
 1

Effective Adaptive Computing Environment Management
via Dynamic Optimization

Shiwen Hu Madhavi Valluri Lizy Kurian John
Department of Electrical and Computer Engineering

The University of Texas at Austin
{hushiwen, valluri, ljohn}@ece.utexas.edu

Abstract

To minimize the surging power consumption of

microprocessors, adaptive computing environments
(ACEs) where microarchitectural resources can be
dynamically tuned to match a program's runtime
requirement and characteristics are becoming
increasingly common. Adaptive computing environments
usually have multiple configurable hardware units,
necessitating exploration of a large number of
combinatorial configurations in order to identify the most
energy-efficient configuration.

In this paper, we propose a scheme for efficient
management of multiple configurable units, utilizing the
inherent capabilities of dynamic optimization systems.
Most dynamic optimizers typically detect dominant code
regions (hotspots). We develop an ACE management
scheme where hotpot boundaries are used for phase
detection and adaptation. Since hotspots are of variable
sizes and are often nested, program phase behavior which
is hierarchical in nature is automatically captured in this
technique.

To demonstrate the usefulness and effectiveness of our
framework, we use the proposed framework to
dynamically adapt the sizes of L1 data and L2 caches that
have different reconfiguration latencies and overheads.
Our technique reduces L1D and L2 cache energy
consumption by 47% and 58%, while a popular previously
proposed technique only achieves reduction of 32% and
52% respectively.

1. Introduction

The increasing power consumption in microprocessors

raises concerns in both hardware and software
communities. Among the efforts to reduce power
consumption, one promising method is to dynamically
adapt microarchitectural resources to match changing
program requirements [1][2][4][6][12][18][22][27]. An
application’s execution usually passes through phases with
varying runtime characteristics and hardware requirements.

Phase boundaries are thus suitable points for resource
reconfigurations. Previously proposed resource adaptation
approaches rely on diverse hardware and software schemes
to detect distinct program phases that are associated with
either successive program sampling intervals
[6][9][15][17][20][22][24] or code positions [14]. Usually,
upon a phase change, the schemes test all hardware
configurations and select the most energy-efficient one.

To achieve more energy reduction, an adaptive
computing environment (ACE) usually has multiple
configurable units (CUs). Typical configurable units
include issue queue [12][22], reorder buffer [22],
instruction and data caches [2][6][9], pipelines [4], filter
cache [18], and function units [4], and each CU may have
multiple fixed settings (e.g. four different cache sizes).
Hardware units can hardly be adapted individually. With
more configurable units, the total number of combinatorial
configurations increases dramatically. Hence, the
straightforward tuning strategy of testing all combinatorial
configurations results in long tuning process and higher
tuning overhead, and impairs performance.

Meanwhile, dynamic optimization (DO) systems have
grown in popularity. By dynamic optimization, we mean a
software system’s ability to dynamically translate/optimize
one type of program code to another form, even in the same
ISA. Examples of DO systems include Transmeta CMS
[19], IBM DAISY [11], HP Dynamo [5], Intel IA32EL [7],
Java virtual machines [3][29], and Microsoft .NET’s CLR
[30]. To amortize the overheads of runtime translation and
further improve performance, most DO systems apply
high-cost, high-quality optimizations only on frequently
executed code sequences (hotspots). It has been shown that
hotspots usually have stable runtime characteristics
throughout program execution [26], and closely represent
program behavior changes [14][21]. Therefore, DO
systems are good platforms for adaptive computing
environment management.

In this paper, we propose a scheme for efficient
management of multiple configurable units based on a
generic dynamic optimization system. Exploiting the
existing hotspot detection mechanism of the DO system,
the proposed ACE framework adapts microarchitectural

2005 International Symposium on Code Generation and Optimization (CGO)

 2

resources at hotspot boundaries. Program hotspots are
usually of variable sizes and invoked in a nested fashion.
Smaller hotspots represent fine-grain phases nested within
coarse-grain phases that appear as large hotspots.
Intuitively, they closely represent hierarchical phase
behavior. Thus, this framework automatically captures the
hierarchical phase behavior by identifying nested hotspots.
Utilizing this capability, the framework decouples the
reconfiguration of different CUs in an adaptive computing
environment by adjusting the granularity of adaptation
based on each CU’s reconfiguration cost. This CU
decoupling strategy significantly reduces the tuning
process, and achieves better balance of benefit/overhead
for each configurable hardware resource.

To demonstrate the usefulness and effectiveness of our
framework, we implement and evaluate the proposed ACE
management framework using Jikes Research Virtual
Machine [3] and Dynamic Simplescalar [16]. Performance
is evaluated on the SPECjvm98 benchmark suite [28]. Our
target configurable units are the L1 data cache and the L2
cache. Our technique reduces L1D and L2 cache energy
consumption by 47% and 58%, while a popular previously
proposed technique only achieves reduction of 32% and
52% respectively.

The main contribution of this paper is that it
demonstrates how inherent capabilities of a dynamic
optimization system can be synergistically employed for
efficient management of adaptive computing
environments. The other contributions are the following:
• The proposed scheme automatically detects

hierarchical phase behavior of programs, and does not
complicate hardware design.

• It shows how multiple hardware resources with
varying reconfiguration overheads can be managed
simultaneously in an efficient fashion.

• Significant power saving over one of the best
performing phase adaptation schemes is observed.

The remainder of the paper is organized as follows.

Section 2 presents the background on hardware resource
adaptation. Section 3 introduces our proposed ACE
management framework. The experimental methodology is
discussed in Section 4. The evaluation results are presented
in Section 5, and Section 6 concludes the paper.

2. Hardware resource adaptation

Most resource adaptation schemes have two

components: a phase detection mechanism that identifies
when to adapt hardware resources, and a tuning algorithm
to identify which units to configure and how to configure
the units. In this section, we first introduce the terms
reconfiguration overheads and intervals of CUs that are
used throughout the paper. Then, we describe previously
proposed resource adaptation schemes in terms of the

above components and identify their key limitations on
managing multi-CU ACEs efficiently.

2.1. Reconfiguration overhead and interval

Changing a hardware unit’s setting on the runtime

usually incurs cycle-time reconfiguration overhead. For
instance, to reduce a cache’s size, dirty cache lines must be
written back to lower memory hierarchy, which may take
thousands of cycles [9]. Hence, a program’s performance
may be impaired by too frequent reconfigurations where
reconfiguration overhead overcomes the benefit gained by
the reconfigurations. To amortize the CU reconfiguration
overhead, a configuration should be utilized for a certain
minimum time interval, called the CU’s reconfiguration
interval. Depending on its reconfiguration overhead, a
configurable unit’s reconfiguration interval can vary from
thousands (e.g. reorder buffer [22]) to millions (e.g. caches
[24]) of instructions/cycles.

2.2. Phase detection

Accurate and timely identification of program phases is

essential for improving the effectiveness of adaptation. For
instance, in systems that contain CUs with large
reconfiguration overheads, recurring phases may reuse
configuration information to avoid repeated tunings, and
improve performance.

The phase detection schemes can be broadly divided
into two categories: temporal and positional approaches
[14]. In temporal approaches, dynamic execution stream is
divided into sampling intervals with fixed or varying sizes.
At the end of each sampling interval, characteristics, such
as IPC [12][22], conditional branch counter [6], occupancy
[22], basic block vectors [20][24], instruction working sets
[9], and hardware-detected hotspots [21], are gathered and
compared with preceding ones. A phase change is detected
when two consequent intervals behave differently. The
phase identification latency, defined as the number of
sampling intervals required to recognize a new/recurring
phase, is usually one sampling interval. Among those
techniques, the Basic Block Vector (BBV) method [20][24]
is shown to be one of the best [10]. It gathers dynamic basic
block distributions through an array of counters, and then
computes the Manhattan distances of BBVs to detect phase
changes.

Phases can be classified into stable and transitional ones
[9]. Transitional phases have short lifetimes (e.g. last only
one sampling interval), rarely recur, and are thus difficult to
be tuned. Recognizing only stable phases that last two or
more continuous intervals can improve the phase detection
hardware utilization and increase phase detection accuracy
considerably [9]. Figure 1 shows the distributions of stable
and transitional phases of SPECjvm 98 benchmarks. The
phases are identified by the BBV method with parameters

 3

described in Section 4.1. As demonstrated by javac,
ignoring transitional phases may considerably reduce the
coverage of resource adaptation. In [20], Lau et al propose
to filter out transition phases also.

Distribution of BBV phase states

0%
10%

20%
30%
40%
50%

60%
70%
80%

90%
100%

comp db jack javac jess mpeg mtrt avg

stable transitional

Figure 1. Distribution of stable/transitional
phases of SPECjvm 98 benchmarks (A phase
is stable if it has two or more successive
sampling intervals; otherwise it is an unstable
phase)

Differing from temporal approaches that detect phases

at successive sampling intervals, the positional approach
[14] captures phase changes at certain positions such as
procedure boundaries, relying on the observation that
program phase behavior is closely associated with program
structures. Since it is hard to find procedure calls that start
new phases by hardware at runtime, the positional
approach simply adapts at boundaries of large procedures
[14]. It has been shown that phase detection techniques
based on large procedure boundaries do not perform as well
as those based on the temporal approaches due to their
inability to adapt to changes within the procedures [10].
Recently, Shen et al [23] propose to construct phases on
their memory localities. The scheme predicts locality
phases based on profiling information obtained via tracing
a training input. The phase information is inserted into
program code by a static compiler.

2.3. Hardware tuning

The tuning algorithms used in previous resource

adaptation schemes [6][14][15][17] are similar in nature. In
general, after a phase is found, the tuning algorithm tests
different configurations of CUs in successive sampling
intervals (the temporal approaches), or successive
invocations of the same code (the positional approach). The
tuning process completes when all the configurations have
been tested or a performance threshold is reached. The best
performing configuration is then selected for the phase.
The tuning latency, the time taken to find the most
energy-efficient configuration, is the number of sampling
intervals required to test all the configurations.

In resource adaptation, short tuning processes are
always preferred over long ones. First, tuning latency
represents a period of program execution where
performance is impaired due to application of mostly
sub-optimal configurations. Second, because of the CU
reconfiguration overhead, longer tuning process incurs
higher overhead.

With multiple configurable units, the straightforward
tuning strategy of testing all combinatorial configurations
becomes inefficient. The length of the tuning process is
proportional to the number of combinational
configurations, which increases exponentially with more
CUs. Moreover, in temporal approaches, the sampling
interval size must be chosen to accommodate the largest
CU reconfiguration interval. Thus, all CUs are adapted at
the same pace, although some low-overhead CUs can be
adapted more frequently, leading to lost reconfiguration
opportunities.

3. ACE management using a dynamic
optimization system

We have seen in Section 2 that in the presence of

multiple CUs, especially those that have diverse
reconfiguration overheads, existing resource adaptation
schemes have considerable limitations. To efficiently
manage multiple CUs, we develop an adaptive computing
environment management framework based on a generic
dynamic optimization system, and present it in this section.
Although the idea of integrating hardware adaptation with a
virtual machine is not new [9], to the best of our
knowledge, this paper is the first one that utilizes the
inherent capabilities of a general DO system for efficient
management of multiple configurable hardware resources.

Figure 2 shows the flowchart of the proposed
management framework. In the figure, thin lines indicate
program control flows, while thick lines represent data
flows. Three main tasks are performed. Initially, the DO
system monitors program execution and detects hotspots.
After a hotspot is detected and JIT optimized, the DO
system inserts tuning code at hotspot boundaries to identify
the energy-efficient hardware configuration for the hotspot
during its subsequent invocations. After the tuning finishes,
the JIT compiler replaces the tuning code with the code that
automatically adapts to the hotspot’s most energy-efficient
configuration whenever it is invoked. The details of the
framework are explained in the following subsections.

3.1. Hotspot detection

Program hotspots are frequently executed code

sequences, such as procedures [3][29] or basic block
groups [5][11][19]. To amortize the overheads of runtime
translation and further improve performance, most DO
systems apply high-cost, high-quality optimizations only

 4

on hotspots. For instance, the Jikes research virtual
machine [3] uses a low-overhead sampling method to
detect execution frequencies of procedures, which are then
used to determine the level of optimizations that are applied
on the procedures.

A DO system usually includes the following steps to
detect and optimize hotspots. Initially, a program code
block is interpreted [5][11][19][29] or quickly translated
and instrumented [3]. The execution frequency information
of the code block is then gathered by the interpreter or the
profiling code instrumented at hotspot boundaries, and
saved in the code block’s corresponding entry in the DO
database that stores runtime profiling information for the
DO system. The information is then examined to find
frequently executed code blocks as hotspots, and advanced
optimizations are applied on them.

The hotspot detection mechanism in the DO system can
be used directly for phase identification. Wu et al [26]
indicate that the runtime characteristics of hotspots are
usually stable throughout program execution, and Huang et
al [14] and Merten et al [21] observe that program phase
behavior is closely related with hotspot invocations. Hence,

tuning and reconfiguring CUs at hotspot boundaries will
accurately adapt to program changes.

3.2. CU decoupling and hotspot tuning

After a hotspot is detected, the CU decoupling technique

is applied on the hotspot to reduce its tuning process.

3.2.1. CU decoupling. In temporal approaches, the
sampling interval size must be equal to or larger than the
largest reconfiguration interval of all CUs (Section 2.3).
This limits the minimum granularity at which hardware can
be adapted, leading to significant loss of adaptation
opportunities.

In contrast, hotspots can be of diverse sizes. Hence, we
can adapt low-overhead CUs at boundaries of small
hotspots, while adapting high-overhead CUs at boundaries
of large hotspots. This technique is called CU decoupling
since it decouples the reconfigurations of different CUs in a
multiple-CU system. In this paper, we examine
configurable L1D/L2 caches with reconfiguration intervals
of 100K/1M instructions respectively. Hence, the hotspots
that can adapt the L1D cache (called L1D hotspots) have

next
config.

yes

program execution managed by DO system

invocation
counter ++

DO database

update
counter

encounter
hotspot

candidate

hotspot?

insert
tuning/profiling

code
create
config.
list

encounter
hotspot with
tuning code

test next
configuration finish?

no

Hotspot
detection

Hotspot tuning
(after JIT compilation)

yes insert
configuration/
sampling code

optimal
configuration

encounter
hotspot with
config. code

apply the
configuration

no

Hardware
reconfiguration

Figure 2. Flowchart of the proposed ACE management framework based on a DO system

 5

average sizes between 50K to 500K instructions, while the
L2D hotspots are longer than 500K instructions.

The effectiveness of CU decoupling relies on the
properties of hotspots. Hotspots are typically nested, i.e., a
large hotspot usually contains many small hotspots. Hence,
when those small hotspots tune low-overhead CUs, those
CUs are automatically tuned for the outside large hotspot.
Consequently, adapting different CUs at different hotspots
boundaries does not sacrifice the CUs’ reconfiguration
opportunities.

3.2.2. Hotspot tuning. After a hotspot is detected and JIT
optimized, the subset of CUs is chosen for the hotspot, with
the reconfiguration intervals of those CUs being in the
same range as the hotspot size. Then, a list of configuration
combinations of the selected CUs is created and added to
the hotspot’s DO database entry, with an index initially
pointing to the first list item. Next, the tuning code is
inserted at the entry point of the hotspot and the profiling
code at all exit points of the hotspot. Immediately after the
hotspot’s invocation, the tuning code fetches the
configuration pointed to by the list index and increments
the index, and then adapts the hardware according to the
fetched configuration. When leaving the hotspot, the
hotspot’s performance characteristics under the current
configuration are gathered. The configurations applicable
to the hotspot are thus tested one by one until all
configurations are tested or the performance is worse than
performance_threshold (e.g. 2% IPC degradation). The
most energy-efficient configuration is then selected to
complete the hotspot’s tuning process.

Contrary with previous tuning algorithms that test all
interdependent CUs, our tuning algorithm adapts only a
subset of all CUs for each hotspot. Consequently, this
technique significantly reduces the tuning process, and
allows multi-grain adaptation which further improves
performance.

3.3. Hardware reconfiguration

Once the most energy-efficient configuration of a

hotspot is found, the JIT compiler is invoked to perform the
following two tasks. First, the tuning code at the beginning
of the hotspot is replaced by the configuration code that sets
the ACE to the hotspot’s most energy-efficient
configuration. For each hotspot after the JIT compilation
stage, CUs will be changed to the hotspot’s most
energy-efficient configuration just prior to the hotspot’s

execution. There will be no further tuning latency or phase
identification latency incurred by the hotspot.

Additionally, the profiling code at a hotspot’s exit is
replaced by the sampling code which occasionally gathers
performance statistics to detect the performance change
between the hotspot’s current and prior invocations. A
large performance change indicates that the hotspot’s
behavior may have altered. Consequently, the hotspot is
tuned again. As observed by [26], runtime characteristics of
hotspots are usually stable throughout program execution,
and thus such re-tunings are rare.

3.4. Hardware support

The proposed scheme is mainly a software approach. It

relies on the underlying DO system to detect and adapt
program hotspots. However, some minimal hardware
support is needed. We assume that each CU has a control
register, and the CU’s configuration can be changed by
setting the register value. To allow resource adaptation by
software, a special instruction is required to change the
values of the control registers. Note that in this framework,
the DO system configures hardware, which is potentially
less error-prone than allowing user applications to control
hardware adaptation directly.

We maintain one hardware counter for each CU to hold
its most recent reconfiguration time. Each time a CU’s
configuration is changed, its last-reconfiguration counter is
updated with the current time. When a CU reconfiguration
request arrives, the time elapsed since the CU’s last
reconfiguration is calculated. If the interval is shorter than
the CU’s reconfiguration interval, the request is ignored
without modifying the CU’s configuration. With this
hardware support, the proposed framework is freed from
the burden of maintaining the minimal reconfiguration
interval for each CU.

3.5. Comparison with prior approaches

Table 1 qualitatively compares the temporal approaches

and the proposed framework with their respective latencies.
The better performing approach for each metric is
emphasized in bold italics. The DO-based approach
exceeds the temporal approaches for two out of three.

In temporal approaches, a phase change cannot be
identified immediately. It can only be detected after the
phase change lasts one or more sampling intervals, which is
called the identification latency. Recurring phases in those
temporal approaches incur phase identification latencies,

Table 1. Comparing DO-Based ACE management scheme with temporal approaches
Type Temporal approaches DO-based approach

New phase identification latency At least one sampling interval Hotspot invoked hot_threshold times
Recurring phase identification latency At least one sampling interval None
Tuning latency All configurations are tested A subset of all configurations are tested

 6

regardless the length of program execution. Recurring
phase identification latencies can be reduced by next phase
detection mechanisms [20][24], which predict what the
next phase will be and when it will occur. However,
incorrect predictions cause unnecessary or wrong
adaptations and subsequent rollbacks of hardware
configurations, thus affecting performance considerably.
Hence, high prediction accuracy is imperative for such
mechanisms.

In comparison, in a DO-based system, only new
hotspots need to be detected, and recurring hotspots are
identified immediately and needs no prediction. Hence, a
hotspot’s detection overhead is a one-time cost, and can be
diminished by long program execution. Moreover, since
hotspots are often nested, detections of new hotspots are
often overlapped, further reducing the overall hotspot
identification cost.

More importantly, since the DO-based approach can
have phases of any length, it enables CU decoupling, which
significantly reduces the tuning process. These benefits are
difficult to achieve in temporal approaches that use
fixed-size sampling intervals.

This hotspot-based framework is essentially a software
positional approach. Differing from the original positional
approach [14], the proposed framework detects hotspots
instead of large procedures. The frequent-invocation nature
of hotspots ensures that the most energy-efficient hardware
configuration of a hotspot can be applied enough times for
high benefit, while the positional approach can not enjoy
this feature from the large procedures it uses. Furthermore,
as with temporal approaches, the original positional
approach also requires significant efforts to detect
hierarchical phase changes and adapt hardware
accordingly, which, in contrast, is accomplished by our
framework in a natural and elegant way.

3.6. Summary of advantages

Utilizing existing DO services, this framework incurs

minimal overhead while providing accurate phase
detection and configuration tuning. Reconfiguring at
hotspot boundaries identified by DO systems has the
following advantages:
• Prompt recurring phase identification. By

instrumenting hotspot headers, the framework can

identify all previously seen hotspots with zero latency,
and thus needs no phase prediction at all.

• Reduced tuning latency. Since we configure only a
subset of CUs in each hotspot, the tuning latency is
greatly reduced. In return, the most energy-efficient
configuration can be applied more times for improved
performance.

• Hierarchical phase change detection. Hotspots are
often nested and of diverse sizes. By detecting those
hotspots, hierarchical phase changes are automatically
captured.

• Multi-grain adaptation. With CU decoupling, the
granularity of each CU’s reconfiguration can be
adjusted based on its reconfiguration overhead,
resulting in better balance of reconfiguration
benefit/cost.

• Versatility and scalability. By detecting hotspots of
any sizes, this approach works efficiently for
workloads with diverse runtime characteristics and
CUs with different rent reconfiguration overheads.

4. Experimental methodology

In this research, we implement the proposed framework

with the Dynamic Simplescalar simulator [16] and the Jikes
Research Virtual Machine (RVM) [3]. We evaluate the
proposed ACE management framework with the
SPECjvm98 benchmark suite [28].

4.1. Simulation environment

The Dynamic Simplescalar (DSS) [16] simulator used

in our work adds a series of major extensions to
Simplescalar/PowerPC version 3.0, and permits simulation
of a full Java run-time environment on a detailed simulated
hardware platform. The original Simplescalar framework
cannot simulate Java programs due to its inability to handle
self-modifying code. DSS resolves the problem and
implements support for dynamic code generation, thread
scheduling and synchronization, as well as a general signal
mechanism that supports exception delivery and recovery.
The newer version of DSS incorporates a power model that
is based on Wattch [8]. We augmented the power model to
obtain our energy reduction results. We assume that the
operating frequency and voltage of the target processor are

Table 2. Baseline configuration of the simulated system (The L1D and L2 cache values in the
parenthesis are the sizes and reconfiguration intervals of the configurable units)

CPU (1000M Hz with 2V) Memory Hierarchy
Instruction window 64-IFQ, 64-RUU, 32-LSQ L1 I-cache 64KB, 64B blocks, 2-way, LRU, 1 cycle hit latency

functional units 4 intALU, 2 IntMult/Div,4 FPALU, 2
FPMult/Div L1 D-cache 64KB (64KB/32KB/16KB/8KB, 100K-instruction reconfiguration

interval), 64B blocks, 2-way, LRU, 1 cycle hit latency,

Branch predictor 2K-entry combined predictor, 3-cycle
misprediction penalty

L2 unified
cache

1MB (1MB/512KB/256KB/128KB, 1M-instruction reconfiguration
interval), 128B blocks, 4-way, LRU, 10 cycles hit latency

Issue/Commit width 4 instructions per cycle DTLB/ITLB 128 entries, fully set associative

 7

1GHz and 2V respectively. The baseline processor
configuration is presented in Table 2.

In this paper, we use size-adaptable L1 data cache and
L2 cache to demonstrate the framework’s capability to
manage CUs with varying reconfiguration intervals. Each
cache has four different sizes (Table 2). Owing to the
significant differences among their sizes and speeds, L1D
and L2 caches’ reconfiguration intervals differ
considerably. In this paper, we assume the caches’
reconfiguration intervals are 100K [9] and 1M instructions
respectively. The modified power model also takes into
account the power consumed for reconfiguring the
hardware (i.e. power consumed for writing dirty cache lines
into the lower level of memory hierarchy). We are
implementing several more CUs, such as the issue window
and the reorder buffer.

We also implement the basic block vector approach [24]
in DSS, and compare it with our framework. To give
advantages to the BBV approach, the BBV implementation
allows unlimited number of uncompressed BBV
signatures, each with 32 24-bit uncompressed buckets. The
accumulator table is indexed by the lower 6 bits (excluding
2 least significant bits) of branch PCs. Furthermore, a
phase’s basic block vector information and tuning results
are stored. Hence, a recurring phase can use its chosen
configuration if available, or resume its tuning from the last
tested configuration. However, this BBV implementation
does not contain a next phase predictor.

4.2. Dynamic optimization system

Jikes RVM is a research Java virtual machine (JVM)

developed in IBM T. J. Watson Center [3]. It is written in
Java. This enables the optimization techniques to be
applied to both the application code and the JVM itself. We
use the 2.0.2 version of Jikes since the original Dynamic
Simplescalar is not fully compatible with the latest version.

Jikes RVM employs a compile-only strategy (i.e., no
interpreter mode). It includes a baseline and an optimizing
compiler. The optimizing compiler has three levels of
optimizations, each one consisting of its own group of
optimizations as well as the optimizations that belong to
lower levels. Initially, code sequences are compiled by the
baseline compiler.

The Jikes RVM uses a low-overhead sampling method
to detect program hotspots. Approximately every 10
milliseconds, Jikes increments a counter associated with
the currently active procedure. For all methods that have
been sampled, Jikes uses a cost/benefit model to determine
whether it is profitable to recompile the method, and if so,
what level of optimization to use.

Currently only the optimizing compiler with the highest
compilation level is used. This prevents the possible
disruptions caused by the use of multiple versions of the
hotspot. The simplification allows us to focus on the

implementation and evaluation of the proposed ACE
management framework. Furthermore, we intentionally
choose a large heap (200MB) to reduce garbage collection
activities. By doing so, execution is dominated by the
application rather than Jikes RVM.

As described in Section 3, hardware tunings and
reconfigurations are performed after hotspots are detected
and JIT optimized. The functionalities are implemented in
the Jikes optimizing compiler, and Jikes’ global data
structure is also modified to store the necessary information
for the hardware tunings and reconfigurations.

4.3. Benchmarks

The industry standard SPECjvm98 benchmarks are used

to evaluate the proposed framework. Among the programs
in the SPECjvm98 suite, 200_check is not considered in
this study since its only purpose is to check the
functionality of a JVM. We run the SPECjvm98
benchmarks with the largest s100 data sets. Table 3
provides a summary of these SPECjvm98 benchmarks.

Table 3. Description of SPECjvm98 benchmarks

Benchmark Description
compress A popular LZW compression program.

db Data management benchmarking software written
by IBM.

jack A real parser-generator from Sun Microsystems.
javac The JDK 1.0.2 Java compiler

jess A Java version of NASA’s popular CLIPS
rule-based expert systems

mpegaudio The core algorithm for software that decodes an
MPEG-3 audio stream.

mtrt A dual-threaded program that ray traces an image
file.

5. Evaluation results

Hotspot detection and the associated CU tunings on

hotspot boundaries are the two major components of the
proposed ACE management framework. This section
evaluates the two components and compares the results
with the BBV approach [24], one of the best existing
approaches.

5.1. Runtime characteristics of hotspots

On average, the resulting hotspots execute at least 823

times. As shown in Table 1, the only disadvantage of the
proposed DO-based framework over temporal approaches
is the former’s long initial hotspot identification latency,
which may potentially override all other benefits. The
proportion of the hotspot identification latency over whole
program execution can be estimated by dividing
hot_threshold by the average invocations per hotspot.
Since a hotspot’s average number of invocations far
exceeds hot_threshold, the hotspot identification latency

 8

takes less than 3.65% of overall program execution. The
data clearly shows that although hotspots take more time
than BBV phases to be recognized, it does not pose a big
burden to the hotspot approach.

5.2. Evaluation of the framework

To evaluate the proposed framework, we compare it

with a system that uses the BBV phase detection technique
[24] and the tuning algorithm prescribed in [9]. Since both
techniques are the best among their respective alternatives,
this combination should be the best technique that prior
literature can contribute. The only difference between the
tuning algorithms used in [9] and our framework is that our
algorithm uses CU decoupling to reduce the tuning process.
Since CU decoupling requires that phases are of variable
sizes and nested, this technique is hard to be combined with
the BBV technique.

The BBV technique used in this paper is not as
aggressive as it can be, since it could use the phase
prediction mechanisms presented in [20] and [24].
Accurate phase prediction tells what the next phase will be
and when it will occur, and thus can improve the coverage
of resource adaptations. In contrast, the hotspot approach
does not need next phase prediction since it always
identifies upcoming phases immediately.

Complying with the 1M reconfiguration interval of the
L2 cache, we set the sampling interval size of the BBV
scheme to 1M instructions. As for the DO-based
framework, hotspots that configure the L1D cache (L1D
hotspots) are between 50K and 500K instructions long,

while L2 hotspots are at least 500K instructions long. With
such multi-grain adaptation, each cache reaches better
balance of reconfiguration benefit/overhead. As described
in Section 3.4, hardware counters prevent too frequent
reconfigurations of the caches.

5.2.1. Runtime characteristics. Table 5 shows the total
number of L1D/L2 hotspots (BBV phases) as well the
number of hotspots (BBV phases) that complete the tuning
process. Since hotspots are inherently invoked frequently
and need to test 4 instead of 16 configurations required for
BBV phases, on average 88% of hotspots finish tuning.

Table 5 also presents the percentages of dynamic
sampling intervals in tuned phases. Although tuned BBV
phases consist of only 29% of all BBV phases, they
constitute on average 70% of the dynamic program
execution. The rest of the program execution consists of
either transitional phases (24%), or short-running phases
(6%) that cannot finish their tunings.

Since tuned BBV phases dominate the overall program
execution, the performance impact of unfinished tunings of
short phases is minimal. However, as the number of CUs in
the system grows, and more phases fail to finish their
tuning because of the use of the straightforward tuning
algorithm of testing all combinatorial configurations, the
resulting adverse performance impact will increase
dramatically. Note that it is possible to reduce the tuning
process of both the BBV approach by ruling out some
unpromising configurations found via offline profiling.
Nevertheless, CU decoupling offers us a natural and
elegant way to accomplish this in a DO-based system.

Table 4. Runtime hotspot characteristics of SPECjvm 98 benchmarks
 comp db jack javac jess mpeg mtrt

dynamic instruction count 9.83E+09 8.78E+09 8.22E+09 8.92E+09 5.72E+09 1.09E+10 5.10E+09
number of hotspots 299 316 470 685 434 386 363
average hotspot size 81,645 75,648 14,941 23,774 77,841 70,231 18,617
% of code in hotspots 99.03% 99.41% 99.96% 99.92% 99.83% 99.87% 99.87%
average invocations per hotspot 823 1,105 13,091 5,983 2490 4,747 3,284
hotspot identification latency (as
% of total execution time) 3.65% 2.71% 0.23% 0.50% 1.20% 0.63% 0.91%

Table 5. Runtime characteristics of the hotspot and BBV approaches

 comp db jack javac jess mpeg mtrt
number of L1D hotspots 64 58 81 108 68 64 73
number of L2 hotspots 22 29 31 33 30 23 21
total number of hotspots 85 87 112 141 98 87 94
number of tuned hotspots 69 77 101 132 86 79 78
% of tuned hotspots 81.18% 88.51% 90.18% 93.62% 87.76% 90.80% 82.98%
per-hotspot IPC CoV 9.17% 9.97% 6.74% 9.33% 7.79% 5.37% 8.09%

H
ot

sp
ot

inter-hotspot IPC CoV 43.78% 42.99% 49.38% 46.47% 52.49% 49.05% 46.69%
number of phases 70 50 70 84 80 58 75
number of tuned phases 35 16 14 22 24 13 17
% of dynamic sampling
intervals in tuned phases 81.40% 75.35% 71.44% 40.40% 56.97% 73.34% 93.37%

per-phase IPC CoVs 4.07% 9.10% 7.35% 6.59% 5.20% 4.91% 6.24%

B
B

V

inter-phase IPC CoVs 20.05% 33.32% 20.07% 24.87% 26.11% 38.26% 23.96%

 9

Table 5 also the per-phase and inter-phase IPC
coefficient-of-variations (CoVs) of both approaches. CoV
equals the percentage of the standard deviation divided by
the average. The per-phase IPC CoVs are IPC variations
among different invocations of the same hotspot, which
characterizes the homogeneity among different invocations
of a hotspot. The inter-phase IPC CoVs are the variations
of average IPCs of different hotspots, which quantify the
heterogeneity among different hotspots. Larger inter-phase
IPC CoV signifies larger differences between the
characteristics of detected hotspots. More than 34%
difference between hotspots’ per-phase and inter-phase
CoVs further confirms that hotspots are closely related with
program behavior changes.

BBV phases have smaller per-phase CoVs than
hotspots, which indicates that BBV phases are more stable
than hotspots, i.e. there are fewer variations among
different invocations of the same phase. On the other hand,
BBV phases have smaller inter-phase CoVs than hotspots,
which may be because BBV phases are insensitive to
small-grain phase changes within sampling intervals; such
small phase changes can be detected better by the hotspot
approach.

Table 6 presents the number of tuning attempts made
(tunings) and the number of times the most energy-efficient
configuration is applied (reconfigs) for both the hotspot and
the BBV algorithms. Due to CU decoupling, the hotspot
algorithm conducts fewer tunings and is able to apply the
most energy-efficient configurations more times than the

BBV approach, which clearly demonstrates the advantage
of tuning L1D and L2 caches separately on different
hotspots. Note that using the hotspot tuning algorithm, the
L1D cache is reconfigured more frequently than the L2
cache. This demonstrates the flexibility of the
hotspot-based algorithm to finely tune the CUs with lower
reconfiguration overheads for better performance.

In long-running applications, the impact of long tuning
process will diminish. However, with the ability of
multi-grain adaptation, our framework reaches better
balance of adaptation benefit/overhead for each CU. This
advantage does not diminish with longer execution.

Table 6 also gives the coverage (i.e. the portion of
dynamically executed instructions under tuned/
reconfiguration configurations) results for L1D/L2
hotspots and BBV phases. In the BBV approach, hardware
resources are adapted only at stable phases. Hence, the
coverage results are the same as the stable phase
distributions shown in Figure 1. As shown in Table 6, both
L1D and L2 hotspots have good coverage across
benchmarks. Good coverage and numerous
reconfigurations indicate that CU decoupling does not
sacrifice each CU’s reconfiguration opportunity.

5.2.2. Energy reduction. Figure 3 shows the cache energy
reduction achieved by the resource adaptation schemes.
Both the BBV and the hotspot algorithms are examined and
compared with the baseline configuration that uses the
maximum sizes of the L1D and L2 caches. As for the L1D

Table 6. Tunings, reconfigurations and coverage of hotspots and BBV phases
hotspot BBV

L1D

tunings
L1D

reconfigs
L1D

coverage
L2

tunings
L2

reconfigs
L2

coverage tunings reconfigs coverage

comp 247 2640 71.7% 85 835 73.8% 693 331 85.0%
db 218 3060 87.9% 130 1253 87.9% 419 832 80.1%
jack 338 30574 85.0% 109 4509 56.9% 443 464 77.0%
javac 506 46754 81.2% 58 3047 80.0% 711 1305 48.4%
jess 281 10321 92.7% 108 1333 84.3% 635 526 65.6%
mpeg 249 43753 91.0% 99 8514 95.7% 368 2018 76.5%
mtrt 355 48493 81.4% 21 396 82.6% 474 192 97.6%

L1 data cache energy saving

0%

10%

20%

30%

40%

50%

60%

70%

comp db jack javac jess mpeg mtrt avg

%
 o

f e
ne

rg
y

re
du

ct
io

n
ov

er
 b

as
el

in
e

BBV hotspot L2 cache energy saving

0%

10%

20%

30%

40%

50%

60%

70%

80%

comp db jack javac jess mpeg mtrt avg

%
 o

f e
ne

rg
y

re
du

ct
io

n
ov

er
 b

as
el

in
e

BBV hotspot

(a) L1D cache energy reduction (b) L2 cache energy reduction
Figure 3. Cache energy consumption reduced by the resource adaptation schemes

 10

cache, the hotspot-based algorithm is superior to the
BBV-based algorithm on all workloads. The hotspot-based
algorithm also performs better than the BBV algorithm for
L2 on most benchmarks, except jack and mtrt. The hotspot
approach performs especially well on db with 66% L1D
cache energy reduction. In db, less than 10 procedures are
responsible for more than 95% of data cache misses [25].
Consequently, the average cache sizes can be dramatically
reduced for the hotspots that have very few data misses. On
average, the hotspot approach achieves 47% energy
reduction on the L1D cache and 58% energy reduction on
the L2 cache over the baseline configuration. In
comparison, the BBV approach only achieves cache energy
reduction of 32% and 52% over the baseline configuration,
respectively.

Performance degradation over the baseline

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

comp db jack javac jess mpeg mtrt avg

%
 o

f s
lo

w
do

w
n

ov
er

 b
as

el
in

e

BBV hotspot

Figure 4. Performance impact of the resource
adaptation schemes

5.2.3. Performance impact. The performance impact of
using the resource adaptation schemes is illustrated in
Figure 4. The performance degradation seen by the BBV
technique ranges from 1.34% to 2.38%. For the hotspot
technique the penalty ranges from 0.4% to 2.47%. On
average the performance penalty for the hotspot technique
is 1.56% and for the BBV scheme it is marginally worse at
1.87%. For the similar performance penalty, the DO-based
ACE management framework achieves more energy
reductions in L1D and L2 caches than the BBV method.
These results indicate that the DO-based scheme is more
efficiently than the BBV approach on managing multiple
CUs with varying reconfiguration overheads/intervals,
mainly due to CU decoupling that significantly reduces the
tuning process, and multi-grain adaptation that achieves
better balance of benefit/overhead for each configurable
hardware unit.

6. Conclusion

In an adaptive computing environment, efficient

management of the configurable resources is vital for
maximizing the benefit of resource adaptation. The main
contribution of this paper is that we demonstrate how

inherent capabilities of a dynamic optimization system can
be synergistically employed for efficient management of
adaptive computing environments. Utilizing existing DO
hotspot detection mechanisms, the proposed technique
accurately detects program behavior at varying
granularities, providing us the opportunity to significantly
reduce the overheads associated with adaptation decisions.
By matching each hotspot with a subset of available
configuration units, we reduce the number of tested
configurations while searching for the most
energy-efficient one, thereby reducing the tuning process
significantly.

Dynamic optimization systems become increasingly
popular. For instance, in the next generation Windows
operating system, Longhorn, most applications and OS
services will be managed by the .NET framework,
essentially a DO system similar to a Java virtual machine.
Those existing DO systems can utilize our framework for
better hardware/software integration and optimizations. On
the other hand, the benefits of using the proposed
framework in systems without such infrastructure may be
affected by the extra time and energy spent on hotspot
detection and binary rewriting.

We implement the proposed scheme in a state-of-the-art
JVM and evaluate for the SPECjvm98 benchmark suite
with the adaptive computing environment having two
configurable units (L1D cache and L2 cache). Our
technique reduces L1D and L2 cache energy consumption
by 47% and 58%, while a popular previously proposed
technique only achieves reduction of 32% and 52%
respectively.

In contrast to previously proposed techniques, the
DO-based ACE management framework is inherently
scalable to handle large number of configurable hardware
resources. The proposed framework also demonstrates the
benefit of integrating software adaptability with hardware
adaptability. We envision several new optimization
opportunities being enabled by the integration. For
example, one could use the JIT compiler in the DO system
to provide a good estimate for the resource configuration
required for this hotspot through appropriate code analysis.
Such a feature could potentially completely eliminate the
tuning latency and overhead seen in all existing ACE
schemes. In the future, we plan to investigate this and other
such avenues for improving the performance of DO-based
adaptive computing environments.

Acknowledgments

We want to thank Xianglong Huang and Dr. Kathryn

McKinley for providing us the Dynamic Simplescalar
simulator. We would also like to thank Dr. Brad Calder and
Dr. Michael Hind and the anonymous reviewers for their
helpful suggestions on this paper. This research is

 11

supported in part by NSF grants 0113105, 0429806, and
Intel and IBM Corporations.

References

[1] D. Albonesi, “Dynamic IPC/Clock Rate Optimization”,
Proceedings of the 25th International Symposium on Computer
Architecture, June 1998.
[2] D. Albonesi, “Selective Cache Ways: On-Demond Cache
Resource Allocation”, Proceedings of the International
Symposium on Microarchitecture, November 1999.
[3] B. Appern, D. Attanasio, J. Barton, A. Cocchi, D. Lieber, S.
Smith, and T. Ngo. “Implementing Jalapeno in Java”,
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, 1999.
[4] I. Bahar and S. Manne, “Power and Energy Reduction Via
Pipeline Balancing”, Proceedings of the International Symposium
on Computer Architecture, June 2001.
[5] V.Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
Transparent Dynamic Optimization System”, Proceedings of
Programming Language Design and Implementation, June 2000.
[6] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy and
performance in general purpose architectures”, Proceedings of the
33rd International Symposium on Microarchitecture, Dec. 2000.
[7] L. Baraz, T. Devor, O. Etzion, S. Gondenberg, A. Skaletsky,
Y. Wang, Y. Zemach, “IA-32 Execution Layer: a Two-Phase
Dynamic Translator Designed to Support IA-32 Applications on
Itanium-based Systems”, Proceedings of the 36th International
Symposium on Microarchitecture, Dec. 2003.
[8] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A
Framework for Architectural-level Power Analysis and
Optimizations”, Proceedings of the International Symposium on
Computer Architecture, June 2000.
[9] A. S. Dhodapkar and J. E. Smith, “Managing
Multi-Configuration Hardware via Dynamic Working Set
Analysis”, Proceedings of the 29th International Symposium on
Computer Architecture, May 2002.
[10] A. Dhodapkar and J. Smith, “Comparing Program Phase
Detection Techniques”, Proceedings of the 36th International
Symposium on Microarchitecture, 2003.
[11] K. Ebcioglu and E. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility”, Proceedings
of the 24th International Symposium on Computer Architecture,
1997.
[12] D. Folegnani and A. Gonzalez, “Energy-Effective Issue
Logic”, Proceedings of the 28th International Symposium on
Computer Architecture, June 2001.
[13] M. Gowan, L. Biro, D. Jackson, “Power considerations in
the design of the Alpha 21264 microprocessor”, Proceedings of
the 35th Annual conference on Design Automation, 1998
[14] M. Huang, J. Renau, and J. Torrellas, “Positional
Adaptation of Processors: Application to Energy Reduction”,
Proceedings of the 30th International Symposium on Computer
Architecture, 2003.
[15] M. Huang, J. Renau, S. Yoo, and J. Torrellas, “A
Framework for Dynamic Energy Efficiency and Temperature
Management”, Proceedings of the 33rd International Symposium
on Microarchitecture, Dec. 2000.

[16] X Huang, J. Moss, K. McKinley, “Dynamic SimpleScalar:
simulating Java Virtual Machines”. The 1st Workshop
on Managed Run Time Environment Workloads, March 2003.
[17] A. Iyer, D. Marculescu, “Microarchitecture-level Power
Management," IEEE Transactions on VLSI Systems, Vol.10,
No.3, June 2002.
[18] J. Kin, M. Gupta, and W. Mangione-Smith, “The Filter
Cache: An Energy Efficient Memory Structure”, Proc. of the 30th
International Symposium on Microarchitecture, Dec. 1997.
[19] J. Dehnert, B. Grant, J. Banning, R. Johnson, T. Kistler, A.
Klaiber, J. Mattson, “The Transmeta Code Morphing Software:
Using Speculation, Recovery, and Adaptive Retranslation to
Address Real-Life Challenges”, Proceedings of the 1st
International Symposium on Code Generation and Optimization,
March, 2003.
[20] J. Lau, S. Schoenmackers, B. Calder, “Transition Phase
Classification and Prediction”, Proceedings of the 11th
International Symposium on High Performance Computer
architecture, Feb. 2005.
[21] M. Merten, A. Trick, R. Barnes, E. Nystrom, C. George, J.
Gyllenhall, and W. Hwu, “An Architectural Framework for
Runtime Optimization”, IEEE Transactions on Computers, Vol.
50, No. 6, pp. 567-589, June 2001.
[22] D. Ponomarev, G. Kucuk, K. Ghose, “Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources", Proceedings of the
34th International Symposium on Microarchitecture, Dec. 2001.
[23] X. Shen, Y. Zhong, C. Ding, “Locality Phase Prediction”,
Proceedings of the 11th International Conference on
Architectural Support for Programming, Languages, and
Operating Systems, October 2004.
[24] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking and
Prediction”, Proceedings of the 30th International Symposium on
Computer Architecture, June 2003.
[25] Y. Shuf, M. Serrano, M. Gupta, and J. Singh,
“Characterizing the Memory Behavior of Java Workloads: A
Structured View and Opportunities for Optimizations”, ACM
SIGMETRICS, 2001.
[26] Y. Wu, M. Breternitz, J. Quek, O. Etzion, J. Fang, “The
Accuracy of Initial Prediction in Two-Phase Dynamic Binary
Translators”, Proceedings of the 2nd International Symposium on
Code Generation and Optimization, March, 2004.
[27] IEEE Computer, Special issue on Adaptive Computing,
Vol.37, No.7, July 2004.
[28] SPECjvm98 Benchmarks, http://www.spec.org/osg/jvm98
[29] Java technology, http://java.sun.com
[30] Microsoft .NET technology, http://www.microsoft.com/net/

