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Abstract 

 

This paper studies the cache performance of Java programs in the interpreted and just-in-

time (JIT) modes by analyzing memory reference traces of the SPECjvm98 applications 

with the Latte JVM. Specifically, we study the cache performance of the different 

components of the JVM (class loader, the execution engine and the garbage collector). 

Poor data cache performance in JITs is caused by code installation, and the data write 

miss rate can be as high as 70% in the execution engine. In addition, this code installation 

also causes deterioration in performance of the instruction cache during execution of 

translated code. We also believe that there is considerable interference between data 

accesses of the garbage collector and that of the compiler-translator execution engine of 

the JIT mode. We observe that the miss percentages in the garbage collection phase are of 

the order of 60% for the JIT mode; we believe that interference between data accesses of 

the garbage collector and the JIT execution engine lead to further deterioration of the data 

cache performance wherever the contribution of the garbage collector is significant. We 

observe that an increase in cache sizes does not substantially improve performance in the 

case of data cache writes, which is identified to be the principal performance bottleneck 

in JITs.  
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1. Introduction 

  Java[1] is a widely used programming language due to the machine independent 

nature of bytecodes. In addition to portability, security and ease of development of 

applications have made it very popular with the software community. Since the 

specifications offer a lot of flexibility in the implementation of the JVM, a number of 

techniques have been used to execute bytecodes. The most commonly used modes of 

execution are interpretation, which interprets the bytecodes and just-in-time compilation, 

which dynamically translates bytecodes to native code on the fly. A recent development 

has been the mixed mode execution engine [19], which uses profile based feedback to 

interpret/compile bytecodes. Other possible modes include hardware execution of 

bytecodes [20] and ahead-of-time compilation of bytecodes [21]. This paper will focus on 

the interpreted and JIT modes of execution, which are more widely used by current 

JVMs.  

   The speed of executing programs in modern superscalar architectures is not 

determined solely by the number of instructions executed. A significant amount of the 

execution time can be attributed to inefficient use of the microarchitecture mechanisms 

like caches [2]. Even though there have been major strides in the development of fast 

SRAMS [4] that are used in cache memories, the prevalence of deep superscalar pipelines 

and aggressive techniques to exploit ILP [12] make it imperative that cache misses are 

minimized.  

  Prior studies [10] have established the poor data cache performance of just in time 

compilers compared to interpreters. Instruction cache performance in JITs has also been 

shown to be relatively poor. This work attempts to characterize the cache performance in 

the interpreted and JIT modes by separating the virtual machine into functionally 

disparate components. This enables us to isolate the component responsible for the major 

chunk of these misses.  

  The three distinct phases we examine are the class loader, the execution engine 

(interpreter or JIT compiler) and the garbage collector. A Java application can use two 

types of class loaders: a “bootstrap” class loader and user-defined class loaders. The 
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bootstrap loader loads classes of the Java API and user defined classes in some default 

way, whereas the user-defined class loaders load classes in custom ways over the course 

of program execution. The garbage collector [17] determines whether objects on the heap 

are referenced by the Java application, and makes available the heap space occupied by 

objects that are not referenced. In addition to freeing unreferenced objects, the garbage 

collector also combats heap fragmentation. 

  We repeat our experiment with enhanced cache sizes to examine whether the 

high miss rates exhibited in data writes are primarily a result of capacity misses and could 

be done away using larger caches. The remainder of the paper is organized as follows. 

Section 2 presents the prior research done in this area. Section 3 discusses the 

experimental methodology, including the benchmarks and tools used for the experiments. 

Section 4 discusses in detail the results for the various experiments and analyzes them 

and section 5 offers concluding remarks. 

 

2. Related Work 

  The early works in this area are due to Romer et al. [8], Newhall et al. [7], Hsieh 

[2,13] et al. etc who studied the impact of interpreted Java programs on 

microarchitectural resources such as the cache and the branch predictor using a variety of 

benchmarks. Radhakrishnan et al. [9] analyzed SPECjvm98 benchmarks at the bytecode 

level while running in an interpreted environment and did not find any evidence of poor 

locality in interpreted Java code.   None of these however examined the behavior of Java 

with the JIT mode of execution.  

 There have been quite a few studies looking at the execution characteristics and 

architectural issues involved with running Java in the JIT mode. Radhakrishnan et al. [10] 

investigated the CPU and cache architectural support that would benefit such JVM 

implementations. They concluded that the instruction and data cache performance of Java 

applications are better than compared to that of C/C++ applications, except in the case of 

data cache performance of the JIT mode. Radhakrishnan  [11] provided a quantitative 

characterization of the execution behavior of the SPECjvm98 programs, in interpreted 
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mode and using JIT compilers and obtained similar results to the ones obtained in [10]. 

None of these studies, however, looked at the different components of the JVM though 

Kim et al. [14] and Dieckman et al. [15] did examine the performance of the garbage 

collection phase alone in detail.  

      

3. Methodology  

 

3.1 Benchmarks 

 The SPECjvm98 suite of benchmarks [3] is used to obtain the cache performance 

characteristics of the JVM. This suite contains a number of applications that are either 

real applications or are derived from real applications that are commercially available. 

The SPECjvm98 suite allows users to evaluate performance of the hardware and software 

aspects of the JVM client platform. On the software side, it measures the efficiency of the 

JVM, the compiler/interpreter, and operating system implementations. On the hardware 

side, it includes CPU, cache, memory, and other platform specific features. Table 1 

provides a summary of these benchmarks used for our experiments. 

 

Benchmark Description  

compress A popular LZW compression program. 

jess A Java version of NASA’s popular CLIPS rule-based expert 

systems 

db Data management benchmarking software written by IBM. 

mpegaudio The core algorithm for software that decodes an MPEG-3 

audio stream. 

mtrt A dual-threaded program that ray traces an image file. 

jack A real parser-generator from Sun Microsystems. 
Table 1 Description of the SPEC JVM98 benchmarks used 
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For all benchmarks, SPEC provides three different data sets referred to as s1, s10 and 

s100. Although the input names may suggest so, SPECjvm98 does not scale linearly. 

Both the s1 and s100 data sets were used for the experiments though we will present only 

the results with the s100 data set for clarity. Results for the s1 data set can be obtained 

from [22]. 

 

3.2 The Latte Virtual Machine 

 We used the Latte virtual machine [5] as the target Java Virtual Machine to study 

the cache performance in each of the distinct phases of a JVM. Latte is the result of a 

university collaboration project between Seoul National University (Korea) and IBM. It 

is an open source virtual machine, which was released in Oct 2000 and was developed 

from the Kaffe open source VM and allows for instrumentation and experimentation. Its 

performance has been shown to be comparable to Sun’s JDK 1.3 (HotSpot) VM.  

 Latte boasts of a highly optimized JIT compiler targeted towards RISC 

processors. In addition to classical compiler optimizations like Common Sub-expression 

Elimination (CSE) and redundancy elimination, it also performs object-oriented 

optimizations like dynamic class hierarchy analysis. In addition, it performs efficient 

garbage collection and memory management using a fast mark and sweep algorithm [23]. 

 

3.3 Tools and Platform 

 Our study of cache performance of the Latte JVM is performed on the UltraSparc 

platform running Solaris 2.7 using tracing tools and analyzers. We use the Shade [6] tool 

suite, which provides user-level program tracing abilities for the UltraSparc machines. 

Shade is an instruction set simulator and custom trace generator. Application programs 

are executed and traced under the control of a user-supplied analyzer.  

For our performance measurements, we used a cache simulator based on the 

cachesim5 analyzer provided by the Shade suite of programs. Cachesim models the cache 

hierarchy for the experiments; it allows the user to specify the number of levels in the 

cache hierarchy, the size and organization of each of these and the replacement/write 
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policies associated with them. This analyzer was modified to suit the requirements of our 

measurements and validated to examine the correctness of these changes. Our cache 

simulator provides performance results in terms of hit-miss ratios and does not deal with 

timing issues.  

 

3.4 Instrumentation of the JVM 

 Since the objective is to look at the cache behavior in the different stages of the VM, 

the source code of Latte was instrumented with sentinels that would mark the phases of 

class-loading, interpretation/compilation and garbage collection. The class-loading phase 

includes the loading of API classes that is done before the Java application starts to 

execute method bytecodes. These include the Class class (the base class for all classes in 

the application), the String class (the class that represents all character strings), the 

wrapper classes for primitive data types (Integer, Float, Boolean and so on) etc. We do 

not monitor classes loaded during the course of execution as the structure of the JVM 

code makes it difficult to do so. The garbage collection phase includes all memory 

accesses and allocations in the heap in addition to the actual task of “garbage-collection” 

because this seems to be a more logical classification when it comes to data accesses. We 

use the default initial heap size of 16MB in all our experiments. The execution phase 

consists of the process of bytecode interpretation in case of the interpreter and translation 

of bytecode and installation of native code in the case of JIT compiled mode of 

execution. 

The sentinel code consists of a sequence of native instructions that are easily 

identifiable by our profiling tools. They are manually inserted in the source code of Latte 

in the form of high level constructs. The generation of these sequences has been chosen 

in such a way that these high-level language statements are translated into double word 

store instructions (STD) in the SPARC assembly code whenever they are encountered. 

The values stored as part of the store instructions are unique numbers for a particular 

phase of execution. The beginning of each phase is marked by a sentinel that involves 

storing 3 128-bit numbers. These numbers were chosen in order to reduce the probability 
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of the consecutive occurrence of these 3 numbers, thus avoiding false triggers. The 

occurrence of the sentinel is checked in our analyzer. 

 

3.5 Cache Hierarchies  

 Table 1 lists the cache hierarchies that were chosen for the experiments with the 

first configuration corresponding to the cache hierarchy on the UltraSparc-1 processor 

[16]. The first configuration is used for the detailed per-phase analysis of the Latte JVM 

presented in section 4. 

 
Configuration L1 I-cache L1 D-cache L2-Unified cache 

1. 16K, 32 byte blocks, 

2-way set associative, 

write through, LRU. 

16K, 32 byte blocks and 

16byte sub-blocks 

Direct mapped, write through 

with write-no-allocate 

512K, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

2. 64K, 32 byte blocks, 

2-way set associative, 

write through, LRU. 

64K, 32 byte blocks 

4 way set associative, write 

through with write-no-allocate 

1M, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

3. 256K, 32 byte blocks, 

2-way set associative, 

write through, LRU 

256K, 32 byte blocks 

4-way set associative, write 

through with write-no-allocate 

2M, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

Table 2 Cache Configurations 

 

As mentioned previously, Cachesim5 provides detailed statistics on the references 

and misses at all levels in the cache hierarchy. It is modified to be able to examine the 

entire trace of the benchmarks and classify the particular instruction as a load or a store or 

an ordinary instruction. In addition to the above modification, a flag is set to classify the 

phase of the JVM execution where the instruction was encountered. This flag is set based 

on the sentinel values that have been encountered so far. All this classification 
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information is provided to the cache simulator module. Separate counters are maintained 

for each of the measurements (references, misses etc) in each of the phases.  

 

3.6 Validation 

 The validation of the modified Cachesim5 is central to our experiments. Each of 

the benchmarks was run and the resulting instruction trace provided to the original 

Cachesim5 simulator and the total instruction counts, data accesses and misses were 

noted. The above was done with no instrumentation whatsoever applied to the JVM. The 

same benchmarks were now run and the resulting instruction trace provided to the 

modified Cachesim5 simulator. The statistics obtained in this case were compared to 

those obtained in the previous case, and there was almost exact agreement in the 

numbers. 

 With instrumentation applied to the JVM, we needed to validate the same again. 

The cache statistics computed for each of the phases into which the JVM had been 

divided were added up and compared to the numbers obtained in the previous 2 cases. 

The numbers agreed in all the cases. For the sake of sanity check, the numbers were 

compared to those obtained in [11] and there was close correspondence between the 

numbers obtained in both the studies. 

 

4. Results and Analysis 

This section summarizes the results of this study that characterize the SPECjvm98 

benchmarks in terms of the cache performance in the various phases of the execution of 

the Latte Virtual Machine. Section 4.1 presents results for the instruction cache 

performance in the interpreted and JIT modes of execution. Sections 4.2.1 and 4.2.2 

present the results for the data cache performance in the interpreted and JIT modes of 

execution for reads and writes respectively.  

Section 4.3 presents the effect of increased cache sizes on the data write miss-

rates in the JIT by comparing performance using the 3 different cache configurations. The 



 9

motivation behind these comparisons is to examine whether the poor data cache 

performance in the JIT compiled mode was a result of mere capacity misses.  

 

4.1 Instruction Cache Performance 
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Figure 1 Contribution of garbage collection and execution phases (%) to the total number of instruction 
accesses. (Cache specifications – 16K, 2-way set associative L1 instruction cache with 32 byte blocks.) 
 
 

Figure 1 shows the contribution of the garbage collection and execution phases to 

the total number of instruction accesses. We infer that the overall characteristics of 

instruction cache performance will be almost completely dominated by the execution 

phase in the interpreted mode in all benchmarks, except mtrt. But in the JIT mode 

execution, the garbage collection mode has a significant role to play in all benchmarks, 

except compress and mpegaudio. This is a direct result of the allocation characteristics of 

these two benchmarks [14]. 

For the case of the interpreted execution mode, the actual interpretation 

component constitutes the majority of the dynamic instruction count. It ranges from about 
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143 billion instructions for the compress benchmark to about 25 billion for mtrt [23]. The 

overall instruction miss rate is therefore almost same as for the interpretation phase for 

the JVM execution. On the other hand, there is almost an 80% to 90% decrease in the 

dynamic instruction count when moving from the interpreted mode to the JIT [23]. This 

is because the method bytecodes are translated only once, unlike in the interpreted mode, 

where the interpreter loop has to be executed every time a method is invoked. 

Class loading contributes almost a constant number of instructions to the JVM 

execution in all the benchmarks and its contribution is not very substantial. In fact, the 

statistics for class loading in every benchmark are more or less constant. This is attributed 

to the class-loading phase including only the loading of classes that are required prior to 

the start of execution of the methods. As far as miss-rates go, class-loading accounts for 

merely 0.01% of the total misses in either mode of execution and are hence not shown in 

any of the tables.  

For the interpreted mode, instruction miss rate varies from 0.16% to 1.33% and 

this good instruction locality is because the interpreter is one large switch statement with 

about 220 case labels. But only about 40 distinct bytecodes are accessed 90% of the time 

[9] and thus the entire loop can fit into the instruction cache. The instruction cache 

performance in the JIT compilation is always worse than that in the interpreted mode. 

The reason for this is the fact that the operation of the JIT is for the most part similar to 

that of a compiler and compilers do not have very good instruction locality (for example, 

gcc in the SPEC95 suite [18]). In addition, the code installed by the translator need not be 

contiguously placed in the cache, thus contributing to poorer performance. Exceptions to 

this are the benchmarks with high method reuse, where a small subset of the methods is 

accessed; this considerably diminishes the importance of non-contiguously placed 

translated code. compress (the miss rate decreases from 1.3% to 0.07% as we go from the 

interpreter to the JIT) and mpegaudio (the miss rate decreases from 0.6% to 0.2% as we 

go from the interpreter to the JIT) reflect this behavior. In these 2 benchmarks, there is 

high method reuse and actual execution of the translated code dominates the compilation 

process. 
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Execution Phase Garbage Collection Phase Overall Benchmark 

% Abs. miss  %Total miss % Abs. miss %Total miss % Abs. miss 
1.30 99.46 0.15 0.002 1.30 compress  (int) 

(jit)   0.07 98.85 0.16 1.03 0.07 
1.35 96.48 1.03 3.51 1.33 jess (int) 

(jit) 1.48 85.68 0.68 14.28 1.26 
0.16 99.35 0.10 0.62 0.16 db (int) 

(jit) 0.12 97.70 0.03 2.21 0.11 
0.60 99.99 0.45 0.003 0.60 mpeg (int) 

(jit)  0.18 99.51 0.31 0.48 0.18 
0.47 68.51 0.42 31.40 0.46 mtrt (int) 

(jit) 1.21 54.45 0.51 45.52 0.75 
0.72 97.14 0.89 2.86 0.72 jack (int) 

(jit) 1.31 95.98 0.27 4.00 1.14 
Table 3 Instruction cache performance (% Abs. miss indicates absolute miss rate in a particular phase and 
% Total miss indicates the contribution of that phase to the total number of misses. Cache specifications – 
16K, 2-way set associative L1 instruction cache with 32 byte blocks.) 

 

  In the interpreted mode, garbage collection plays a significant role in the case of 

the mtrt benchmark whereby it contributes about 31% of the total number of misses. But 

the miss rate is very comparable to that incurred in the interpretation phase and hence 

there is no effect on the overall miss rate.  In the JIT mode, this phase shows a lot more 

activity especially with the jess and mtrt benchmarks. From Table 3, it is seen that there 

is more locality seen amongst the instructions in this phase than the 

compilation/execution phase and this contributes in bringing down the overall miss rate 

where its contribution to the total number of misses is substantial. This is evidenced in 

the case of jess (overall miss rate of 1.26% and execution phase miss rate of 1.48%) and 

mtrt (overall miss rate of 0.75% and execution phase miss rate of 1.21%).  

  

4.2 Data Cache Performance  

 Table 4 shows the contribution of each of the phases to the total data cache 

misses. We find that once again the contribution of the class-loading phase is quite 

negligible. The contribution of the garbage collection phase is significant in the 

interpreted mode in all benchmarks save compress and mpegaudio. In the JIT mode of 

execution, the garbage collection phase contributes about 40-70% of the total data misses 
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in some benchmarks. In compress and mpegaudio, the execution phase once again 

renders the other phases inconsequential. 

 
Benchmark Class Loading 

Contribution 
Execution Phase 

Contribution 
Garbage Collection 
Phase Contribution 

Overall Data Cache 
Miss % 

0.001 99.84 0.15 2.98 compress(int) 
(jit) 0.003 98.99 0.98 3.60 

0.003 81.04 18.94 6.11 Jess (int) 
(jit) 0.004 58.77 41.20 24.07 

0.002 94.48 5.50 4.20 Db (int) 
(jit) 0.004 86.33 13.65 19.52 

0.004 99.94 0.05 1.08 Mpeg (int) 
(jit)  0.005 99.63 0.34 11.06 

0.003 31.14 68.86 4.09 Mtrt (int) 
(jit) 0.005 28.16 71.81 21.47 

0.004 84.26 15.72 3.09 Jack (int) 
(jit) 0.007 60.82 39.14 18.87 

Table 4 Contribution of each phase to the Data Cache Misses of the JVM. Cache specifications – 16K, 
direct mapped L1 data cache with 32 byte blocks.) 

 

Read accesses in both modes of execution consist of reading method bytecodes 

and the data required for the execution of these methods. The difference is that, while in 

the JIT mode method bytecodes are read only the first time the method is invoked, in the 

interpreted mode they are read every time the method is invoked. Write accesses in the 

JIT mode are mostly the result of code installation whereas in the interpreted mode, they 

comprise of stack accesses implemented as stores. Data accesses of the benchmarks are 

common to both the execution modes and affect both of them equally. Thus, the 

fundamental difference in the character of read and write accesses in the two modes is the 

motivation behind our decision to study data cache read and write activity separately.  

 

4.2.1 Read Accesses 

Table 5 shows the performance numbers obtained for data cache reads in the 

interpreted and JIT modes of execution. There is a drastic reduction in the number of read 

accesses in the JIT mode. This is a result of the method bytecodes being read only the 

first time the method is invoked, rather than being read every time the method is invoked, 
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as was the case in the interpreted mode. Another reason is the fact that a large percentage 

of operations in the interpreted mode involve accessing the stack, which are implemented 

as loads and stores. On the other hand, these are optimized as register-register operations 

in the JIT execution mode.  

Miss rates for the execution phase increase from an average of 3.5% to as high as 

18% when we move from the interpreted mode of execution to the JIT mode. The reason 

for this is the fact all bytecode read misses that occur are cold misses since they are 

brought into the data cache the very first time the method is invoked. As a result, the 

lowest miss rates will be seen in benchmarks where the actual data required by the 

benchmark program is a large fraction of the total data accesses. This is indeed so in 

compress, which applies the same compression algorithm on a large amount of data (miss 

rate of 8.78% in JIT and 2.03% in the interpreter) and mpegaudio, where large MPEG-3 

audio streams are decoded using the same algorithm (miss rate of 5.75% in JIT and 

0.94% in interpreter).  

 One of the notable points is the fact that there is a very high miss rate seen in the 

case of the data reads in the garbage collection phase for both modes of execution. The 

influence of the garbage collection phase is not felt in the compress and mpegaudio 

benchmarks where it contributes less than 0.4% of the total misses in either mode. We 

observe that in most of the other cases, the garbage collection phase tends to increase the 

overall miss rate. Most of the objects referenced in Java programs are short-lived [14] 

and in case of benchmarks like jess and jack, they are less than 32K in size. Yet, the miss 

rates in the garbage collection phase for jess (about 15% in the interpreted mode and 13% 

in the JIT mode) and jack (about 8% in the interpreted mode and JIT modes) are high. 

This leads us to believe that there are frequent conflict and capacity misses between the 

data accessed by the garbage collector (data structures and objects on the heap) and the 

data for the execution phase (method bytecodes for the interpreter and predominantly 

translated code for the JIT mode).  

The problem is more serious in the JIT where the size of the translated code is 

very large; it has the potential to cause the net data cache performance to deteriorate 
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when the garbage collection phase’s contribution is substantial. This behavior is 

profoundly expressed in mtrt (the overall miss rate is 4.23% compared to the miss rate of 

4.09% for the execution phase) and jess (the overall miss rate is 5.08% compared to the 

miss rate of 3.72% for the execution phase).  

 
Execution Phase Garbage Collection Phase Overall Benchmark 

% Abs. miss  %Total miss % Abs. miss %Total miss % Abs. miss 
2.03 99.94 16.14 0.05 2.03 Compress (int) 

(jit)   8.78 99.62 12.99 0.36 8.79 
4.92 95.26 14.74 4.73 5.08 Jess (int) 

(jit) 10.92 82.30 12.74 17.68 11.19 
3.67 98.06 19.39 0.02 3.72 Db (int) 

(jit) 18.83 95.94 18.76 4.04 18.82 
0.94 99.98 3.88 0.01 0.94 Mpeg (int) 

(jit)  5.75 99.75 6.66 0.21 5.75 
4.09 33.55 4.31 66.44 4.23 Mtrt (int) 

(jit) 13.83 33.18 17.04 66.79 15.84 
2.68 97.89 8.24 2.09 2.72 Jack (int) 

(jit) 9.48 90.03 7.86 9.91 9.29 
Table 5 Data cache (reads) performance (% Abs. miss indicates absolute miss rate in a particular phase and 
% Total miss indicates the contribution of that phase to the total number of misses. Cache specifications – 
16K, direct mapped L1 data cache with 32 byte blocks.) 
 

4.2.2 Write Accesses 

 Table 6 shows the results for the write accesses seen with the interpreted and JIT 

modes of execution. In the interpreted mode, overall miss rates range from 1.51% for 

mpegaudio to 9.53% for the case of jess. In the JIT mode, we observe the effects of 

installation of native code, which leads to the phenomenon of double-caching. When the 

JIT compiler translates method bytecodes into native code for the very first time, it has to 

incur compulsory misses when the code is installed in the data cache. In addition, 

compulsory misses will be incurred when the native code is brought into the instruction 

cache for execution. These two operations together constitute double-caching. Write 

misses are also seen when the method bytecodes are read into the data cache on 

invocation of the method for the very first time but this is not as profound as in the case 

of code installation because each bytecode translates into 25 native instructions on an 

average [10].  
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 In terms of actual results, we observe that the miss rates in the execution phase of 

the JIT mode range from 12.5% for db to about 69.8% for jess. A direct result of the 

installation of native code is that more data read misses are seen in both the execution and 

garbage collection phases due to conflict with this installed code (this was examined in 

4.1). Also, we noted the poorer performance of the instruction cache in the JIT mode 

when compared to the interpreted mode in 4.2. Double-caching thus results in the overall 

poor performance of JIT compilers, which renders them less effective under memory 

constraints even though the speedup over the interpreted mode is appreciable. 

An examination of the garbage-collection phase miss rates in both the modes 

reveals them to be extremely high (ranging from 50% to 74%) in all the benchmarks save 

mtrt, where the miss rate is about 4% for the interpreted mode and 39% for the JIT mode. 

This has an adverse effect on the overall miss rate of the benchmark; this is seen in the 

case of jess (overall miss rate of 9% compared to 5% in the execution phase for the 

interpreted mode) and jack (overall miss rate of 48% compared to 39% in the execution 

phase in the JIT mode). Most of the data writes in this phase are due to allocation of 

objects. As the heap size grows during program execution, more and more of the 

allocations tend to be cold misses resulting in high miss rates. On the other hand, if the 

heap size were to be small, the garbage collector would be invoked more frequently, 

leading to more interference between the installed native code and the heap objects in the 

JIT mode [14]. As a result, the initial heap size chosen for a Java program would need to 

be highly program dependent. 

Another reason for the high miss rates in the garbage collection phase is the object 

allocation behavior of our benchmarks. For example, compress executes in loops 

whereby the lifetimes of objects are less than the duration of a loop and jess and jack 

have very short object lifetimes [14], thus leading to frequent allocation. This frequent 

allocation leads to more interference between the phases and poorer cache performance. 
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Execution Phase Garbage Collection Phase Overall Benchmark 

% Abs. miss  %Total miss % Abs. miss %Total miss % Abs. miss 
6.18 99.73 74.56 0.26 6.19 compress (int) 

(jit)   19.61 97.77 67.37 2.20 19.92 
5.68 55.81 65.32 44.17 9.53 jess (int) 

(jit) 69.86 45.72 63.88 54.26 66.48 
5.18 86.36 60.59 13.63 5.92 db (int) 

(jit) 12.54 40.34 59.59 59.61 59.61 
1.51 99.85 49.89 0.14 1.51 Mpeg (int) 

(jit)  31.91 99.54 50.04 0.44 31.95 
2.44 22.51 4.27 77.47 3.66 mtrt (int) 

(jit) 39.31 21.85 38.69 78.12 38.82 
2.34 54.90 57.70 44.96 4.12 Jack (int) 

(jit) 39.21 43.56 58.99 56.42 48.35 
Table 6 Data cache (writes) performance (% Abs. miss indicates absolute miss rate in a particular phase and 
% Total miss indicates the contribution of that phase to the total number of misses. Cache specifications – 
16K, direct mapped L1 data cache with 32 byte blocks.) 
 

4.4 Cache Performance with Increased Cache Sizes 

 We experimented with larger cache sizes to examine if the unacceptably poor data 

cache performance in the JIT compiled mode of the Latte VM was a result of mere 

capacity misses. We examine only the miss rates for the execution and garbage collection 

phases in this section, since the contribution of the class loader phase is not substantial.  

 Referring to Figure 2, we find that the reduction in miss rate in the execution 

phase is not very substantial. The miss rates still range from 14.8% in the case of 

compress (19.6% in configuration 1 and 17.7% in configuration 2) to 55.3% in the case 

of jess (69.8% in the configuration 1 and 57.6% in configuration 2). This implies that 

however much we may increase the size of the data cache, we are not able to recover 

from the performance penalty imposed by the compulsory misses in the execution phase 

(installation of translated code). 
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Figure 2 Data Cache Writes- Miss Rates for Execution Phase of the JIT Mode. (In config. 1, the L1 data 
cache is 16K, direct mapped and has 32-byte block size. In config. 2, the L1 data cache is 64K, 4-way set 
associative and has 32-byte block size. In config. 3, the L1 data cache is 256K, 4-way set associative and 
has 32-byte block size.) 
 
 In the garbage collection phase (figure 3), the performance is far worse. jess 

(where the garbage collector executes a number of data writes) has a miss rate of 57.9% 

in configuration 3) down from a miss rate of 63.9% in configuration 1), which is still 

significantly high. This trend is seen in all the benchmarks, though the miss rates are 

slightly lower than the values seen for db, ranging from 30% (mtrt) to 54% (db). Again, 

we see that larger caches are not the solution to offset the inherent poor performance seen 

in JVMs due to garbage collectors and their interaction with the execution phase. 
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Figure 3 Data Cache Writes - Miss Rates in Garbage Collection Phase of the JIT mode. (In config. 1, the 
L1 data cache is 16K, direct mapped and has 32-byte block size. In config. 2, the L1 data cache is 64K, 4-
way set associative and has 32-byte block size. In config. 3, the L1 data cache is 256K, 4-way set 
associative and has 32-byte block size.) 
 
  

5.Conclusion 

 At the heart of Java technology lies the Java virtual machine. The design of 

efficient JVM implementations on diverse hardware platforms is critical to the success of 

Java technology. An efficient JVM involves addressing issues in compilation technology, 

software design and hardware-software interaction. 

 This study has focused on understanding the cache performance of the JVM as a 

whole and the contribution of its main functional components, namely the class loader, 

the execution engine and the garbage collector, to this overall behavior. This was done 
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for the most common implementations of the JVM – the JIT and the interpreter. The 

conclusions of the paper are as follows: 

• The JIT mode of execution of bytecodes results in a large reduction in the number 

of native instructions executed but the price to be paid is in the form of poor cache 

performance. This is reflected in instruction caches as well as data read and data 

write operations. 

• The instruction cache performance in the JIT mode is worse than that in the 

interpreted mode. This is to some extent a result of the poor instruction locality 

inherent in compiler applications and the nature of Java methods, which result in 

non-contiguous pieces of native code. But the major contribution seems to be 

from compulsory misses incurred when the translated code is brought into the 

instruction cache. 

• The garbage collector demonstrates good instruction locality but its performance 

deteriorates in the JIT mode of execution due to conflict misses with the 

translated code. This behavior is carried to data reads too, where there appears to 

be considerable interference between the garbage collector’s data structures and 

the objects on the one hand and the translated code on the other hand. 

• Data writes exhibit extremely poor performance in JIT modes of execution and 

the miss rates are on an average 38% for the s100 data sets. Poor data cache 

performance is the result of compulsory misses resulting from the installation of 

translated code. 

•  The garbage collector also performs very poorly in the JIT mode and results in 

further deterioration of data cache performance when its contribution to data 

accesses is substantial. Previous works have shown that the optimal heap size for 

Java programs is highly dependent on their allocation characteristics and a non-

optimal heap size leads to poor data cache performance. Additionally, we feel that 

interference between heap objects and the data accesses of the execution phase 

also contributes to poorer data cache performance. 



 20

• With increased cache sizes, a significant reduction is not seen with data cache 

writes that have been evidenced to be the performance bottlenecks. The average 

miss rate over all the benchmarks is still about 30%, an improvement of 8% over 

the original cache hierarchy configuration and this provides substantial evidence 

to state that the data cache write misses are not merely the result of capacity 

misses. 
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