latencies, 

Table 1. Comparing DO-Based ACE management scheme with temporal approaches 
Type Temporal approaches DO-based approach 

New phase identification latency At least one sampling interval Hotspot invoked hot_threshold times 
Recurring phase identification latency  At least one sampling interval None 
Tuning latency All configurations are tested A subset of all configurations are tested 
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regardless the length of program execution. Recurring 
phase identification latencies can be reduced by next phase 
detection mechanisms [20][24], which predict what the 
next phase will be and when it will occur. However, 
incorrect predictions cause unnecessary or wrong 
adaptations and subsequent rollbacks of hardware 
configurations, thus affecting performance considerably. 
Hence, high prediction accuracy is imperative for such 
mechanisms. 

In comparison, in a DO-based system, only new 
hotspots need to be detected, and recurring hotspots are 
identified immediately and needs no prediction. Hence, a 
hotspot’s detection overhead is a one-time cost, and can be 
diminished by long program execution. Moreover, since 
hotspots are often nested, detections of new hotspots are 
often overlapped, further reducing the overall hotspot 
identification cost.  

More importantly, since the DO-based approach can 
have phases of any length, it enables CU decoupling, which 
significantly reduces the tuning process. These benefits are 
difficult to achieve in temporal approaches that use 
fixed-size sampling intervals. 

This hotspot-based framework is essentially a software 
positional approach. Differing from the original positional 
approach [14], the proposed framework detects hotspots 
instead of large procedures. The frequent-invocation nature 
of hotspots ensures that the most energy-efficient hardware 
configuration of a hotspot can be applied enough times for 
high benefit, while the positional approach can not enjoy 
this feature from the large procedures it uses. Furthermore, 
as with temporal approaches, the original positional 
approach also requires significant efforts to detect 
hierarchical phase changes and adapt hardware 
accordingly, which, in contrast, is accomplished by our 
framework in a natural and elegant way. 

 
3.6. Summary of advantages 

 
Utilizing existing DO services, this framework incurs 

minimal overhead while providing accurate phase 
detection and configuration tuning. Reconfiguring at 
hotspot boundaries identified by DO systems has the 
following advantages:  
• Prompt recurring phase identification. By 

instrumenting hotspot headers, the framework can 

identify all previously seen hotspots with zero latency, 
and thus needs no phase prediction at all. 

• Reduced tuning latency. Since we configure only a 
subset of CUs in each hotspot, the tuning latency is 
greatly reduced. In return, the most energy-efficient 
configuration can be applied more times for improved 
performance. 

• Hierarchical phase change detection. Hotspots are 
often nested and of diverse sizes. By detecting those 
hotspots, hierarchical phase changes are automatically 
captured. 

• Multi-grain adaptation. With CU decoupling, the 
granularity of each CU’s reconfiguration can be 
adjusted based on its reconfiguration overhead, 
resulting in better balance of reconfiguration 
benefit/cost. 

• Versatility and scalability. By detecting hotspots of 
any sizes, this approach works efficiently for 
workloads with diverse runtime characteristics and 
CUs with different rent reconfiguration overheads. 

 
4. Experimental methodology 

 
In this research, we implement the proposed framework 

with the Dynamic Simplescalar simulator [16] and the Jikes 
Research Virtual Machine (RVM) [3]. We evaluate the 
proposed ACE management framework with the 
SPECjvm98 benchmark suite [28]. 

 
4.1. Simulation environment 

 
The Dynamic Simplescalar (DSS) [16] simulator used 

in our work adds a series of major extensions to 
Simplescalar/PowerPC version 3.0, and permits simulation 
of a full Java run-time environment on a detailed simulated 
hardware platform. The original Simplescalar framework 
cannot simulate Java programs due to its inability to handle 
self-modifying code. DSS resolves the problem and 
implements support for dynamic code generation, thread 
scheduling and synchronization, as well as a general signal 
mechanism that supports exception delivery and recovery. 
The newer version of DSS incorporates a power model that 
is based on Wattch [8]. We augmented the power model to 
obtain our energy reduction results. We assume that the 
operating frequency and voltage of the target processor are 

Table 2. Baseline configuration of the simulated system (The L1D and L2 cache values in the 
parenthesis are the sizes and reconfiguration intervals of the configurable units) 

CPU (1000M Hz with 2V) Memory Hierarchy 
Instruction window 64-IFQ, 64-RUU, 32-LSQ L1 I-cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency 

functional units 4 intALU, 2 IntMult/Div,4 FPALU, 2 
FPMult/Div L1 D-cache 64KB (64KB/32KB/16KB/8KB, 100K-instruction reconfiguration 

interval), 64B blocks, 2-way, LRU, 1 cycle hit latency, 

Branch predictor 2K-entry combined predictor, 3-cycle 
misprediction penalty 

L2 unified 
cache 

1MB (1MB/512KB/256KB/128KB, 1M-instruction reconfiguration 
interval ), 128B blocks, 4-way, LRU, 10 cycles hit latency 

Issue/Commit width 4 instructions per cycle DTLB/ITLB 128 entries, fully set associative 
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1GHz and 2V respectively. The baseline processor 
configuration is presented in Table 2. 

In this paper, we use size-adaptable L1 data cache and 
L2 cache to demonstrate the framework’s capability to 
manage CUs with varying reconfiguration intervals. Each 
cache has four different sizes (Table 2). Owing to the 
significant differences among their sizes and speeds, L1D 
and L2 caches’ reconfiguration intervals differ 
considerably. In this paper, we assume the caches’ 
reconfiguration intervals are 100K [9] and 1M instructions 
respectively. The modified power model also takes into 
account the power consumed for reconfiguring the 
hardware (i.e. power consumed for writing dirty cache lines 
into the lower level of memory hierarchy). We are 
implementing several more CUs, such as the issue window 
and the reorder buffer. 

We also implement the basic block vector approach [24] 
in DSS, and compare it with our framework. To give 
advantages to the BBV approach, the BBV implementation 
allows unlimited number of uncompressed BBV 
signatures, each with 32 24-bit uncompressed buckets. The 
accumulator table is indexed by the lower 6 bits (excluding 
2 least significant bits) of branch PCs. Furthermore, a 
phase’s basic block vector information and tuning results 
are stored. Hence, a recurring phase can use its chosen 
configuration if available, or resume its tuning from the last 
tested configuration. However, this BBV implementation 
does not contain a next phase predictor. 

 
4.2. Dynamic optimization system 

 
Jikes RVM is a research Java virtual machine (JVM) 

developed in IBM T. J. Watson Center [3]. It is written in 
Java. This enables the optimization techniques to be 
applied to both the application code and the JVM itself. We 
use the 2.0.2 version of Jikes since the original Dynamic 
Simplescalar is not fully compatible with the latest version. 

Jikes RVM employs a compile-only strategy (i.e., no 
interpreter mode). It includes a baseline and an optimizing 
compiler. The optimizing compiler has three levels of 
optimizations, each one consisting of its own group of 
optimizations as well as the optimizations that belong to 
lower levels. Initially, code sequences are compiled by the 
baseline compiler.  

The Jikes RVM uses a low-overhead sampling method 
to detect program hotspots. Approximately every 10 
milliseconds, Jikes increments a counter associated with 
the currently active procedure. For all methods that have 
been sampled, Jikes uses a cost/benefit model to determine 
whether it is profitable to recompile the method, and if so, 
what level of optimization to use. 

Currently only the optimizing compiler with the highest 
compilation level is used. This prevents the possible 
disruptions caused by the use of multiple versions of the 
hotspot. The simplification allows us to focus on the 

implementation and evaluation of the proposed ACE 
management framework. Furthermore, we intentionally 
choose a large heap (200MB) to reduce garbage collection 
activities. By doing so, execution is dominated by the 
application rather than Jikes RVM. 

As described in Section 3, hardware tunings and 
reconfigurations are performed after hotspots are detected 
and JIT optimized. The functionalities are implemented in 
the Jikes optimizing compiler, and Jikes’ global data 
structure is also modified to store the necessary information 
for the hardware tunings and reconfigurations. 

 
4.3. Benchmarks 

 
The industry standard SPECjvm98 benchmarks are used 

to evaluate the proposed framework. Among the programs 
in the SPECjvm98 suite, 200_check is not considered in 
this study since its only purpose is to check the 
functionality of a JVM. We run the SPECjvm98 
benchmarks with the largest s100 data sets. Table 3 
provides a summary of these SPECjvm98 benchmarks. 

 
Table 3. Description of SPECjvm98 benchmarks 

Benchmark Description  
compress A popular LZW compression program. 

db Data management benchmarking software written 
by IBM. 

jack A real parser-generator from Sun Microsystems. 
javac The JDK 1.0.2 Java compiler  

jess A Java version of NASA’s popular CLIPS 
rule-based expert systems 

mpegaudio The core algorithm for software that decodes an 
MPEG-3 audio stream. 

mtrt A dual-threaded program that ray traces an image 
file. 

 
5. Evaluation results 

 
Hotspot detection and the associated CU tunings on 

hotspot boundaries are the two major components of the 
proposed ACE management framework. This section 
evaluates the two components and compares the results 
with the BBV approach [24], one of the best existing 
approaches. 

 
5.1. Runtime characteristics of hotspots 

 
On average, the resulting hotspots execute at least 823 

times. As shown in Table 1, the only disadvantage of the 
proposed DO-based framework over temporal approaches 
is the former’s long initial hotspot identification latency, 
which may potentially override all other benefits. The 
proportion of the hotspot identification latency over whole 
program execution can be estimated by dividing 
hot_threshold by the average invocations per hotspot. 
Since a hotspot’s average number of invocations far 
exceeds hot_threshold, the hotspot identification latency 



 8

takes less than 3.65% of overall program execution. The 
data clearly shows that although hotspots take more time 
than BBV phases to be recognized, it does not pose a big 
burden to the hotspot approach. 

 
5.2. Evaluation of the framework 

 
To evaluate the proposed framework, we compare it 

with a system that uses the BBV phase detection technique 
[24] and the tuning algorithm prescribed in [9]. Since both 
techniques are the best among their respective alternatives, 
this combination should be the best technique that prior 
literature can contribute. The only difference between the 
tuning algorithms used in [9] and our framework is that our 
algorithm uses CU decoupling to reduce the tuning process. 
Since CU decoupling requires that phases are of variable 
sizes and nested, this technique is hard to be combined with 
the BBV technique. 

The BBV technique used in this paper is not as 
aggressive as it can be, since it could use the phase 
prediction mechanisms presented in [20] and [24]. 
Accurate phase prediction tells what the next phase will be 
and when it will occur, and thus can improve the coverage 
of resource adaptations. In contrast, the hotspot approach 
does not need next phase prediction since it always 
identifies upcoming phases immediately. 

Complying with the 1M reconfiguration interval of the 
L2 cache, we set the sampling interval size of the BBV 
scheme to 1M instructions. As for the DO-based 
framework, hotspots that configure the L1D cache (L1D 
hotspots) are between 50K and 500K instructions long, 

while L2 hotspots are at least 500K instructions long. With 
such multi-grain adaptation, each cache reaches better 
balance of reconfiguration benefit/overhead. As described 
in Section 3.4, hardware counters prevent too frequent 
reconfigurations of the caches. 

 
5.2.1. Runtime characteristics. Table 5 shows the total 
number of L1D/L2 hotspots (BBV phases) as well the 
number of hotspots (BBV phases) that complete the tuning 
process. Since hotspots are inherently invoked frequently 
and need to test 4 instead of 16 configurations required for 
BBV phases, on average 88% of hotspots finish tuning. 

Table 5 also presents the percentages of dynamic 
sampling intervals in tuned phases. Although tuned BBV 
phases consist of only 29% of all BBV phases, they 
constitute on average 70% of the dynamic program 
execution. The rest of the program execution consists of 
either transitional phases (24%), or short-running phases 
(6%) that cannot finish their tunings.  

Since tuned BBV phases dominate the overall program 
execution, the performance impact of unfinished tunings of 
short phases is minimal. However, as the number of CUs in 
the system grows, and more phases fail to finish their 
tuning because of the use of the straightforward tuning 
algorithm of testing all combinatorial configurations, the 
resulting adverse performance impact will increase 
dramatically. Note that it is possible to reduce the tuning 
process of both the BBV approach by ruling out some 
unpromising configurations found via offline profiling. 
Nevertheless, CU decoupling offers us a natural and 
elegant way to accomplish this in a DO-based system. 

Table 4. Runtime hotspot characteristics of SPECjvm 98 benchmarks 
  comp db jack javac jess mpeg mtrt 

dynamic instruction count 9.83E+09 8.78E+09 8.22E+09 8.92E+09 5.72E+09 1.09E+10 5.10E+09 
number of hotspots 299 316 470 685 434 386 363 
average hotspot size 81,645 75,648 14,941 23,774 77,841 70,231 18,617 
% of code in hotspots 99.03% 99.41% 99.96% 99.92% 99.83% 99.87% 99.87% 
average invocations per hotspot 823 1,105 13,091 5,983 2490 4,747 3,284 
hotspot identification latency (as 
% of total execution time)  3.65% 2.71% 0.23% 0.50% 1.20% 0.63% 0.91% 

 
Table 5. Runtime characteristics of the hotspot and BBV approaches 

   comp db jack javac jess mpeg mtrt 
number of L1D hotspots 64 58 81 108 68 64 73 
number of L2 hotspots 22 29 31 33 30 23 21 
total number of hotspots 85 87 112 141 98 87 94 
number of tuned hotspots 69 77 101 132 86 79 78 
% of tuned hotspots 81.18% 88.51% 90.18% 93.62% 87.76% 90.80% 82.98% 
per-hotspot IPC CoV 9.17% 9.97% 6.74% 9.33% 7.79% 5.37% 8.09% 

H
ot

sp
ot

 

inter-hotspot IPC CoV 43.78% 42.99% 49.38% 46.47% 52.49% 49.05% 46.69% 
number of phases 70 50 70 84 80 58 75 
number of tuned phases 35 16 14 22 24 13 17 
% of dynamic sampling 
intervals in tuned phases 81.40% 75.35% 71.44% 40.40% 56.97% 73.34% 93.37% 

per-phase IPC CoVs 4.07%  9.10%  7.35%  6.59%  5.20%  4.91%  6.24% 

B
B

V
 

inter-phase IPC CoVs 20.05%  33.32%  20.07%  24.87%  26.11%  38.26%  23.96% 
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Table 5 also the per-phase and inter-phase IPC 
coefficient-of-variations (CoVs) of both approaches. CoV 
equals the percentage of the standard deviation divided by 
the average. The per-phase IPC CoVs are IPC variations 
among different invocations of the same hotspot, which 
characterizes the homogeneity among different invocations 
of a hotspot. The inter-phase IPC CoVs are the variations 
of average IPCs of different hotspots, which quantify the 
heterogeneity among different hotspots. Larger inter-phase 
IPC CoV signifies larger differences between the 
characteristics of detected hotspots. More than 34% 
difference between hotspots’ per-phase and inter-phase 
CoVs further confirms that hotspots are closely related with 
program behavior changes. 

BBV phases have smaller per-phase CoVs than 
hotspots, which indicates that BBV phases are more stable 
than hotspots, i.e. there are fewer variations among 
different invocations of the same phase. On the other hand, 
BBV phases have smaller inter-phase CoVs than hotspots, 
which may be because BBV phases are insensitive to 
small-grain phase changes within sampling intervals; such 
small phase changes can be detected better by the hotspot 
approach. 

Table 6 presents the number of tuning attempts made 
(tunings) and the number of times the most energy-efficient 
configuration is applied (reconfigs) for both the hotspot and 
the BBV algorithms. Due to CU decoupling, the hotspot 
algorithm conducts fewer tunings and is able to apply the 
most energy-efficient configurations more times than the 

BBV approach, which clearly demonstrates the advantage 
of tuning L1D and L2 caches separately on different 
hotspots. Note that using the hotspot tuning algorithm, the 
L1D cache is reconfigured more frequently than the L2 
cache. This demonstrates the flexibility of the 
hotspot-based algorithm to finely tune the CUs with lower 
reconfiguration overheads for better performance. 

In long-running applications, the impact of long tuning 
process will diminish. However, with the ability of 
multi-grain adaptation, our framework reaches better 
balance of adaptation benefit/overhead for each CU. This 
advantage does not diminish with longer execution. 

Table 6 also gives the coverage (i.e. the portion of 
dynamically executed instructions under tuned/ 
reconfiguration configurations) results for L1D/L2 
hotspots and BBV phases. In the BBV approach, hardware 
resources are adapted only at stable phases. Hence, the 
coverage results are the same as the stable phase 
distributions shown in Figure 1. As shown in Table 6, both 
L1D and L2 hotspots have good coverage across 
benchmarks. Good coverage and numerous 
reconfigurations indicate that CU decoupling does not 
sacrifice each CU’s reconfiguration opportunity. 
 
5.2.2. Energy reduction. Figure 3 shows the cache energy 
reduction achieved by the resource adaptation schemes. 
Both the BBV and the hotspot algorithms are examined and 
compared with the baseline configuration that uses the 
maximum sizes of the L1D and L2 caches. As for the L1D 

Table 6. Tunings, reconfigurations and coverage of hotspots and BBV phases 
hotspot BBV 

  
L1D 

tunings 
L1D 

reconfigs 
L1D 

coverage 
L2 

tunings 
L2 

reconfigs 
L2 

coverage tunings reconfigs coverage 

comp 247 2640 71.7% 85 835 73.8% 693 331 85.0% 
db 218 3060 87.9% 130 1253 87.9% 419 832 80.1% 
jack 338 30574 85.0% 109 4509 56.9% 443 464 77.0% 
javac 506 46754 81.2% 58 3047 80.0% 711 1305 48.4% 
jess 281 10321 92.7% 108 1333 84.3% 635 526 65.6% 
mpeg 249 43753 91.0% 99 8514 95.7% 368 2018 76.5% 
mtrt 355 48493 81.4% 21 396 82.6% 474 192 97.6% 
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(a) L1D cache energy reduction     (b) L2 cache energy reduction 
Figure 3. Cache energy consumption reduced by the resource adaptation schemes 



 10

cache, the hotspot-based algorithm is superior to the 
BBV-based algorithm on all workloads. The hotspot-based 
algorithm also performs better than the BBV algorithm for 
L2 on most benchmarks, except jack and mtrt. The hotspot 
approach performs especially well on db with 66% L1D 
cache energy reduction. In db, less than 10 procedures are 
responsible for more than 95% of data cache misses [25]. 
Consequently, the average cache sizes can be dramatically 
reduced for the hotspots that have very few data misses. On 
average, the hotspot approach achieves 47% energy 
reduction on the L1D cache and 58% energy reduction on 
the L2 cache over the baseline configuration. In 
comparison, the BBV approach only achieves cache energy 
reduction of 32% and 52% over the baseline configuration, 
respectively. 
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Figure 4. Performance impact of the resource 
adaptation schemes 

 
5.2.3. Performance impact. The performance impact of 
using the resource adaptation schemes is illustrated in 
Figure 4. The performance degradation seen by the BBV 
technique ranges from 1.34% to 2.38%. For the hotspot 
technique the penalty ranges from 0.4% to 2.47%. On 
average the performance penalty for the hotspot technique 
is 1.56% and for the BBV scheme it is marginally worse at 
1.87%. For the similar performance penalty, the DO-based 
ACE management framework achieves more energy 
reductions in L1D and L2 caches than the BBV method. 
These results indicate that the DO-based scheme is more 
efficiently than the BBV approach on managing multiple 
CUs with varying reconfiguration overheads/intervals, 
mainly due to CU decoupling that significantly reduces the 
tuning process, and multi-grain adaptation that achieves 
better balance of benefit/overhead for each configurable 
hardware unit. 
 
6. Conclusion 

 
In an adaptive computing environment, efficient 

management of the configurable resources is vital for 
maximizing the benefit of resource adaptation. The main 
contribution of this paper is that we demonstrate how 

inherent capabilities of a dynamic optimization system can 
be synergistically employed for efficient management of 
adaptive computing environments. Utilizing existing DO 
hotspot detection mechanisms, the proposed technique 
accurately detects program behavior at varying 
granularities, providing us the opportunity to significantly 
reduce the overheads associated with adaptation decisions. 
By matching each hotspot with a subset of available 
configuration units, we reduce the number of tested 
configurations while searching for the most 
energy-efficient one, thereby reducing the tuning process 
significantly. 

Dynamic optimization systems become increasingly 
popular. For instance, in the next generation Windows 
operating system, Longhorn, most applications and OS 
services will be managed by the .NET framework, 
essentially a DO system similar to a Java virtual machine. 
Those existing DO systems can utilize our framework for 
better hardware/software integration and optimizations. On 
the other hand, the benefits of using the proposed 
framework in systems without such infrastructure may be 
affected by the extra time and energy spent on hotspot 
detection and binary rewriting. 

We implement the proposed scheme in a state-of-the-art 
JVM and evaluate for the SPECjvm98 benchmark suite 
with the adaptive computing environment having two 
configurable units (L1D cache and L2 cache). Our 
technique reduces L1D and L2 cache energy consumption 
by 47% and 58%, while a popular previously proposed 
technique only achieves reduction of 32% and 52% 
respectively. 

In contrast to previously proposed techniques, the 
DO-based ACE management framework is inherently 
scalable to handle large number of configurable hardware 
resources. The proposed framework also demonstrates the 
benefit of integrating software adaptability with hardware 
adaptability. We envision several new optimization 
opportunities being enabled by the integration. For 
example, one could use the JIT compiler in the DO system 
to provide a good estimate for the resource configuration 
required for this hotspot through appropriate code analysis. 
Such a feature could potentially completely eliminate the 
tuning latency and overhead seen in all existing ACE 
schemes. In the future, we plan to investigate this and other 
such avenues for improving the performance of DO-based 
adaptive computing environments. 
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