
  

 

 

 

 

 

 

 

Copyright 

by 

   Ajay Manohar Joshi 

2007 

 

 



 

The Dissertation Committee for Ajay Manohar Joshi certifies that this is the 

approved version of the following dissertation: 

 

 

Constructing Adaptable and Scalable Synthetic Benchmarks for 

Microprocessor Performance Evaluation 

 

 

 

 

 
Committee: 
 

Lizy K. John, Supervisor 

Lieven Eeckhout 

Joydeep Ghosh 

Stephen W. Keckler 

Michael Orshansky 



Constructing Adaptable and Scalable Synthetic Benchmarks for 

Microprocessor Performance Evaluation 

 

 

by 

Ajay Manohar Joshi, B.E.; M.S. 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

December 2007 



 

 

 

 

 

 

 

 

 

Dedication 

 

To my family and teachers 

 



 v 

Acknowledgements 

 

I would like to thank my advisor, Dr. Lizy John, for her guidance, support, and 

advice.  She has motivated and encouraged me to always strive to do better. Her 

willingness and availability at all times to discuss ideas, answer questions, and provide 

feedback has deeply touched me.   I am grateful to her for the flexibility and freedom that 

she gave me throughout my PhD study.   

I would also like to thank (in alphabetical order) Dr. Lieven Eeckhout, Dr. 

Joydeep Ghosh, Dr. Michael Orshansky, and Dr. Stephen Keckler for serving on my 

dissertation committee and providing invaluable comments and feedback.  

I would like to thank Dr. Robert H. Bell Jr. for jump starting my research with 

long discussions and emails about synthetic benchmarks and bringing me up to speed 

with the simulation tools and framework.  

I had the privilege to collaborate with Dr. Lieven Eeckhout from Ghent 

University, Belgium.  He provided invaluable guidance and has had a profound impact on 

shaping this dissertation work.   

I found great friends and collaborators in Dr. Joshua Yi and Dr. Aashish 

Phansalkar.  Our philosophical discussions about research, graduate school, and life gave 

the much needed support through several years of graduate school.   

I am thankful for the opportunities I had to co-author papers with Dr. Yue Luo.  

His discipline, dedication, and attention to details have played a vital role in shaping my 

research methodologies.  



 vi 

I am grateful to Alan MacKay for providing me with the opportunity to intern at 

International Business Machines Corp. (IBM) and serving as my technical contact and 

mentor during the IBM PhD Fellowship.   

I would also like to thank IBM, National Science Foundation, and Intel for 

generously funding my research work.  Special thanks to The University of Texas, 

Austin, for the support in the form of Graduate Teaching Assistantship and the David 

Bruton Jr. PhD Fellowship.  

I would like to profusely thank the CART and HPS group at The University of 

Texas, Austin, for providing me with access to the Alpha servers.  

Amy Levin, Melanie Gulick, Deborah Prather, and Shirley Watson were always 

very prompt and cheerful in helping out with any administrative issues and questions.     

I would like to thank other members of the Laboratory for Computer Architecture, 

Dr. Shiwen Hu, Dr. Madhavi Valluri, Dr. Tao Li, and Dr. Juan Rubio for their words of 

wisdom and sharing their research experiences, and Lloyd Bircher, Dimitris Kaseridis, 

Ciji Isen, Jian Chen, Karthik Ganesan, Deepak Pauwar, Arun Nair, Nidhi Nayyar, and 

Jeff Stuecheli for attending my practice talks and providing invaluable constructive 

feedback.   

I am thankful to David Williamson for providing me with the opportunity to work 

at ARM Inc. and always taking deep interest in my research work.  Working at ARM 

gave me the hands on experience and exposure in performance modeling, evaluation, and 

benchmarking.    

I am thankful to my sister, Kirti Bhave, and my brother-in-law, Manoj Bhave, for 

taking interest in my research work, encouraging me, and celebrating all my small and 

big achievements.    



 vii 

I would also like to thank my parents-in-law for their patience and encouragement 

through the trying years of graduate life.  

I am deeply indebted to my parents for their love, nurturing and support. They 

always put my interests ahead of theirs and provided me with the opportunity to seek 

whatever I wanted.  My father is a stellar example of rising to the top from adverse 

conditions and has instilled in me the importance of higher education.  My mother always 

strived for my all round development and provided me with all the opportunities that she 

herself never had.    

Completing a doctorate is as much of an emotional challenge as an intellectual 

one.  I am eternally grateful to my wife, Aparajita, for her emotional support, love, and 

motivation through the ups and downs of graduate school.  She took active interest in my 

research, helped me refine and shape ideas, proof-read all my papers, and gave feedback 

on all my presentations.  This doctorate is as much hers as mine.  

     



 viii 

Constructing Adaptable and Scalable Synthetic Benchmarks for 

Microprocessor Performance Evaluation 

 

Publication No._____________ 

 

 

Ajay Manohar Joshi, PhD 

The University of Texas at Austin, 2007 

 

Supervisor:  Lizy K. John 

 

Benchmarks set standards for innovation in computer architecture research and 

industry product development.  Consequently, it is of paramount importance that the 

benchmarks used in computer architecture research and development are representative 

of real-world applications.  However, composing such representative workloads poses 

practical challenges to application analysis teams and benchmark developers -  (1) 

Benchmarks that are standardized are open-source whereas applications of interest are 

typically proprietary, (2) Benchmarks are rigid, measure single-point performance, and 

only represent a sample of the application behavior space (3) Benchmark suites take 

several years to develop, but applications evolve at a faster rate, and (4) Benchmarks 

geared towards temperature and power characterization are difficult to develop and 

standardize.  The objective of this dissertation is to develop an adaptive benchmark 

generation strategy to construct synthetic benchmarks to address these benchmarking 

challenges.  



 ix 

We propose an approach for automatically distilling key hardware-independent 

performance attributes of a proprietary workload and capture them into a miniature 

synthetic benchmark clone.  The advantage of the benchmark clone is that it hides the 

functional meaning of the code, but exhibits similar performance and power 

characteristics as the target application across a wide range of microarchitecture 

configurations.  Moreover, the dynamic instruction count of the synthetic benchmark 

clone is substantially shorter than the proprietary application, greatly reducing overall 

simulation time – for the SPEC CPU 2000 suite, the simulation time reduction is over 

five orders of magnitude compared to the entire benchmark execution.   

We develop an adaptive benchmark generation strategy that trades off accuracy to 

provide the flexibility to easily alter program characteristics.  The parameterization of 

workload metrics makes it possible to succinctly describe an application’s behavior using 

a limited number of fundamental program characteristics.  This provides the ability to 

alter workload characteristics and construct scalable benchmarks that allows researchers 

to explore a wider range of the application behavior space, conduct program behavior 

studies, and model emerging workloads.     

The parameterized workload model is the foundation for automatically 

constructing power and temperature oriented synthetic workloads.  We show that 

machine learning algorithms can be effectively used to search the application behavior 

space to automatically construct benchmarks for evaluating the power and temperature 

characteristics of a computer architecture design.   

The need for a scientific approach to construct synthetic benchmarks, to 

complement application benchmarks, has long been recognized by the computer 

architecture research community, and this dissertation work is a significant step towards 

achieving that goal. 



 x 

Table of Contents 

List of Tables ....................................................................................................... xiv 

List of Figures ....................................................................................................... xv 

Chapter 1:  Introduction ...........................................................................................1 

1.1 Motivation..............................................................................................2 

1.1.1 Proprietary Nature of Real World Applications ...........................3 

1.1.2 Benchmarks Represent a Sample of the Performance Spectrum..3 

1.1.3 Benchmarks Measure Single-Point Performance .........................3 

1.1.4 Applications Evolve Faster than Benchmark Suites.....................3 

1.1.5 Challenges in Studying Commercial Workload Performance ......4 

1.1.6 Prohibitive Simulation Time of Application Benchmarks............4 

1.1.7 Need for Power and Temperature Oriented Stress Benchmarks ..5 

1.2 Objectives ..............................................................................................5 

1.2.1 Evaluating the Efficacy of Statistical Workload Modeling ..........5 

1.2.2 Techniques for Distilling the Essence of Applications into 
Benchmarks...................................................................................6 

1.2.3 Miniature Workload Synthesis for Early Design Stage Studies ...6 

1.2.4 Exploring the Feasibility of Parameterized Workload Modeling .7 

1.2.5 Power and Temperature Oriented Synthetic Benchmarks ............7 

1.3 Thesis Statement ....................................................................................8 

1.4 Contributions..........................................................................................8 

1.5 Organization.........................................................................................11 

Chapter 2: Related Work .......................................................................................13 

2.1 Statistical Simulation ...........................................................................13 

2.2 Workload Synthesis .............................................................................15 

2.3 Workload Characterization ..................................................................17 

2.4 Other Approaches to Reduce Simulation Time ...................................18 

2.5 Power and Temperature Characterization of Microprocessors............19 

2.6 Statistical and Machine Learning Techniques in Computer  Performance 
Evaluation ............................................................................................20 



 xi 

Chapter 3: Evaluating the Efficacy of Statistical Workload Modeling .................21 

3.1 Introduction to Statistical Workload Modeling ...................................21 

3.2 Statistical Simulation Framework........................................................23 

3.3 Benchmarks..........................................................................................27 

3.4 Evaluating Statistical Simulation.........................................................28 

3.4.1 Identifying Important Processor Bottlenecks..............................29 

3.4.2 Tracking Design Changes ...........................................................32 

3.4.3 Comparing the Accuracy of Statistical Simulation Models........36 

3.5 Summary..............................................................................................41 

Chapter 4:  Microarchitecture-Independent Workload Modeling .........................43 

4.1 Workload Characterization .....................................................................43 

4.2 Benchmarks.............................................................................................45 

4.3 Application Behavior Signature..............................................................45 

4.3.1 Control Flow Behavior and Instruction Stream Locality............46 

4.3.2 Instruction Mix............................................................................51 

4.3.4 Instruction-Level Parallelism......................................................51 

4.3.5 Data Stream Locality ..................................................................52 

4.3.6 Control Flow Predictability.........................................................59 

4.4 Modeling Microarchitecture-Independent Characteristics into   Synthetic 
Workloads ............................................................................................61 

4.4.1 Data Locality...............................................................................61 

4.4.2 Branch Predictability ..................................................................62 

4.5 Summary.................................................................................................63 

Chapter 5: Distilling the Essence of Workloads into Miniature Synthetic Benchmarks
.......................................................................................................................65 

5.1.   Disseminating Proprietary Applications as Benchmarks.....................65 

5.2. Benchmark Cloning Approach ..............................................................67 

5.3. Benchmark Clone Synthesis ..................................................................69 

5.3.1 Statistical Flow Graph Analysis..................................................69 

5.3.2 Modeling Memory Access Pattern..............................................71 

5.3.4 Modeling Branch Predictability..................................................71 



 xii 

5.3.5 Register Assignment ...................................................................72 

5.3.5. Code Generation ........................................................................73 

5.4. Experiment Setup..........................................................................74 

5.5. Evaluation of Synthetic Benchmark Clone............................................76 

5.5.1   Workload Characteristics.................................................76 

5.5.2 Accuracy in Performance & Power Estimation ..........................83 

5.5.3 Convergence Property of the Synthetic Benchmark Clone ........86 

5.5.4 Relative Accuracy in Assessing Design Changes.......................88 

5.5.5 Modeling long-running applications...........................................89 

5.6. Discussion ..............................................................................................91 

5.7. Summary................................................................................................92 

Chapter 6: Towards Scalable Synthetic Benchmarks ............................................94 

6.1 The Need For Developing A Parameterized Workload Model ...........94 

6.2 BenchMaker Framework for Parameterized Workload Synthesis.......97 

6.2.1 Workload Characteristics............................................................98 

6.2.2  Synthetic Benchmark Construction .........................................104 

6.3 Experiment Setup...............................................................................104 

6.4 Evaluation of BenchMaker Framework.............................................106 

6.5  Applications of BenchMaker Framework.........................................110 

6.5.1 Program Behavior Studies ........................................................110 

6.5.1.1 Impact of Individual Program Characteristics on 
Performance .....................................................................110 

6.5.1.2   Interaction of Program Characteristics .......................112 

6.5.1.3  Interaction of Program Characteristics with 
Microarchitecture.............................................................113 

6.5.2 Workload Drift Studies .............................................................114 

6.5.2.1 Analyzing the impact of benchmark drift ..................114 

6.5.2.2 Analyzing the impact of increase in code size..............115 

6.6 Summary............................................................................................116 

Chapter 7: Power and Temperature Oriented Synthetic Workloads....................117 

7.1 The Need for Stress Benchmarks.......................................................117 



 xiii 

7.2 Stress Benchmark Generation Approach ...........................................121 

7.3 Automatic Exploration Of Workload Attributes................................123 

7.4 Experimental Setup............................................................................124 

7.4.1 Simulation Infrastructure ..........................................................124 

7.4.2 Benchmarks...............................................................................125 

7.4.3 Stress Benchmark Design Space...............................................125 

7.4.4 Microarchitecture Configurations.............................................126 

7.5 Evaluation of StressBench Framework..............................................127 

7.5.1 Maximum Sustainable Power ...................................................127 

7.5.2 Maximum Single-Cycle Power.................................................131 

7.5.3 Comparing Stress Benchmarks Across Microarchitectures......133 

7.5.4 Creating Thermal Hotspots .......................................................135 

7.5.5 Thermal Stress Patterns.............................................................136 

7.5.6 Quality and Time Complexity of Search Algorithms ...............137 

7.6  Summary............................................................................................138 

Chapter 8: Conclusions and Directions for Future Research...............................140 

8.1 Conclusions...........................................................................................140 

8.2 Directions for Future Research .............................................................144 

Bibliography ........................................................................................................146 

Vita 157 



 xiv 

List of Tables 

Table 3.1: SPEC CPU 2000 benchmarks and input sets used to evaluate statistical 

workload modeling. ..........................................................................28 

Table 4.1: Summary of information captured by the SFG. ...................................49 

Table 5.1:  SPEC CPU 2000 programs, input sets, and simulation points used in this 

study..................................................................................................74 

Table 5.2: MediaBench and MiBench programs and their embedded application 

domain...............................................................................................75 

Table 5.3: Baseline processor configuration..........................................................75 

Table 5.4:  Speedup from Synthetic Benchmark Cloning. ....................................90 

Table 6.1: Microarchitecture-independent characteristics that form an abstract 

workload model. .............................................................................104 

Table 6.2: SPEC CPU programs, input sets, and simulation points used in study.105 

Table 7.1:  Stress benchmark design space..........................................................126 

Table 7.2:  Microarchitecture configurations evaluated. .....................................127 

Table 7.3:  Developing thermal stress patterns using StressBench .....................136 

 



 xv 

List of Figures 

Figure 3.1:  SS-HLS++ statistical simulation framework......................................24 

Figure 3.2:  Normalized Euclidean distance (0 to 100) between the ranks of processor 

and memory performance bottlenecks estimated by statistical simulation 

and cycle-accurate simulation.  Smaller Euclidean distances imply 

higher representativeness of synthetic trace. ....................................31 

Figure 3.3:   Actual and estimated speedup across 43 configurations for 9 SPEC 

CPU2000 benchmarks. .....................................................................34 

Figure 3.4:    Relative Accuracy in terms of Spearman’s correlation coefficient 

between actual and estimated speedups across 43 processor 

configurations ...................................................................................35 

Figure 3.5:  Comparison between absolute accuracy of 4 statistical simulation models 

on the 44 extreme processor configurations .....................................37 

Figure 3.6:    Relative accuracy based on the ability to rank 43 configurations in order 

of their speedup.................................................................................38 

Figure 3.7: Bottleneck characterization for 4 statistical simulation models..........40 

Figure 4.1: An example SFG used to capture the control flow behavior and instruction 

stream locality of a program. ............................................................47 

Figure 4.2: Illustration of measuring RAW dependency distance. ........................52 

Figure 4.3:  Percentage breakdown of stride values per static memory access. ....55 

Figure 4.4:  Number of different dominant memory access stride values per program.

...........................................................................................................58 

Figure 5.1:  Framework for constructing synthetic benchmark clones from a real-

world application. .............................................................................68 



 xvi 

Figure 5.2:  Illustration of the Synthetic Benchmark Synthesis Process. ..............73 

Figure 5.3:  L1 data cache misses-per-thousand-instructions per benchmark and its 

synthetic clone for the SPEC CPU2000 benchmark programs.........77 

Figure 5.4:  L2 unified cache misses-per-thousand-instructions per benchmark and its 

synthetic clone for the SPEC CPU2000 benchmark programs.........77 

Figure 5.5:  Cache misses-per-thousand-instructions per benchmark and its synthetic 

clone for the embedded benchmarks.................................................78 

Figure 5.6: Pearson Correlation coefficient showing the efficacy of the synthetic 

benchmark clones in tracking the design changes across 28 different 

cache configurations. ........................................................................80 

Figure 5.7: Scatter plot showing ranking of the cache configuration estimated by the 

synthetic benchmark clone and the real benchmark. ........................80 

Figure 5.8:  Branch prediction rate per benchmark and its synthetic clone...........83 

Figure 5.9:   Comparison of CPI of the synthetic clone versus the original benchmark.

...........................................................................................................84 

Figure 5.10:  Comparison of Energy-Per-Cycle of the synthetic clone versus the 

original   benchmark. ........................................................................85 

Figure 5.11: CPI versus instruction count for the synthetic clone of mcf. ..........87 

Figure 5.12:  Response of synthetic benchmark clone to design changes in base 

configuration. ....................................................................................88 

Figure 5.13:  Comparing the CPI of the synthetic clone and the actual benchmark for 

entire SPEC CPU2000 benchmark executions. ................................90 

Figure 6.1: The BenchMaker framework for constructing scalable synthetic 

benchmarks. ......................................................................................98 

Figure 6.2: Percentage breakdown of local stride values. ...................................101 



 xvii 

Figure 6.3:  Comparison of Instructions-Per-Cycle (IPC) of the actual benchmark and 

its synthetic version.........................................................................106 

Figure 6.4:  Comparison of Energy-Per-Instruction (EPI) and Operating Temperature 

of the actual benchmark and its synthetic version. .........................107 

Figure 6.5:  Comparison of the number of L1 D-cache misses-per-1K-instructions for 

the actual benchmark and its synthetic version...............................109 

Figure 6.6:    Comparison of the branch prediction rate for the actual benchmark and 

its synthetic version.........................................................................109 

Figure 6.7: Studying the impact of data spatial locality by varying the local stride 

pattern. ............................................................................................111 

Figure 6.8: Interaction of local stride distribution and data footprint program 

characteristics..................................................................................112 

Figure 6.8:  Effect of increasing instruction footprint on program performance.116 

Figure 7.1:  Automatic stress benchmark synthesis flow. ...................................122 

Figure 7.2:  Convergence characteristics of StressBench....................................128 

Figure 7.3:   Scatter plot showing distribution of power consumption across 250K 

points in the design space. ..............................................................129 

Figure 7.4:   Comparison of power dissipation of different microarchitecture        

units using stress benchmark with the maximum power          

consumption across SPEC CPU2000. 130 

Figure 7.5:  Comparison of stress benchmarks across three very different 

microarchitectures...........................................................................134 

Figure 7.6:  Comparison of hotspots generated by stress benchmarks and SPEC 

CPU2000.........................................................................................135 

Figure 7.7: Number of simulations required for different search algorithms. .....138 



 xviii 

Figure 7.8: Comparison of quality of stress benchmark for maximum sustainable 

power constructed using different search algorithms. ....................138 

 
 



 1 

Chapter 1:  Introduction 

Estimating and comparing the performance of computer systems has always been 

a challenging task faced by computer architects and researchers.  One of the classic and 

most popular techniques to measure the performance of a computer system is to 

characterize its behavior when executing a representative workload.  Typically, the 

representative workload is a set of benchmark programs that is believed to be 

representative of typical applications that could be executed on the computer system.  

The use of benchmarks for quantitatively evaluating novel ideas, analyzing design 

alternatives, and identifying performance bottlenecks has become the mainstay in 

computer systems research and development.  A wide range of programs, ranging from 

microbenchmarks, kernels, hand-coded synthetic benchmarks, to full-blown real-world 

applications, have been used for the performance evaluation of computer architectures.   

Early synthetic benchmarks, such as Whetstone [Curnow and Wichman, 1976] 

and Dhrystone [Weicker, 1984], had the advantage of being able to consolidate 

application behaviors into one program.  However, these benchmarks fell out of favor in 

the nineteen-eighties because they were hand coded, hence difficult to upgrade and 

maintain, and were easily subject to unfair optimizations.  Smaller benchmark programs 

such as microbenchmarks and kernel codes have the advantage that they are relatively 

easier to develop, maintain, and use.  However, they only reflect the performance of a 

very narrow set of applications and may not serve as a general benchmark against which 

the performance of real-world applications can be judged. At the other end of the 

spectrum, the use of real-world applications as benchmarks offers several advantages to 

architects, researchers, and customers.  They increase the confidence of architects and 

researchers in making design tradeoffs and make it possible to customize microprocessor 



 2 

design to specific applications.  Also, the use of real-world applications for benchmarking 

greatly simplifies purchasing decisions for customers.  As a result researchers began to 

heavily rely on applications with specific datasets to assess computer performance.  

Consequently, application programs have now become the dominant benchmarks.  

Due to the prohibitive simulation time of application benchmarks there has been a 

revival of interest in the computer architecture community to develop synthetic 

workloads [Skadron et al., 2003-1].  Researchers have expended some effort in 

developing techniques for automatically constructing synthetic workloads which can 

mimic the performance of longer-running real-world applications [Eeckhout and De 

Bosschere, 2000] [Oskin et al., 2000] [Bell and John, 2005-3].  The central idea behind 

these proposed techniques is to measure workload attributes of a benchmark and model 

them into a synthetic workload.  Due to the statistical nature of the synthetic workload, it 

rapidly converges to a steady-state result.  Therefore, the key motivation for these 

techniques was to reduce the simulation time.   The primary shortcoming of these 

techniques was that the generated workload was not representative across 

microarchitectures and had to be resynthesized in response to a microarchitectural 

change.           

1.1 MOTIVATION 

The motivation of this dissertation is to address the limitations of prevailing 

workload synthesis approaches, and improve their usefulness to address some acute 

challenges in benchmarking computer architectures.  This will enable a much broader 

application of the synthetic benchmarks beyond reduction in simulation time.  In this 

section we outline the benchmarking challenges that are the key motivation for this 

research work.   



 3 

1.1.1 Proprietary Nature of Real World Applications 

If it would be possible to make a real-world customer workload available to 

architects and designers, computer architecture design tradeoffs could be made with 

higher confidence.  Moreover, if a real world application that a customer cares about was 

used to project the performance of a microprocessor, it would tremendously increase the 

customer’s confidence when making purchasing decisions.  However, many of the 

critical real world applications are proprietary and customers hesitate to share them with 

third party computer architects and designers.    

1.1.2 Benchmarks Represent a Sample of the Performance Spectrum 

The application programs that are being run on computer systems constantly 

evolve, and given the diversity of these application domains, benchmark programs only 

represent a sample of the performance spectrum.  There may be several application 

characteristics for which standardized benchmarks do not (yet) exist.  This makes it 

difficult to project the performance of such applications.  

1.1.3 Benchmarks Measure Single-Point Performance 

A benchmark typically measures the performance of a computer system for a set 

of workload characteristics.   This may make it difficult to get statistical confidence in the 

evaluation.  Typically, it is not easy to vary the benchmark characteristics to understand 

whether a performance anomaly is an artifact of the benchmark or a characteristic of the 

underlying system.  Moreover, the rigid nature of benchmarks makes it difficult to isolate 

and study the effect of individual benchmark characteristics on performance. 

1.1.4 Applications Evolve Faster than Benchmark Suites 

Typically, architects and researchers use prevailing benchmarks to make 

processor design decisions.  However, it is known that as applications evolve, benchmark 



 4 

characteristics drift with time and an optimal design using benchmarks of today may not 

be optimal for applications of tomorrow.  This problem has been aptly described as: 

“Designing tomorrow’s microprocessors using today’s benchmarks built from 

yesterday’s programs” [Weicker, 1997] [Yi et al., 2006-1].  Therefore, it is important for 

architects and researchers to analyze the effect of workload behavior drift on 

microprocessor performance.  However, developing new benchmark suites and upgrading 

existing benchmark suites is extremely time-consuming and by consequence very costly.  

Therefore, it is not possible for the benchmark development process to keep pace with the 

rate at which new applications emerge.  

1.1.5 Challenges in Studying Commercial Workload Performance 

Commercial workloads, such as online transaction processing (OLTP) and 

decision support systems (DSS), which handle day-to-day business transactions form an 

important class of applications. However, these workloads are complex and have large 

hardware requirements for full-scale setup.  As a result, it is difficult to study the 

performance of these workloads in simulation based research and during pre-silicon 

performance and  power studies.  

1.1.6 Prohibitive Simulation Time of Application Benchmarks 

A key challenge in engineering benchmarks from real-world applications is to 

make them simulation friendly – a very large dynamic instruction count results in 

intractable simulation times even on today’s fastest simulators running on today’s fastest 

machines.  Also, application benchmarks that need execution of several other software 

layers, e.g. operating system calls, can be simulated only on a complete system 

performance model.  Therefore, it is usually impossible to execute these applications on 

Register-Transfer-Language (RTL) models.  



 5 

1.1.7 Need for Power and Temperature Oriented Stress Benchmarks 

Estimating the maximum power and thermal characteristics of a microarchitecture 

is essential for designing the power delivery system, packaging, cooling, and 

power/thermal management schemes for a microprocessor.  Typical benchmark suites 

used in performance evaluation do not stress the microarchitecture to the limit, and the 

current practice in industry is to develop artificial benchmarks that are specifically 

written to generate maximum processor (component) activity. However, manually 

developing and tuning such synthetic benchmarks is extremely tedious, requires an 

intimate understanding of the microarchitecture, and is therefore very time-consuming. 

1.2 OBJECTIVES 

In this section we outline the key objectives of this dissertation research and 

highlight how they improve the usefulness of synthetic workloads for computer 

performance evaluation and benchmarking.  

1.2.1 Evaluating the Efficacy of Statistical Workload Modeling 

Statistical workload modeling has been proposed as an approach to reduce the 

time needed to generate quantitative performance estimates early in the design cycle.  

The key idea in statistical workload modeling is to model a workload’s important 

performance characteristics in a synthetic trace, and execute the trace in a statistical 

simulator to obtain a performance estimate.  Since the performance estimate quickly 

converges, the simulation speed of statistical simulation makes it an attractive technique 

to quickly explore a large design space.   

Statistical workload modeling forms the foundation of synthetic workload 

generation.  Therefore, one of the objectives of this dissertation is to develop a technique 

to quantify the representativeness of synthetic workloads.  The use of a rigorous approach 



 6 

to evaluate the efficacy of statistical workload modeling will increase the confidence of 

computer architects and researchers in the use of synthetic workloads for performance 

evaluation.   

1.2.2 Techniques for Distilling the Essence of Applications into Benchmarks 

Prior work [Bell and John, 2005-1] [Bell and John., 2005-2] shows that if a 

program property is modeled into synthetic workloads using a microarchitecture-

dependent feature (e.g. generating a cache access pattern to match a target miss-rate) it 

yields high errors on configurations that are very different from the ones for which they 

were synthesized.  In order to ensure that the generated synthetic workload is 

representative across a wide range of configurations we choose microarchitecture-

independent workload attributes to capture the program property to be modeled.  An 

objective of this research is to develop modeling approaches for incorporating locality 

and control flow predictability of programs into synthetic workloads.  The approach used 

in these models is to use an inherent program attribute to quantify and abstract code 

properties related to spatial locality, temporal locality, and branch predictability.  These 

attributes are then used to generate a trace or a benchmark with similar properties.  If the 

feature faithfully captured the program property, the resulting performance metrics e.g. 

cache miss-rate and branch prediction rate will be similar to that of the original 

application program.  

1.2.3 Miniature Workload Synthesis for Early Design Stage Studies 

An objective of this research is to develop synthetic benchmarks that not only 

capture the essence of proprietary workloads but can also be simulated in a reasonable 

amount of time.  The important distinction of this objective from prior research is that our 

goal is to maintain the representativeness of the synthetic workload across a wide range 



 7 

of microarchitectures and still achieve the reduction in simulation time.   Having 

synthetic benchmarks that are miniature will enable one to use longer-running 

benchmarks and applications, which are typically difficult to setup, for early design space 

performance and power studies.  The miniaturization of synthetic benchmarks is also 

essential to make it possible to execute them on RTL models.  The synthetic benchmarks 

can then be used to effectively narrow down a design space in a tractable amount of time.  

1.2.4 Exploring the Feasibility of Parameterized Workload Modeling 

A synthetic program that can be tuned to produce a variety of benchmark 

characteristics would be of great benefit to the computer architecture community.  An 

objective of this research is to develop an adaptive benchmark generation strategy for 

constructing scalable synthetic benchmarks.  Essentially one needs to generate a 

framework based on a parameterized workload model.  The scalable benchmarks provide 

the flexibility to alter program characteristics and explore and wider range of the 

application behavior space.  

1.2.5 Power and Temperature Oriented Synthetic Benchmarks 

Although power, temperature, and energy have recently emerged as first class 

design constraints, the computer architecture community currently lacks benchmarks that 

are oriented towards temperature and power characterization of a design.  Estimating the 

maximum power and thermal characteristics of a microarchitecture is essential for 

designing the power delivery system, packaging, cooling, and power/thermal 

management schemes for a high-performance microprocessor.  An objective of this 

research is to develop synthetic workloads that are oriented towards evaluating 

microarchitecture-level power and temperature characteristics. Typical benchmark suites 

used in performance evaluation do not stress the microarchitecture to its limit, and the 



 8 

current practice in industry is to develop artificial benchmarks that are specifically 

written to generate maximum processor (component) activity. However, manually 

developing and tuning such synthetic benchmarks is extremely tedious, requires an 

intimate understanding of the microarchitecture, and is therefore very time-consuming.  

Automatic construction of power and temperature oriented workloads will significantly 

reduce the time required for power and temperature characterization.     

1.3 THESIS STATEMENT 

A hardware-independent workload model and an adaptive benchmark generation 

strategy to construct representative miniature synthetic benchmarks, can be used to 

disseminate proprietary applications as benchmarks, construct scalable benchmarks to 

represent emerging workloads, model commercial workloads, and develop power and 

temperature oriented synthetic benchmarks.  

1.4 CONTRIBUTIONS 

This dissertation makes a contribution towards advancing state-of-the-art in 

developing representative synthetic benchmarks and broadening the applicability of 

synthetic workloads for microprocessor performance evaluation.  The contributions from 

this dissertation have the following impact -  (1) enable computer designers and 

researchers to use proprietary and longer-running application programs for power and 

performance evaluation, (2) help end users and customers to project the performance of a 

proprietary workload on a given microprocessor, (3) foster sharing of benchmarks 

between industry and academia, (4) provide a mechanism for benchmark designers to 

model emerging workloads, and (5) enable computer architects and compiler designers 

to conduct program behavior studies. The following is a summary of the specific 

contributions from this research work. 



 9 

This dissertation uses a rigorous statistical approach to systematically evaluate the 

absolute and relative accuracy of synthetic workload modeling in design space 

exploration studies. The empirical results obtained from a thorough evaluation of 

synthetic workload modeling significantly increases the confidence of architects, 

designers, and researchers in the use of synthetic benchmarks for microprocessor 

performance evaluation.  

An important contribution of this dissertation over prior work in synthetic 

benchmark generation [Bell and John, 2005-1] [Bell and John, 2005-2] is that we 

demonstrate that it is possible to capture the performance of a program using an abstract 

workload model that only uses hardware-independent workload attributes.  Since the 

design of the synthetic workload is guided only by the application characteristics and is 

independent of any hardware specific features, the workload can be used across a wide 

range of microarchitectures.  We show in our evaluation that the synthetic benchmark 

clone shows good correlation with the original application across a wide range of cache, 

branch predictor, and other microarchitecture configurations.  This improves the 

representativeness of the synthetic workload and obviates the need to resynthesize the 

workload when the underlying microarchitecture is altered.       

The ability to capture the essence of a workload only using hardware-independent 

workload attributes makes it possible to disseminate real-world applications as miniature 

benchmarks without compromising on the applications’ proprietary nature.  The 

advantage of the synthetic benchmark clone is that it provides code abstraction capability, 

i.e., it hides the functional meaning of the code in the original application but exhibits 

similar performance characteristics as the real application. Source code abstraction 

prevents reverse engineering of proprietary code, which enables software developers to 

share synthetic benchmarks with third parties.  The ability to automatically distill key 



 10 

behavior characteristics of an application into benchmarks is an important contribution of 

this dissertation.   Moreover, automated synthetic benchmark generation significantly 

reduces the effort of developing benchmarks, making it possible to upgrade the 

benchmarks more often.   

One of the key contributions of this dissertation is our finding that it is possible to 

fully characterize a workload by only using a limited number of microarchitecture-

independent program characteristics, and still maintain good accuracy.  This finding 

enables adaptation of the benchmark generation strategy to tradeoff the 

representativeness of the synthetic workload in favor of the flexibility to alter program 

characteristics.  Moreover, since these program characteristics are measured at a program 

level they can be measured more efficiently and are amenable to parameterization.  We 

demonstrate that the parameterized workload synthesis approach is the foundation for 

constructing scalable benchmarks that can be used to model emerging workloads, and 

conduct program behavior studies.   

This dissertation makes a contribution towards addressing an important industry 

problem of characterizing the maximum power dissipation and thermal characteristics of 

a microarchitecture.  Typically, hand-coded synthetic streams of instructions have been 

used to generate maximum activity in a processor to estimate the maximum power 

dissipation.  This dissertation proposes a framework that uses machine learning 

algorithms to automatically search the program behavior space to generate power and 

temperature stress benchmarks.   We demonstrate that this framework is very effective in 

constructing stress benchmarks for measuring maximum sustainable power dissipation, 

maximum single-cycle power dissipation, and temperature hot spots.  The automated 

approach to stress benchmark synthesis can eliminate the time-consuming complex task 



 11 

of hand-coding a stress benchmark, and also increase the confidence in the quality of the 

stress benchmark.  

1.5 ORGANIZATION 

Chapter 2 reviews the prior art in constructing synthetic workloads, approaches 

used for workload modeling, workload design space exploration, and developing power 

and temperature oriented workloads.   

Chapter 3 applies a statistically rigorous approach for systematically evaluating 

the representativeness of synthetic workload modeling approaches and quantifies its 

effectives in exploring a microprocessor design space.   

Chapter 4 shows that it is possible to completely capture the essence of an 

application by only using a set of hardware-independent workload characteristics.  It 

proposes algorithms for modeling the hardware-independent attributes into a synthetic 

workload.  

Chapter 5 applies the workload synthesis approach to construct miniature 

synthetic clones for longer-running proprietary applications. It provides example results 

of miniature synthetic clones representative of general purpose, embedded, and scientific 

benchmarks.  It demonstrates the usefulness and applicability of the miniature 

benchmarks clones for early design stage power and performance studies.  

Chapter 6 develops an adaptive benchmark generation strategy for constructing 

scalable benchmarks that can be used to model emerging applications and conduct 

performance behavior studies. 

Chapter 7 develops a methodology for automatically constructing power and 

temperature oriented workloads.  It demonstrates the usefulness of such benchmarks in 

evaluating the power and temperature characteristics of a design.   



 12 

Chapter 8 summarizes the key contributions and results from this dissertation and 

suggests directions for future research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

Chapter 2: Related Work    

This chapter briefly summarizes prior research work in the area of statistical 

simulation, workload synthesis, workload characterization, power and temperature 

characterization of microprocessors, approaches for workload design space exploration, 

and application of statistical techniques in computer architecture research.  In each of 

these areas we compare and contrast this dissertation research to prior work.  We also 

highlight how this dissertation builds upon and addresses limitations of prior research to 

advance state-of-the-art in workload synthesis.     

2.1 STATISTICAL SIMULATION 

[Noonburg and Shen, 1997] [Carl and Smith, 1998] [Oskin et al., 2000] 

introduced the idea of statistical simulation which forms the foundation of synthetic 

workload generation.  The approach used in statistical simulation is to generate a short 

synthetic trace from a statistical profile of program attributes such as basic block size 

distribution, branch misprediction rate, data/instruction cache miss rate, instruction mix, 

dependency distances, etc., and then simulate the synthetic trace using a statistical 

simulator.  The primary objective of these techniques was to reduce simulation time 

during early design space exploration studies. [Eeckhout and De Bosschere, 2000] 

improved the accuracy of performance predictions in statistical simulation by measuring 

conditional distributions and incorporating memory dependencies using more detailed 

statistical profiles, and guaranteeing syntactical correctness of synthetic traces.  

[Nussbaum et al., 2001] proposed correlating characteristics such as the instruction type, 

instruction dependencies, cache behavior, and branch behavior to the size of the basic 

block. They also compared the accuracy of several models for synthetic trace generation.  

[Eeckhout et al., 2004-2] [Bell et al., 2004] further improved the accuracy of statistical 



 14 

simulation by proposing to profile the workload attributes at a basic block granularity and 

using the statistical flow graph (SFG) to capture the control flow behavior of the 

program.  Recent improvements include more accurate memory data flow modeling for 

statistical simulation [Genbrugge et al., 2006].  The important benefit of statistical 

simulation is that the synthetic trace is extremely short in comparison to real workload 

traces.  Overall, the follow up research work in statistical simulation has focused on 

improving its accuracy by modeling program characteristics at a finer granularity.  This 

has improved the absolute and relative accuracy of the statistical simulation technique, 

albeit at the cost of increased complexity and profiling cost.   

Various studies have demonstrated that statistical simulation is capable of 

identifying a region of interest in the early stages of the microprocessor design cycle 

while considering both performance and power consumption [Eeckhout et al.,2004-1] 

[Eeckhout et al., 2004-2] [Genbrugge et al., 2006].  They show that the important 

application of statistical simulation is to cull a large design space in limited time in search 

for a region of interest.  Although this previous work has shown that statistical simulation 

has good absolute and relative accuracy and is a viable tool for design space exploration, 

researchers and architects are reluctant to use statistical simulation due to questions 

related to the accuracy across diverse set of processor configurations, ability to stress 

processor bottlenecks, and the tradeoff between accuracy and complexity of statistical 

workload models.   

[Eeckhout et al., 2001] showed that using a combination of analytical and 

statistical modeling, it is possible to efficiently explore the workload and microprocessor 

design space. [Oskin et al., 2000] [Nussbaum et al., 2001] have also demonstrated the 

usefulness of statistical simulation for exploring the application behavior space.  

However, these techniques use a combination of microarchitecture-independent and 



 15 

microarchitecture-dependent workload characteristics – limiting the application behavior 

space that can be explored.  The other limitation of statistical simulation is that it 

generates synthetic traces rather than synthetic benchmarks; synthetic traces, unlike 

synthetic benchmarks, cannot be executed on execution-driven simulators, real hardware, 

and RTL models.  

2.2 WORKLOAD SYNTHESIS 

Early synthetic benchmarks, such as Whetstone [Curnow and Wichman, 1976] 

and Dhrystone [Weicker, 1984], were hand coded to consolidate application behaviors 

into one program. Several approaches [Ferrari, 1984] [Sreenivasan and Kleinman, 1974] 

have been proposed to construct a synthetic workload that is representative of a real 

workload under a multiprogramming system.  In these techniques, the characteristics of 

the real workload are obtained from the system accounting data, and a synthetic set of 

jobs are constructed that places similar demands on the system resources.  [Hsieh and 

Pedram, 1998] developed a technique to construct assembly programs that, when 

executed, exhibit the same power consumption signature as the original application.  

[Sorenson and Flanagan, 2002] evaluate various approaches to generating synthetic 

address traces using locality surfaces.  [Wong and Morris, 1998] use the hit-ratio in fully 

associative caches as the main criteria for the design of synthetic workloads.  They also 

use a process of replication and repetition for constructing programs to simulate a desired 

level of locality of a target application. 

The work most closely related to this dissertation is the one proposed by [Bell and 

John, 2005-3].  They present a framework for the automatic synthesis of miniature 

benchmarks from actual application executables.  The key idea of this technique is to 

capture the essential structure of a program using statistical simulation theory, and 

generate C-code with assembly instructions that accurately model the workload 



 16 

attributes, similar to the framework proposed in this dissertation. The reduction in 

simulation time gained from the synthetic benchmarks and their ability to be executed on 

execution driven simulators and RTL models was applied to,  power analysis in early 

design space studies [Bell and John, 2005-1],  and validation of a performance model 

against the RTL [Bell and John, 2005-2] [Bell et al., 2006].  This approach models 

memory access patterns and control-flow behavior to match a target metric e.g. cache 

miss-rate, branch prediction rate etc., and hence the synthetic workloads also reflect 

machine properties rather than pure program characteristics.  Consequently, the synthetic 

workloads generated from these models may yield large errors when cache and branch 

microarchitecture configurations are changed from the targeted configuration [Bell and 

John, 2005-2].  Therefore, in order to enable the portability of the generated synthetic 

workload across a wide range of microarchitectures, it is important to capture inherent 

program characteristics into the synthetic workload rather than generate a synthetic 

workload to match a target metric. This dissertation significantly improves the usefulness 

of this workload synthesis technique by developing hardware-independent models for 

capturing locality and control flow predictability of programs into synthetic workloads.  

Approaches to generate synthetic workloads have been investigated for 

performance evaluation of I/O subsystems, file system, networks, and servers 

[Bodnarchuk and Bunt, 1991] [Barford and Crovella, 1998] [Ganger, 1995] [Kurmas et 

al., 2003].  The central idea in these approaches is to model the workload attributes using 

a probability distribution such as Zipf’s law, binomial distribution, etc., and to use these 

distributions to generate a synthetic workload.  

[Keeton and Patterson, 1998] [Shao et al., 2005] studied the characteristics of 

commercial workloads and hand crafted scaled down microbenchmarks that are 

representative of commercial workloads.  The approach proposed in this dissertation has 



 17 

a similar objective but does so automatically.  This significantly reduces the time required 

to construct a representative synthetic benchmark.  

[Chen and Patterson, 1994] developed an approach to generate parameterized 

self-scaling I/O benchmarks that can dynamically adjust the workload characteristics 

according to the performance characteristic of the system being measured.  Automatic 

test case synthesis for functional verification of microprocessors [Bose, 1998] has been 

proposed, and there has been prior work on hand crafting microbenchmarks for 

performance validation [Desikan et al., 2001] [Bose and Abraham, 2000].   

2.3 WORKLOAD CHARACTERIZATION 

[John et al., 1998] advocates the need for understanding the characteristics of 

workloads in order to design efficient computer architectures.  This article provides an 

excellent survey on prior work in workload characterization and stresses the importance 

of developing architecture-independent workload metrics. Further more, the paper 

proposes an idea for developing an architecture-independent workload model and using it 

to generate benchmarks.  This dissertation is a significant step towards achieving the 

goals and vision outlined in this article.  

  [Weicker, 1990] used characteristics such as statement distribution in programs, 

distribution of operand data types, and distribution of operations, to study the behavior of 

several stone-age benchmarks.  [Saveedra and Smith, 1996] characterized FORTRAN 

applications in terms of number of various fundamental operations, and predicted their 

execution time.  Source code level characterization has not gained popularity due to the 

difficulty in standardizing and comparing the characteristics across various programming 

languages.   

There has been research on microarchitecture-independent locality and ILP 

metrics. For example, locality models researched in the past include working set models, 



 18 

least recently used stack models, independent reference models, temporal density 

functions, spatial density functions, memory reuse distance, and locality space [Conte and 

Hwu, 1990] [Lafage and Seznec, 2000] [Spirn, 1972] [Sorenson and Flanagan, 2002] 

[John et al., 1998] [Denning, 1968].  Generic measures of ILP based on the dependency 

distance in a program have been used by [Noonburg et. al., 1997] and [Dubey et. al., 

1994]. Microarchitecture-independent characteristics such as, true computations versus 

address computations, and overhead memory accesses versus true memory accesses have 

been proposed by several researchers [Hammerstrom and Davidson, 1997] [John et al., 

1995].  

Microarchitecture-independent characteristics have also been used for measuring 

program similarity, benchmark subsetting, finding program phases, and performance 

prediction [Joshi et al., 2006-3] [Phansalkar et al., 2005] [Eeckhout et al., 2005] [Hoste et 

al., 2006-1] [Hoste and Eeckhout, 2006] [Sherwood et al., 2002] [Lafage and Seznec, 

2000] [Luo et al., 2005]. 
 

2.4 OTHER APPROACHES TO REDUCE SIMULATION TIME 

 Statistical sampling techniques [Conte et al., 1996] [Wunderlich et al., 

2003] have been proposed for reducing the cycle-accurate simulation time of a program. 

The central idea in these approaches is to use statistical sampling theory to reduce 

simulation time and provide a confidence interval for the estimated performance. The 

SimPoint project [Sherwood et al., 2002] proposed basic block distribution analysis for 

finding program phases which are representative of the entire program.  The SimPoint 

approach can be considered orthogonal to the approach proposed in this dissertation, 

because one can generate a synthetic benchmark clone for each phase of interest.   



 19 

[Iyengar et al., 1996] developed a concept of fully qualified basic blocks and 

applied it to generate representative traces for processor models with infinite cache.  This 

work was later extended [Iyengar and Trevillyan, 1996] to generate address traces to 

match a particular cache miss-rate.  [Ringenberg et al., 2005] developed a technique, 

intrinsic checkpointing, a checkpoint implementation that loads the architectural state of a 

program by instrumenting the simulated binary rather than through explicit simulator 

support.  This technique makes it possible to execute the simulation point(s) of a program 

on real hardware or an execution-driven simulator.  The synthetic benchmark approach 

proposed in this dissertation has advantages over these simulation points, namely (i) 

hiding the functional meaning of the original application, and (ii) having even shorter 

dynamic instruction counts. 

2.5 POWER AND TEMPERATURE CHARACTERIZATION OF MICROPROCESSORS  

 A lot of research work has been done in the VLSI research community to 

develop techniques for estimating the power dissipation of a CMOS circuit.  The primary 

approach in these techniques is to use statistical approaches, heuristics, and to develop a 

test vector pattern that causes maximum switching activity in the circuit [Rajgopal, 1996] 

[Najm et al., 1995] [Chou and Roy, 1996] [Tsui et al., 1995] [Qui et al., 1998] [Hsiao et 

al., 2000] [Lim et al., 2002].  Although an objective of this dissertation is the same as this 

prior work, there are two key differences compared to our work. Firstly, our technique 

aims at developing an assembly test program (compared to a test vector) that can be used 

for maximum power estimation at the microarchitecture level. Secondly, developing 

stress benchmarks provides insights into the interaction of workload attributes and 

power/thermal stress, which is not possible with a bit vector. [Vishwanathan et al., 2000] 

[Gowan et al., 1998] [Felter and Keller, 2004] refer to hand-crafted synthetic test cases 

developed in industry that have been used for estimating maximum power dissipation of 



 20 

a microprocessor. In [Lee et al., 2005], stress benchmarks have been developed to 

generate temperature gradients across microarchitecture units.  

2.6 STATISTICAL AND MACHINE LEARNING TECHNIQUES IN COMPUTER 

 PERFORMANCE EVALUATION 

[Yi et al., 2003] proposed to use the Plackett & Burman (P&B) design to choose 

processor parameters, to select a subset of benchmarks, and to analyze the effect of a 

processor enhancement.   Also, [Yi et al., 2005] [Yi et al., 2006-3] used the P&B design 

as a characterization technique to compare simulation techniques and characterize the 

bottlenecks in SPEC CPU2000 benchmark programs.   

Principal Component Analysis (PCA) and Clustering Techniques have been 

applied to measure the similarity between programs and find a subset of representative 

programs to reduce simulation time and in benchmark suite design  [Phansalkar et al., 

2007-1] [Phansalkar et al.,2007-2] [Yi et al., 2006-2] [Eeckhout et al., 2005] [Eeckhout 

et al., 2003-2] [Eeckhout et al., 2002] [Joshi et al., 2006-3].  [Sherwood et al., 2002] also 

use clustering techniques to find phase behavior in a program.  

[Hoste et al., 2006-1] applied genetic learning algorithm to find weights for 

benchmarks to predict the performance of a customer application.  [Eyerman et al., 2006] 

used different machine learning algorithms to explore a microprocessor design space.   

 

 

 

 

 

 

 



 21 

Chapter 3: Evaluating the Efficacy of Statistical Workload Modeling    

Recent research has proposed statistical simulation as a technique for fast 

performance evaluation of superscalar microprocessors.   Statistical workload modeling 

is the foundation for developing synthetic benchmarks proposed in this dissertation.  The 

idea in statistical simulation is to measure a program's key performance characteristics, 

generate a synthetic trace with these characteristics, and simulate the synthetic trace.  Due 

to the probabilistic nature of statistical simulation the performance estimate quickly 

converges to a solution, making it an attractive technique to efficiently cull a large 

microprocessor design space.  Therefore, it is important to improve confidence in the use 

of synthetic workloads by evaluating the effectiveness of statistical workload modeling 

approaches and the trade-offs involves therein.  

In this chapter, we evaluate the efficacy of statistical workload modeling 

approaches in exploring the design space.  Specifically, we characterize the following 

aspects of statistical workload modeling: (i) fidelity of performance bottlenecks, with 

respect to cycle-accurate simulation of the program, (ii) ability to track design changes, 

and (iii) trade-off between accuracy and complexity in statistical workload models.  

3.1 INTRODUCTION TO STATISTICAL WORKLOAD MODELING 

In computer architecture, the simulation of benchmarks is a widely used technique 

for evaluating computer performance.  Computer architects and researchers use 

microprocessor models to accurately make performance projections during the pre-silicon 

phase of the chip design process, and also to quantitatively evaluate microprocessor 

innovations.  Unfortunately, when using a detailed cycle-accurate performance model, 

the simulation time may span several weeks or months.  Further compounding this 

problem is the growing complexity of microarchitectures (i.e., decreasing simulation 



 22 

speed) and the increasing execution-times of modern benchmarks.  Therefore, in order to 

meet the time-to-market requirements of a microprocessor, designers use different 

simulation models during the various stages of the design cycle. Although a detailed and 

highly accurate cycle-accurate simulator is necessary to evaluate specific design points 

later in the design cycle, earlier in the design cycle, a simulation technique that has a 

short development time and can quickly provide performance estimates with reasonable 

accuracy is desirable.   

Statistical simulation [Oskin et al., 2000] [Eeckhout and De Bosschere, 2000] 

[Nussbaum and Smith, 2001] has been proposed as an approach to reduce the time 

needed to generate quantitative performance estimates early in the design cycle.  The 

basic idea in statistical simulation is to model a workload's important performance 

characteristics with a synthetic trace, and execute the trace in a statistical simulator to 

obtain a performance estimate.  Since the performance estimate quickly converges, the 

simulation speed of statistical simulation makes it an attractive technique to quickly 

explore a large design space. 

Although previous work has shown that statistical simulation has good absolute 

and relative accuracy and is a viable tool for design space exploration [Eeckhout et al., 

2004-1] [Eeckhout et al., 2004-2] [Nussbaum and Smith, 2001], researchers and 

architects are reluctant to use statistical simulation due to questions such as: (i) What is 

the absolute and relative accuracy across a diverse set of processor configurations?, (ii) 

Does the synthetic trace stress the same bottlenecks as the original program to the same 

degree?,  and (iii) What is the trade-off between simulation accuracy and the complexity 

of various statistical simulation models? 

The remainder of this chapter is organized as follows: Section 3.2 presents a brief 

overview of statistical simulation and the framework we have used in this study.  Section 



 23 

3.3 describes the benchmarks used for the evaluation experiments. Section 3.4 presents 

the results from our evaluation of statistical simulation. Section 3.5 summarizes the key 

findings.  

3.2 STATISTICAL SIMULATION FRAMEWORK 

We developed an enhanced version of HLS++ [Bell and John, 2004] statistical 

simulation framework, called SS-HLS++, as our statistical simulation environment.  It 

consists of three steps: 1) Profiling the benchmark program to measure a collection of its 

execution characteristics to create a statistical profile, 2) Using the statistical profile to 

generate a synthetic trace, and 3) Simulating the instructions in the synthetic trace on a 

trace-driven simulator to obtain a performance estimate.  Figure 3.1 illustrates these 

steps.  

In the first step, we characterize the benchmark by measuring its 

microarchitecture-independent and microarchitecture-dependent program characteristics.  

The former is measured by functional simulation of the program; examples include: 

instruction mix, basic block size, and the data dependency among instructions.  Note that 

these characteristics are related only to the functional operation of the benchmark’s 

instructions and are independent of the microarchitecture on which the program executes.  

On the other hand, the microarchitecture-dependent characteristics include statistics 

related to the locality and branch behavior of the program.  Typically, these statistics 

include L1 I-cache and D-cache miss-rates, L2 cache miss-rates, instruction and data 

TLB miss-rates, and branch prediction accuracy.  The complete set of microarchitecture-

dependent and microarchitecture-independent characteristics form the statistical profile of 

the benchmark.  



 24 

                  

 

Figure 3.1:  SS-HLS++ statistical simulation framework 

After generating the statistical profile, the second step is to construct a synthetic 

trace with similar statistical properties as the original benchmark.  The synthetic trace 

consists of a number of instructions contained in basic blocks that are linked together into 

a control flow graph, similar to conventional code.  However, instead of actual arguments 

Statistical Profile 
- Instruction Mix 
- Basic Block Size 
- Data dependency distance 
- L1 I-cache miss-rate 
- L1 D-cache miss-rate    
- L2 cache miss-rate  
- D/I TLB miss-rates 
- Branch Prediction Accuracy  

 

 
Benchmark Binary 

 

Synthetic Trace 
Generator 

 
Synthetic Trace 

 

Statistical 
Simulator 

 

Cache and Branch 
Simulator 

 

Microarchitecture 
Independent Profiler 



 25 

and opcodes, each instruction in the synthetic trace is composed of a set of statistical 

parameters, such as: instruction type (integer add, floating-point divide, load, etc.), 

ITLB/L1/L2 I-cache hit probability, DTLB/L1/L2 D-cache hit probability (for load and 

store instructions), probability of branch misprediction (for branch instructions), and 

dynamic data dependency distance (to determine how far a consumer instruction is away 

from its producer).  The values of the statistical parameters describing each instruction 

are assigned by using a random number generator following the distributions of the 

various workload characteristics in the statistical profile of the benchmark.  

Finally, in the third step, the synthetic trace is executed on a trace-driven 

statistical simulator.  The statistical simulator is similar to a trace-driven simulator of real 

program traces, except that the statistical simulator probabilistically models cache misses 

and branch mispredictions.  During simulation, the misprediction probability that is 

assigned to the branch instruction is used to determine whether the branch is 

mispredicted, and if so, the pipeline is flushed when the mispredicted branch executes.      

Likewise, for every load instruction and instruction cache access, the simulator assigns a 

memory access time depending on whether it probabilistically hits or misses in the L1 

and L2 cache. 

Although, these statistical simulation models that have been recently proposed 

differ in the complexity of the model used to generate the synthetic trace, fundamentally, 

each model uses the same general framework described in Figure 3.1.  They primarily 

differ in the granularity (basic block level, program level, etc.) at which they measure the 

workload characteristics in the statistical profile.  For this study, we implemented the 

following four statistical simulation models: 

HLS [Oskin et al., 2000]: This is the simplest model where the workload 

characteristics (instruction mix, basic block size, cache miss-rates, branch misprediction 



 26 

rate, and dependency distances) are averaged over the entire execution of a program.  

This model assumes that the workload characteristics are independent of each other and 

are normally distributed.  A synthetic trace of 100 basic blocks is then generated from a 

normal distribution of these workload statistics and simulated on a general superscalar 

execution model until the results (Instructions-Per-Cycle) converge. Since the synthetic 

instructions are few in number and are probabilistically generated, the results converge 

very quickly. 

HLS + BBSize: We implemented a slightly modified version of the model 

proposed in [Nussbaum and Smith, 2001].  In this model, other than the basic block size, 

all workloads characteristics are averaged over the entire execution of the program.  

However, for the basic block size, we maintain different distributions of the basic block 

size based on the history of recent branch outcomes. 

Zeroth Order Control Flow Graph (CFG, k=0) [Eeckhout et al., 2004] [Bell et 

al., 2004]: In this modeling approach, we average the workload characteristics at the 

basic block granularity (instead of averaging them over the entire execution of the 

program).  While building the statistical profile, we create a control flow graph of the 

program.  This control flow graph stores the dynamic execution frequencies of each 

unique basic block along with the transition probabilities to its successor basic blocks.  

The workload characteristics (instruction mix, cache miss-rates etc.) are measured for 

each basic block.  Since the statistical profile is now at the basic block level, the size of 

the profile for this model is considerably larger than for the first two.  When generating a 

synthetic trace, we probabilistically navigate the control flow graph and generate 

synthetic instructions based on the workload characteristics that were measured for each 

basic block. 



 27 

First Order Control Flow Graph (CFG, k=1) [Eeckhout et al., 2004]: This is 

the state-of-the art modeling approach.  This approach is the same as the one described in 

the Zeroth Order Control Flow Graph model described above, except that all workload 

characteristics are measured for each unique pair of predecessor and successor basic 

blocks in the control flow graph, instead of just for a unique single basic block.  

Gathering workload characteristics at this granularity improves the modeling accuracy in 

the synthetic trace because the performance of a basic block depends on the context 

(predecessor basic block) in which it was executed. 

The First Order Control Flow Graph model is the state-of-the-art statistical 

simulation model, and we therefore use it in all the experiments.  In Section 3.4.3, we 

compare the accuracy of the other three models described above against the accuracy of 

the First Order Control Flow Graph model. 

3.3 BENCHMARKS 

We used 9 benchmark programs and their reference input sets from the SPEC 

CPU 2000 benchmark suite to evaluate the statistical workload models.  All benchmark 

programs were compiled using SimpleScalar’s version of the gcc compiler, 

version 2.6.3, at optimization level –O3.  Table 3.1 lists the programs, their input sets, 

and benchmark type.  In order to compare the statistical simulation results for the 

configurations used in P&B design to the corresponding results from a cycle-accurate 

simulator, we had to run 44 cycle-accurate simulations of reference input sets for every 

benchmark program.  To reduce this simulation time, we simulated the first one billion 

instructions only for each benchmark.   

 

 



 28 

Table 3.1: SPEC CPU 2000 benchmarks and input sets used to evaluate statistical 
workload modeling.  

Benchmark Input Set Type 

175.vpr-Place ref.net Integer 

175.vpr-Route ref.arch.in Floating-Point 

176.gcc 166.i Integer 

179.art -startx 110 Floating-Point 

181.mcf ref.in Integer 

183.equake ref.in Floating-Point 

253.perlbmk diffmail Integer 

255.vortex lendian1 Integer 

256.bzip2 ref.source Integer 

3.4 EVALUATING STATISTICAL SIMULATION 

In this section we characterize and evaluate the accuracy of statistical simulation.  

The objective of our characterization is to analyze the efficacy of statistical simulation as 

a design space exploration tool by stressing it using a number of aggressive 

configurations.  Using aggressive configurations affords us an opportunity to evaluate the 

accuracy of statistical simulation by systematically exposing a diverse set of processor 

performance bottlenecks.       

Our evaluation consists of three parts: In Section 3.4.1 we evaluate the ability of 

statistical simulation to identify important processor performance bottlenecks.  

Specifically, we use a Plackett & Burman (P&B) design that uses a number of diverse 

configurations to evaluate the representativeness of the synthetic trace in terms of its 

performance bottlenecks.  In Section 3.4.2, we measure the relative accuracy of statistical 

simulation by examining its ability to accurately track design changes across 44 

aggressive processor configurations. Finally, in Section 3.4.3, we measure the absolute 

and relative accuracy of the four previously described statistical simulation models, and 

discuss the trade-offs between their complexity and level of accuracy.  



 29 

3.4.1 Identifying Important Processor Bottlenecks 

Due to their inherent characteristics, different benchmark programs stress 

different processor performance bottlenecks to different degrees.  Since architects use 

benchmark programs to make quantitative evaluations of various points in the design 

space and propose processor enhancements to relieve specific performance bottlenecks, 

the synthetic trace used in statistical simulation should have the same key microprocessor 

performance bottlenecks that are present when simulating the benchmark on a cycle-

accurate simulator.  We quantify the representativeness of the synthetic trace by 

quantifying the difference between the bottlenecks stressed by the original workload and 

the synthetic trace.    

For architects, the P&B design [Plackett and Burman, 1946] [Yi et al., 2003] can 

determine which processor and memory parameters have the largest effect on 

performance (cycles-per-instruction) i.e., identify the biggest performance bottlenecks. 

The P&B design is a very economical experimental design technique that varies N 

parameters simultaneously over approximately (N + 1) simulations.  Based on the results 

of the P&B design, we assign a rank for each performance bottleneck based on its P&B 

magnitude.  The P&B magnitude represents the significance of that bottleneck, or more 

specifically, the effect that the bottleneck has on the variability in the output value, e.g., 

cycles-per-instruction (CPI).  The bottleneck that has the largest impact on the CPI, i.e., 

the microarchitectural parameter with the highest P&B magnitude, is the largest 

performance bottleneck in the processor core and memory subsystem.  Based on their 

significance, we assign a rank to each bottleneck, i.e., the most significant bottleneck has 

a rank of 1, while the least significant has a rank of N. 

We evaluated 43 parameters in an out-of-order superscalar microprocessor related 

to the L1 I-cache, L1 D-cache, L2 cache, instruction and data TLB, branch predictor 



 30 

configuration, integer execution units, and floating point execution units.  To determine 

the P&B magnitude, and subsequently the rank, of each bottleneck, we use 44 very 

different processor configurations.  The configurations represent the “envelope of the 

hypercube” of processor configurations and provide a stress test for statistical simulation 

by systematically exposing diverse performance bottlenecks.  To characterize 

bottlenecks, the input parameter values were set to low and high values that were similar 

to those found in [Yi et al., 2003].  To quantify the representativeness of the synthetic 

trace, we first vectorize the ranks (from statistical simulation and cycle-accurate 

simulation) and then compute the Euclidean distance between the pair of vectors.  

Smaller Euclidean distances indicate that the ranks from statistical simulation are very 

similar to those obtained by simulating the program with a cycle-accurate simulator.  

When the vectors of ranks are identical (i.e., the significance of each bottleneck is the 

same for both statistical and cycle-accurate simulation), the Euclidean distance is 0.  

When the ranks are completely “out-of-phase” (i.e. <1, 2, 3 … 41, 42, 43> versus <43, 

42, 41 … 3, 2, 1>), the Euclidean distance is at a maximum of 162.75.  We normalize the 

Euclidean distance between each pair of vectors to this maximum, and then scale the 

distance to a 0 to 100 range. 

Since the ranks for all bottlenecks are included in the Euclidean distance, 

insignificant bottlenecks may deceptively inflate the Euclidean distance. Additionally, 

one has to be careful when interpreting the results based only on the ranks of the 

parameters.  It is possible that while the Euclidean distance is fairly high, their 

significance may be, in fact, quite similar.  In such cases, seemingly large Euclidean 

distances are the result of quantization error due to using ranks.  To avoid such a pitfall, 

we also separately present the normalized Euclidean distance for the most significant 3, 

5, 10, and 20 parameters, in addition to all 43. 



 31 

Figure 3.2 shows the normalized Euclidean distance for the 9 benchmarks.  The 

results in this figure show that statistical simulation can identify the 10 most important 

bottlenecks for all programs with good accuracy (normalized Euclidean distance less than 

or equal to 15).  For all 43 bottlenecks, the accuracy is very high for 179.art, good for 

176.gcc and 183.equake, moderate for 175.vpr-Place, 175.vpr-Route, 

and 253.perlbmk, and poor for 181.mcf, 255.vortex, and 256.bzip2. 

 

0

10

20

30

40

50

60

1
7

5
.v

p
r.

P
la

ce

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

cc

1
7

9
.a

rt

1
8

1
.m

cf

1
8

3
.e

q
u

ak
e

2
5

3
.p

er
lb

m
k

2
5

5
.v

o
rt

ex

2
5

6
.b

zi
p

2

A
v

er
ag

e

N
o

rm
al

iz
ed

 E
u

cl
id

ea
n

 D
is

ta
n

ce
 (

0
-1

0
0

)

Top 3 Bottlenecks Top 5 Bottlenecks Top 10 bottlenecks
Top 15 Bottlenecks Top 20 bottlenecks Top 41 bottlenecks

 

Figure 3.2:  Normalized Euclidean distance (0 to 100) between the ranks of processor and 
memory performance bottlenecks estimated by statistical simulation and 
cycle-accurate simulation.  Smaller Euclidean distances imply higher 
representativeness of synthetic trace. 

In order to understand the reasons for the difference in level of accuracy of 

statistical simulation for different programs, we analyzed the absolute values of the P&B 

magnitude.  For 179.art and 183.equake, the absolute values of  P&B magnitudes 

for the most important and the least important parameters ranges from 138 (L2 cache 

size) to 1 (the number of Return Address Stack entries) and 80 (L1 I-cache size) to 0.4 (I-



 32 

TLB associativity), respectively.  Note that larger differences in the P&B magnitudes 

imply larger performance impacts for that bottleneck.  Therefore, in benchmarks such as 

179.art and 183.equake, the importance of the most and least significant parameter 

is very distinct. However, for 256.bzip2, the difference in the significance of the 

bottlenecks is less distinct since the range of magnitudes is only 16.  Since the importance 

of the most and least significant bottlenecks is not substantially different, incorrectly 

estimating the importance of bottlenecks that have relatively little impact on the CPI does 

not imply any additional inaccuracy on the part of statistical simulation.  

In any case, the primary goal of early design space studies is to identify a range of 

feasible design values for the most important performance bottlenecks.   Since we 

observe that statistical simulation can do so, we conclude that statistical simulation is 

useful during early design space exploration.  For programs such as 176.gcc, 

179.art, and 183.equake, since the synthetic trace is very representative for all 43 

bottlenecks stressed by the original benchmark program, statistical simulation may be a 

valuable tool even beyond the earliest stages of the design space exploration studies.   

3.4.2 Tracking Design Changes 

During early design space exploration, the ability of a simulation technique, e.g., 

statistical simulation, to accurately predict a performance trend, is a very important 

feature.  Or, in other words, the relative accuracy of statistical simulation is more 

important than its absolute accuracy.  If a simulation technique exhibits good relative 

accuracy, it means that the technique will accurately track performance changes, and 

therefore can help to identify the interesting design points that need to be further analyzed 

using detailed simulation.   

    

 



 33 

                 
175.vpr-Place

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)
175.vpr-Route

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nf igurat io n 

Actual CFG(K=1)

176.gcc

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1) 179.art

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)

181.mcf

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1) 183.equake

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)

 

253.perlbmk

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)

  

255.vortex

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9
9.5
10

10.5
11

11.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)

     



 34 

                                        

256.bzip2

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

C o nfigurat io n 

Actual CFG(K=1)

 

Figure 3.3:   Actual and estimated speedup across 43 configurations for 9 SPEC 
CPU2000 benchmarks.  

To evaluate the relative accuracy, we used the 44 P&B configurations that 

represent a wide range of processor configurations.  It is important to note that while 

these processor configurations are not realistic, they enable us to evaluate whether 

statistical simulation is accurate enough to track the processor’s performance across a 

wide range of configurations.  The approach that we used to characterize the relative 

accuracy of statistical simulation was to examine the correlation between the estimated 

and actual ranking of the configurations.  In particular, we measured the speedup in CPI 

obtained from statistical simulation and cycle-accurate simulation for 43 configurations 

relative to the 44th configuration, and ranked the 43 processor configurations in 

descending order of their speedups.  Figure 3.3 shows the individual speedups for each 

configuration for all benchmark programs.  We observe that in general, across all 

programs, statistical simulation tracks both local and global speedup minima/maxima 

extremely well.  

We now use Spearman’s rank correlation coefficient to measure the relation 

between the ranks estimated by cycle-accurate and statistical simulation.  The 

Spearman’s rank correlation coefficient is calculated as: 



 35 

RS = 1 – 6 ∑ di
2/ (n3-n)………………………………………………………...(3.1) 

where di is the difference between ranks estimated for ith configuration and n is 

the total number of configurations.  The value of RS ranges from -1 to 1.  A value of 1 for 

RS indicates that statistical simulation correctly estimated the ranks for all configurations 

(highest relative accuracy), and a value of -1 means that the ranks estimated by statistical 

simulation are perfectly opposite to the ones estimated from cycle-accurate simulation 

(lowest relative accuracy).  

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
eS

p
e

a
rm

a
n

's
 R

a
n

k
 C

o
rr

e
la

ti
o

n
 (

0
-1

)

 

Figure 3.4:    Relative Accuracy in terms of Spearman’s correlation coefficient between 
actual and estimated speedups across 43 processor configurations 

Figure 3.4 shows that the relative accuracy is very good for all programs (> 0.95).  

This suggests that for all programs, the ranks for the 43 configurations estimated by 

statistical simulation are very similar to the ranks estimated from cycle-accurate 

simulation.   

From these results, we conclude that statistical simulation can be effectively used 

to narrow down a large design space to a few feasible design points.  Subsequently, the 



 36 

architect can use a more accurate simulation technique to further study these feasible 

design points. 

3.4.3 Comparing the Accuracy of Statistical Simulation Models 

Researchers have proposed a number of different statistical simulation models 

that mainly differ in the complexity of the model used to generate the synthetic trace.   

Fundamentally, each model uses the same general framework described in Figure 3.1 and 

is a refinement of the basic approach to statistical simulation.     

Intuitively, increasing the degree-of-detail in the model should improve the 

representativeness of the synthetic trace and thus its absolute accuracy.  However, what is 

not clear is how the additional modeling affects the relative accuracy, and whether there 

is a good trade-off between the model’s complexity and its associated absolute and 

relative accuracy.  In this section, we compare the following 4 modeling approaches, 

described in Section 3.2, namely: HLS, HLS+BBSize, Zeroth Order Control Flow Graph 

(CFG, k=0), and First Order Control Flow Graph (CFG, k=1). 

We use the 44 P&B configurations to evaluate and compare the absolute error, 

relative accuracy, and the ability to identify important processor bottlenecks of the four 

models.  The absolute error (AE) is computed as the percentage error in CPI between 

cycle-accurate simulation (CS) and statistical simulation (SS), which is: 

AE = (| CPICS – CPISS|) * 100 / CPICS ………………………………………...(3.2) 

To calculate the relative accuracy, we use the RS measure of relative accuracy as 

described in equation (3.1).  To measure the fidelity of the processor bottlenecks, we 

compute the Normalized Euclidean. Distance between the ranks of the bottlenecks from 

cycle-accurate simulation and statistical simulation for the most significant 5, 20, and all 

43 bottlenecks.  



 37 

Figure 3.5 shows that increasing the level-of-detail in the statistical simulation 

model improves the absolute accuracy for all benchmarks.  For the simplest model, HLS, 

the AE is 36.8%; for the First Order Control Flow Graph (CFG, k=1), the most 

sophisticated model, the AE is 16.7%.  Therefore, if the primary goal is high absolute 

accuracy, a computer architect should use as detailed a statistical simulation model as 

possible to generate the synthetic traces.  It is very important to note that the average 

error of 16.7% for the state-of-the-art statistical simulation model is for the 44 aggressive, 

unrealistic configurations. (Note that from our experiments with using balanced (realistic) 

configurations, the average absolute error is 11% for the First Order Control Flow Graph 

(CFG, k=1) statistical simulation model, which is very similar to the level of accuracy in 

previously published work [Eeckhout et al., 2004]).   

 

88.6%

0

5

10

15

20

25

30

35

40

45

50

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

%
 E

rr
o

r 
in

 C
P

I

HLS HLS+BBSize CFG(k=0) CFG(k=1)

 

Figure 3.5:  Comparison between absolute accuracy of 4 statistical simulation models on 
the 44 extreme processor configurations 

 



 38 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

S
p

e
a

rm
a

n
's

 R
a

n
k

 C
o

rr
e

la
ti

o
n

HLS HLS+BBSize CFG (k=0) CFG(k=1)

 

Figure 3.6:    Relative accuracy based on the ability to rank 43 configurations in order of 
their speedup 

Figure 3.6 shows the relative accuracy of the 4 simulation models based on the 

ability of statistical simulation to rank 43 diverse processor configurations in order of 

their speedups (RS). The figure shows that although there is a large improvement in 

relative accuracy between the HLS and HLS+BBSize, additional modeling yields only 

slight improvements in the relative accuracy.  

Figure 3.7 shows the results of processor bottleneck characterization for the four 

statistical simulation models.  The accuracy of the HLS model is good enough to identify 

only top 3 performance bottlenecks for all programs except 181.art and 256.bzip2.  

By increasing the complexity of the HLS+BBSize model allows statistical simulation to 

correctly identify the order of the Top 3, 10, 20, and all 43 bottlenecks.  The two 

statistical simulation models, Zeroth Order Control Flow Graph (CFG, k=0) and First 



 39 

Order Control Flow Graph (CFG, k=1), only marginally improves the accuracy to of 

statistical simulation to identify the performance bottlenecks. 

0

10

20

30

40

50

60

70

80

90

100

1
7
5

.v
p

r.
P

la
c
e

1
7
5

.v
p

r.
R

o
u

te

1
7

6
.g

c
c

1
7
9

.a
rt

1
8
1

.m
c
f

1
8
3
.e

q
u

a
k
e

2
5

3
.p

e
rl

b
m

k

2
5
5

.v
o

rt
e
x

2
5
6

.b
z
ip

2

A
v

e
ra

g
e

N
o

rm
. 
E

u
c
li

d
e
a
n

 D
is

ta
n

c
e
 (

0
-1

0
0
)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

 

    (a) Top 5 bottlenecks 

     

0

10

20

30

40

50

60

70

80

90

100

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

N
o

rm
. 

E
u

c
li

d
e

a
n

 D
is

ta
n

c
e

 (
0

-1
0

0
)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

 

(b) Top 20 bottlenecks 



 40 

0

10

20

30

40

50

60

70

80

90

100

1
7

5
.v

p
r.

P
la

c
e

1
7

5
.v

p
r.

R
o

u
te

1
7

6
.g

c
c

1
7

9
.a

rt

1
8

1
.m

c
f

1
8

3
.e

q
u

a
k

e

2
5

3
.p

e
rl

b
m

k

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

A
v

e
ra

g
e

N
o

rm
. 

E
u

c
li

d
e

a
n

 D
is

ta
n

c
e

 (
0

-1
0

0
)

HLS HLS+BBSize CFG(k=0) CFG(k=1)

 

(c) Top 43 bottlenecks 

Figure 3.7: Bottleneck characterization for 4 statistical simulation models.  

In summary, from these results, we conclude that if absolute accuracy is the 

primary goal, then the computer architect should use the most detailed state-of-the art 

statistical simulation model, Control Flow Graph (k=1).  However, we observe that an 

increase in the absolute accuracy of statistical simulation does not result in a 

commensurate increase in its relative accuracy.  Interestingly, a simple statistical model 

such as HLS+BBSize has the ability to yield very good relative accuracy, although the 

absolute accuracy is lower.  Therefore, one key result from this chapter is that simple 

statistical simulations models have a good relative accuracy, which makes them an 

effective tool to make design decisions early in the design cycle when the time and 

resources for simulator development are very limited. 

 



 41 

3.5 SUMMARY 

Since detailed cycle-accurate simulation models require long simulation times, 

computer architects have proposed statistical simulation as a time-efficient alternative for 

performing early design space exploration studies.  But the concern for many architects is 

that statistical simulation may not perform well for processor configurations that are 

drastically different than the ones that have been used in previous evaluations, i.e., it is 

suited only for evaluating incremental changes in processor architectures.  The objective 

of this chapter was to evaluate the efficacy of statistical simulation as a design space 

exploration tool, in wake of these issues and concerns to using statistical simulation.   

In this chapter, we use the Plackett & Burman (P&B) design to measure the 

representativeness of the synthetic trace.  The configurations used in P&B design provide 

a systematic way to evaluate the accuracy of statistical simulation by exposing various 

performance bottlenecks.  

The key conclusions from this chapter are: 

1) At the very least, synthetic traces stress the same 10 most significant processor 

performance bottlenecks as the original workload.  Since the primary goal of early 

design space studies is to identify the most significant performance bottlenecks, we 

conclude that statistical simulation is indeed a very useful tool.  

2) Statistical simulation has good relative accuracy and can effectively track design 

changes to identify feasible design points in a large design space of aggressive 

microarchitectures. 

3) Our evaluation of four statistical simulation models shows that although a very 

detailed model is needed to achieve a good absolute accuracy in performance 

estimation, a simple model is sufficient to achieve good relative accuracy.  This is 



 42 

very attractive early in the design cycle when time and resources for developing the 

simulation infrastructure are limited.  

From these results, we conclude that statistical simulation, with its ability to 

identify key performance bottlenecks and accurately track performance trends using a 

simple statistical workload model, is a valuable tool for making early microprocessor 

design decisions.   

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 43 

 Chapter 4:  Microarchitecture-Independent Workload Modeling  

4.1 WORKLOAD CHARACTERIZATION 

The metrics that are typically used to characterize an application can be broadly 

classified as microarchitecture-dependent and microarchitecture-independent. Programs 

can be characterized using microarchitecture-dependent characteristics such as cycles per 

instruction (CPI), cache miss-rate, and branch prediction accuracy, or microarchitecture-

independent characteristics such as temporal or spatial data locality and instruction level 

parallelism.  Microarchitecture-Independent characteristics are abstract metrics that 

measure program characteristics independent of the underlying hardware i.e. they only 

depend on the compiler and instruction-set-architecture (ISA).  

Prior work in statistical simulation and workload synthesis has used a 

combination of microarchitecture-independent and microarchitecture-dependent 

characteristics.  Typically, these techniques model synthetic memory access patterns and 

control-flow behavior to match a target metric e.g. cache miss-rate, branch prediction rate 

etc., and hence they also reflect machine properties rather than pure program 

characteristics.  A major pitfall with using microarchitecture-dependent metrics to 

characterize an application is that it may hide the underlying program behavior i.e. 

although a microarchitecture-dependent characteristic may be the same for two programs 

the inherent behavior of the programs may be very different.   

Consequently, the synthetic workloads generated from these models may yield 

large errors when cache and branch microarchitecture configurations are changed from 

the targeted configuration [Bell and John, 2005-1] [Bell and John, 2005-2].  Therefore, in 

order to enable the portability of the generated synthetic workload across a wide range of 



 44 

microarchitectures, it is important to capture inherent program characteristics into the 

synthetic workload rather than generate a synthetic workload to match a target metric. 

The importance of purely using microarchitecture-independent workload metrics 

to characterize a workload has also been emphasized by recent research whose objective 

was to measure similarity between programs [Joshi et al., 2006-3] [Hoste and Eeckhout, 

2006-2].  They show that conclusions based on performance characteristics such as 

execution time and cache miss-rate could categorize a program with unique 

characteristics as insignificant, only because it shows similar trends on the 

microarchitecture configurations used in the study.  This indicates that an analysis based 

on microarchitecture-dependent characteristics could undermine the importance of a 

program that is really unique. 

An objective of this dissertation is to develop a workload synthesis framework 

that can automatically construct synthetic workloads that are representative across a wide 

range of microarchitectures and platforms.  In this chapter we characterize a set of 

embedded, general-purpose, and scientific programs and propose a set of 

microarchitecture-independent workload characteristics. We propose modeling 

approaches for incorporating synthetic instruction locality, data locality, and control flow 

predictability into synthetic workloads.  The approach used in these models is to use an 

attribute to quantify and abstract code properties related to spatial locality, temporal 

locality, and branch predictability.  These attributes are then used to generate a trace or a 

benchmark with similar properties.  If the feature captured the program property very 

well the resulting performance metrics e.g. cache miss-rate and branch prediction rate 

will be similar to that of the original application program.   We show in our evaluation, in 

Chapter 5, that modeling the microarchitecture-independent workload characteristics in a 

synthetic benchmark improves its representativeness across a wide range of cache, branch 



 45 

predictor, and other microarchitecture configurations.  This increases the usefulness of 

the synthetic benchmark during computer architecture research and development as it 

serves as a useful indicator of performance even when the underlying microarchitecture is 

altered. 

4.2 BENCHMARKS 

We characterize a set of embedded, general-purpose, and scientific benchmarks.  

We use the SPEC CPU 2000 Integer benchmarks as representative of general-purpose 

programs and SPEC CPU 2000 Floating-Point benchmarks as a representative of 

scientific applications.  As a representative of the embedded application domain we use 

benchmarks from the MiBench and MediaBench suite.  All benchmark programs were 

compiled on an Alpha machine using the native Compaq cc v6.3-025 compiler 

with the –O3 optimization setting and were run to completion.  

4.3 APPLICATION BEHAVIOR SIGNATURE 

The abstract microarchitecture-independent workload modeling approach is based 

on the premise that the behavior of programs can be characterized using a set of inherent 

workload characteristics.  This requires that we develop a characterization of the behavior 

of programs to understand the set of inherent characteristics that correlate well with the 

performance exhibited by the program.  The set of workload characteristics can be 

thought of as a signature that uniquely describes the workload’s inherent behavior, 

independent of the microarchitecture.  

We characterize the proprietary application by measuring its inherent, or 

microarchitecture-independent, workload characteristics that together can be considered 

as the application’s behavior signature.  The characteristics that we model in this study 

are a subset of all the microarchitecture-independent characteristics that can be 



 46 

potentially modeled, but we believe that we model (most of) the important program 

characteristics that impact a program’s performance; the evaluation in Chapter 5 in fact 

shows that this is the case for the general-purpose, scientific, and embedded applications 

that we target.  The microarchitecture-independent characteristics that we measure cover 

a wide range of program characteristics, namely:  

� Instruction Mix  

� Control Flow Behavior  

� Instruction Stream Locality 

� Data Stream Locality 

� Instruction-Level-Parallelism  

� Control Flow Predictability 

We discuss these characteristics in detail now.   

4.3.1 Control Flow Behavior and Instruction Stream Locality 

It has been well observed that the instructions in a program exhibit the locality of 

reference property.  The locality of reference is often stated in the rule of thumb called 

the 90/10 rule, which states that a program typically spends 90% of its execution time in 

only 10% of its static code.  In order to model this program property in a synthetic 

benchmark clone, it is essential to capture the control flow structure of the program, i.e., 

we need to model how basic blocks are traversed in the program and how branch 

instructions alter the direction of control flow in the instruction stream.  During the 

application profiling phase we capture the control flow information using the statistical 

flow graph (SFG) described in [Eeckhout et al., 2004-2].  Each node in the SFG 

represents a unique basic block and the edges represent the transition probabilities 

between basic blocks.  Figure 4.1 shows an example SFG that is generated by profiling 

the execution of a program.  The probabilities marked on the edges of each basic block 



 47 

indicate the transition probabilities, e.g., if Basic Block 1 was executed, the probability 

that Basic Block 2 will be executed next is 70%.  Thus, the SFG is a representation of the 

control flow graph of the program with the edges annotated with dynamic transition 

probabilities.  

  

                             

Figure 4.1: An example SFG used to capture the control flow behavior and instruction 
stream locality of a program. 

We measure the workload characteristics described below per unique pair of 

predecessor and successor basic blocks in the control flow graph.  For example, instead 

of measuring a single workload profile for Basic Block 4, we maintain separate workload 

characteristics profiles for Basic Block 4 dependent on its predecessor, Basic Block 2 or 

Basic Block 3. Gathering the workload characteristics at this granularity improves the 

modeling accuracy because the performance of a basic block is determined by the context 

in which it is executed [Eeckhout et al., 2004].   



 48 

Table 4.1 provides a summary of the information that can be gleaned from the 

SFGs for the complete executions of the SPEC CPU2000 integer, and floating-point 

programs, as well as a set of MiBench and MediaBench embedded programs. The table 

shows the number of unique basic blocks in each program, the number of basic blocks 

that account for 90% of the dynamic program execution, the average basic block size, and 

the number of successor basic blocks.  Among all the SPEC CPU2000 programs, gcc has 

the largest footprint but still exhibits a very high instruction locality (only 9% of the basic 

blocks are required to account for 90% of the program execution).  All the other 

benchmark programs have fairly small footprints, suggesting that they do not stress the 

instruction cache. The embedded benchmarks also have very modest footprints, with 

ghostscript having the largest footprint.  Compared to the SPEC CPU benchmarks, the 

embedded benchmarks exhibit higher instruction locality; on average 90% of the time is 

spent in 13% of the basic blocks, compared to SPEC CPU benchmarks where 90% of the 

time is spent in 27% of the basic blocks.  The average basic block size for the floating-

point programs is 58.2, with applu (111.7), and mgrid (109.2) having very large basic 

blocks.  On the other hand, the average basic block size for the integer programs is 7.9.  

The average basic block size for the embedded benchmarks, 10 instructions, is slightly 

larger than for the SPEC CPU integer programs – with djpeg (23.5) having a fairly 

large average basic block size. 

The average number of successors for each basic block is a measure for the 

control flow complexity in the program – the higher the number of successor basic 

blocks, the more complex the control flow behavior.  crafty and gcc are the two 

benchmarks in which basic blocks have a large number of successors, 7.4 and 10.5 basic 

blocks, respectively.  This high number of basic blocks is due to returns from functions 

that are called from multiple locations in the code and multimodal switch statements.  At 



 49 

the other end of the spectrum, basic blocks in programs such as applu, equake, 

gzip, mgrid, swim, perlbmk, and vpr only have one or two successor basic 

blocks, suggesting that they execute in tight loops most of the time.  Interestingly, some 

of the embedded benchmarks, crc32, gsm, patricia, qsort, and rasta have 

a large number of successor basic blocks, suggesting complex control flow. For the other 

embedded benchmarks the average number of successor basic blocks is 4, which is 

approximately the same as for the SPEC CPU benchmark programs.  

The SFG thus captures a picture of the program structure and its control flow 

behavior.  We will use the SFG to recreate this control flow structure of an application in 

its synthetic benchmark clone.  

Table 4.1: Summary of information captured by the SFG. 

                        (a) SPEC CPU2000 Integer and Floating Point Benchmarks. 

 
Benchmark Number of 

Basic 
Blocks 

Number of Basic 
Blocks that Account 
for 90% of Program 
Execution 

Average 
Basic Block 
Size 

Average 
Number 
of  
Successor 
Basic 
Blocks 

applu 348 104 112.3 1.8 

apsi 262 127 28.6 3.3 

art 69 6 7.7 2.7 

bzip2 139 40 7.1 3.2 

crafty 514 151 10.5 7.4 

eon 303 119 9.3 4.7 

equake 47 10 39.6 1.6 

gcc 1088 98 6.9 10.5 

gzip 163 30 8.7 2.3 

mcf 178 23 4.2 4.4 



 50 

mesa 211 74 16.4 3.2 

mgrid 210 11 109.2 1.9 

perlbmk 54 34 5.2 2.0 

swim 63 17 41.5 1.1 

twolf 155 55 8.2 5.1 

vortex 626 44 4.9 6.6 

vpr 84 21 7.2 2.2 

wupwise 130 47 10.3 4.3 

  

(b) Embedded benchmarks from MiBench and MediaBench benchmark suites. 

 
Benchmark Number 

of Basic 
Blocks 

Number of Basic 
Blocks that 
Account for 90% 
of Program 
Execution 

Average 
Basic 
Block Size 

Average 
Number of 
Successors 

basicmath 371 98 6.8 7.6 

bitcount 240 8 8.3 3.0 

crc32 311 146 6.2 11.2 

dijkstra 366 15 6.9 2.3 

fft 366 101 8.9 6.8 

ghostscript  2549 62 6.7 4.9 

gsm 312 142 6.2 10.3 

jpeg 695 30 11.3 4.5 

patricia 419 136 6.0 11.6 

qsort 319 58 5.2 8 

rsynth 536 22 10.2 2.9 

stringsearch 160 46 6.7 5.1 

susan 364 6 16.5 2.4 

typeset 875 86 7.6 6.7 

cjpeg 711 31 10.1 5.0 

djpeg 702 45 23.5 5.1 



 51 

epic 650 21 6.0 3.8 

g721-decode 299 40 8.1 5.3 

mpeg-decode 514 27 16.9 3.2 

rasta 1089 215 10.6 9.7 

rawaudio 119 3 19.1 2.2 

texgen 886 71 10.7 3.9 

4.3.2 Instruction Mix 

The instruction mix of a program measures the relative frequency of operation 

types appearing in the dynamic instruction stream. We measure the percentage integer 

arithmetic, integer multiply, integer division, floating-point arithmetic, floating-point 

multiply, floating-point division operations, load, store, and branch instructions.  The 

instruction mix is measured separately for every basic block.  

4.3.4 Instruction-Level Parallelism 

The dependency distance is defined as the number of instructions in the dynamic 

instruction stream between the production (write) and consumption (read) of a register 

and/or memory location.  The goal of characterizing data dependency distances is to 

capture a program’s inherent ILP.  Figure 4.2 shows an illustration of how the 

dependency distance is measured. In Figure 4.2, there is a Read-After-Write (RAW) 

dependence on register R1 and the distance is equal to 4.  While techniques such as value 

prediction reduce the impact of these dependencies on ILP, information on the 

dependency distance is very useful in understanding ILP inherent to a program.  For 

every instruction, we measure the data dependency distance information on a per-operand 

basis as a distribution organized in eight buckets: percentage of dependencies that have a 

dependency distance of 1 instruction, and the percentage of dependencies that have a 

distance of up to 2, 4, 6, 8, 16, 32, and greater than 32 instructions.  This dependency 



 52 

distance distribution is maintained separately for each unique pair of predecessor and 

successor basic blocks in the program.  

 

                                    

Figure 4.2: Illustration of measuring RAW dependency distance. 

4.3.5 Data Stream Locality 

The principle of data reference locality is well known and recognized for its 

importance in affecting an application’s performance.  Traditionally, data locality is 

considered to have two important components, temporal locality and spatial locality.  

Temporal locality refers to locality in time and is due to the fact that data items that are 

referenced now will tend to be referenced soon in the near future.  Spatial locality refers 

to locality in space and is due to the program property that when a data item is 

referenced, nearby items will tend to be referenced soon.  Previous work [Sorenson and 

Flanagan, 2002] shows that these abstractions of data locality and their measures are 

insufficient to replicate the memory access pattern of a program. Therefore, instead of 

quantifying temporal and spatial locality by a single number or a simple distribution, our 

approach for mimicking the temporal and spatial data locality of a program is to 

characterize the memory accesses of a program to identify the patterns with which a 



 53 

program accesses memory on a per-instruction basis and then replicate that in the 

synthetic benchmark.  

The order in which a program accesses memory locations is a function of its 

dynamic traversal of the control flow graph and the memory access patterns of its 

individual load and store instructions.  One may not be able to easily identify patterns or 

sequences when observing the global data access stream of the program though.  This is 

because several memory access patterns co-exist in the program and are generally 

interleaved with each other.  So, the problem that we are trying to address is how to 

efficiently extract patterns from the global sequence of memory addresses issued by the 

program.  When a compiler generates a memory access instruction, load or store, it has a 

particular functionality – it accesses a global variable, stack, array, or a data structure.  

This functionality of the memory access instruction is consistent and stable, and 

determines how the instruction generates effective addresses. This suggests that rather 

than studying the global memory access stream of a program, it may be better to view the 

data access patterns at a finer granularity of individual memory access instructions. 

We profile general-purpose, scientific, and embedded benchmark programs 

(described later), and measure the stride values (differences between two consecutive 

effective addresses) per static load and store instruction in the program. We use this 

information to calculate the most frequently used stride value for each static load and 

store instruction, and the percentage of the memory references for which it was used.  If a 

static memory access instruction uses the same stride more than 80% of the time, we 

classify the instruction as a strongly strided instruction.  Then, we plot a cumulative 

distribution of the stride patterns for the most frequently used stride values for all of the 

strongly strided memory access instructions and the percentage of the dynamic memory 

access instructions that they represent.   



 54 

0

10

20

30

40

50

60

70

80

90

100

a
p

p
lu

a
p

s
i

a
rt

e
q

u
a

k
e

m
e

s
a

m
g

ri
d

s
w

im

w
u

p
w

is
e

P
e

rc
e

n
ta

g
e

 o
f 

T
o

ta
l 

M
e

m
o

ry
 R

e
fe

re
n

c
e

s

0 1 2 3 4 5 6 7 8 9 10 11 16 17 20 30 >32

 

                                    (a) SPEC CPU 2000 Floating-Point Programs. 

 

    

0

10

20

30

40

50

60

70

80

90

100

b
z

ip
2

c
ra

ft
y

e
o

n

g
c

c

g
z

ip

m
c

f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

P
e

rc
e

n
ta

g
e

 o
f 

T
o

ta
l 

M
e

m
o

ry
 R

e
fe

re
n

c
e

s

0 1 2 3 4 5 6 7 8 9 10 11 16 17 20 30 >32

 

                                   (b) SPEC CPU 2000 Integer Programs. 



 55 

0

10

20

30

40

50

60

70

80

90

100

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff

t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

e
p

ic

g
7

2
1

-d
e

c
o

d
e

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

P
e

rc
e

n
ta

g
e

 o
f 

T
o

ta
l 

M
e

m
o

ry
 R

e
fe

re
n

c
e

s

0 1 2 3 4 5 6

 

             (c) Embedded Programs from MediaBench & MiBench Suites 

Figure 4.3:  Percentage breakdown of stride values per static memory access. 

Figures 4.3 (a), (b), and (c) show this cumulative distribution for the SPEC 

CPU2000 floating-point, integer, and embedded benchmarks, respectively.  The stride 

values are shown at the granularity of a 64 byte block (analogous to a cache line), i.e., if 

the most frequently used stride value for an instruction is between 0 and 63 bytes, it is 

classified as a zero stride(consecutive addresses are within a single cache line distance), 

between 64 and 127 bytes as stride 1, etc. 

The results from Figure 4.3 (a) show that for floating-point benchmarks almost all 

the references issued by a static load or store instruction can be classified as strides.  This 



 56 

observation is consistent with the common understanding of floating-point program 

behavior – the data structures in these programs are primarily arrays and hence the 

memory instructions are expected to generate very regular access patterns.  The access 

patterns of swim and mesa are very unique – all the static memory access instructions 

in swim walk through memory with a stride of one cache line size, and those in mesa 

with a zero stride.  Also, wupwise has the same cache line access as its dominant stride. 

The number of prominent unique stride values in other floating-point program varies 

between 5 (mgrid) and 8 (applu).  Benchmark art, a program that is known to put a 

lot of pressure on the data cache, also has a very regular access pattern with almost all the 

load and store instructions accessing memory with stride values of 0, 1, 10, or 30.  

The static load and store memory access characterization behavior of the SPEC 

CPU2000 integer benchmarks, shown in Figure 4.3 (b), appear to be rather surprising at 

first sight.  The results show that a large number of programs have just one single 

dominant access stride pattern – more than 80% of the accesses from static loads and 

stores for bzip2, crafty, eon, gzip and perlbmk have the same cache line 

access as their dominant stride.  Also, a large percentage (more than 90%) of all memory 

references in programs such as mcf, twolf, vpr and vortex appear to exhibit 

regular stride behavior.  These programs are known to have a lot of pointer-chasing code 

and it is expected that this results in irregular data access patterns.  The observation made 

from Figure 3(b) suggests that in these pointer-intensive programs, linked list and tree 

structure elements are frequently allocated at a constant distance from each other in the 

heap.  As a result, when linked lists are traversed, a regular pattern of memory accesses 

with constant stride emerges, and they manifest as stride patterns.  Recent studies aimed 

at developing prefetching schemes have made similar observations, see for example 

[Collins et al., 2001] [Stoutchinin et al., 2001] [Wu et al., 2002]; they developed stride-



 57 

based prefetching schemes that improve the performance of pointer-intensive programs 

such as mcf by as much as 60%.  

 We observe in Figure 4.3(c) that for embedded benchmarks too more than 

90% of the dynamic memory accesses originate from strongly strided static memory 

access instructions.  Most of the embedded benchmarks have the same cache line access 

as their dominant stride.  The exceptions are crc32, dijkstra, rsynth and 

typeset for which there are 4 to 5 different unique stride values. 

From this characterization study of the memory access patterns we can infer that 

the memory access patterns of programs (both general-purpose integer, embedded and 

floating-point programs) are amenable to be modeled using a stride-based model on a 

per-instruction basis.  We record the most frequently used stride value for every static 

memory access instruction in every node in the statistical flow graph.  Also, during the 

profiling phase, the average length of the stride stream with which each static load or 

store instruction accesses data is recorded – this is measured by calculating the number of 

consecutive positive stride references issued by a static memory instruction before seeing 

a negative stride, or if there is a break in the stride pattern.  Note, that the dominant stride 

value and the average stream length can be different for different static memory access 

instructions. 



 58 

0

1

2

3

4

5

6

7

8

9

10

a
p

p
lu

a
p

s
i

a
rt

e
q

u
a

k
e

m
e

s
a

m
g

ri
d

s
w

im

w
u

p
w

is
e

b
zi

p
2

c
ra

ft
y

e
o

n

g
c

c

g
zi

p

m
c

f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

N
u

m
b

e
r 

o
f 

U
n

iq
u

e
 S

tr
id

e
 V

a
lu

e
s

 

                            (a) SPEC CPU Floating-Point and Integer Benchmarks. 

0

1

2

3

4

5

6

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

e
p

ic

g
7

2
1

-d
e

c
o

d
e

m
p

e
g

-

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

N
u

m
b

e
r 

o
f 

U
n

iq
u

e
 S

tr
id

e
 V

a
lu

e
s

 

                 (b) Embedded benchmarks from MiBench & MediaBench suites. 

Figure 4.4:  Number of different dominant memory access stride values per program. 



 59 

Figure 4.4 summarizes the number of different dominant strides with which static 

load and store instructions in integer, floating-point, and embedded programs access data.  

The vertical axis shows the number of different strongly strided values with which 

memory access instructions access data.  We observe that a maximum of 9 stride values 

(twolf) are seen across the strongly strided memory access instructions.  When 

constructing a synthetic benchmark clone, we model each static load/store instruction as 

accessing a bounded memory with its most frequent stride value and its average stream 

length obtained from this workload characterization.  It will be clear when we describe 

the synthesis algorithm to incorporate these characteristics into synthetic benchmarks 

(Chapter 5) that having a small number of dominant stride values makes it feasible to 

incorporate the memory access model in the synthetic benchmark clone – only 9 registers 

are required to store the stride values.  

4.3.6 Control Flow Predictability 

In order to incorporate inherent branch predictability in the synthetic benchmark 

clone it is essential to understand the property of branches that makes them predictable.  

The predictability of branches stems from two sources: (i) most branches are highly 

biased towards one direction, i.e., the branch is taken or not-taken for 80-90% of the time, 

and (ii) the outcome of branches may be correlated.   

In order to capture the inherent branch behavior in a program, the most popular 

microarchitecture-independent metric is to measure the taken rate per static branch, i.e., 

fraction of the times that a static branch was taken during the complete run of the 

program.  Branches that have a very high or very low taken rate are biased towards one 

direction and are considered as highly predictable.  However, merely using the taken rate 

of branches is insufficient to actually capture the inherent branch behavior.  Consider two 

sequences of branches, one has a large number of taken branches followed by an equally 



 60 

long number of not-taken branches, whereas the other sequence does not have such a 

regular pattern and switches randomly between taken and not-taken directions. Both 

sequences have the same taken rate (50%) but still have different branch misprediction 

rates.  It is clear that the former sequence is better predictable than the latter.  This 

suggests that branch predictability depends more on the sequence of taken and not-taken 

directions, and not just on the taken rate. 

Therefore, in our control flow predictability model we also measure an attribute 

called transition rate [Haungs et al., 2000] for capturing the branch behavior in 

programs.  Transition rate of a static branch is defined as the number of times it switches 

between taken and not-taken directions as it is executed, divided by the total number of 

times that it is executed.  By definition, branches with low transition rates are always 

biased towards either taken or not-taken.  It has been well observed that such branches 

are easy to predict.  Also, the branches with a very high transition rate always toggle 

between taken and not-taken directions and are also highly predictable.  However, 

branches that transition between taken and not-taken sequences at a moderate rate are 

relatively more difficult to predict.   

In order to incorporate synthetic branch predictability we annotate every node in 

the statistical flow graph with its transition rate.  When generating the synthetic 

benchmark clone we ensure that the distribution of the transition rates for static branches 

in the synthetic clone is similar to that of the original program.  We achieve this by 

configuring each basic block in the synthetic stream of instructions to alternate between 

taken and not-taken directions, such that the branch exhibits the desired transition rate.  

The algorithm for generating the synthetic benchmark program in the next section 

describes the details of this mechanism. 

 



 61 

4.4 MODELING MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS INTO   

SYNTHETIC WORKLOADS   

In this section we propose basic algorithms for modeling the microarchitecture-

independent characteristics, described in section 4.3, into synthetic workloads.  In the 

next chapter we describe how these algorithms can be used to model characteristics into 

synthetic benchmark clones.   

4.4.1 Data Locality 

Based on the results of these characterization experiments we propose a first-

order model to generate a synthetic trace of data address references in the program.  In 

order to correctly model the locality of the data address stream it is important to ensure 

that the reference streams are correctly interleaved with each other. In order to capture 

this behavior we build a statistical flow graph of the program as described in section 4.3.1 

and, for each static memory access instruction in every node record the following 

information during the statistical profiling phase: <Access type (load/store), 

Most frequently used stride value, Stride length, Seed address 

(first data address issued by load/store instruction>. The 

algorithm used to generate a stream of synthetic data address traces is outlined below.   
 

(1) Generate a random number in the interval [0, 1] and use this value to select a node in 
the statistical flow graph based on the cumulative distribution function based on the 
occurrence frequency of each node.    

(2) For each load/store instruction in the basic block represented by the selected node:  

(a) Generate a new reference address (last generated address by this instruction + 
stride) and output a synthetic entry in the form <Load/Store, New Address>.  For 
the first reference, use the seed address as the last address generated for this 
instruction.  

(b) Increment counter for the current stream length.  

(c) Update last generated address counter with the new address.   If the stream length 
has reached the maximum stream length, reset the last generated address counter 
to the seed address.  

(3) The occurrence count of that node is then decremented. 



 62 

(4) Increment count of the total number of data instruction addresses generated.  

(5) A cumulative distribution function based on the probabilities of the outgoing edges of 
the nodes is then used to determine the next node.   If the node does not have any 
outgoing edges, go to step 1.   

(6) If the target number of instructions has not been generated, go to step 2.  If the target 
number of addresses has been generated, the algorithm terminates. 

 
 

The resulting synthetic trace can then be simulated through a trace driven cache 

simulator to obtain the miss-rates.  Also, the generated synthetic instruction address trace 

can be annotated to the synthetic instruction stream [Eeckhout et al., 2000] [Eeckhout et 

al., 2004] [Bell et al., 2004] instead of probabilistically modeling instruction cache 

misses.  In summary, we have essentially created a congruence class for each static load 

or store instruction depending on its most frequently used stride and stride length.  Each 

static load/store instruction will iterate through its congruence class.   

4.4.2 Branch Predictability 

In order to incorporate synthetic branch predictability we characterize the entire 

application and build a statistical flow graph structure of the entire program as described 

in section 4.3.1.  In addition, every node in the statistical flow graph of the program is 

annotated with the following: <taken rate, transition rate, static branch 

address, branch instruction opcode, instruction address of first 

instruction in the basic block>.  Once the statistical profile has been 

generated, the workload generator uses the following algorithm used to generate a trace 

that synthetically models branch behavior: 

 
(1) Generate a random number in the interval [0, 1] and use this value to select a node in the 

statistical flow graph based on the cumulative distribution function of the occurrence 
frequency of each node.   

(2) Use the transition rate of the branch instruction in the basic block represented by the 
node to determine whether the branch should be taken or not-taken.  If the branch is 
determined as taken, the next node to be selected is determined using the cumulative 



 63 

distribution function based on the probabilities of the outgoing edges to the taken target 
nodes.  Otherwise, the not-taken target node is chosen as the next node.  

(3) Using the profile information of the current and next node output a synthetic trace of the 
format: <PC of first instruction in basic block, PC of static branch instruction, Branch 
instruction opcode, Target Address of Branch>  

(4) The occurrence count of that node is then decremented. 

(5) Increment count of the total number of synthetic entries generated.  

(6) If the target number of instructions has not been generated, go to step 2.  If the target 
number of addresses has been generated, the algorithm terminates. 

 

  In order to perform a detailed trace driven cycle-accurate simulation 

instead of just the branch simulations, every branch instruction in synthetic trace 

generated in [Eeckhout et al., 2000] [Eeckhout et al., 2004] [Bell et al., 2004] can be 

annotated with the branch instruction address, branch type, and the branch target address 

instead of using the probability that a branch direction will be correctly predicted.   

4.5 SUMMARY 

In this chapter we motivated the need for developing an abstract 

microarchitecture-independent workload model to characterize an application.  The use 

of microarchitecture-independent characteristics makes it possible to describe the 

inherent behavior of a program, agnostic to the underlying architecture.  We proposed a 

set of microarchitecture-independent workload characteristics and show that they can be 

effectively used to capture the key performance characteristics of general-purpose, 

scientific, and embedded applications.  This chapter then proposes algorithms and 

describes how to model the key microarchitecture-independent characteristics into a 

synthetic workload.  The abstract microarchitecture-independent characteristics and the 

algorithms to model them into a synthetic workload form the basis of generating 

synthetic benchmarks.  In the following chapter we describe how the abstract 

microarchitecture independent model and the proposed algorithm can be used to capture 



 64 

the essence of longer-running and proprietary applications into miniature synthetic 

benchmarks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65 

Chapter 5: Distilling the Essence of Workloads into Miniature Synthetic 
Benchmarks  

In this chapter we propose an approach that automatically distills key inherent 

microarchitecture-independent workload characteristics, proposed in Chapter 4, into a 

miniature synthetic benchmark clone.  The key advantage of the benchmark clone is that 

it hides the functional meaning of the code but exhibits similar performance 

characteristics as the target application.  Moreover, the dynamic instruction count of the 

synthetic benchmark clone is substantially shorter than the proprietary application, 

greatly reducing overall simulation time – for SPEC CPU, the simulation time reduction 

is over five orders of magnitude compared to entire benchmark execution.  By using a set 

of benchmarks representative of general-purpose, scientific, and embedded applications, 

we demonstrate that the power and performance characteristics of the synthetic 

benchmark clone correlate well with those of the original application across a wide range 

of microarchitecture configurations. 

5.1.   DISSEMINATING PROPRIETARY APPLICATIONS AS BENCHMARKS 

 Real-world applications tend to be intellectual property and application 

developers hesitate to share them with third party vendors and researchers.  Moreover, 

enormous time and effort is required for engineering real-world applications into portable 

benchmarks.  This problem is further aggravated by the fact that real-world applications 

are diverse and evolve at a rapid pace making it necessary to upgrade and maintain 

special benchmark versions very frequently.  Another challenge in engineering 

benchmarks from real-world applications is to make them simulation friendly – a very 

large dynamic instruction count results in intractable simulation times even on today’s 

fastest simulators running on today’s fastest machines.  



 66 

 In this chapter we explore an automated synthetic benchmark generation as an 

approach to disseminate real-world applications as miniature benchmarks without 

compromising on the applications’ proprietary nature.  Moreover, automated synthetic 

benchmark generation significantly reduces the effort of developing benchmarks, making 

it possible to upgrade the benchmarks more often.  In order to achieve this we propose a 

technique, called benchmark cloning, which distills key behavioral characteristics of a 

real-world application and models them into a synthetic benchmark. The advantage of the 

synthetic benchmark clone is that it provides code abstraction capability, i.e., it hides the 

functional meaning of the code in the original application but exhibits similar 

performance characteristics as the real application. Source code abstraction prevents 

reverse engineering of proprietary code, which enables software developers to share 

synthetic benchmarks with third parties. Moreover, the dynamic instruction count of the 

synthetic benchmark clone is much smaller than the original application and significantly 

reduces the simulation time.  These two key features of synthetic benchmark clones, 

source code abstraction and a small dynamic instruction count, enable the dissemination 

of a proprietary real-world application as a miniature synthetic benchmark that can be 

used by architects and designers as a proxy for the original application.    

The key novelty in our benchmark cloning approach compared to prior work in 

synthetic benchmark generation is that we use the abstract microarchitecture-independent 

workload model to synthesize a benchmark clone.  Since the design of the synthetic 

benchmark is guided only by the application characteristics and is independent of any 

hardware specific features, the benchmark can be used across a wide range of 

microarchitectures.  We show in our evaluation that the synthetic benchmark clone shows 

good correlation with the original application across a wide range of cache, branch 

predictor, and other microarchitecture configurations.   



 67 

 The remainder of this chapter is organized as follows.  In Section 5.2 we provide 

a high-level overview of the benchmark cloning approach.  Section 5.3 then provides a 

detailed description of the algorithm used to generate the synthetic benchmark clone.  In 

Section 5.4 we describe our simulation environment, machine configuration, and the 

benchmarks that we use to evaluate the efficacy of the synthetic benchmark clone for 

performance and power estimation.  Section 5.5 presents a detailed evaluation of the 

synthetic benchmark cloning technique using various criteria.  In Section 5.6 we provide 

a discussion on the strengths and limitations of the performance cloning technique.  

Finally, in Section 5.7 we summarize the key results from this chapter.  

5.2. BENCHMARK CLONING APPROACH 

 Figure 5.1 illustrates the benchmark cloning approach that we propose in 

for generating synthetic benchmarks that abstract the functional meaning of a real-world 

application while mimicking its behavioral and performance characteristics.  Benchmark 

cloning comprises of two steps: (1) Profiling the real-world proprietary workload to 

measure its inherent behavior characteristics, and (2) Modeling the measured workload 

attributes into a synthetic benchmark program.  

In the first step we profile a set of workload characteristics described in Chapter 

5. These set of workload characteristics can be thought of as a signature that uniquely 

describes the workload’s inherent behavior, independent of the microarchitecture.  This 

increases the usefulness of the synthetic benchmark clone during computer architecture 

research and development as it serves as a useful indicator of performance even when the 

underlying microarchitecture is altered.  We measured these characteristics using a 

functional simulator.  However, an alternative to simulation is to measure these 

characteristics using a binary instrumentation tool such as ATOM [Srivastava and 

Eustace, 1994] or PIN [Luk et al., 2005].  



 68 

 

 

Figure 5.1:  Framework for constructing synthetic benchmark clones from a real-world 
application.  

 The next step in the benchmark cloning technique is to generate a 

synthetic benchmark that embodies the application behavior signature of the proprietary 

workload.  Ideally, if all the key workload attributes of the real application are 

successfully replicated into the performance clone, the synthetic benchmark should 

exhibit similar performance characteristics.  However, the key challenge in developing an 



 69 

algorithm for generating the synthetic benchmark is to ensure that all the characteristics 

from the application signature are retained when the benchmark clone is run on an 

execution-driven performance model or real hardware.  This is achieved by generating 

the benchmark clone as a program in C-code with a sequence of asm calls that reproduce 

the behavior of native instructions.  The use of the volatile construct ensures that the 

instruction sequences and their dependencies are not optimized by the compiler.   

5.3. BENCHMARK CLONE SYNTHESIS 

We now provide details on the algorithm that models these characteristics into a 

synthetic benchmark clone. The second step in our cloning methodology is to generate a 

synthetic benchmark by modeling all the microarchitecture-independent workload 

characteristics from the previous section into a synthetic clone.  The basic structure of the 

algorithm used to generate the synthetic benchmark program is similar to the one 

proposed by [Bell et al., 2005]. However, the memory and branching model is replaced 

with the microarchitecture-independent models described in the previous section.   

The clone generation process comprises of five sub steps – SFG analysis, memory 

accessing pattern modeling, branch predictability modeling, register assignment, and 

code generation.  Figure 5.1 illustrates each of these steps.   

5.3.1 Statistical Flow Graph Analysis 

In this step, the SFG profile obtained from characterizing the application is used 

for generating the basic template for the benchmark.  The SFG is traversed using the 

branching probabilities for each basic block, and a linear chain of basic blocks is 

generated.  This linear chain of basic blocks forms the spine of the synthetic benchmark 

program (refer to step (a) in Figure 5.1).  The spine is the main loop in the synthetic clone 

that is repeatedly iterated during the program executing.  The length of the spine should 



 70 

be long enough to reflect the average basic block size and the representation of the most 

frequently traversed basic blocks in the program.  The average basic block size and the 

number of basic blocks in the program, shown in Table 1, is used as a starting point to 

decide the number of basic blocks in spine for each program.  We then tune the number 

of basic blocks to match the overall instruction mix characteristics by iterating through 

the synthesis a small number of times. The number of iterations over which the main loop 

is executed is set such that performance characteristics of the synthetic clone converge to 

a stable value.  Our experiments, discussed in Section 5.4, show that a total of 

approximately 10 million dynamic instructions are required for convergence of the 

synthetic clone.  This dynamic instruction count is used to determine the number of times 

the main loop of the synthetic clone is executed.  

The algorithm used for instantiating the basic blocks in the synthetic clone is as 

follows: 

 
(1) Generate a random number in the interval [0,1] and use this value to select a 

basic block in the statistical flow graph (SFG) based on the cumulative 
distribution function that is built up using the occurrence frequencies of each 
basic block. 

(2) Output a sequence of instructions per basic block.  Assign instruction types to 
the instructions using the instruction mix distribution for that basic block.  
Depending on the instruction type, assign the number of source operands for 
each instruction. 

(3) For each source operand, assign a dependency distance using the cumulative 
dependency distance distribution.  This step is repeated until a real 
dependency is found that ensures syntactical correctness, i.e., the source 
operand of an instruction cannot be dependent on a store or branch 
instruction.  If this dependency cannot be satisfied after 100 attempts, the 
dependency is simply squashed.  

(4) A cumulative distribution function based on the probabilities of the outgoing 
edges of the nodes in the SFG is then used to determine the next node.  If the 
node does not have any outgoing edges, go to step 1.   



 71 

(5) If the target number of basic blocks (equal to the total number of basic blocks 
in the original program) has not been generated, go to step 2.  If the target 
number of basic blocks has been generated, the algorithm terminates. 

5.3.2 Modeling Memory Access Pattern 

For each memory access instruction in the synthetic clone we assign its most 

frequently used stride along with its stream length.  A load or store instruction is modeled 

as a memory operation that accesses a circular and bounded stream of references, i.e., 

each memory access walks through an entire array using its dominant stride value and 

then restarts from the first element of the array (step (b) in Figure 5.2).  An arithmetic 

instruction in each basic block is assigned to increment the stride value for the memory 

walk.  The stride value itself is stored in a register.  Since the maximum number of stride 

values in the program is 9, we do not need a large number of registers to store the various 

stride values in the synthetic benchmark.  

5.3.4 Modeling Branch Predictability 

For each static branch in the spine of the program we identify branches with very 

high or very low transition rates, and model them as always taken or not-taken (branches 

with transition rate of less than 10% or greater than 90%).  Branches with moderate 

transition rates are configured to match the transition rate of the corresponding static 

branch.  A register variable is assigned for each transition rate category (a maximum of 8 

categories).  For every iteration of the master loop, a modulo operation is used to 

determine whether the static branches belonging to a particular transition rate category 

will be taken or not-taken (step (c) in Figure 5.2).  The static branches in the program use 

these register variables as a condition to determine the branch direction. 



 72 

5.3.5 Register Assignment 

In this step we use the dependency distances that were assigned to each 

instruction to assign registers.  A maximum of 8 registers are needed to control the 

branch transition rate and a maximum of 9 registers are used for controlling the memory 

access patterns. The number of registers that are used to satisfy the dependency distances 

is typically kept to a small value (typically around 10) to prevent the compiler from 

generating stack operations that store and restore the values.   

 

                                                      

(a)  Steps in benchmark clone synthesis 

 
_asm_ _volatile_ ("$LINSTR126: addq $23, 64, $26" : "=r" (vout_26), "=r"   
                              (vout_23): "r" (vout_26), "r" (vout_23)); 
_asm_ _volatile_ ("$LINSTR127: addq %0, 0, %0" : "=r" (vout_12): "r" (vout_12)); 
_asm_ _volatile_ ("$LINSTR128: ldl $27,0(%1)" : "=r" (vout_27), "=r" (vout_12):  
                             "r" (vout_27), "r" (vout_12)); 
_asm_ _volatile_ ("$LINSTR129: addq %0, 0,%0": "=r" (vout_11): "r" (vout_11)); 
_asm_ _volatile_ ("$LINSTR130: addq %0, 4,%0" : "=r" (vout_14) : "r" (vout_14)); 
_asm_ _volatile_ ("$LINSTR131: ldl $25,0(%1)": "=r" (vout_25), "=r" (vout_14): "r"  

Annotated SFG 
 

C 

A 

B 

D 

BR 

BR 

BR 

BR 

0.8 0.2 

1.0 1.0 

0.9 

0.1 

 

 (a) 1 Big Loop with  
 Basic Blocks  

A 

B 

D 

A 

B 

D 

A 

C 

D 

A 

B 

D 

 

(c) Branching Model – 
Based on Transition Rate 

 

(d) Register Assignment & Generate                                
C code with asm & volatile constructs 

Synthetic Clone 
Generation 

 (b) Memory Access Model  
(Strides Traversing Bounded Streams) 



 73 

                             (vout_25), "r" (vout_14)) ; 
_asm_ _volatile_ ("$LINSTR132: addq %0, 0,%0": "=r" (vout_12) : "r" (vout_12)); 
_asm_ _volatile_ ("$LINSTR133: beq $12, $LINSTR149": "=r" (vout_12): "r"  
                              (vout_12)); 

 (b)  Code snippet from one basic block of the synthetic clone 

 Figure 5.2:  Illustration of the Synthetic Benchmark Synthesis Process.  

5.3.5. Code Generation 

During the code generation phase the instructions are emitted out with a header 

and footer.  The header contains initialization code that allocates memory using the 

malloc library call for modeling the memory access patterns and assigns memory stride 

values to variables.  Each instruction is then emitted out with assembly code using asm 

statements embedded in C code.  The instructions are targeted towards a specific ISA, 

Alpha in our case.  However, the code generator can be modified to emit instructions for 

an ISA of interest.  The volatile directive is used to prevent the compiler from reordering 

the sequence of instructions and changing the dependency distances between instructions 

in the program.  

Figure 5.1(b) shows a snippet of code for one basic block from the synthetic clone 

targeted towards Alpha ISA.  Each instruction comprises of an assembler instruction 

template comprising of a label (e.g., $LINSTR126), an instruction type (e.g., addq), the 

input and output registers in assembly language (e.g., $23) or operands corresponding to 

C- expressions (e.g., %0, %1), operand constraint for register type (e.g., ‘r’ for integer 

and ‘f’ for floating-point), and register variables in C-expressions (e.g., vout_22).   Please 

refer [Gcc-Inline, 2007] for details of the syntax assembler format and techniques for 

specifying the operand constraint string.           



 74 

5.4. Experiment Setup  

We use a modified version of the SimpleScalar [Burger et al., 1997] functional 

simulator sim-safe to measure the workload characteristics of the programs.  In order to 

evaluate and compare the performance characteristics of the real benchmark and its 

synthetic clone, we use SimpleScalar’s sim-outorder.  We use Wattch [Brooks et al., 

2000] to measure the power characteristics of the benchmarks, and consider the most 

aggressive clock gating mechanism in which an unused unit consumes 10% of its 

maximum power and a unit that is used only for a fraction n consumes only a fraction n 

of its maximum power.   

In most of our experiments, we use one 100M-instruction simulation point 

selected using SimPoint [Sherwood et al., 2002] for the SPEC CPU2000 benchmarks, see 

Table 5.1; we also consider complete simulation of the benchmarks to assess the 

synthetic benchmark cloning method for longer-running benchmarks.  As a representative 

of the embedded application domain we use benchmarks from the MiBench and 

MediaBench suite, see Table 5.2. The MiBench and MediaBench programs were run to 

completion.  All benchmark programs were compiled on an Alpha machine using the 

native Compaq cc v6.3-025 compiler with the –O3 optimization setting.   

Table 5.1:  SPEC CPU 2000 programs, input sets, and simulation points used in this 
study. 

Program Input Type SimPoint 

applu ref FP 46 
apsi ref FP 3408 
art 110 FP 340 
equake ref FP 812 
mesa ref FP 1135 
mgrid ref FP 3292 
swim ref FP 2079 
wupwise ref FP 3237 
bzip2 graphic INT 553 
crafty ref INT 774 



 75 

eon rushmeier INT 403 
gcc 166.i INT 389 
gzip graphic INT 389 
mcf ref INT 553 
perlbmk perfect-ref INT 5 
twolf ref INT 1066 
vortex lendian1 INT 271 
vpr route INT 476 

 

Table 5.2: MediaBench and MiBench programs and their embedded application domain. 

Program Application Domain 

basicmath, qsort, bitcount, 
susan 

Automotive 

crc32, dijkstra, patricia Networking 

fft, gsm Telecommunication 

ghostscript, rsynth, 
stringsearch 

Office 

jpeg, typeset Consumer 
cjpeg, djpeg, epic, g721-
decode, mpeg, rasta, 
rawaudio, texgen 

Media 

 

In order to evaluate the representativeness of the synthetic clones, we use a 4-way 

issue out-of-order superscalar processor as our baseline configuration, Table 5.3.  

Table 5.3: Baseline processor configuration. 

L1 I-cache & D-cache 16 KB/2-way/32 B 
Fetch, Decode, and Issue Width 4-wide out-of-order 
Branch Predictor Combined (2-level & bimodal), 4KB 
L1 I-cache & D-cache – 
Size/Assoc/Latency  

32 KB / 4-way / 1 cycle 

L2 Unified cache – 
Size/Assoc/Latency 

4MB / 8-way / 10 cycles 

RUU / LSQ size 128 / 64 entries 

Instruction Fetch Queue 32 entries 
Functional Units 2 Integer ALU, 2 Floating Point, 1 FP 

Multiply/Divide, and 1 Integer 



 76 

Multiply/Divide unit 
Memory Bus Width, Access Time 8B, 150 cycles 

5.5. EVALUATION OF SYNTHETIC BENCHMARK CLONE 

We evaluate the accuracy and usefulness of the synthetic benchmark cloning 

approach by applying the technique to generate clones that are representative of general-

purpose, scientific, and embedded domain benchmarks.  In our evaluation we compare 

workload characteristics of the synthetic clone with those of the original program, 

absolute and relative accuracy in estimating performance and power, convergence 

characteristics of the synthetic benchmark clone, and the ability of the synthetic 

benchmark to assess design changes. 

5.5.1   Workload Characteristics 

 In this section we evaluate the proposed memory access and branching 

models proposed in this chapter, by comparing the cache misses-per-instruction and 

branch direction prediction rates of the synthetic clone with those of the original program. 

 Cache behavior 

Figure 5.3 & Figure 5.4 respectively shows the L1 and L2 data cache misses-per-

thousand-instructions for the original benchmark and the synthetic benchmark clone of 

the SPEC CPU programs on the base configuration.  The average absolute difference 

between the L1 misses-per-thousand-instructions between the actual benchmark and the 

synthetic clone is 2 misses-per-thousand-instructions, with mcf having a maximum error 

of 6 misses-per-thousand-instructions. Looking at the L2 cache misses, see Figure 5.4, we 

observe that mcf, equake, swim and applu are the only programs that cause a 

significant number of L2 cache misses – the rest of the programs have a footprint that is 

small enough to fit in the L2 cache.  For the four programs that show a relatively high L2 

miss rate, the average difference between the misses estimated by the synthetic  



 77 

0

20

40

60

80

100

120

140

160

180

a
p

p
lu

a
p

s
i

a
rt

b
zi

p
2

c
ra

ft
y

e
o

n

e
q

u
a
k
e

g
c
c

g
z i

p

m
c
f

m
e
s
a

m
g
ri

d

p
e
rl

b
m

k

s
w

im

tw
o

lf

v
o

rt
e
x

v
p

r

w
u
p

w
is

e

L
1
 D

-c
a
c
h

e
 M

is
s
e
s
-P

e
r-

T
h

o
u

s
a
n

d
-I

n
s
tr

u
c
ti

o
n

s Actual Benchmark Synthetic Clone

 

Figure 5.3:  L1 data cache misses-per-thousand-instructions per benchmark and its 
synthetic clone for the SPEC CPU2000 benchmark programs.  

             

0

5

10

15

20

25

30

35

40

45

a
p

p
lu

a
p

s
i

a
rt

b
zi

p
2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

g
c
c

g
zi

p

m
c

f

m
e
s

a

m
g

r i
d

p
e

rl
b

m
k

s
w

im

tw
o

lf

v
o

rt
e
x

v
p

r

w
u
p

w
is

e

L
2
 C

a
c

h
e
 M

is
s
e

s
-P

e
r-

T
h

o
u

s
a
n

d
-I

n
s
tr

u
c

ti
o

n
s

Actual Benchmark Synthetic Clone

 

Figure 5.4:  L2 unified cache misses-per-thousand-instructions per benchmark and its 
synthetic clone for the SPEC CPU2000 benchmark programs.  



 78 

benchmark clone and the actual program is only about 3 misses-per-thousand-

instructions.    

For the embedded benchmarks, the L1 data cache misses-per-thousand-

instructions are negligibly small, with a maximum of 8 misses-per-thousand-instructions 

for benchmark typeset. The base configuration that we use in our evaluation has a 32 

KB 4-way L1 data cache, and the footprints of the embedded benchmarks are small and 

fit in this cache.  Therefore, in order to make a meaningful comparison between the 

absolute errors in the difference between the misses-per-thousand-instructions estimated 

by the synthetic clone and the actual benchmark we use a 4KB, 2-way set-associative 

cache and also the ability to track design changes across a wide range of cache 

configurations representative of embedded systems.  

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

e
p

ic

g
7

2
1

-d
e

c
o

d
e

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

M
is

s
e

s
-P

e
r-

T
h

o
u

s
a

n
d

-I
n

s
tr

u
c

ti
o

n
s

Actual Benchmark Synthetic Clone

 

Figure 5.5:  Cache misses-per-thousand-instructions per benchmark and its synthetic 
clone for the embedded benchmarks. 



 79 

Figure 5.5 shows the L1 data misses-per-thousand-instructions for this cache 

configuration. The maximum absolute error is 4.7 misses-per-thousand-instructions, for 

benchmark gsm. 

In order to evaluate the model for incorporating synthetic data locality we used 28 

different L1 D-caches with sizes ranging from 256 Bytes to 16 KB with direct-mapped, 

2-way set-associative, 4-way set-associative and fully associative configurations.  The 

Least Recently Used replacement policy was used for all the cache configurations, and 

the cache line size was set to 32 bytes.  We simulated the real benchmark program and 

the synthetic clone across these 28 different cache configurations and measured the 

number of misses-per-instruction.  As described earlier, the primary objective of the 

synthetic benchmark clone is to be able to make design decisions and tradeoffs; where 

relative accuracy is of primary importance.   

We quantify the relative accuracy for the synthetic benchmark clones using the 

Pearson’s linear correlation coefficient between the misses-per-instruction metric for the 

27 different cache configurations relative to the 256 Byte direct-mapped cache 

configuration - for the original benchmark and the synthetic benchmark clone.   

Specifically, the Pearson’s correlation coefficient is given by: RP = SXY / (SX. SY), where 

X and Y respectively refer to the misses-per-instruction of the synthetic benchmark clone 

and the original benchmark relative to the 256 Byte direct-mapped cache configuration.   

The value of correlation, R, can range from -1 to 1.  The Pearson’s correlation coefficient 

reflects how well the synthetic benchmark clone tracks the changes in cache 

configurations – a high positive correlation indicates that the synthetic benchmark clone 

tracks the actual change in misses-per-instruction, i.e. perfect relative accuracy.     



 80 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

A
v

e
ra

g
e

P
e

a
rs

o
n

' 
C

o
rr

e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

 

Figure 5.6: Pearson Correlation coefficient showing the efficacy of the synthetic 
benchmark clones in tracking the design changes across 28 different cache 
configurations.  

         

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ranking of Cache Configuration (Synthetic)

R
a
n

k
in

g
 o

f 
C

a
c
h

e
 C

o
n

fi
g

u
ra

ti
o

n
 (

R
e
a
l)

 

Figure 5.7: Scatter plot showing ranking of the cache configuration estimated by the 
synthetic benchmark clone and the real benchmark. 



 81 

Figure 5.6 shows the Pearson’s correlation coefficient for each benchmark 

program.  The average correlation coefficient is 0.93, indicating very high correlation 

between the synthetic benchmark clone and the original benchmark application across all 

the applications.  The benchmark typeset shows the smallest correlation (0.80) of all the 

benchmark suites.  A plausible explanation for this observation is that the typeset 

benchmark needed 66 different unique streams to model its stride behavior, in compared 

to an average of 18 unique streams for the other benchmark program.  This suggests that 

programs that require a larger number of unique stream values to capture the inherent 

data locality characteristics of a programs, introduce larger errors in the synthetic clone.  

This is perhaps due to the fact that having a large number of streams creates a larger 

number of possibilities of how the streams intermingle with each other, which is probably 

not accurately captured by our first-order synthetic benchmark generation method.   

Figure 5.7 shows a scatter plot of the average rankings (cache with smallest 

misses-per-instruction is ranked the highest) of the 28 cache configurations predicted by 

the synthetic benchmark clones and the ones obtained using the real benchmark 

programs.  Each point in the scatter plot represents a cache configuration.  If the synthetic 

benchmarks accurately predicted all the rankings of the 28 cache configurations, all the 

points in the scatter plot will be along a line that passes through the origin and makes an 

angle of 45 degrees with the axes.  From the chart it is evident that rankings predicted by 

the synthetic benchmark clone and those of the real benchmark are high correlated (all 

points are close to the 45 degree line passing through origin).  

As such, based on the results in Figures 5.6 and 5.7, we can conclude that the 

synthetic benchmark clone is capable of tracking changes in cache sizes and associativity, 

and can be effectively used as a proxy for the real application in order to perform cache 

design studies. 



 82 

Branch behavior 

Figure 5.8 shows the branch prediction rate of the synthetic clone and the original 

benchmark on the hybrid branch predictor considered in the baseline processor 

configuration.  The average error shown by the synthetic clone in estimating the branch 

prediction rate is 1.2%, with a maximum error of 5.2% for bzip2.  For the embedded 

benchmarks, the average error in the branch prediction rate is 2.1% with the maximum 

error of 5.3% for crc32, which has the lowest branch prediction rate in the entire suite. 

In summary, based on the results presented in this section, we can conclude that 

the proposed memory access and branch models are fairly accurate, and capture the 

inherent workload characteristics into the synthetic benchmark clone. 

 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

a
p

p
lu

a
p

s
i

a
rt

b
zi

p
2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

g
c

c

g
zi

p

m
c

f

m
e

s
a

m
g

ri
d

p
e

rl
b

m
k

s
w

i m

tw
o

l f

v
o

rt
e

x

v
p

r

w
u

p
w

i s
e

B
ra

n
c

h
 P

re
d

ic
ti

o
n

 R
a

te

Actual Benchmark Synthetic Clone

 

(a) SPEC CPU2000 benchmarks. 

 

 



 83 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

g
7

2
1

-d
e

c
o

d
e

g
h

o
s

ts
c

ri
p

t

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

u
n

e
p

ic

B
ra

n
c

h
 P

re
d

ic
ti

o
n

 R
a

te

Actual Benchmark Synthetic Clone

 

       (b) Embedded benchmarks from MediaBench & MiBench suites. 

Figure 5.8:  Branch prediction rate per benchmark and its synthetic clone. 

5.5.2 Accuracy in Performance & Power Estimation 

We now evaluate the accuracy of synthetic cloning in estimating overall 

performance and energy consumption.  To this end, we simulate the actual benchmark 

and its synthetic clone on the baseline processor configuration outlined in Table 5.3.  

Figures 5.9 and 5.10 respectively show the Cycles-Per-Instruction (CPI) and Energy-Per-

Instruction (EPI) metrics.  The average absolute error in CPI for the synthetic clone 

across all the SPEC CPU2000 benchmark configurations is 6.3%, with maximum errors 

of 9.9% for mcf and 9.5% for swim.  The average absolute error in estimating the EPI is 

7.3%, with maximum errors of 10.6% and 10.4% for mcf and swim, respectively.  For 

the embedded benchmarks, the average error in estimating CPI and EPI using the 



 84 

synthetic clone is 3.9% and 5.5%, respectively; the maximum error is for gsm (9.1% in 

CPI and 10.3% in EPI). 

 

0

0.5

1

1.5

2

2.5

3

3.5

4
a

p
p

lu

a
p

s
i

a
rt

b
z

ip
2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

g
c

c

g
z

ip

m
c

f

m
e

s
a

m
g

ri
d

p
e

rl
b

m
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

C
y

c
le

s
-P

e
r-

In
s

tr
u

c
ti

o
n

Benchmark Synthetic Clone

 

(a) SPEC CPU2000 benchmark programs. 

0

0.2

0.4

0.6

0.8

1

1.2

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

e
p

ic

g
7

2
1

-d
e

c
o

d
e

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

C
y

c
le

s
-P

e
r-

In
s

tr
u

c
ti

o
n

 Benchmark Synthetic Clone

 

(b) Embedded benchmarks from MediaBench & MiBench benchmark suite. 

Figure 5.9:   Comparison of CPI of the synthetic clone versus the original benchmark. 



 85 

 

0

2

4

6

8

10

12

14

16

18

20

a
p

p
lu

a
p

s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

g
c
c

g
z
ip

m
c
f

m
e

s
a

m
g

ri
d

p
e

rl
b

m
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

E
n

e
rg

y
-P

e
r-

In
s

tr
u

c
ti

o
n

Benchmark Synthetic Clone

 

                                     (a) SPEC CPU2000 benchmark programs. 

 

0

2

4

6

8

10

12

14

16

18

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

c
rc

3
2

d
ij

k
s

tr
a ff
t

g
h

o
s

ts
c

ri
p

t

g
s

m

jp
e

g

p
a

tr
ic

ia

q
s

o
rt

rs
y

n
th

s
tr

in
g

s
e

a
rc

h

s
u

s
a

n

ty
p

e
s

e
t

c
jp

e
g

d
jp

e
g

e
p

ic

g
7

2
1

-d
e

c
o

d
e

m
p

e
g

-d
e

c
o

d
e

ra
s

ta

ra
w

a
u

d
io

te
x

g
e

n

E
n

e
rg

y
-P

e
r-

In
s

tr
u

c
ti

o
n

Benchmark Synthetic Clone

 

(b) Embedded benchmarks from MediaBench & MiBench benchmark suite. 

Figure 5.10:  Comparison of Energy-Per-Cycle of the synthetic clone versus the original   
benchmark. 

In general we conclude that memory-intensive programs, such as mcf, swim, 

art and twolf have a higher than average absolute error in estimating CPI and EPI.  



 86 

Also, for programs with very poor branch predictability, such as gsm, the errors are 

higher than average.  On the other hand, the errors for control-intensive programs with 

moderate or high branch predictability, such as bzip2, crafty, gcc, gzip and 

perlbmk are relatively smaller.  Overall, from these results we can conclude that the 

synthetic benchmark clone can accurately estimate performance and power 

characteristics of the original application. 

5.5.3 Convergence Property of the Synthetic Benchmark Clone 

The instructions in the synthetic benchmark clone are generated by 

probabilistically walking the SFG.  In addition, the memory accesses are modeled as 

strides that traverse fixed-length arrays.  Also, the branch instructions are configured to 

match a pre-set transition rate.  So, if the entire spine of the program is executed in a big 

loop with a sufficient number of iterations, it will eventually reach steady state where the 

performance and power characteristics, such as CPI and EPI, converge.  

Compared to the pipeline core structures, large caches will take a relatively longer 

time to reach steady state.  Hence, in order to understand the upper bound on the number 

of instructions required for the program to converge, we select a memory-intensive 

benchmark that exhibits poor temporal locality.  We have performed a similar analysis 

for all programs, but present the benchmark that took the largest number of instructions 

to converge.   Benchmark mcf is one of the most memory-intensive programs with a very 

poor temporal locality, so we use this benchmark as an example.  We simulated the 

synthetic benchmark clone for mcf on the base configuration described in Table 4, in a 

large outer loop and plotted the CPI against the dynamic instruction count, see Figure 11.  

The CPI initially increases and then stabilizes after around 9 million instructions; 

simulating more instructions only changes the CPI value by about 1%.  The data cache 

misses in mcf are dominated by capacity misses, and the misses-per-instruction increases 



 87 

during the course of the synthetic clone execution and eventually stabilizes at a steady 

state value.  We experimented with other programs and all of them converged to a steady 

state value within 9 million instructions.  So, for the benchmark programs that we studied 

we set 10 million instructions as an upper bound on the number of instructions required 

to converge.  We can set this number as a guideline when selecting the outer loop count 

for the benchmark program – we typically set the value to 10 million instructions divided 

by the number of static instructions in the synthetic clone spine.  If the L1 and L2 cache 

sizes are smaller than the one used in the configuration, the benchmark will converge 

faster, requiring less than 10 million instructions.   

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 2.00 4.00 6.00 8.00 10.00

Instructions Executed (million)

C
y
c
le

s
-P

e
r-

In
s
tr

u
c
ti
o
n

 

      Figure 5.11: CPI versus instruction count for the synthetic clone of mcf.  

The synthetic benchmark clones that we generate can therefore be considered as 

representative miniature versions of the original applications.  In our setup, where we use 

one 100 million instruction trace, we obtain a simulation speedup of an order of 

magnitude.  If larger streams of instructions are considered, as shown the Section 5.5.5, 

the saving in simulation time is over five orders of magnitude.   



 88 

5.5.4 Relative Accuracy in Assessing Design Changes  

In our prior evaluation we only measured the absolute accuracy of the synthetic 

benchmark clone in predicting performance and power for a single microarchitecture 

design point.  However, in many empirical studies, predicting the performance trend is 

more important than predicting absolute performance.  To evaluate the effectiveness of 

the synthetic benchmark clone in assessing design changes, we measure the relative 

accuracy by changing the cache sizes and associativity, reorder buffer size, processor 

width and branch predictor configuration.  In each experiment, all parameters have the 

baseline value, except for the parameter that is being changed.  When changing the RUU 

and LSQ size, we ensure that the LSQ size is never larger than the RUU size.   

0

0.5

1

1.5

2

2.5

R
U

U
 0

.5
x

R
U

U
 0

.2
5
x

R
U

U
 0

.1
2
5
x

L
S
Q

 0
.5

x

L
S
Q

 0
.2

5
x

L
S
Q

 0
.1

2
5
x

B
T
B

 2
x

B
T
B

 0
.5

x

b
im

o
d
a
l 
B

P

g
s
h
a
re

 B
P

L
2
 s

iz
e
 0

.5
x

L
2
 A

s
s
o
c
 2

x

L
2
 A

s
s
o
c
 0

.5
x

L
1
 s

iz
e
 2

x

L
1
 s

iz
e
 0

.5
x

L
1
 A

s
s
o
c
.2

x

Is
s
u
e
 W

id
th

 2

D
e
c
o
d
e
 W

id
th

 2

C
o
m

m
it
 W

id
th

 2

C
y
c
le

s
-P

e
r-

In
s
tr

u
c
ti
o
n

Actual Benchmark Synthetic Clone

 

Figure 5.12:  Response of synthetic benchmark clone to design changes in base 
configuration. 

Figure 5.12 shows the design change on the horizontal axis, and the CPI of the 

actual benchmark and the synthetic clone on the vertical axis.  The average error for the 

synthetic clone across all the design changes is 7.7%, with a maximum average error of 

11.3% for the design change in which L2 cache size is reduced to half.  As such, we 



 89 

conclude that the synthetic benchmark clone is able to effectively track design changes to 

the processor core and the memory hierarchy. 

5.5.5 Modeling long-running applications 

In the prior sections we showed that the synthetic benchmark clone exhibits good 

accuracy when the performance characteristics of the original program are measured 

from one representative 100M-instruction simulation point.  In order to evaluate the 

proposed synthetic benchmark generation methodology for modeling longer running 

benchmarks, we now generate a synthetic clone that is representative of the complete run 

of each program, and evaluate its representativeness and accuracy for the 8-way 

superscalar processor configuration from the SimPoint website using the published CPI 

numbers [SimPoint-Website].  Figure 5.13 shows the CPI estimated by the synthetic 

clone and that of the actual benchmark program.  The trend in errors is the same as for 

the 100M-instruction simulation points, with mcf and swim having the highest maximum 

CPI prediction errors of 14.8% and 13.5%, respectively; the average CPI error is 8.2%.  

Table 5.4 shows the static instruction count of the synthetic clone and the simulation 

speedup through the synthetic cloning compared to the original benchmark.  Recall that 

the static instruction count in the synthetic clone is the number of instructions in the 

program spine.  These results show that the synthetic benchmark clones exhibit good 

accuracy even for long-running benchmarks, and result in a simulation time reduction by 

more than 5 orders of magnitude.  



 90 

0

2

4

6

8

10

12

a
p

p
lu

a
p

s
i

a
rt

b
z

ip
2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

g
c

c

g
z

ip

m
c

f

m
e

s
a

m
g

ri
d

p
e

rl
b

m
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

C
y

c
le

s
-P

e
r-

In
s

tr
u

c
ti

o
n

Benchmark Synthetic Clone

 

Figure 5.13:  Comparing the CPI of the synthetic clone and the actual benchmark for 
entire SPEC CPU2000 benchmark executions. 

Table 5.4:  Speedup from Synthetic Benchmark Cloning.  

Benchmark Instruction 
Footprint 
of  
Synthetic 
Clone 

Dynamic 
Instruction Count 
Of Original 
Benchmark 
(Billion 
Instructions) 

Speedup from 
Synthetic Benchmark 
Clone  

applu 9433 223 22,300 

apsi 7646 347 34,700 

art 554 45 4,500 

bzip2 1023 128 12,800 

crafty 4655 191 19,100 

eon 2901 80 8,000 

equake 1303 131 13,100 

gcc 9177 46 4,600 

gzip 1685 103 10, 300 

mcf 713 61 6,100 

mesa 2436 141 14,100 

mgrid 2481 419 41,900 



 91 

swim 3179 225 22,500 

twolf 1320 346 34,600 

vortex 3571 118 11,800 

vpr 842 84 8,400 

wupwise 1309 349 34,900 

5.6. DISCUSSION 

As mentioned before, the advantage of the benchmark cloning approach proposed 

in this chapter as compared to previously proposed workload synthesis techniques [Bell 

and John, 2005-1] [Bell and John, 2006] is that all the workload characteristics modeled 

into the synthetic benchmark clone are microarchitecture-independent.  This makes the 

benchmarks portable across a wide range of microarchitecture configurations.  However, 

a limitation of the proposed technique is that the synthetic benchmark clone is dependent 

on the compiler technology that was used to compile the original proprietary application.  

Therefore, the generated synthetic benchmark clone may have limited application to the 

compiler community for studying the effects of various compiler optimizations.  Also, the 

synthetic benchmark clone only imbibes the characteristics that were modeled, i.e., other 

characteristics such as value locality is not modeled and the benchmark clone cannot be 

used for studies exploiting these characteristics.  However, if these characteristics are 

important and need to be modeled, one can always develop microarchitecture-

independent metrics to capture their behavior and augment the benchmark cloning 

framework to mimic these characteristics into the synthetic benchmark clone.   

 A second note that we would like to make is that the synthetic benchmark 

clones that we generate contain instruction set architecture (ISA) specific assembly 

instructions embedded in C-code.  Therefore, a separate benchmark clone would have to 

be synthesized for all target architectures of interest (e.g., Alpha, PowerPC, IA-32, etc.).  



 92 

Typically, every designer and researcher would be interested only in his particular 

architecture and therefore this may not be a severe problem in practice.  However, if the 

synthetic benchmark clone is to be made truly portable across ISAs, it would be 

important to address this concern.  One possibility could be to generate the synthetic 

benchmark clone using a virtual instruction set architecture that can then be consumed by 

compilers for different ISAs.  Another possibility would be to perform binary translation 

of the synthetic benchmark clone binary to the ISA of interest.  

A final note is that the abstract workload model presented in this chapter is fairly 

simple by construction, i.e., the characteristics that serve as input to the synthetic 

benchmark generation, such as the branching model and the data locality model, are far 

from being complicated.  We have shown that even the observed behavior of pointer-

intensive programs can be effectively modeled using simple stride-based models.  This 

was our intention: we wanted to build a model that is simple, yet accurate enough for 

predicting performance trends of workloads. 

5.7. SUMMARY 

In this chapter we explored a workload synthesis technique that can be used to 

clone a real-world proprietary application into a synthetic benchmark clone that can be 

made available to architects and designers.  The synthetic benchmark clone has similar 

performance/power characteristics as the original application but generates a very 

different stream of dynamically executed instructions.  By consequence, the synthetic 

clone does not compromise on the proprietary nature of the application.  In order to 

develop a synthetic clone using pure microarchitecture-independent workload 

characteristics, we develop memory access and branching models to capture the inherent 

data locality and control flow predictability of the program into the synthetic benchmark 

clone.  We developed synthetic benchmark clones for a set of benchmarks from the SPEC 



 93 

CPU2000 integer and floating-point, and MiBench and MediaBench benchmark suites, 

and showed that the synthetic benchmark clones exhibit good accuracy in tracking design 

changes.  Also, the synthetic benchmark clone runs more than five orders of magnitude 

faster than the original benchmark, and significantly reduces simulation time on cycle-

accurate performance models. 

The proposed technique will benefit architects and designers to gain access to 

real-world applications, in the form of synthetic benchmark clones, when making design 

decisions.  Moreover, the synthetic benchmark clones will help the vendors to make 

informed purchase decisions, because they would have the ability to benchmark a 

processor using the synthetic benchmark clone as a proxy of their application of interest.   

 

 

 

 

 

 

 

 

 

 

 

 



 94 

Chapter 6: Towards Scalable Synthetic Benchmarks 

The focus of Chapter 4 and 5 was to improve the accuracy of the benchmark 

generation framework to improve the accuracy and representativeness of the benchmark 

clone.  This is important for cloning the performance of an existing real-world 

application.  However, in order to model emerging applications and futuristic workloads 

the flexibility to alter program characteristics is more important than the accuracy or 

representativeness of the synthetic workload.  

This chapter shows that the benchmark generation strategy can be adapted to 

construct scalable synthetic benchmarks from a limited number of hardware-independent 

program characteristics.  Essentially, we develop a parameterized workload model that 

enables the construction of benchmarks that allow researchers to explore a wider range of 

the application behavior space, even when no benchmarks (yet) exist.  This chapter also 

demonstrates the applicability and the usefulness of BenchMaker for studying the impact 

of program characteristics on performance and how they interact with processor 

microarchitecture.  

6.1 THE NEED FOR DEVELOPING A PARAMETERIZED WORKLOAD MODEL 

The advent of standardized benchmark suites has streamlined the process of 

performance comparison between different computer systems, architects and researchers 

face several challenges when using benchmarks in industry product development and 

academic research.  These problems primarily emerge from the fact that standardized 

benchmarks are rigid and it is not possible to alter their characteristics to study program 

behavior and model emerging workloads.    

One of the approaches for addressing these limitations is to complement 

standardized benchmark suites with synthetic benchmarks.  A synthetic program that can 



 95 

be tuned to produce a variety of benchmark characteristics would be of great benefit to 

the computer architecture community.  An approach to automatically generate scalable 

synthetic benchmarks can help in: (1) constructing synthetic benchmarks to represent 

application characteristics for which benchmarks do not (yet) exist, (2) isolating 

individual program characteristics into microbenchmarks, (3) altering hard-to-vary 

benchmark characteristics, and (4) modeling commercial workload that have large 

hardware requirements for full-scale setup. The objective of this chapter is to propose a 

framework, called BenchMaker, which adapts the benchmark generation strategy to 

construct scalable benchmarks whose code properties can easily be altered.   

The synthesis approaches proposed in Chapter 4 and 5, and prior work in 

statistical simulation and benchmark synthesis has at least one shortcoming that limits its 

ability to generate scalable benchmarks by varying program characteristics.  Firstly, in 

most of these approaches [Nussbaum and Smith, 2001] [Eeckhout et al., 2004-2] [Bell 

and John, 2005-3], an application is characterized using a detailed workload model – a 

statistical flow graph captures the control flow behavior of a program and characteristics 

such as instruction mix, register dependency distribution, control flow predictability, and 

memory access pattern – that are measured at the granularity of a basic block. This 

involves specifying a large number of probabilities to describe a workload, which is 

highly impractical when using these frameworks for exploring workload behavior spaces 

by varying workload characteristics.  Secondly, although some of the approaches for 

generating synthetic workloads [Oskin et al., 2000] [Eeckhout et al., 2001] show that 

applications can be modeled using a limited of number of program characteristics, they 

use a combination of microarchitecture-dependent and microarchitecture-independent 

program characteristics.  Microarchitecture-dependent characteristics, such as branch 

misprediction rate and cache miss rate, do not capture the inherent program 



 96 

characteristics and make it difficult to explore the entire application behavior space 

independently from the underlying hardware.  Finally, a shortcoming of some of these 

techniques is that they generate synthetic workload traces, precluding their use on real 

hardware, execution-driven simulators, and RTL models. 

 The approach proposed in this chapter overcomes these shortcomings. 

Unlike prevailing approaches to generating synthetic benchmarks, the BenchMaker 

framework that we propose makes it possible to alter inherent workload characteristics of 

a program by varying a limited number of key microarchitecture-independent program 

characteristics in a synthetic benchmark – changing the workload behavior is done by 

simply ‘turning knobs’.  This ability to vary program characteristics makes it possible to 

efficiently explore the application behavior space.  Specifically, this chapter makes the 

following contributions: 

1) It shows that it is possible to adapt the workload model to capture a program 

behavior with just a few microarchitecture-independent workload characteristics, 

albeit at the cost of slightly reduced accuracy.  This is much more efficient than the 

collection of distributions that need to be specified in the benchmark cloning 

approach.  

2) It evaluates the usefulness of the BenchMaker framework by demonstrating its 

applicability to three different areas: (a) Studying the effect of inherent workload 

characteristics on performance, (b) Studying the interaction of microarchitecture-

independent workload characteristics with the microarchitecture features of a 

processor, and (c) Accounting for workload drift during microprocessor design.  

 

The remainder of this chapter is structured as follows.  In section 6.2 we provide 

an overview of the proposed parameterized model for constructing scalable synthetic 



 97 

benchmarks from program characteristics.  In section 6.3 we describe our simulation 

environment, machine configuration, and the benchmarks used to evaluate the 

BenchMaker framework.  In section 6.4 we evaluate the BenchMaker framework by 

demonstrating how it can be used to generate synthetic benchmarks that exhibit similar 

behavior to SPEC CPU2000 Integer benchmarks.   In sections 6.5 we demonstrate the 

application of the BenchMaker framework to three challenging problems.    Finally, in 

section 6.6 we summarize the key results from this chapter.      

6.2 BENCHMAKER FRAMEWORK FOR PARAMETERIZED WORKLOAD SYNTHESIS 

Figure 6.1 illustrates the approach used by the BenchMaker framework that we 

propose in this chapter for generating synthetic benchmarks from a set of 

microarchitecture-independent program characteristics.  The program characteristics 

measure the inherent properties of the program that are independent from the underlying 

hardware.  Collectively, these characteristics form an abstract workload model.  This 

abstract workload model serves as an input to the synthetic benchmark generator.  Our 

intention is to develop a workload model that is simple yet accurate enough for predicting 

performance trends across the workload space.   Keeping the workload model simple 

makes it possible to not only accurately model the characteristics of an existing workload 

into a synthetic benchmark, but also provides the ability to conduct ‘what-if’ studies by 

varying program characteristics.  In the following sections we describe the workload 

characteristics that serve as input to the synthetic workload generator and we also 

describe the algorithm used for modeling these characteristics into a synthetic workload.   

 

 

 

 



 98 

 

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R6

STORE R3, R10, R20

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R1

BEQ R3, R6, LOOP

SUB R3, R5, R6

STORE R3, R10, R20

DIV R10, R2, R1

………….

 

Figure 6.1: The BenchMaker framework for constructing scalable synthetic benchmarks.  

6.2.1 Workload Characteristics 

The characteristics that we propose to drive the benchmark synthesis process are a 

subset of all the microarchitecture-independent characteristics that can be modeled.  

However, we believe that our abstract workload model captures (most of) the important 

program characteristics that potentially impact a program’s performance; the results from 



 99 

evaluation of the synthetic benchmarks in this chapter in fact show that this is the case, at 

least for the benchmarks that we used. 

Recall that the key goal of the parameterized framework is to show that it is 

possible to maintain good representativeness and good accuracy with a limited number of 

key workload characteristics. For limiting the number of program characteristics, we 

capture them at a coarse granularity using average statistics over the entire program. 

Although measuring program characteristics at a coarse granularity likely reduces the 

representativeness of the synthetic benchmarks compared to fine grained characteristics, 

this is key to enable the flexibility in BenchMaker for generating benchmarks with 

characteristics of interest.  This will enable one to easily vary workload characteristics by 

‘turning knobs’ and make it possible to answer ‘what-if’ questions. We propose to 

measure the following workload characteristics at the program level.   

Instruction Mix.  The instruction mix of a program measures the relative 

frequency of various operations performed in the program; namely the percentage of 

integer small latency, integer long latency, floating-point small latency, floating-point 

long latency, integer load, integer store, floating-point load, floating-point store, and 

branches in the dynamic instruction stream of a program.   

Basic Block Size.  A basic block is a section of code with one entry and one exit 

point. We measure the basic block size as the average number of instructions between 

two consecutive branches in the dynamic instruction stream of a program.  We assume 

that the basic block sizes in the program have a normal distribution, and characterize 

them in terms of the average and standard deviation in the basic block size distribution of 

a program.   

Instruction Level Parallelism.  The dependency distance is defined as the number 

of instructions in the dynamic instruction stream between the production (write) and 



 100 

consumption (read) of a register and/or memory location.  The goal of characterizing the 

data dependency distances is to capture a program’s inherent ILP.  We measure the data 

dependency distance information on a per instruction basis and summarize it as a 

cumulative distribution organized in eight buckets: percentages of dependencies that have 

a dependency distance of 1 instruction, and the percentage of dependency dependencies 

that have a distance of up to 2, 4, 6, 8, 16, 32, and greater than 32 instructions.  Longer 

dependency distances permit more overlap of instructions in a superscalar out-of-order 

processor.  

Data Footprint.  We measure the data footprint of a program in terms of the total 

number of unique data addresses referenced by the program.  The data footprint of a 

program gives an idea of whether the data set fits into the level-1 or level-2 caches.   

Data Stream Strides. We model the data stream with respect to the distribution of 

the local data strides.  A local stride is defined as the difference in the data memory 

addresses between successive memory addresses from a single static instruction.  We 

describe the local strides in terms of 32-byte block sizes (analogous to a cache line size), 

i.e., stride 0 refers to a local data stride of 0 to 32 bytes (consecutive addresses are within 

one cache line distance). The local strides are summarized as a histogram showing the 

percentage of memory access instructions with stride values of 0, 1, 2, etc.   

  In order to capture the data access pattern of a program we measure a 

distribution of local strides in the program.  Local stride value is the difference between 

two consecutive effective addresses generated by the same static load or store instruction.  

We measure the local strides in terms of 32-byte block sizes (analogous to a cache line 

size), i.e., if a local stride is between 0 or 31 bytes, it is classified as stride 0 (consecutive 

addresses are within one cache line distance), between 32 and 63 bytes as stride 1, etc.  

We summarize the local stride distance for the entire program as a histogram showing the 



 101 

percentage of memory access instructions with stride value of 0, 1, 2, etc.  Figure 2 shows 

the distribution of the data stride values of SPEC CPU2000 Integer Programs.  From this 

figure we observe that for the bzip2, crafty, gzip, and perlbmk benchmarks, 

more than 80% of the local stride references are within a 32-byte block size, indicating 

very good spatial data locality.  The gcc, twolf, and vortex benchmarks only 

have 60% of local stride values that are within a 32-byte block size, and exhibit moderate 

spatial data locality.  The vpr benchmark shows two extremes, with approximately 50% 

of local strides accessing the same 32-byte block, and the other 50% with extremely large 

local stride values, indicating a mix of references with extremely poor and extremely high 

spatial locality.  The mcf benchmark is an outlier and has very poor data locality, with 

most of the local stride values being extremely large.    

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
z

ip
2

c
r

a
ft

y

g
c

c

g
z

ip

m
c

f

p
e

r
lb

m
k

tw
o

lf

v
o

r
te

x

v
p

r

P
e

rc
e

n
ta

g
e

 o
f 

T
o

ta
l 

M
e

m
o

ry
 R

e
fe

re
n

c
e

s

0 1 2 3 4 5 6 7 8 9

 

Figure 6.2: Percentage breakdown of local stride values. 



 102 

 The combination of data footprint and the stride value distribution 

captures the inherent data locality in the program.  These two characteristics are typically 

very difficult to modify in standard benchmarks.  In synthetic benchmarks it is easy to fix 

one of these parameters and study the effect of the other. For example, using 

BenchMaker, we can easily study the impact of changing stride values while keeping the 

data footprint the same. Or, if of interest, one can explore the combined effect of varying 

footprint and access patterns. 

Instruction Footprint. We characterize the instruction footprint as the total number 

of unique instructions referenced by the program.  The instruction footprint of a program 

gives an idea of whether the data set fits into the level-1 or level-2 caches.  The 

instruction footprint of all the programs are very small (gcc has the highest instruction 

footprint) and do not stress the instruction cache.   

Branch Transition Rate.  In order to capture the inherent branch behavior in a 

program, the most popular microarchitecture-independent metric is to measure the 

percentage of taken branches in the program or the taken rate for a static branch, i.e., 

fraction of the times that a static branch was taken during the complete run of the 

program.  Branches that have a very high or low taken rate are biased towards one 

direction and are considered to be highly predictable.  However, merely using the taken 

rate of branches is insufficient to actually capture the inherent branch behavior.  The 

predictability of the branch depends more on the sequence of taken and not-taken 

directions than just the taken rate. 

Therefore, in our control flow predictability model we also measure an attribute 

called transition rate, due to [Haungs et al., 2000], for capturing the branch behavior in 

programs.  Transition rate of a static branch is defined as the number of times it switches 

between taken and not-taken directions as it is executed, divided by the total number of 



 103 

times that it is executed.   By definition, the branches with low transition rates are always 

biased towards either taken or not-taken.  It has been well observed that such branches 

are easy to predict.  Also, the branches with a very high transition rate always toggle 

between taken and not-taken directions and are also highly predictable.  However, 

branches that transition between taken and not-taken sequences at a moderate rate are 

relatively more difficult to predict.  In order to incorporate synthetic branch predictability 

we measure a distribution of transition rate of all static branches in the program.  When 

generating the synthetic benchmark clone we ensure that the distribution of the transition 

rates for static branches in the synthetic stream of instructions is similar to that of the 

original program.  We achieve this by configuring each basic block in the synthetic 

stream of instructions to alternate between taken and not-taken directions, such that the 

branch exhibits the desired transition rate.    

Summary. To summarize the above discussion, the abstract model characterizing 

a workload consists of 40 numbers in total, as shown in Table 6.1. Collecting only 40 

workload statistics results in a much more compact representation of a workload; 

compared to the benchmark cloning approach (Chapters 4 and 5) where most of these 

statistics are separately measured for every basic block resulting in typically several 

thousands of numbers to characterize a workload.  Consequently, the BenchMaker 

framework has 40 ‘knobs’ that can be controlled to efficiently explore the application 

behavior space. 

 

 

 

 



 104 

Table 6.1: Microarchitecture-independent characteristics that form an abstract workload 
model. 

Category Num. Characteristic 

instruction mix 10 percentage of integer short latency 
percentage of integer long latency 
percentage of floating-point short latency 
percentage of floating-point long latency 
percentage of integer load 
percentage of integer store 
percentage of floating-point load 
percentage of floating-point store 
percentage of branches 

instruction level 
parallelism 

8 
 
 

register-dependency-distance – 8 distributions for register 
dependencies. Register dependency distance equal to 1 
instruction, and the percentage of dependency dependencies 
that have a distance of up to 2, 4, 6, 8, 16, 32, and greater than 
32 instructions. 

data locality 1 
10 

data footprint 
distribution of local stride values 

instruction locality 1 instruction footprint 
branch predictability 10 distribution of branch transition rate 

6.2.2  Synthetic Benchmark Construction 

The benchmark synthesis algorithm is similar the one described in Chapter 4 and 

5 except that the workload characteristics measured at a coarser granularity are used.  

Recall that in the benchmarking cloning approach the synthetic clone is generated using 

workload characteristics measured at a finer granularity – basic block level.  The 40 

workload characteristics or knobs serve as an input the synthesis algorithm compared to 

thousands of statistics for the benchmark cloning synthesis algorithm.  This makes it easy 

to synthesize a new benchmark by altering a particular workload characteristic.   

6.3 EXPERIMENT SETUP 

 In all of our experiments we use the sim-alpha simulator [Desikan et 

al., 2001] from the SimpleScalar Tool Set [Burger and Austin, 1997].  The sim-

alpha simulator is an execution driven performance model that has been validated 

against the superscalar out-of-order Alpha 21264 processor.  In order to measure the 



 105 

abstract workload characteristics of a program we used a modified version of the sim-

safe simulator.  In our experiments we use benchmarks from the SPEC CPU Integer 

benchmark suite that are representative of general purpose application programs.  In most 

of our experiments we use one 100M-instruction simulation point selected using 

SimPoint [Sherwood et al., 2002].  However, when comparing programs from two 

generations of SPEC CPU Integer benchmark suites we use multiple simulation points.  

All the SPEC CPU2000 Integer benchmark programs were compiled on an Alpha 

machine using the native Compaq cc v6.3-025 compiler with –O3 compiler 

optimization.  The SPEC CPU95 Integer benchmark program, gcc, was compiled using 

a native circa 1995 compiler, gcc 2.6.3. Table 6.2 summarizes the benchmarks and 

the simulation points that were used in this study.   We also used traces of three 

commercial workloads – SPECjbb2005 (representative of JAVA server workloads), 

DBT2 (representative of an OLTP workload), and DBMS (a database management 

system workload).  The traces for the commercial workloads were generated using the 

SIMICS full-system simulator and simulated using a modified version of a trace driven 

sim-outorder simulator. 

Table 6.2: SPEC CPU programs, input sets, and simulation points used in study. 

Benchmark Input SimPoint(s) 

SPEC CPU2000 Integer 
bzip2  graphic 553 
crafty ref 774 
eon rushmeier 403 
gcc 166.i 389 
gzip graphic 389 
mcf ref 553 
perlbmk perfect-

ref 
5 

twolf ref 1066 
vortex lendian1 271 
vpr route 476 
gcc expr 8, 24, 47, 51, 56, 73, 



 106 

87, 99 
SPEC CPU95 Integer 

gcc expr 0, 3,5,6,7,8,9,10,12 

6.4 EVALUATION OF BENCHMAKER FRAMEWORK 

In this section we evaluate BenchMaker’s accuracy by using it to generate 

synthetic benchmark versions of general-purpose (SPEC CPU INT2000) and commercial 

(SPECjbb2005, DBT2, and DBMS) workloads. We measure the program characteristics 

of the SPEC CPU2000 and commercial workloads and feed this abstract workload model 

to the BenchMaker framework to generate a synthetic benchmark; we then compare the 

performance/power characteristics of the synthetic benchmark against the original 

workload.     

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

b
z

ip
2

c
ra

ft
y

g
c

c

g
z

ip

m
c

f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

d
b

t2

d
b

m
s

S
P

E
C

jb
b

2
0

0
5

In
s

tr
u

c
ti

o
n

s
-P

e
r-

C
y

c
le

Original Benchmark Synthetic Benchmark

 

Figure 6.3:  Comparison of Instructions-Per-Cycle (IPC) of the actual benchmark and its 
synthetic version. 



 107 

0

5

10

15

20

25

30

35

b
z

ip
2

c
ra

ft
y

g
c

c

g
z

ip

m
c

f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

d
b

t2

d
b

m
s

S
P

E
C

jb
b

2
0

0
5

E
n

e
rg

y
-P

e
r-

In
s

tr
u

c
ti

o
n

Original Benchmark Synthetic Benchmark

 

(a) Energy-Per-Instruction 

0

10

20

30

40

50

60

70

80

90

b
z
ip

2

c
ra

ft
y

g
c
c

g
z
ip

m
c
f

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e

x

v
p

r

d
b

t2

d
b

m
s

S
P

E
C

jb
b

2
0

0
5

O
p

e
ra

ti
n

g
 T

e
m

p
e

ra
tu

re

Original Benchmark Synthetic Benchmark

 

(b) Operating Temperature 

Figure 6.4:  Comparison of Energy-Per-Instruction (EPI) and Operating Temperature of 
the actual benchmark and its synthetic version. 

Figure 6.3 evaluates the accuracy of BenchMaker for estimating the pipeline 

instruction throughput measured in instructions-per-cycles (IPC).  We observe that the 

synthetic benchmark performance numbers track the real benchmark performance 



 108 

numbers very well.  The average IPC prediction error is 10.9% and the maximum error is 

observed for mcf (19.9%).  Figure 6.4 shows similar results for the Energy-Per-

Instruction (EPI) metric and the average operating temperature (details of the 

microarchitecture level temperature modeling tools are described in Chapter 7).  The 

average error in estimating EPI from the synthetic version is 7.5%, with the maximum 

error of 13.1% for mcf.   The average error in estimating the average operating 

temperature is 8.1%.  

Parameterization of workload metrics make it possible to succinctly describe an 

application’s behavior using a limited number (40) of fundamental coarse-grain program 

characteristics instead of having several thousands of fine-grain program metrics.  

BenchMaker trades accuracy (10.9% average error in IPC compared to less than 6% error 

in the benchmarking cloning approach in Chapters 4 and 5) for the flexibility to enable 

one to easily alter program characteristics and workload behavior.    

Figure 6.5 shows similar results for the L1 D-cache performance: the number of 

L1 D-cache misses per one thousand instructions is shown on the vertical axis for the 

various benchmarks. Again, the synthetic benchmark numbers track the real benchmark 

numbers very well. The maximum error in predicting the number of L1 cache misses-per-

1K instructions is observed for mcf for which the difference between the real and the 

synthetic benchmark is 9 misses-per-1K-instructions (or less than 4% in relative terms).  

We obtain similar results for the L2 cache performance. All of the benchmarks except for 

mcf and vpr have a negligibly small miss-rate at the L2 cache level; mcf shows 120 L2 

misses-per-1K-instructions, and vpr shows 8 L2 misses-per-1K instructions. The 

synthetic benchmark accurately tracks this trend, and shows 114 and 5 L2 misses-per-1K 

instructions respectively for mcf and vpr benchmarks.  Also, the L1 instruction cache 

miss-rate is negligible for all programs, with gcc having the highest miss-rate of 1.3%. 



 109 

 

           

0

50

100

150

200

250

300

b
z
ip

2

c
ra

ft
y

g
c
c

g
z
ip

m
c
f

p
e
rl
b
m

k

tw
o
lf

v
o
rt

e
x

v
p
r

L
1
 D

a
ta

 C
a
c
h

e
 M

is
s
e
s
-P

e
r-

1
K

 I
n

s
tr

u
c
ti

o
n Actual Benchmark Synthetic Benchmark

 

Figure 6.5:  Comparison of the number of L1 D-cache misses-per-1K-instructions for the 
actual benchmark and its synthetic version.  

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

b
zi

p
2

cr
af

ty g
cc

g
zi

p

m
cf

p
er

lb
m

k

tw
o

lf

v
o

rt
ex

v
p

r

B
ra

n
c

h
 P

re
d

ic
ti

o
n

 R
a

te

Actual Benchmark Synthetic Benchmark

 

Figure 6.6:    Comparison of the branch prediction rate for the actual benchmark and its 
synthetic version. 

Figure 6.6 evaluates the accuracy of BenchMaker for replicating the branch 

behavior of a real benchmark into a synthetic benchmark. Here again, we observe that the 

synthetic versions of the benchmark track the real benchmark numbers very well. One 



 110 

particularity to note here is that the branch prediction rates are always higher for the 

synthetic benchmarks than for the real benchmarks. This suggests that some of the 

difficult to predict branch sequences in the program are not captured in the synthetic 

benchmark.  The branches in the synthetic benchmark tend to be relatively easier to 

predict than is the case for the original benchmark. 

6.5  APPLICATIONS OF BENCHMAKER FRAMEWORK 

6.5.1 Program Behavior Studies  

In order to demonstrate the usefulness of the BenchMaker framework we show 

how it can be applied for studying workload behavior and its interaction with 

microarchitecture.  It is extremely difficult to conduct comparable ‘what-if’ studies using 

a set of standardized benchmarks because their characteristics form an essential part of 

the benchmark application and cannot be easily altered.  On the contrary, using 

BenchMaker, it is possible to easily generate a benchmark program from a limited list of 

characteristics.  

We generate a synthetic benchmark using the average of all the characteristics 

across the SPEC CPU Integer benchmark programs.  The synthetic benchmark, 

AvgSynBench, modeling the average characteristics shows a pipeline throughput of 1.1 

IPC on the Alpha 21264 processor.  In our study we use the characteristics of this 

benchmark as our baseline characteristics and alter them to study the effect of each 

program characteristic on performance, their interaction with each other, and their 

interaction with the microarchitecture. 

6.5.1.1 Impact of Individual Program Characteristics on Performance 

 In this section we use BenchMaker to study the impact of data locality and 

control flow predictability by varying memory access patterns and branch transition rates, 



 111 

respectively.   Figure 6.7 shows how the change in percentage of references with zero 

strides (subsequent executions of the same static memory operations access memory 

within a 32-byte block size) affects IPC and L1 D-cache miss-rate.  We observe that as 

the percentage of references with zero stride varies from 0 (no accesses to the same cache 

line) to 100 (all executions of the same static memory operation access the same cache 

line), the IPC of the program linearly increases.  Interestingly, the drop in L1 data cache 

miss-rate is also linear with the increase in percentage of references with stride value 0.  

This suggests that if all other characteristics remain constant, the L1 data cache miss-rate 

and IPC have an almost perfect negative linear correlation (-0.99).  

    

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 66 70 80 90 100

Percentage of References with Stride Value 0

In
s
tr

u
c
ti

o
n

s
-P

e
r-

C
y
c
le

 

(a) Impact of the percentage of references with zero stride value on IPC 

                        

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 66 70 80 90 100

Percentage of References with Stride Value 0

L
1
 D

-c
a
c
h

e
 m

is
s
-r

a
te

 
(b) Impact of the percentage of references with zero stride value on L1 D-cache    

      miss-rate. 

Figure 6.7: Studying the impact of data spatial locality by varying the local stride pattern. 



 112 

Next we study how the branch transition rate affects performance.  Recall, that the 

branch transition rate of a program is measured as a distribution.  We experimented with 

a number of random combinations of distribution of transition rates.  We observed that 

with these random combinations, the branch prediction rate varies between 0.99 and 0.82, 

and correspondingly the variation in IPC was a factor of 1.61 (61% dip in performance if 

branch prediction rate falls to 0.82).  

Based on these studies we can conclude that the BenchMaker framework is a 

useful tool for isolating and studying the behavior of individual program characteristics 

and their impact on performance. 

6.5.1.2   Interaction of Program Characteristics  

 In our abstract workload model we characterize the data locality of a 

program by measuring its data footprint (an indicator of temporal locality) and the 

distribution of local stride pattern (an indicator of spatial locality).     

 

         

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 66 70 80 90 100

Percentage of references w ith Stride Value 0

L
1

 D
-c

a
c

h
e

 M
is

s
-R

a
te

Data Footprint - 600K Data Footprint - 300K
Data Footprint - 900K

 

Figure 6.8: Interaction of local stride distribution and data footprint program 
characteristics.    



 113 

In this section we analyze how the local stride distribution pattern and the data 

footprint of a program interact with each other.  Figure 6.8 shows the effect of changes in 

percentage of references with zero strides for three different data footprints.  From this 

graph we observe that for larger footprints, we see a steeper fall in L1 D-cache miss-rate 

as the percentage of references with stride value 0 increases.  For the case where 100% of 

the references access the same cache line, the footprint does not seem to have an impact 

on the L1 D-cache miss-rate. 

6.5.1.3  Interaction of Program Characteristics with Microarchitecture 

A benchmark synthesis framework is not only useful for isolating and studying 

the impact of program characteristics on performance, but is also an invaluable tool to 

understand how program characteristics interact with microarchitectural structures. For 

example, BenchMaker can be used to find a combination of program characteristics that 

interact poorly with a given microarchitecture. More in particular, automatically 

generating a benchmark that ‘stresses’ the microarchitecture can give insight into critical 

program-microarchitecture interactions. The ‘stress’ benchmarks can help in exposing 

performance anomalies and understanding the limitations of a given microarchitecture.  

  As an example, in order to find a benchmark that stresses the branch 

predictor, we generated a number of synthetic benchmarks that contain randomly 

generated distributions of transition rates.  Interestingly, the transition rate distribution 

that resulted in the lowest prediction rate was the case where 100% of the branches have 

a transition rate between 90% and 100%.  In this configuration, every branch in the 

synthetic benchmark continuously toggles between taken and not-taken directions.  This 

sequence of branches heavily stresses the Alpha 21264 branch predictor (which is a 

tournament branch predictor that chooses between local and global history to predict the 

direction of a given branch): it achieves a branch prediction rate of only 82%. Similarly, 



 114 

this approach can be extended to stress-test different microarchitectural structures for 

performance, power, energy and temperature studies 

6.5.2 Workload Drift Studies  

 Research work [Yi et al., 2006-1] has shown that it is important to account 

for the potential impact of workload drift when designing a microprocessor.  This section 

demonstrates how BenchMaker can be used to study workload drift.   

6.5.2.1 Analyzing the impact of benchmark drift   

 As a first case study, we use the gcc benchmark with the expr input set 

from the SPEC CPU95 and SPEC CPU00 benchmark suites.  The gcc-expr95 

benchmark shows an IPC throughput of 1.54 on the Alpha 21264; gcc-expr00 shows an 

IPC throughput of 1.11.   This clearly shows that a new release of the same application 

program (with the same input) can result in significant performance degradation (36% 

degradation in the case of gcc). To understand this behavior, we now compare the 

abstract workload model for gcc-expr95 and gcc-expr00.  Most of the program 

characteristics are more or less the same across the two gcc versions. Even the local stride 

values (indicative of spatial locality) exhibit a similar distribution. However, the data 

footprint (indicative of temporal locality) appears to have increased by a factor of 3. 

Based on this observation, we constructed a synthetic benchmark with the same 

characteristics as   gcc-expr95 but with three times its data footprint.  This benchmark 

shows an IPC throughput of 1.19 (an error of only 7.2% compared to IPC of gcc-

expr00).  

This result demonstrates that BenchMaker can be a useful tool to generate 

futuristic workloads in the anticipation of changes in program characteristics, and can 

help in projecting the impact of workload drift on performance. 



 115 

6.5.2.2 Analyzing the impact of increase in code size 

Previous characterization studies [Phansalkar et al., 2005] have pointed out that 

although the dynamic instruction count has increased by a factor 100 over the four 

generations of SPEC CPU benchmark suites, the static instruction count of the programs 

has not significantly grown. However, in general, the static instruction count of any 

commercial software application tends to increase with every generation as the 

application evolves with the advent of new features and functionality.  The absence of 

any benchmarks that stress the instruction cache makes it difficult to analyze the 

performance impact of an application that could result from code footprints that are 

substantially larger than available benchmarks. To illustrate the application of 

BenchMaker to study the impact of potential increase in code size on program 

performance, we use the AvgSynBench benchmark and vary its code footprint. Figure 6.8 

shows different flavors of the AvgSynBench benchmark with varying instruction 

footprints to stress the instruction cache.    The graph shows that increases in code size 

can have a significant impact on performance and must be taken into account if 

application code size is expected to increase.   

As such, we can conclude that in absence of any SPEC CPU Integer benchmarks 

that stress the instruction cache; this is a plausible approach to project the impact of I-

cache misses on the performance of an application  

 

 



 116 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Factor by which code size is increased

In
s
tr

u
c
ti

o
n

s
-P

e
r-

C
y
c
le

 

Figure 6.8:  Effect of increasing instruction footprint on program performance.  

6.6 SUMMARY 

The objective of this chapter was to develop a framework that adapts the 

benchmark cloning strategy to construct scalable synthetic benchmarks.  One of the key 

results from this chapter is that it is possible to fully characterize a workload by only 

using a limited number of microarchitecture-independent program characteristics, and 

still maintain good accuracy.  Moreover, since these program characteristics are 

measured at a program level they can be measured more efficiently and are amenable to 

parameterization.  We implement this approach in a framework called BenchMaker and 

demonstrate various applications that help in studying program characteristics that are 

typically difficult to vary in standardized benchmarks.   
 
 
 
 
 
 
 
 
 
 



 117 

Chapter 7: Power and Temperature Oriented Synthetic Workloads   

Estimating the maximum power and thermal characteristics of a microarchitecture 

is essential for designing the power delivery system, packaging, cooling, and 

power/thermal management schemes for a microprocessor. Typical benchmark suites 

used in performance evaluation do not stress the microarchitecture to the limit, and the 

current practice in industry is to develop artificial benchmarks that are specifically 

written to generate maximum processor (component) activity. However, manually 

developing and tuning such synthetic benchmarks is extremely tedious, requires an 

intimate understanding of the microarchitecture, and is therefore very time-consuming. 

In this chapter we apply the parameterized workload model developed in Chapter 

6 to propose a framework, StressBench, which can be used to automatically construct 

stress benchmarks for measuring the maximum power and temperature characteristics of 

a given microarchitecture design.  The framework uses machine learning algorithms to 

optimize workload characteristics to stress the microarchitecture.  This chapter 

demonstrates that StressBench is very effective in automatically generating stress 

benchmarks in a limited amount of time.   

7.1   THE NEED FOR STRESS BENCHMARKS 

 In recent years, power, energy, and temperature have emerged as first 

class constraints in designing microprocessors.  At one end of the spectrum, namely in 

the domain of hand-held and portable devices, battery life and system cost drive the 

design team to develop power and energy efficient systems.  Also, with the rise of mobile 

computing and pervasive connectivity,  devices are becoming smaller and more mobile, 

making it essential for platforms to consume less energy, reduce the power density, and 

produce less heat.  At the other end of the spectrum, in high performance workstation and 



 118 

server machines, the complexity of designs, shrinking die sizes, and higher clock speeds, 

have rapidly increased the packaging and cooling cost of microprocessors.  Computer 

architecture research has demonstrated that it is important for a microprocessor design 

team to consider power consumption and dissipation limits to adopt a microarchitecture 

that balances performance, power, and operating temperature constraints [Brooks and 

Martonosi, 2001] [Skadron et al., 2003-2] [Gunther et al., 2001].  As a result, along with 

performance, it has become important to measure and analyze the impact of design on 

power, energy, and temperature at all stages in a microprocessor design flow – from 

microarchitecture definition, register-transfer-level (RTL) description, to circuit-level 

implementation.  

 In order to design a temperature- and power-aware microprocessor it is not 

only important to characterize the design’s power consumption, dissipation, and 

operating temperature when executing a typical workload, but also to evaluate its 

maximum power and operating temperature characteristics.  Although a microprocessor 

is generally designed to exhibit optimal power/energy-efficient performance on a typical 

workload, it is also important to analyze the impact of application code sequences that 

could stress the microarchitecture’s power and thermal characteristics to its limit – 

although these code sequences are infrequent and may only occur in a short burst 

[Vishwanathan et al., 2000] [Rajgopal, 2006] [Gowan et al., 1998]. Therefore, having 

knowledge of the worst case maximum power dissipation and operating temperature is 

essential for evaluating dynamic power and temperature management strategies, even 

during the early stages of microarchitecture definition.  Also, large instantaneous power 

dissipation can cause overheating (local hot-spots) that can reduce the lifetime of a chip, 

degrade circuit performance, or even result in chip failure [Skadron et al., 2003-2].  

Having knowledge about the maximum power requirements can therefore also serve as a 



 119 

guideline for understanding the limits and boundaries of a circuit.   Estimating the 

maximum power dissipation and operating temperature of a microarchitecture is also 

vital for designing the thermal package (heat sink, cooling, etc.) for the chip and the 

power supply for the system [Vishwanathan et al., 2000].  As such, characterizing the 

maximum thermal characteristics and power limits is necessary for microarchitects, 

circuit designers, and electrical engineers responsible for thermal packaging and power 

delivery system design.  

 Industry-standard benchmarks that are typically used in performance 

evaluation of computer systems are representative of workloads that will be executed on 

the target system and can be used for estimating the typical power consumption and 

operating temperature of a microprocessor design.  However, these benchmarks do not 

stress the microarchitecture design to its limit and are not particularly useful when 

characterizing the maximum power and thermal requirements of a design.  Standardized 

benchmarking committees such as the Standard Performance Evaluation Consortium 

(SPEC) and EDN Embedded Microprocessor Benchmark Consortium (EEMBC) have 

recognized the need for power and energy oriented benchmarks, and are in the process of 

developing such benchmark suites [Spec, 2007] [Kanter, 2006].  However, these 

benchmarks too will only represent the average power consumption and not the worst 

case maximum power dissipation requirement.  Due the lack of any standardized stress 

benchmarks, current practice in industry is to develop hand-coded synthetic ‘max-power’ 

benchmarks that are specifically written to generate maximum processor activity for a 

particular microarchitecture [Vishwanathan et al., 2000] [Rajgopal, 1996] [Gowan  et al., 

1998] [Bhattacharya and Williamson, 2007].    

 Developing synthetic benchmarks for characterizing maximum power 

consumption is non-trivial because the instruction sequence has to simultaneously 



 120 

generate maximum processor activity.  This requires a very detailed knowledge of the 

microarchitecture design [Gowan et al., 1998] and, given the complexity of modern day 

out-of-order superscalar microprocessors, writing and tuning different flavors of such 

benchmarks for different microarchitectures can take up to several weeks– impacting the 

time-to-market [Bhattacharya and Williamson, 2007].  Furthermore, manually developing 

a similar benchmark for stressing thermal characteristics would be even more difficult, 

time consuming, and error prone.  This is primarily because the operating temperature is 

not only dependent on power, but also on lateral coupling among microarchitecture 

blocks, role of the heat sink, etc. [Skadron et al., 2003-2], and hence tedious to vary by 

manually writing a synthetic sequence of instructions.    

 In this chapter we address the problem of developing stress benchmarks 

by proposing a framework, StressBench, which automates the process of generating stress 

benchmarks for measuring the maximum power and thermal characteristics of a 

microarchitecture.   StressBench synthesizes a benchmark from a specified set of 

parameterized workload characteristics (proposed in Chapter 6), and uses machine 

learning algorithms to explore attribute values for the workload characteristics that stress 

the microarchitecture. The use of StressBench to generate stress benchmarks has four key 

advantages over hand-coded synthetic stress benchmarks: (1) StressBench significantly 

reduces the time required to develop a stress benchmark and therefore enables developing 

a wider spectrum of benchmarks to stress various aspects of the microarchitecture at 

earlier stages in the design cycle, (2) StressBench uses automatic design space 

exploration algorithms that prevent getting stuck in a local minimum (which is very 

likely in a hand-coded test), explores a wider workload space, and increases the 

confidence that the generated stress test indeed characterizes the maximum power or 

operating temperature of a design, (3) StressBench makes it possible to develop stress 



 121 

benchmarks for cases where manually writing a test case is not feasible because the 

interaction of program characteristics with the parameter to be stressed (e.g., hot spots) is 

not very well understood, and (4) StressBench generates stress tests from a list of 

inherent program characteristics and therefore provides insight into the combination of 

workload characteristics that result in worst case power dissipation and thermal 

characteristics.  

7.2 STRESS BENCHMARK GENERATION APPROACH   

 The flow chart in Figure 7.1 illustrates the approach used by StressBench 

to generate benchmarks for stressing a particular microarchitecture design.  StressBench 

iterates over four steps: (1) Workload Synthesis, (2) Simulation, (3) Evaluating quality of 

benchmark, and (4) Workload Space Exploration. 

In the first step, Workload Synthesis, a benchmark is synthesized from a 

parameterized set of fundamental program characteristics.  These workload 

characteristics can be considered as a signature that uniquely describes a stress 

benchmark.  The parameterized nature of these workload characteristics makes it possible 

to alter workload characteristics to vary the stress that a benchmark places on the 

microarchitecture.  In the second step, the stress benchmark is simulated on the 

microprocessor model and the value of the parameter to be stressed, power, energy, or 

temperature, is measured.   As mentioned earlier, a microprocessor design team may want 

to estimate the maximum power and temperature of a microarchitecture right from the 

early design stage exploration to the final circuit level implementation.  The model used 

for simulation can thus be a high-level performance model, an RTL-level Verilog model, 

or a circuit-level implementation.  In the third step, a decision to continue or stop is made 

based on the stress level placed by the benchmark and the simulation budget.  In the 

fourth step, Workload Space Exploration, design space exploration or machine learning 



 122 

algorithms are used to alter the workload characteristics and improve the quality of the 

stress benchmark.   This iterative process continues till the design space exploration 

algorithm converges or a maximum exploration time is reached determined by time 

constraints.  

 

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R6

STORE R3, R10, R20

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R1

BEQ R3, R6, LOOP

SUB R3, R5, R6

STORE R3, R10, R20

DIV R10, R2, R1

………….

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R6

STORE R3, R10, R20

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R1

BEQ R3, R6, LOOP

SUB R3, R5, R6

STORE R3, R10, R20

DIV R10, R2, R1

………….

 

Figure 7.1:  Automatic stress benchmark synthesis flow. 

  In the following section we describe the machine learning 

algorithms that we used for automatically searching the application behavior space for 

finding the characteristics to stress the microarchitecture.    

 



 123 

7.3 AUTOMATIC EXPLORATION OF WORKLOAD ATTRIBUTES  

 The design space comprising of the workload characteristics described in 

the previous section is extremely large and it is impossible to evaluate every design point.  

Therefore, we use automated design space exploration algorithms to efficiently search 

and prune the workload space to converge on a set of workload attributes to maximize an 

objective function (e.g., thermal stress placed on the microarchitecture).  These design 

space exploration algorithms are described below – we will evaluate their efficacy in the 

evaluation section:  

Random Descent (RD) randomly selects one workload characteristic that is 

randomly incremented or decremented.  The change is only accepted if the objective 

function improves.  The algorithm iterates till the objective function no longer improves. 

Steepest Descent (SD) is similar to the random descent algorithm, but instead of 

randomly selecting a dimension it selects the dimension along which the objective 

function improves the most. All neighboring design points thus need to be evaluated in 

each iteration of the algorithm, which likely makes steepest descent slower than random 

descent.  

One Parameter at a Time (OP) algorithm successively optimizes each dimension 

in a fixed order. Once all dimensions have been optimized, the entire process is repeated 

till the objective function no longer improves. 

Tabu Search (TS) algorithm is similar to SD except that it always goes in the 

steepest descent direction irrespective of whether the objective function improves or not – 

this is to avoid getting stuck in a local minimum. A small history of recently visited 

design points (called the tabu list) is maintained and these design points are not accepted 

to prevent circulating around a local minimum.  



 124 

Genetic Search (GS) initially randomly selects a set of design points, called a 

generation, which are subsequently evaluated according to the objective function, also 

called the fitness function.  To form a new population, an offspring, which is a subset of 

these design points, is probabilistically selected by weighting their fitness function, i.e., a 

fitter function is more likely to be selected.  Selection alone cannot introduce new design 

points in the search space, therefore mutation and crossover is performed to build the 

offspring generation. Crossover is performed, with probability pcross, by randomly 

exchanging parts of two selected design points from the current generation.  The mutation 

operator prevents premature convergence to local optima by randomly altering parts of a 

design point, with a small probability pmut.  The generational process is continued until a 

specified termination condition has been reached.  In our experiments we specify the 

termination condition as the point when there is little or no improvement in the objective 

function across successive generations.  We use the genetic search algorithm with pcross 

and pmut set to 0.95 and 0.02, respectively.  

7.4 EXPERIMENTAL SETUP 

7.4.1 Simulation Infrastructure 

 For our StressBench experiments we use the sim-outorder simulator 

from the SimpleScalar Toolset v3.0.   In order to estimate the power 

characteristics of the benchmarks we use an architectural power modeling tool, namely 

Wattch v1.02 [Brooks and Martonosi, 2000] which was shown to provide good 

relative accuracy.  In Wattch we consider an aggressive clock gating mechanism 

(cc3). For measuring the thermal characteristics we use the HotSpot v3.1 

infrastructure [Skadron et al., 2003-2].  We use the hotfloorplanner tool [Skadron 

et al., 2003-2] to develop a layout for the sim-outorder pipeline and use the 



 125 

HotSpot tool to estimate the steady-state operating temperature based on the average 

power.  The synthesized stress tests are compiled using gcc on an Alpha machine and 

are simulated for 10 million dynamic instructions.  This small dynamic instruction count 

serves the needs in this evaluation; however, in case longer-running applications need to 

be considered, e.g., when studying the effect of temperature on (leakage) power 

consumption, the stressmarks can also be executed in a loop for a longer time.  It should 

also be noted that StressBench is agnostic to the underlying simulation model, and can be 

easily ported to a more accurate industry-standard simulators and/or power/temperature 

models.  

7.4.2 Benchmarks 

In order to evaluate the parameterized workload synthesis framework, we 

consider all SPEC CPU2000 benchmarks and select one representative 100M-instruction 

simulation point selected using SimPoint [Sherwood et al., 2002].  We also use traces 

from three commercial workloads – SPECjbb2005 (representative of Java server 

workloads), DBT2 (representative of an OLTP workload), and DBMS (a database 

management system workload).  The commercial workload traces represent 30 million 

instructions once steady-state has been reached (all warehouses have been loaded), and 

were generated using the SIMICS full-system simulator.  

7.4.3 Stress Benchmark Design Space 

 The workload characteristics form a multi-dimensional space (instruction 

mix, ILP, branch predictability, instruction footprint, data footprint, and data strides).  We 

bound the stressmark design space by discretizing and restricting the values along each 

dimension, see Table 7.1.  This discretization does not affect the generality of the 

proposed methodology – its purpose is to keep the evaluation in this chapter tractable.  



 126 

The total design space comprises of 250K points.  We will evaluate the efficacy of the 

genetic search algorithm used in StressMaker against an exhaustive search in this 250K 

design space.  

Table 7.1:  Stress benchmark design space. 

Dimension Num. 
Points 

Values/Ranges 
 
 

 
instruction mix and 
basic block size 

 
10 

 
Combinations where integer, floating-point, load, store, and 
branch instructions are set to low (10%), moderate (40%), and 
high (80%) 
 

 
instruction-level-
parallelism 
 

 
10 
 
 

 
Varying from all instructions with virtually no dependencies 
(dependency distance > 64 instructions) to all instructions are 
dependent on the prior instruction (dependency distance of 1) 

 
data footprint 
 

 
5 

 
50K, 100K, 500K, 2M, and 5M unique data addresses 

 
local stride 
distribution 
 

 
10 

 
Varying from 100% references with stride 0, up to 10% with 
stride 0 and 90% with stride 10. 

 
instruction footprint 
 

 
5 

 
600, 1800, 6000, and 20000 unique instructions 

 
branch predictability 

 
10 

 
Varying from 100% branches with transition rate below 10% to 
equal distribution of transition rate across all 10 transition rate 
categories (0-10%, 10-20%, etc.) 
 

7.4.4 Microarchitecture Configurations 

Table 7.2 summarizes the three different microarchitecture configurations, 

ranging from a modest 2-way configuration representative of an embedded 

microprocessor, to a very aggressive 8-way issue high performance microprocessor.  We 

used Config 2 as the base configuration for our experiments. 

 



 127 

Table 7.2:  Microarchitecture configurations evaluated. 

 Config 1 Config 2 Config 3 

L1 I-cache & D-
cache 
Size/Assoc/Latency 

16 KB/2-way/32 B 
32 KB / 4-way / 1 
cycle 

64 KB / 4-way / 1 cycle 

Fetch, Decode, and 
Issue Width 

2-wide out-of-order 4-wide out-of-order 8-wide out-of-order 

Branch Predictor 2-level  
Combined (2-level & 
bimodal), 4KB 

Combined (2-level & 
bimodal), 4KB 

L2 Unified cache – 
Size/Assoc/Latency 

256KB / 4-way / 10 
cycles 

4MB / 8-way / 10 
cycles 

4MB / 8-way / 10 cycles 

RUU / LSQ size 16 / 8 entries 128 / 64 entries 256 / 128 entries 

Instruction Fetch 
Queue 

8 entries 32 entries 64 entries 

Functional Units 
2 Integer ALU, 1 FP 
Unit  

4 Integer ALU, 2 
Floating Point, 1 FP 
Multiply/Divide, and 2 
Integer 
Multiply/Divide unit 

8 Integer ALU, 2 Integer 
Multiply/Divide,  2 Floating 
Point, 2 FP Multiply/Divide 
units 

Memory Bus Width, 
Access Time 

8B, 40 cycles 8B, 150 cycles 8B, 150 cycles 

7.5 EVALUATION OF STRESSBENCH FRAMEWORK 

We now evaluate the application and usefulness of StressBench by applying the 

methodology to generate various flavors of power and thermal stress benchmarks.  

Specifically, we apply StressBench to automatically construct benchmarks for 

characterizing the maximum power of a microprocessor, creating thermal hotspots, and 

thermal stress patterns. We also compare the characteristics of the stress benchmarks 

across microarchitectures and evaluate the efficacy of various stress benchmark design 

space exploration algorithms.  

7.5.1 Maximum Sustainable Power  

The maximum sustainable power is the maximum average power that can be 

sustained indefinitely over many clock cycles.  Estimating the maximum sustainable 

power is important for the design of the power delivery system and also the packaging 



 128 

requirements for the microprocessor.  We applied the StressBench methodology to 

construct a stress benchmark for characterizing the maximum sustainable power of the 4-

way issue microarchitecture (Config 2) outlined in Table 7.2.   Figure 7.2 shows a plot 

of the value of the best fitness function (maximum power consumption) in each 

generation during the iterative process of stress benchmark synthesis using the genetic 

algorithm.  We terminate the search after 15 generations, requiring a total of 225 

simulations.  The number of generations required before the fitness function can be 

accepted is dependent on the search space and the microarchitecture.  However, our 

experiments on three very different microarchitectures, outlined in Table 7.2, suggest that 

there is little improvement beyond 15 generations and therefore for our experiments we 

terminate the search after 15 generations.  

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Generation

P
o
w

e
r 
(W

a
tt
s
)

 

Figure 7.2:  Convergence characteristics of StressBench.  



 129 

     

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Point in Design Space (Unit: Hundreds)

P
o

w
e
r 

(W
a
tt

s
)

 

Figure 7.3:   Scatter plot showing distribution of power consumption across 250K points 
in the design space.  

This ‘maximum sustainable power’ search process results in a stressmark that has 

a maximum average sustainable power-per-cycle of 48.8 W.  Figure 7.3 shows the results 

of an exhaustive search across all the 250K design points.   A comparison of these results 

shows that the power of the stressmark is within 1% of the maximum power of the design 

point.  This suggests that the StressMaker approach is highly effective in finding a 

stressmark, and also results in a three orders of magnitude speedup compared to an 

exhaustive search.  Automatically generating the stressmark on a 2GHz Pentium Xeon 

processor using a cross compiler for Alpha and sim-outorder performance model, 

typically takes 2.5 hours.  Therefore, we believe StressMaker is an invaluable approach 

for an expert, because it can quickly narrow down a design space, and provide a 

stressmark that can be hand tuned to exercise worst-case behavior.  

 

 

 



 130 

0

5

10

15

20

25

30

re
n

a
m

e

b
p

re
d

w
in

d
o

w

ls
q

re
g

fi
le

ic
a

c
h

e

d
c

a
c

h
e

d
c

a
c

h
e

2

re
s

u
lt

b
u

s

c
lo

c
k

a
lu

fe
tc

h

d
is

p
a

tc
h

is
s

u
e

P
o

w
e

r 
(W

a
tt

s
)

StressBench SPEC CPU / Commercial

e
o

n

S
P

E
C

jb
b

2
0

0
5

g
z

ip

p
e

rl
b

m
k

a
rt g
z

ip

p
e

rl
b

m
k

m
c

f

m
e

s
a

m
e

s
a

g
z

ip

d
b

t2

p
e

rl
b

m
k

a
rt

 

Figure 7.4:   Comparison of power dissipation of different microarchitecture        
units using stress benchmark with the maximum power          
consumption across SPEC CPU2000. 

Figure 7.4 shows the maximum power dissipation of different microarchitecture 

units using the stress benchmark, along with the maximum power dissipation of that unit 

across all SPEC CPU2000 integer and floating-point benchmarks, and commercial 

workloads.  The stressmark exercises all the microarchitecture units more than any of the 

SPEC CPU benchmarks.  It is interesting that other than branch predictor and the fetch 

unit, SPEC CPU2000 benchmarks are more effective in stressing the microarchitecture 

units than commercial workloads.   Especially, the stressmark causes significantly higher 

power dissipation in the instruction window, L1 data cache, clock tree, and the issue 

logic.  

The workload characteristics of this stress benchmark are – (1) Instruction mix of 

40% short latency floating point operations, 40% short latency integer operations, 10% 



 131 

branch instructions, and 10% memory operations (2) Register dependency distance of 

greater than 64 instructions (i.e., very high level of ILP), (3) 80% of branches having a 

transition rate of less than 10% and the remaining 20% branches have a transition rate 

between 10-20% (recall that branches with very low transition rates are highly 

predictable), (4) Data strides having 95% of the references to the same cache line and 5% 

with references to the next cache line, (5) Instruction footprint of 1800 instructions, and 

(6) Data Footprint of 100K bytes.   

 These workload characteristics suggest that the stress benchmark creates a 

scenario where the control flow of the program is highly predictable and hence there are 

no pipeline flushes, the floating-point units are kept busy due to a large percentage of 

floating point operations, the issue logic does not stall due to large dependency distances, 

and the locality of the program is such that the data and instruction cache hit rates are 

extremely high.  The characteristics of this stress benchmark are similar to the hand-

crafted tests [Gowan et al., 1998] [Bhattacharya and Williamson, 200] that are tuned to 

maximize processor activity by fully and continuously utilizing the instruction issue 

logic, all of the execution units, and the major buses.  However, the advantage over 

current practice in building hand-coded max-power benchmarks is that StressBench 

provides an automatic process and does not require an intimate understanding of the 

microarchitecture, resulting in substantial savings in time and effort.  Also, the search 

through a large design space increases confidence in the results. 

7.5.2 Maximum Single-Cycle Power 

 Maximum single-cycle power is defined as the maximum total power 

consumed during one clock cycle, and is important to estimate the maximum 

instantaneous current that can be drawn from the power supply.  This characterization is 



 132 

also important to understand current variability, referred to as the dI/dt problem, which the 

power supply and voltage regulation systems should be able to handle.    

We apply the StressBench framework to automatically construct a stress 

benchmark that maximizes single-cycle power.   The search process results in a 

benchmark that has a maximum single-cycle power dissipation of 72W.  The workload 

characteristics of this benchmark are (1) Instruction mix of 40% long latency operations, 

20% branches, and 40% memory operations, (2) Register dependency distance of greater 

than 64 instructions (i.e., very high level of ILP), (3) Equal distribution of branch 

transition rate across all the 10 categories, (4) 10% of the data references have a local 

stride of 0, 10% a stride of 1, and 80% have a stride of 3 cache lines, (5) Instruction 

footprint of 1800 instructions, and (6) Data footprint of 5M unique address.  These 

characteristics suggest that the benchmark does not yield the best performance due to a 

mix of easy and difficult to predict branches (evenly distributed transition rates), possible 

issue stalls (large percentage of long latency operations), and data cache misses (large 

footprint and strides). Therefore, it is not surprising that the average power consumption 

of this benchmark is only 32W.  However, the overlapping of various events creates a 

condition where all units are simultaneously busy.   

Interestingly, the stress benchmark that maximizes the average sustainable power 

(section 7.5.1) only has a maximum single-cycle power of 59.5W, and cannot be used to 

estimate maximum single-cycle power.  Also, the maximum single-cycle power 

requirement of a SPEC CPU benchmark, mgrid, is only 57W. This demonstrates that 

the sequence of instructions resulting in maximum single-cycle power is very timing 

sensitive (even benchmarks that run for billions of cycles may not probabilistically hit 

upon this condition) and is therefore extremely difficult to manually construct.  



 133 

Prior work [Joseph et al., 2003] has expressed the need for constructing a ‘dI/dt 

stressmark’, and argues that manually developing such a benchmark is extremely difficult 

due to knowledge required about the power, packaging, and timing characteristics of the 

targeted processor.  In order to study the applicability of StressBench to automatically 

develop such a ‘dI/dt stressmark’, we used the framework to generate two sequences of 

200 instructions – one for maximizing single-cycle power and the other for minimizing 

single-cycle power. We then concatenated these two sequences of instructions and 

evaluated its power characteristics.  Our experiments show that the power consumption in 

the benchmark shows a cyclic behavior at a period of 400 instructions - with 72W and 

16W as the maximum and minimum single-cycle power consumption.  Also, it is 

possible to change the frequency of the power oscillations by varying the number of 

instructions of the individual (maximum and single-cycle power) stress tests.  These 

experiments show that it is indeed possible to automatically generate a ‘dI/dt stressmark’, 

which is typically very difficult to hand-craft and tune.  

7.5.3 Comparing Stress Benchmarks Across Microarchitectures 

 We generate stress benchmarks for three different microarchitectures 

described in Table 3 and analyze whether the stress benchmarks are similar or different 

across microarchitectures. The stress benchmarks generated for Config1, Config2, 

and Config3 are called StressBench1, StressBench2, and 

StressBench3, respectively.  We then execute the 3 stress benchmarks on all the three 

configurations.   Figure 7.5 shows the average power consumption of each of the 

benchmarks across all the 3 configurations.  We observe that the stress benchmark 

synthesized for each microarchitecture configuration always results in maximum power 

consumption compared to the other two stress benchmarks, i.e., a stress benchmark 

generated for one microarchitecture does not result in maximum power for another 



 134 

microarchitecture. In fact, a stress benchmark developed for one microarchitecture can 

result in extremely low power consumption on another microarchitecture, e.g., 

StressBench1 on Config3.  

 The three stress benchmarks are similar in that they have highly 

predictable branches, small instruction and data footprints, and very large register 

dependencies. However, their instruction mixes of computational operations are very 

different –  StressBench1 comprises of 80% short latency integer operations,  

StressBench2 comprises of 40% short latency floating point operations, 40% short 

latency integer operations, and StressBench3 has 40% short latency and 40% long 

latency floating-point operations.  This is intuitive because, in order to minimize any 

structural hazards, the instruction mix of the stress benchmark will depend on the number 

of functional units.     

0

10

20

30

40

50

60

70

80

90

100

Configuration 1 Configuration 2 Configuration 3

P
o

w
e
r 

(W
a
tt

s
)

StressBench1 StressBench2 StressBench3

 

Figure 7.5:  Comparison of stress benchmarks across three very different 
microarchitectures. 

 We conclude that the characteristics of benchmarks that cause maximum 

power dissipation vary across microarchitecture designs. Therefore, separate custom 



 135 

stress benchmarks have to be constructed for different microarchitectures.  This further 

motivates the importance of having an automated framework to generate stress 

benchmarks.  

7.5.4 Creating Thermal Hotspots 

Applications can cause localized heating of specific units of a microarchitecture 

design, called hotspots, which can cause permanent chip damage.  Therefore, to study the 

impact of hotspots in different microarchitecture units it is important to design 

benchmarks that can be used to vary the location of a hotspot [Skadron et al., 2003-2].  

We apply StressBench to generate benchmarks that can create hotspots across different 

microarchitecture units on the floorplan.    

0

20

40

60

80

100

120

140

160

fe
tc

h

is
s
u

e

b
p

re
d

ls
q

re
g

fi
le

ic
a

c
h

e

d
c
a

c
h

e

a
lu

m
a

p

L
2

L
2

_
le

ft

L
2

_
ri

g
h

t

T
e
m

p
e
ra

tu
re

 (
d

e
g

 C
)

StressBench SPEC CPU / commercial

g
z
ip

a
rt

S
P

E
C

jb
b
2
0
0
5

m
e
s
a

p
e
rl
b
m

k

g
c
c

e
o
n

m
e
s
a

p
e
rl
b
m

k

d
b
t2

m
c
f

m
c
f

 

Figure 7.6:  Comparison of hotspots generated by stress benchmarks and SPEC CPU2000 

Figure 7.6 compares hotspots generated by StressBench with the hotspots 

generated by SPEC CPU2000 benchmarks.  As compared to the SPEC CPU2000 

benchmarks, the stress benchmarks are especially very effective in creating hotspots in 

the issue, register file, execution, and register remap units.  The stress benchmarks can be 

effectively used for studying the effect of hotspots in different microarchitecture units.  



 136 

7.5.5 Thermal Stress Patterns  

In order to support dynamic thermal management schemes it has become 

important to place on-chip sensors to monitor temperature at different locations on the 

chip. Conceptually, there can be applications that only stress a particular unit that is far 

from a sensor, causing hotspots that may not be visible to the distant sensor causing 

permanent damage to the chip [Lee et al., 2005] [Gunther et al., 2001].   Typically, only a 

few sensors can be placed on a chip.  Therefore, the placement of sensors needs to be 

optimized based on the maximum thermal gradient that can exist between different units 

on the chip.  Hand-crafted tests have been typically used to develop such gradients [Lee 

et al., 2005].  StressBench seems to be a natural way to optimize a complex objective 

function such as the temperature gradient between two microarchitecture units.  We 

selected a set of microarchitecture units and generated stress benchmarks to maximize the 

temperature difference between units that are not adjacent to each other.   Table 4 shows 

the pair of units, maximum temperature gradient created by the automatically generated 

stress benchmark, and the key stress benchmark characteristics.   

  Table 7.3:  Developing thermal stress patterns using StressBench 

Pair of 
Units 

Temperature 
Differential 
(ºC) 

Key characteristics of the stressmarks that are automatically 
synthesized by StressMaker 

L2 & 
Instruction 
Fetch 

44.6  (1) Small data footprint and short local strides that result in high L1 d-cache 
hit-rates with almost no L2 activity, and (2) 80% short latency operations 
with large dependences and highly predictable branches – keeping fetch 
busy without any pipeline stalls. 

L2 & 
Register 
Remap 

48.4  (1) 40% memory operations, large data footprint, and long local strides that 
result in a large percentage of L1 cache misses and stress L2,  and (2) 40% 
short latency memory operations with very large dependency distances that 
put minimal stress on the register remap 

Instruction 
Cache & 
Issue 

60.1  (1) 40% short latency integer operations, 40% short latency floating-point 
operations with very large dependency distances – preventing any structural 
hazards due to dependencies and hence stressing the issue unit. 

L2 & 
Execution 

44.4  (1) No memory operations, so no stress on L2, and (2) 40% short latency 
integer operations and 40% short latency floating-point operations that 
stress the execution unit.  

Branch 41.3  (1) 80% branches with transition rate equally distributed between all 



 137 

Predictor 
& L2 

buckets (0-10% … 90-100%) – a mix of difficult and easy to predict 
branches that stress the branch predictor, and (2) No memory operations 
resulting almost on L2 activity. 

Issue & 
LSQ 

61.0 (1) 80% memory operations with small data footprint and short local strides 
that result in high L1 d-cache activity and hence stress the load store.  

7.5.6 Quality and Time Complexity of Search Algorithms 

So far we have used the genetic search algorithm to explore the workload 

behavior space.  In this section we compare the quality and time complexity of various 

search algorithms described earlier in the chapter.  We implemented each of these 

algorithms in the StressBench framework and used them to generate a stress benchmark 

that causes maximum power dissipation for the 3 configurations described in Table 7.2.  

Figures 7.7 and 7.8 respectively show the time complexity (number of simulations) and 

quality (maximum sustainable power of stress benchmark found) of the search 

algorithms.  

The genetic algorithm requires the maximum number of simulations, but always 

yields the best solution.  On the other hand the random descent algorithm requires the 

least number of simulations, but always yields a suboptimal solution.  The reason is that 

the performance of the random descent algorithm is very sensitive to the starting point 

and it can easily get stuck in local maxima.  Automatically generating benchmark using 

StressBench on a 2GHz Pentium Xeon processor using a cross compiler for Alpha and 

sim-outorder performance model, typically takes 2.5 hours.   

The other algorithms (tabu search, steepest descent, and one parameter at time) 

are able to construct good stress benchmarks for some configurations, but do not generate 

the best solution on the other configurations. Overall, we conclude that the genetic 

algorithm is most effective in finding a stress benchmark, albeit at the cost of a larger 

number of simulations. 



 138 

0

10

20

30

40

50

60

70

80

90

100

Config 1 Config 2 Config 3

P
o
w

e
r 
(W

a
tt
s
)

RD

SD

OP

TS

GA

 

Figure 7.7: Number of simulations required for different search algorithms. 

0

50

100

150

200

250

Config 1 Config 2 Config 3

N
u
m

b
e
r 

o
f 
s
im

u
la

ti
o
n
s

RD

SD

OP

TS

GA

 

Figure 7.8: Comparison of quality of stress benchmark for maximum sustainable power 
constructed using different search algorithms. 

7.6  SUMMARY 

Characterizing the maximum power dissipation and thermal characteristics of a 

microarchitecture is an important problem in industry.  Typically, hand-coded synthetic 

streams of instructions have been used to generate maximum activity in a processor to 

estimate the maximum power dissipation.  However, due to the increase in complexity of 



 139 

microprocessors, and the need to construct synthetic test cases to vary complex 

parameters such as thermal characteristics, it is extremely tedious to manually develop 

and tune stress benchmarks for different microarchitectures.   

In this chapter we presented StressBench, a framework that synthesizes a stress 

benchmark from fundamental program characteristics using machine learning algorithms 

to tune the program characteristics to stress the microarchitecture under study.   We 

showed that StressBench is very effective in constructing stress benchmarks for 

measuring maximum average power dissipation, maximum single-cycle power 

dissipation, and temperature hot spots.  The automated approach to stress benchmark 

synthesis can eliminate the time- consuming complex task of hand-coding a stress 

benchmark, and also increase the confidence in the quality of the stress benchmark.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 140 

Chapter 8: Conclusions and Directions for Future Research 

 

8.1 CONCLUSIONS 

Over the last two decades the advent of  standardized application benchmark 

suites such as SPEC, TPC, EEMBC etc. have streamlined the process of computer 

performance evaluation and benchmarking. The use of benchmarks performance 

evaluation has now become the de jure standard in academic research and industry 

product development.  However, the increase in complexity of computer systems and the 

size of application benchmarks has resulted in prohibitive simulation times.  Moreover, 

due to proliferation in the diversity of software application domains, it is becoming 

increasingly difficult develop, maintain, and upgrade standardized benchmark suites.  

Consequently, there has been a revival of interest in the computer architecture 

community to develop statistical workload models to generate synthetic traces and 

benchmarks.  The primary motivation for prior research was to reduce the simulation to a 

tractable amount of time by automatically generating representative synthetic traces and 

benchmarks.  The objective of this dissertation work was to advance the state-of-the-art 

in benchmark synthesis by increasing the confidence in the use of synthetic workloads, 

increase the representativeness of synthetic workload across different microarchitectures, 

develop the ability to model emerging applications and futuristic workloads, and develop 

temperature and power oriented workloads. Overall, this dissertation improves the 

application of synthetic benchmarks beyond reduction in simulation time.  

The following are the major findings and contributions of this dissertation work to 

the area of performance evaluation and benchmarking:  

 

 



 141 

� Efficacy of Statistical Workload Modeling for Design Space Exploration 
 

We apply the P&B statistical design of experiments technique to evaluate the 

ability of statistical workload modeling for early design space studies.  P&B provides a 

systematic way to evaluate the accuracy and representativeness of statistical workload 

modeling by exposing different processor bottlenecks.  We draw three key inferences 

from this study: 

1) At the very least, synthetic traces stress the same 10 most significant processor 

performance bottlenecks as the original workload.  Since the primary goal of early 

design space studies is to identify the most significant performance bottlenecks, 

we conclude that statistical simulation is indeed a very useful tool.  

2) Statistical simulation has good relative accuracy and can effectively track design 

changes to identify feasible design points in a large design space of aggressive 

microarchitectures. 

3) Our evaluation of four statistical simulation models shows that although a very 

detailed model is needed to achieve a good absolute accuracy in performance 

estimation, a simple model is sufficient to achieve good relative accuracy.  This is 

very attractive early in the design cycle when time and resources for developing 

the simulation infrastructure are limited.  

� Microarchitecture-Independent Workload Modeling 

We show that it is possible to completely characterize the performance of an 

application using microarchitecture-independent workload attributes.  We develop a set 

of workload characteristics that can be used to capture the data locality and control flow 

predictability of a program using microarchitecture-independent characteristics.  These 

set of characteristics can be considered as a signature that uniquely characterize the 



 142 

performance of an application.  We characterize a set of embedded, general-purpose, and 

scientific benchmarks using these characteristics.   

� Distilling the Essence of Proprietary Applications into Miniature Synthetic 

Benchmarks 

We explored a workload synthesis technique that can be used to clone a real-

world proprietary application into a synthetic benchmark clone that can be made 

available to architects and designers.  The synthetic benchmark clone has similar 

performance/power characteristics as the original application but generates a very 

different stream of dynamically executed instructions.  By consequence, the synthetic 

clone does not compromise on the proprietary nature of the application.  In order to 

develop a synthetic clone using pure microarchitecture-independent workload 

characteristics, we develop memory access and branching models to capture the inherent 

data locality and control flow predictability of the program into the synthetic benchmark 

clone.  We developed synthetic benchmark clones for a set of benchmarks from the SPEC 

CPU2000 integer and floating-point, MiBench and MediaBench benchmark suites, and 

showed that the synthetic benchmark clones exhibit good accuracy in tracking design 

changes.   Also, the synthetic benchmark clone runs orders of magnitude faster than the 

original benchmark and significantly reduces simulation time on cycle-accurate 

performance models. 

The technique proposed in this paper will benefit architects and designers to gain 

access to real-world applications, in the form of synthetic benchmark clones, when 

making design decisions.  Moreover, the synthetic benchmark clones will help the 

vendors to make informed purchase decisions, because they would have the ability to 

benchmark a processor using a proxy of their application of interest.   



 143 

� Adapting the Benchmark Generation Approach to Synthesize Scalable 

Benchmarks 

A key result from this dissertation is that it is possible to fully characterize a 

workload by only using a limited number of microarchitecture-independent program 

characteristics, and still maintain good accuracy.  Moreover, since these program 

characteristics are measured at a program level they can be measured more efficiently 

and are amenable to parameterization.  This makes it possible to adapt the benchmark 

generation strategy to develop a parameterized workload model that can synthesize 

scalable benchmarks. We demonstrate various applications of this technique that help in 

studying program characteristics that are typically difficult to vary in standardized 

benchmarks.  Also, the ability to parameterize workloads makes it possible to extract key 

workload characteristics from commercial applications, which are typically very difficult 

to setup in a simulation environment, and model them in a synthetic benchmark.   This 

makes it possible to use commercial workloads in simulation based research and early 

design space performance and power studies.  

� Power and Temperature Oriented Characterization Benchmarks 

We a novel technique, StressBench, that can be used to synthesize a stress 

benchmark from fundamental program characteristics.  The StressBench approach  uses 

machine learning algorithms to tune the program characteristics to stress the 

microarchitecture under study.   We showed that StressBench is very effective in 

constructing stress benchmarks for measuring maximum average power dissipation, 

maximum single-cycle power dissipation, and temperature hot spots.  The automated 

approach to stress benchmark synthesis can eliminate the time- consuming complex task 

of hand-coding a stress benchmark, and also increase the confidence in the quality of the 

stress benchmark.  



 144 

8.2 DIRECTIONS FOR FUTURE RESEARCH 

 
� Multithreaded and Multi-core Workload Synthesis 

 

The improvement of single-thread performance with power and complexity of 

microarchitectures as first class constraints, is reaching a point of diminishing returns.   

The future trend in computer architecture is towards exploiting the coarse-grain 

parallelism and concurrency in workloads.  To take full advantage of this there is a 

consensus towards developing multi-core and multithreaded microprocessors.  The 

design, evaluation, and optimization of multi-core and multithreaded architectures poses 

a daunting challenge to architectures and researchers.  At this time representative 

benchmarks oriented towards performance evaluation of multi-core architectures are 

lacking at this time.  Developing and standardizing such benchmarks is a non-trivial task, 

and are much more complex to develop in comparison to single-threaded benchmarks.  

Synthetic benchmarks would be useful tool to model the behavior of multithreaded 

workloads.  An interesting and challenging direction for future work would be to develop 

approaches to characterize and identify the key performance attributes of multithreaded 

workloads and develop approaches to model them into representative synthetic 

benchmarks.   
 
 

� Portability of Synthetic Benchmarks Across Architectures 
 

The benchmark synthesis approach in this dissertation uses instruction set 

architecture (ISA) specific instructions embedded in C-code.  Therefore, the only way to 

port the synthetic benchmark across different architectures would be to generate a 

separate benchmark for each ISA.  Typically, every microprocessor designer would be 

interested only in one particular architecture and therefore this may not be a severe 



 145 

problem in practice.  However, if the synthetic benchmark clone is to be made truly 

portable across ISAs, it would be important to address this concern.  One possibility to 

address this challenge would be to generate the synthetic benchmark clone in a virtual 

instruction set architecture or an intermediate compiler format that can be consumed by 

compilers for different ISAs.  Another possibility would be binary translating the 

synthetic benchmark clone binary to the ISA of interest.  The key challenge in these 

approaches is to be able to retain the inherent program characteristics of the synthetic 

benchmark across different architectures.  Investigating these approaches would be an 

interesting direction for future research work.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 146 

Bibliography 

 
[Barford and Crovella, 1998]  P. Barford and M. Crovella. Generating Representative 
Web Workloads for Network and Server Performance Evaluation. Proceedings of the 
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 
1998, pp. 151-160.  
 
[Bell et al., 2004]  R. Bell Jr., L. Eeckhout, and L. John. Deconstructing and Improving 
Statistical Simulation in HLS. Workshop on Deconstructing, Duplicating, and 
Debunking, 2004. 
 
[Bell and John, 2005-1] R. Bell Jr. and L. John. Efficient Power Analysis using Synthetic 
Testcases. Proceedings of International Symposium on Workload Characterization, 2005, 
pp. 110-118    
 
[Bell and John, 2005-2]  R. Bell Jr. and L. John. Improved Automatic Test Case 
Synthesis for Performance Model Validation. Proceedings of International Conference 
on Supercomputing, 2005, pp. 111-120.  
 
[Bell and John, 2005-3]  R. Bell Jr. and L. John. The Case for Automatic Synthesis of 
Miniature Benchmarks. Proceedings of Workshop on Modeling of Benchmarks and 
Systems, 2005.  
 
[Bell et al., 2006] R. Bell Jr., R. Bhatia, L. John, J. Stuecheli, R. Thai, J. Griswell, P. Tu, 
L. Capps, and A. Blanchard. Automatic Testcase Synthesis and Performance Model 
Validation for High-Performance PowerPC Processors. Proceedings of the International 
Symposium on Performance Analysis of Systems and Software, 2006, pp. 154-165.  
 
[Bodnarchuk and Bunt, 1991]  R. Bodnarchuk and R. Bunt. A synthetic workload model 
for a distributed system file server. Proceedings of the ACM SIGMETRICS Conference 
on Measurement and Modeling of Computer Systems, 1991, pp. 50-59.  
 
[Bose, 1998] P. Bose. Performance Test Case Generation for Microprocessor.  
Proceedings of the IEEE VLSI Test Symposium Tutorial, 1998. 
 
[Bose and Abraham, 2000] P. Bose and J. Abraham. Performance and Functional  
Verification of Microprocessors. Proceedings of IEEE VLSI Design Conference, 2000,  
pp. 58-93. 
 
[Brooks and Martonosi, 2001] D. Brooks and M. Martonosi. Dynamic Thermal  
Management for High-Performance Microprocessors.  Proceedings of the International  
Symposium on High Performance Computer Architecture, 2001, pp. 171-184. 
 
[Brooks et al., 2003] D. Brooks, V. Tiwari, and M. Martonosi. A framework for  



 147 

architectural level power analysis and optimizations. Proceedings of the Annual 
International Symposium on Computer Architecture, 2000, pp. 83-94. 
 
[Burger and Austin, 1997]  D. Burger and T. Austin. The SimpleScalar Toolset, version 
2.0.  University of Wisconsin-Madison Computer Sciences Department Technical Report 
#1342, 1997. 
 
[Carl and Smith, 1998] R. Carl and J. Smith. Modeling Superscalar Processors via 
Statistical Simulation, Workshop on Performance Analysis and its Impact on Design 
(PAID-98), 1998.  
 
[Chandra et al, 2005] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting Inter-
Thread Cache Contention on a Chip Multi-Processor Architecture. Proceedings of the 
International Symposium on High Performance Computer Architecture. 2005, pp. 340-
351.  
 
[Chen and Patterson, 1994] P. Chen and D. Patterson.  A New Approach to I/O 
Performance Evaluation – Self-Scaling I/O Benchmarks, Predicting I/O Performance.  
ACM Transactions on Computer Systems, 1994, vol. 12(4), pp. 308-339.  
 
[Chilimbi et al., 2001] T. Chilimbi. Efficient representations and abstractions for 
quantifying and exploiting data reference locality. Proceedings of the ACM SIGPLAN 
Conference on Programming Languages Design and Implementation, 2001, pp. 191-202. 
 
[Chou and Roy, 1996] T. Chou and K. Roy.  Accurate power estimation of CMOS  
sequential circuits. IEEE Transactions on VLSI Systems, 1996, vol. 4(3), pp. 369-380. 
 
[Collins et al., 2001] J. Collins, J. Wang, H. Christopher, D. Tullesen, C. Huges, Y. Lee, 
D. Lavery, and J. Shen. Speculative Precomputation: Long-range Prefetching of 
Delinquent Loads. Proceedings of the Annual International Symposium on Computer 
Architecture, 2001, pp. 14-25. 
 
[Conte and Hwu, 1990] Conte T. and Hwu W-M. Benchmark Characterization for 
Experimental System Evaluation. Proceedings of the 1990 Hawaii International 
Conference on System Sciences (HICSS), Architecture Track, 1990, vol. I, pp. 6-16. 
 
[Conte et al., 1996] T. Conte, M. Hirsch, and K. Menezes. Reducing state loss for 
effective trace sampling of superscalar processors. Proceedings of the International 
Conference on Computer Design, 1996, pp. 468-477. 
 
[Curnow and Wichman, 1976] H. Curnow and B. Wichman. A Synthetic Benchmark. 
Computer Journal, 1976, vol. 19(1), pp. 43-49. 
 



 148 

[Denning, 1968] P. Denning. The Working Set Model for Program Behavior. 
Communications of the ACM, 1968, vol 2(5), pp. 323-333. 

 
[Desikan et al., 2001] R. Desikan, D. Burger, and S. Keckler. Measuring Experimental 
Error in Microprocessor Simulation. Proceedings of International Symposium on 
Computer Architecture, 2001, pp. 266-277.  
 
[Eeckhout et al., 2000] L. Eeckhout, K. De Bosschere, and H. Neefs. Performance 
Analysis through Synthetic Trace Generation. Proceedings of the International 
Symposium on Performance Analysis of Systems and Software, 2000, pp. 1-6. 
 
[Eeckhout and Bosschere, 2001] L. Eeckhout and K. De Bosschere. Hybrid Analytical-
Statistical Modeling for Efficiently Exploring Architecture and Workload Design Spaces. 
Proceedings of the International Conference on Parallel Architectures and Compilation 
Techniques, 2001, pp. 25-34. 
 
[Eeckhout et al., 2002] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. 
Workload Design: Selecting Representative Program-Input Pairs. Proceedings of the 
International Conference on Parallel Architectures and Compilation Techniques, 2002, 
pp. 83-92.  
 
[Eeckhout et al., 2003-1]  L. Eeckhout, S. Naussbaum, J.E. Smith, and K. De Bosschere. 
Statistical Simulation: Adding Efficiency to the Computer Designer’s Toolbox. IEEE 
Micro, 2003, vol. 23(5), pp. 26-38. 
 
[Eeckhout et al., 2003-2] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. 
Quantifying the Impact of Input Data Sets on Program Behavior and its Applications. 
Journal of Instruction-Level Parallelism, 2003, vol. 5, pp. 1-33.  
 
[Eeckhout et al., 2004-1] L. Eeckhout and K. De Bosschere. How accurate should early 
design stage power/performance tools be? A case study with statistical simulation. 
Journal of Systems and Software. Elseiver, 2004, vol 73(1), pp 45-62.  
 
[Eeckhout et al., 2004-2]  L. Eeckhout, R. Bell Jr., B. Stougie, K. De Bosschere, and L. 
John. Control Flow Modeling in Statistical Simulation for Accurate and Efficient 
Processor Design Studies. Proceedings of International Symposium on Computer 
Architecture, 2004, pp. 350-361. 
 
[Eeckhout et al., 2005] L. Eeckhout, J. Sampson, B. Calder.  Exploiting 
Microarchitecture Independent Characteristics and Phase Behavior for Reduced 
Benchmark Suite Simulation. Proceedings of the IEEE International Symposium on 
Workload Characterization, 2005, pp. 2-12.  
 



 149 

[Eyerman et al., 2006] S. Eyerman, L. Eeckhout, and K. De Bosschere. Efficient Design 
Space Exploration of High-Performance Embedded Out-of-Order Microprocessors. 
Proceedings of Design, Automation, and Test in Europe, 2006, pp. 351-356.  
 
[Felter and Keller] W. Felter and T. Keller. Power Measurement on the Apple Power  
Mac G5. IBM Technical Report RC23276 (W0407-046). 2004. 
 
[Ferrari, 1984]  D. Ferrari. On the foundations of artifical workload design. Proceedings 
of AMC SIGMETRICS Conference on Measurement and Modeling of Computer Systems, 
1984, pp. 8-14. 
 
[Ganger, 1995] G. Ganger. Generating Representative Synthetic Workloads: An 
Unsolved Problem. Proceedings of Computer Management Group Conference, 1995, pp. 
1263-1269. 
 
[Gowan et al., 1998] M. Gowan, L. Biro, D. Jackson, Power Considerations in the Design  
of the Alpha 21264 Microprocessor. Proceedings of the Design Automation Conference,  
1998, pp. 726-731.  
 
[Genbrugge et al., 2006] D. Genbrugge, L. Eeckhout, and K. De. Bosschere. Accurate  
Memory Data Flow Modeling in Statistical Simulation. Proceedings of the International  
Conference on Supercomputing, 2006, pp. 87-96. 
 
[Genbrugge and Eeckhout, 2007] D. Genbrugge and L. Eeckhout. Statistical Simulation  
of Chip Multiprocessors Running Multi-Program Workloads. Proceedings of the 25

th
  

IEEE International Symposium on Computer Design, 2007, pp. 464-471.  
 
[Gunther et al., 2001] S. Gunther, F. Bins, D. Carmean, and J. Hall. Managing the Impact  
of Increasing Microprocessor Power Consumption. Intel Technology Journal, Q1 2001. 
 

[Hammerstrom and Davidson, 1997] D. Hammerstrom and E. Davidson. Information 
content of CPU memory referencing behavior. Proceedings of International Symposium 
on Computer Architecture, 1997, pp. 184-192. 

[Haungs et al., 2000]  M. Haungs, P. Sallee, and M. Farrens. Branch Transition Rate: A 
New Metric for Improved Branch Classification Analysis. Proceedings of International 
Symposium on High Performance Computer Architecture, 2000, pp. 241-250. 
 
[Henning et al., 2000]  J. Henning. SPEC CPU2000: Measuring CPU Performance in the 
New Millennium. IEEE Computer, vol. 33(7), 2000, pp. 28-35. 
 

[Hoste et al., 2006-1] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L.K. John, and 
K.D. Bosschere. Performance Prediction Based on Inherent Program Similarity. 



 150 

Proceedings of the International Conference on Parallel Architectures and Compilation 
Techniques, 2006, pp. 114-122. 

[Hoste and Eeckhout, 2006] K. Hoste and L. Eeckhout. Comparing Benchmarks Using 
Key Microarchitecture-Independent Characteristics. Proceedings of the IEEE 
International Symposium on Workload Characterization, 2006, pp. 83-92. 

 
[Hsiao et al., 2000] M. Hsiao, E. Rudnick, and J. Patel. Peak power estimation of VLSI  
circuits: New peak power measures. IEEE Transactions on VLSI Systems, 2000, vol.  
8(4), pp. 439-445.  
 
[Hsieh and Pedram, 1998] C. T. Hsieh and M. Pedram. Microprocessor power estimation 
using profile-driven program synthesis. IEEE Transactions on Computer Aided Design of 
Integrated Circuits and Systems, 1998, vol. 17(11), pp. 1080-1089. 

 
[Iyengar et al., 1996]  V. Iyengar, L. Trevillyan, and P. Bose. Representative traces for 
processor models with infinite cache. Proceedings of the International Symposium on 
High Performance Computer Architecture, 1996, pp. 62-73.  
 
[Iyengar and Trevillyan, 1996] V. Iyengar and L. H. Trevillyan. Evaluation and 
generation of reduced traces for benchmarks. Technical Report RC 20610, IBM Research 
Division, T. J. Watson Research Center, Oct. 1996. 
 
[John et al., 1995] L. John, V. Reddy, P. Hulina, and L. Coraor. Program Balance and its 
impact on High Performance RISC Architecture. Proceedings of the International 
Symposium on High Performance Computer Architecture, 1995, pp.370-379. 
 
[John et al., 1998] L. John, P. Vasudevan, and J. Sabarinathan. Workload 
Characterization: Motivation, Goals, and Methodology.  Proceedings of the Workshop on 
Workload Characterization, 1998, pp. 3-14.  
 
[Joseph et al., 2003] R. Joseph, D. Brooks, and M. Martonosi.  Control Techniques to 
eliminate voltage Emergencies in High Performance Processors.  Proceedings of the 
International Symposium on High Performance Computer Architecture, 2003, pp. 79-90.  
 
[Joshi et al., 2006-1]   A. Joshi, J. Yi, R. Bell Jr., L. Eeckhout, L. John, and D. Lilja.  
Evaluating the Efficacy of Statistical Simulation for Design Space Exploration. 
Proceedings of the International Symposium on Performance Analysis of Systems and 
Software, 2006, pp. 70-79. 
 
[Joshi et al., 2006-2] A. Joshi, L. Eeckhout, R. Bell Jr., and L. John.  Performance 
Cloning: A Technique for Disseminating Proprietary Applications as Benchmarks. 
Proceedings of the IEEE International Symposium on Workload Characterization, 2006, 
pp. 105-115.  



 151 

 
[Joshi et al., 2006-3] A. Joshi, A. Phansalkar, L. Eeckhout, and L. John. Measuring 
Program Similarity Using Inherent Program Characteristics. IEEE Transaction on 
Computers, 2006, vol. 55(6), pp. 769-782.  
 
[Joshi et al., 2007-1]  A. Joshi, Y. Luo, and L. John. Applying Statistical Sampling for 
Fast and Efficient Simulation of Commercial Workloads. To appear in IEEE Transaction 
on Computers, 2007.  
 

[Joshi et al., 2007-2] A. Joshi, L. Eeckhout, R. Bell Jr., L. John. Distilling the Essence of 
Proprietary Workloads into Miniature Benchmarks. To appear in Transactions on 
Architecture and Code Optimization, 2007.  
 
[Joshi et al., 2007-3] A. Joshi, L. Eeckhout, and L. John. Exploring the Application 
Behavior Space Using Parameterized Synthetic Benchmarks. Accepted as Poster in ACM 
International Conference on Parallel Architectures and Compilation Techniques, 2007.  
 
[Joshi et al., 2007-4] A. Joshi, L. Eeckhout, L. John, and C. Isen.  Parameterized 
Workload Modeling for Stressing Microarchitectures.  To appear in International 
Symposium on High Performance Computer Architecture, 2008.  
 
[Kanter 2006]  D. Kanter. EEMBC Energizes Benchmarks. Microprocessor Report. July  
2006. 
 
[Keeton and Patterson, 1999] K. Keaton and D. Patterson. Towards a Simplified 
Database Workload for Computer Architecture Evaluations. Proceedings of the IEEE 
Workshop on Workload Characterization, 1999, pp.115-124. 
 
[KleinOsowski and Lilja, 2002]  AJ KleinOsowski and D. Lilja. MinneSPEC: A New 
SPEC Benchmark Workload Simulation-Based Computer Architecture Research. 
Computer Architecture Letters, vol.1, 2002. 
 
[Kurmas et al., 2003]  Z. Kurmas, K. Keeton, and K. Mackenzie. Synthesizing 
Representative I/O Workloads Using Iterative Distillation. Proceedings of International 
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication  
Systems, 2003, pp. 6-15.  
 

[Hoste et al., 2006-1] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L.K. John, and 
K.D. Bosschere. Performance Prediction Based on Inherent Program Similarity. 
Proceedings of the International Conference on Parallel Architectures and Compilation 
Techniques, 2006, pp. 114-122. 

[Hoste and Eeckhout, 2006] K. Hoste and L. Eeckhout. Comparing Benchmarks Using 
Key Microarchitecture-Independent Characteristics. Proceedings of the IEEE 
International Symposium on Workload Characterization, 2006, pp. 83-92. 



 152 

[Lafage and Seznec, 2000] T. Lafage and A. Seznec. Choosing Representative Slices of 
Program Execution for Microarchitecture Simulations: A Preliminary Application to the 
Data Stream. Workload Characterization of emerging computer applications, Kluwer 
Academic Publishers, 2001, pp. 145-163. 

 
[Lee et al., 2005]  K. Lee, K. Skadron, and W. Huang. Analytical Model for Sensor  
Placement on Microprocessors. Proceedings of International Conference on Computer  
Design, 2005, pp. 24-27. 
 
[Lim et al., 2002] C. Lim, W. Daasch, and G. Cai. A thermal-aware superscalar  
microprocessor. Proceedings International Symposium on Quality Electronic Design,  
2002, pp. 517-522. 
 
[Luk et al., 2005] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. 
Wallace, V. Reddi, and K. Hazelwood. PIN: Building Customized Program Analysis 
Tools with Dynamic Instrumentation. Proceedings of the ACM SIGPLAN Conference on 
Programming Language Design and Implementation, 2005, pp.190-200. 
 
[Luo et al., 2005] Y. Luo, A. Joshi, A. Phansalkar, L. John, and J. Ghosh. Analyzing and 
Improving Clustering Based Sampling for Microprocessor Simulation. Proceedings of 
International Symposium on Computer Architecture and High Performance Computing, 
2005, pp. 193-200.  
 
[Najm et al., 1995] F. Najm, S. Goel, and I. Hajj. Power estimation in sequential circuits.   
Proceedings of Design Automation Conference, 1995, pp. 253-259.  
 
[Noonburg and Shen, 1997] D. Noonburg and J. Shen. A Framework for Statistical  
Modeling of Superscalar Processors. Proceedings of the International Symposium on  
High Performance Computer Architecture, 1997, pp. 298-309.  
 
[Noonburg and Shen, 1994] D. Noonburg and J. Shen. Theoretical Modeling of  
Superscalar Processor Performance.  Proceedings of the International Symposium on  
Microarchitecture, 1994, pp. 52-62.  
 
[Nussbaum and Smith, 2001]  S. Nussbaum and J. Smith. Modeling Superscalar 
Processors via Statistical Simulation. Proceedings of International Conference on 
Parallel Architectures and Compilation Techniques, 2001, pp 15-24.  
 
[Oskin et al., 2000]  M. Oskin, F. Chong, M. Farrens. HLS: Combining Statistical and 
Symbolic Simulation to Guide Microprocessor Design. Proceedings of the International 
Symposium on Computer Architecture, 2000, pp. 71-82. 
 
[Qui et al., 1998] Q. Qui, Q.Wu, and M. Pedram.  Maximum Power Estimation Using the  
Limiting Distributions of Extreme Order Statistics. Proceedings of the Design  



 153 

Automation Conference, 1998, pp. 684-689. 
 
[Phansalkar et al., 2005] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John.  Measuring 
Program Similarity – Experiments with SPEC Benchmark Suites. Proceedings of the 
International Symposium on Performance Analysis of Systems and Software, 2005, pp. 
10-20.  
 
[Phansalkar et al., 2007-1] A. Phansalkar, A. Joshi, and L. John. Subsetting the SPEC 
CPU2006 benchmark suite. ACM Computer Architecture News, 2007, vol. 35(1), 2007. 
 
[Phansalkar et al., 2007-2] A. Phansalkar, A. Joshi, and L. John. Analyzing the 
Application Balance and Redundancy in SPEC CPU2006. Proceedings of the 
International Symposium on Computer Architecture, 2007, pp. 412-423, 2007. 
 
[Plackett and Burman, 1946]  R. Plackett and J. Burman. The Design of Optimum 
Multifactorial Experiments. Biometrika, 1946, vol. 33(4), pp. 305-325. 
 
[Ringenberg et al., 2005] J. Ringenberg, C. Pelosi, D. Oekmke, and T. Mudge. Intrinsic 
Checkpointing: A Methodology for Decreasing Simulation Time Through Binary 
Modification.  Proceedings of International Symposium on Performance Analysis of 
Systems and Software, 2005, pp. 78-88.  
 
[Rajgopal, 1996] Challenges in Low-Power Microprocessor Design. Proceedings of the 
International Conference on VLSI Design: VLSI in Mobile Communication, 1996, vol. 
3(6), pp. 329-330.  
 
[Sair et al., 2002] S. Sair, T. Sherwood, and B. Calder. Quantifying Load Stream 
Behavior. Proceedings of the International Symposium on High Performance Computer 
Architecture, 2002, 197-208. 
 
[Sakamoto et al., 2002] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue, and Y. Kimura. 
Reverse Tracer: A software tool for generating realistic performance test programs. 
Proceedings of the International Symposium on High Performance Computer 
Architecture, 2002, pp. 81-91.  
 
[Saveedra and Smith, 1996] R. Saveedra and A. Smith. Analysis of benchmark 
characteristics and benchmark performance prediction. Proceedings of the ACM 
Transactions on Computer Systems, 1996, vol. 14 (4) pp. 344-384. 
 
[Shao et al., 2005] M. Shao, A. Ailamaki, B. Falsafi. DBmbench: Fast and Accurate 
Database Workload Representation on modern microarchitecture. Proceedings of the 
IBM Center for Advanced Studies Conference, 2005.  
 
[Sherwood et al., 2002]  T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 
Automatically characterizing large scale program behavior. Proceedings of the 



 154 

International Conference on Architectural Support for Programming Languages and 
Operating System, 2002, pp. 45-57. 
 
[Skadron et al., 2003-1]  K. Skadron, M. Martonosi, D. August, M. Hill, D. Lilja, and V. 
Pai. Challenges in Computer Architecture Evaluation. IEEE Computer, 2003, vol. 36(8), 
pp. 30-36. 
 
[Skadron et al., 2003-2] K. Skadron, M. Stan, W. Huang, S. Velusamy,  
Sankaranarayanan and D. Tarjan.  Temperature-aware microarchitecture. Proceedings of  
International Symposium on Computer Architecture, 2003, pp. 2-13. 
 
[Sorenson and Flanagan, 2002]  E. S. Sorenson and J. K. Flanagan. Evaluating Synthetic 
Trace Models Using Locality Surfaces. Proceedings of the IEEE International Workshop 
on Workload Characterization, 2002, pp. 23-33. 
 
[Spirn, 1972] J. Spirn and P. Denning. Experiments with Program Locality. The Fall Joint 
Conference, 1972, pp. 611-621.  
 
[Sreenivasan and Kleinman, 1974] K. Sreenivasan and A. Kleinman. On the Construction 
of a Representative Synthetic Workload. Communications of the ACM, 1974, pp. 127-
133. 
 
[Srivastava and Eustace, 1994] A. Srivastava and A. Eustace. ATOM: A system for 
building customized program analysis tools.  Technical Report 94/2, Western Research 
Lab, Compaq, March 1994. 
 
[Stoutchinin et al., 2001] A. Stoutchinin, J. Amaral, G. Gao, J. Dehnert, S. Jain, and A. 
Douillet. Speculative Prefetching of Induction Pointers.  Proceedings of Compiler 
Construction 2001, European Joint Conferences on Theory and Practice of Software, 
2001, pp. 289-303. 
 
[Thiebaut, 1989]  D. Thiebaut. On the Fractal Dimension of Computer Programs and its 
Application to the Prediction of the Cache Miss Ratio. IEEE Transaction on Computers, 
1989, vol. 38(7), pp. 1012-1026. 
 
[Tsui et al., 1995] C. Tsui, J. Monteiro, M. Pedram, A Despain, and B. Lin. Power  
Estimation Methods for Sequential Logical Ciruits.  IEEE Transactions on VLSI Systems,  
1995, vol 3(3), pp. 404-416.  
 
[Vishwanathan et al., 2000] R. Vishwanath, V. Wakharkar, A. Watwe, V. Lebonheur. 
Thermal Performance Challenges from Silicon to Systems.  Intel Technology Journal Q3. 
2000. 
 
[Weicker, 1984]  R. Weicker. Dhrystone: A Synthetic Systems Programming Benchmark.  
Communications of the ACM, 1984, pp. 1013-1030. 



 155 

 
[Weicker, 1990] R. Weicker. Overview of Common Benchmarks.  IEEE Computer, 
1990, vol. 23(12), pp. 65-75. 
 
[Weicker, 1997] R. Weicker.  On the use of SPEC benchmarks in computer 
architecture research.  Computer Architecture News, 1997, vol. 25(1), pp. 19-22. 
 
[Wong and Morris, 1998] W. Wong and R. Morris. Benchmark Synthesis Using the LRU 
Cache Hit Function. IEEE Transactions on Computers, 1998, vol. 37(6), pp. 637-645. 
 
[Wu, 2002] Efficient discovery of regular stride patterns in irregular programs and its use 
in compiler prefetching. Proceedings of the ACM SIGPLAN Conference on Programming 
Language Design and Implementation, 2002, pp. 210-221. 
 
[Wunderlich et al., 2003]  R. Wunderlich, T. Wenish, B. Falsafi, and J. Hoe. SMARTS: 
Accelerating microarchitecture simulation via rigorous statistical sampling. Proceedings 
of the International Symposium on Computer Architecture, 2003, pp. 84-95. 
 
[Yi et al., 2003]  J. Yi, D. Lilja, and D. Hawkins. Improving Computer Architecture 
Simulation Methodology by Adding Statistical Rigor. IEEE Transactions on Computers, 
2003, vol.54(11)  pp. 1360-1373. 
 
[Yi et al., 2005]  J. Yi, S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins. Characterizing 
and Comparing Prevailing Prevailing Simulation Techniques. Proceedings of 
International Symposium on High Performance Computing, 2005, pp. 266-277.   
 
[Yi et al., 2006-1] J. Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja. The Exigency 
of Benchmark and Compiler Drift: Designing Tomorrow’s Processors with Yesterdays 
Tools.  International Conference on Supercomputing, 2006, pp. 75-86. 
 
[Yi et al.,2006-2] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. John.  
Evaluating Benchmark Subsetting Approaches. Proceedings of the IEEE International 
Symposium on Workload Characterization, 2006, pp. 93-104.  
 
[Yi et al., 2006-3] J. Yi, R. Sendag, L. Eeckhout, and L. John. Analyzing the Processor 
Bottlenecks in SPEC CPU2006. Standard Performance Evaluation Corporation Annual 
Workshop, 2006.  
 
[SimPoint, 2007] SimPoint Website. http://www-cse.ucsd.edu/~calder/simpoint/ 
 
[Gcc-Inline, 2007] GCC-INLINE. www.cs.virginia.edu/~clc5q/gcc-inline-asm.pdf 
 
[Bhattacharya & Williamson, 2007] Personal communication with Aparajita 
Bhattacharya (Senior Design Engineer) and David Williamson (Consulting Engineer), 
ARM Inc. 



 156 

[Spec, 2007]  http://www.spec.org/specpower/ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 157 

Vita 

 

Ajay Manohar Joshi was born in Pune, India, on November 25, 1976, as the son 

of Dr. Manohar Vasant Joshi and Mrs. Madhuri Manohar Joshi.  He received his Higher 

Secondary-school Certificate (HSC) from St. Vincent’s Jr. College, Pune, India, Bachelor 

of Engineering (BE) degree in Instrumentation Engineering from University of Pune, 

India, and Master of Science (MS) in Electrical Engineering from The Ohio State 

University, Columbus, Ohio.  Before entering the doctoral program at The University of 

Texas at Austin in September 2003, he worked as a Software Engineer at Tata Infotech, 

India, and Hewlett-Packard, Richardson, Texas.  During the summer of 2004 he was an 

intern at ARM Inc., Austin, and in summer 2005 an intern at International Business 

Machines Corp.  He currently works in the Performance and Benchmarking group at 

ARM Inc., in Austin, Texas. He is a student member of the IEEE and ACM.  

 

 

 

Permanent address: 7300 Rolling Stone Cove 

   Austin, TX 78739 

 

This dissertation was typed by the author. 
 


