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Java is a widely used programming language due to the portability and machine 

independent nature of bytecodes. Considering the fact that we have quite a few 

options available in the execution of Java bytecodes, it is very important to have a 

clear understanding of the runtime performance aspects in each of the modes. This 

work attempts to characterize the cache performance of the interpreted, JIT and 

mixed modes. This study delves deep into the reasons for poor data cache 

performance in JITs by separating the virtual machine into functionally disparate 

components and studying cache performance in each of the components. The JIT 

mode of execution of bytecodes results in a large reduction in the number of native 

instructions executed but the price to be paid is in the form of poor cache 

performance. The instruction cache performance in the JIT compilation is always 

worse than that in the interpreted mode. Data writes exhibit extremely poor 

performance in JIT modes of execution and the miss rates are on an average 38%. 

Intelligent translation of Java methods implemented by dynamic profiling in mixed-

mode execution engines like HotSpot does not change the overall cache performance 

of the JVM. We hope that this study serves as a pointer to optimizing specific 
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sections of the code in the JVM. Our results indicate that the code translation routines 

of the JIT are good candidates for optimization. We also hope that it would be a guide 

for architectural enhancements that can mitigate the effect of poor cache performance. 

An example of such an enhancement could be in the form of directly generating code 

into an instruction cache that accommodates write operations.  
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1. Introduction 

 

  Java is a widely used programming language due to the portability and 

machine independent nature of bytecodes. It is widely recognized as a language for 

applications deployed over computer networks. In addition to portability, security and 

ease of development of applications has made it very popular with the software 

community. Initially, its success was related to the growth of the Internet but now 

Java technology is expanding in wider areas, such as real-time embedded systems and 

day-to-day computing.  

 

1.1 The Java Virtual Machine 

  Java’s architecture arises from [20] four distinct but interrelated technologies: 

• The Java programming language 

• The Java class file format 

• The Java API 

• The Java virtual machine 

 When a Java program is run, all these technologies come into play. Source 

files written in Java are compiled into class files and run on a Java virtual machine. 

System resources like I/O are accessed inside the program by calling methods in the 

classes that implement the Java API.  A pictorial depiction of this relationship is 

shown in Figure 1.1. 
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 Together the Java virtual machine and the Java API form a “platform “ for 

which all Java programs are compiled. Java programs can run on many different 

kinds of computers, because the Java platform is itself implemented in software. At 

the heart of Java’s philosophy is the Java virtual machine, which supports all the three 

prongs of its network-oriented architecture – platform independence, security and 

network mobility. 

 

 

Figure 1.1 The Java Programming Environment 

 

  Together the Java virtual machine and the Java API form a “platform “ for 

which all Java programs are compiled. Java programs can run on many different 

kinds of computers, because the Java platform is itself implemented in software. At 
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the heart of Java’s philosophy is the Java virtual machine, which supports all the three 

prongs of its network-oriented architecture – platform independence, security and 

network mobility.  

  The Java virtual machine (JVM) is an abstract computer. Its specification 

defines certain features every JVM must have but leaves many choices to the 

designers of each implementation. For example, although all JVMs must be able to 

execute Java bytecodes, they may use any technique to execute them. Also, the 

specification is flexible enough to enable a JVM to be implemented either completely 

in software – or to varying degrees in hardware. This flexibility enables a JVM to be 

implemented on a wide variety of computers and devices.  

 

 

Figure 1.2 The Role of the Class Loader in the JVM 
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1.1.1 Class Loader Architecture 

  The class-loader architecture plays an important role in both security and 

network mobility. Figure 1.2 depicts the role of the class loader in the execution of 

Java code. The JVM has a flexible class loader architecture that enables a Java 

application to load classes in custom ways; the class loader is actually a subsystem 

that involves many class loaders. A Java application can use 2 types of class loaders: 

a “bootstrap” class loader and user-defined class loaders. The bootstrap loader is part 

of the implementation of the JVM and loads classes of the Java API and user defined 

classes in some default way. At run-rime, a Java application can install user-defined 

class loaders that load classes in custom ways, such as by downloading class files 

across a network. These user-defined class loaders are written in Java, compiled into 

class files, loaded into the virtual machine and instantiated just like any other object.  

  Because of user-defined class loaders, it is not necessary to know all classes 

that may ultimately take part in a Java application at compile time itself. Some of the 

API classes need to be loaded before the application can start to execute. These 

include the Class class (the base class for all classes in the application), the String 

class (the class that represents all character strings), the wrapper classes for primitive 

data types (Integer, Float, Boolean and so on) etc.  

  Not needing to know beforehand the classes that would be required by the 

application is an important feature of Java, and is called dynamic class loading. As we 

will examine in later, some implementations of the JVM cannot provide this feature. 

For each class it loads, the JVM keeps track of the class loader used to load this class. 
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When a loaded class refers to another class, the virtual machine loads the referenced 

class from the same class loader that originally loaded the referencing class. Thus, the 

referenced class and the referencing class are dynamically linked.   

 

1.1.2 Java Execution Modes 

  A JVM’s main job is to load class files and execute the bytecodes they 

contain. The class loader loads only those files that are actually needed by the running 

program and the bytecodes corresponding to these classes are executed in the 

execution engine.  Since the specifications [1] offer a lot of flexibility in the 

implementation of the JVM, a number of techniques have been used to execute 

bytecodes. The most commonly used modes of execution are interpretation, which 

interprets the bytecodes and just-in-time compilation, which dynamically translates 

bytecodes to native code on the fly. A recent development has been the mixed mode 

execution engine, which uses profile based feedback to interpret/compile bytecodes. 

Other possible modes include hardware execution and ahead-of-time compilation of 

bytecodes. Figure 1.3 depicts the various execution modes. We examine the pros and 

cons associated with each of them. 

 

1.1.2.1 Interpretation 

  The traditional mode of execution has been interpretation (Figure 1.4) of the 

bytecodes whereby an interpreter decodes and executes the bytecodes using a 

software loop. This emulation of the virtual machine is exceedingly slow because the 
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fetch and decode functionalities of normal program execution (reading and updating 

program counters, decoding the instruction, transferring control to activities that 

correspond to the opcode of the decoded instruction etc) are performed in software. 

Thus, performance [8] of interpreted Java is generally deemed acceptable for small 

applets but not for any sizeable application.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Execution Modes for Java Bytecodes. 

1.1.2.2 Offline Compilation 
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are executed, similar to traditional C/C++ programs. A key advantage of offline 

analysis is the ability to perform complete flow analysis. This analysis directly 

enables a number of critical optimizations, as is done in traditional compilers for 

C/C++ applications. This leads to more efficient execution but suffers from the 
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drawback of not adhering to the write-once read-anywhere (WORA) philosophy of 

Java. It is not always possible to support the concept of dynamic class loading though 

there are some implementations that claim to fully implement dynamic class loading. 

As a result, this method has been confined to delivering high performance on certain 

types of specialized server systems such as massively distributed servers and high 

availability systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 The Interpreted Mode of Execution 
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1.1.2.3 JIT Compilation 

The most commonly used mode of execution [16] is just in-time compilation 

(JIT), which compiles bytecodes on the fly and runs many times faster than an 

interpreter. It makes a noticeable difference when running an interactive application. 

Although it falls short of the quality and speed of compiled code, it greatly extends 

Java’s applicability. The JIT compiler (Figure 1.5) will have better performance than 

the interpreter only when the there is large reuse of methods and suffers from poor 

data cache performance. In short, the reason for poor data cache performance is the 

installation of compiled bytecodes. This will be examined in detail over the course of 

Chapter 4. There has been a quantum improvement in the performance of JITs over 

the years due to the use of innovative dynamic compilation techniques. 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 The JIT Mode of Execution 
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1.1.2.4 Hardware Execution  

Yet another technique suggested to improve the performance of Java 

programs has been to use a hardware accelerator or coprocessor [22] that works in 

conjunction with a microprocessor. Essentially, the effort is to bridge the semantic 

gap that exists between the bytecodes and the native instructions. Java processors like 

Sun Microsystems’ Java cores and JEM are low-cost hardware engines optimized to 

directly execute Java code.  

 

 

Figure 1.6 Mixed-mode Execution 

1.1.2.5 Mixed-mode Execution 

 The latest and most promising mode of execution is the mixed-mode 

execution technique (Figure 1.6) epitomized by Sun Microsystems’ HotSpot 

technology [4] and IBM’s Jalapeno [17]. This system uses online profiling [18] to 

identify and compile a performance critical subset of the Java methods, while 
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interpreting the rest. Online profiling allows the compiler to spend more time on 

optimizing the frequently used methods. On the other hand, the policy of translating a 

method as soon as it is encountered in a JIT, leads to precious time being wasted in 

optimizing rarely used methods, thus resulting in significant increase in execution 

time [15].  Our results show that the mixed-mode execution engine still suffers from 

the performance issues that plague the JIT. 

 

1.1.3 The Garbage Collector 

  When looking at the Java virtual machine, it is also important to look at the 

garbage collector, which plays a significant role in affecting the performance of the 

JVM as a whole. The garbage collector [1] determines whether objects on the heap 

are referenced by the Java application, and makes available the heap space occupied 

by objects that are not referenced, thus making this space available for allocating new 

objects. In addition to freeing unreferenced objects, the garbage collector also 

combats heap fragmentation. Heap fragmentation occurs during the normal course of 

execution of the program when new objects are allocated, and unreferenced objects 

are freed so that free portions of heap memory are left in-between portions occupied 

by live objects.  

  Garbage collection relieves the programmer of the burden of freeing allocated 

memory. The responsibility of de-allocating objects is complicated, and leaving it in 

the hands of the user can lead to memory leaks and an increase in software-

development time.  It also helps in ensuring the program integrity by not allowing 
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users to accidentally or purposely crash the JVM by incorrectly freeing memory. A 

potential disadvantage of a garbage-collected heap is that it adds an execution 

overhead that affects the program performance. The garbage collector has to keep 

track of objects being referenced by the executing program and finalize and free 

unreferenced objects on the fly. Thus, the execution of the garbage collector falls in 

the critical path of program execution and tends to increase the execution time. 

Having to move data structures and objects about the heap tends to pollute the data 

caches as is seen in our results. 

 

1.2 Objective of Research 

        Considering the fact that we have quite a few options available in the 

execution of Java bytecodes, it is very important to have a clear understanding of the 

runtime performance aspects in each of the modes. Performance analysis has become 

one of the critical means of designing well-balanced, efficient processor and system 

organizations. In particular, the importance of evaluating memory sub-system 

performance cannot be understated. The speed of executing programs in modern 

superscalar architectures is not determined solely by the number of instructions 

executed. A significant amount of the execution time can be attributed to inefficient 

use of the microarchitecture mechanisms like caches [2]. Even though there have 

been major strides in the development of fast SRAMS [23] that are used in cache 

memories, the prevalence of deep superscalar pipelines and aggressive techniques to 

exploit ILP [24] make it imperative that cache misses are minimized.  



 12

  This work attempts to characterize the cache performance of the interpreted, 

JIT and mixed modes. Prior studies [10] have established the poor data cache 

performance of just in time compilers compared to interpreters. Instruction cache 

performance in JITs has also been shown to be relatively poor. This study delves deep 

into the reasons for poor data cache performance in JITs by separating the virtual 

machine into functionally disparate components and isolating the component 

responsible for the major chunk of these misses. More specifically, for our 

experiments we use the open-source Latte JVM [5] and instrument it to provide 

detailed cache performance statistics for the different phases of execution of the JVM. 

The 3 distinct phases we examine are the class loader, the execution engine (it could 

be the interpreter or the JIT compiler) and the garbage collector. We also repeat our 

experiments with enhanced cache sizes to see whether our observations are modified 

with larger caches, which are seen primarily in servers and large computing systems. 

In addition to the above, we also study the overall cache performance of the HotSpot 

Server JVM to study if there are any improvements in performance obtained with 

mixed-mode execution systems. 

  It is seen that the long speculated theory [10] about poor data cache 

performance in JITs being caused by compulsory misses incurred during code 

installation are quite true, and the miss rate can be as high as 70% in the execution 

engine. In addition, code installation also causes deterioration in performance of the 

instruction cache during execution of translated code. Also, there is considerable 

interference between data accesses of the garbage collector and the compiler-
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translator execution engine of the JIT compiled mode. This interference between data 

accesses of the garbage collector and the JIT execution engine leads to further 

deterioration of the data cache performance wherever the contribution of the garbage 

collector is significant, thus resulting in miss percentages in the garbage collection 

phase are of the order of 60%.  We observed that an increase in cache sizes provides a 

performance improvement of 47-83% in the case of data cache reads and about 70% 

for the instruction cache. The trend is not followed in the case of data cache writes, 

where the improvement is hardly noticeable. We also find that with the mixed-mode 

execution style of HotSpot, our problems persist and in some cases, there is 

deterioration in performance due to alternating between the 2 modes of execution. 

 

1.3 Outline of Report 

  The remainder of the report is organized as follows. Chapter 2 presents the 

prior research done in this area. Chapter 3 discusses the experimental methodology, 

including the benchmarks, JVMs and tools used for the experiments. Chapter 4 

discusses in detail the results for the various data sets and JVMs and analyzes them 

and chapter 5 offers concluding remarks. 
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2.Background and Motivation 

 

2.1 Previous Research 

Due to the promise of Java’s write-once run-anywhere capability for Internet 

applications, there has been a good amount of research towards analyzing the 

performance of Java in its various modes of execution. Earlier studies focused on the 

interpreted mode, and one of the first works in this area is due to Romer [8] who 

measured the MIPSI, Java, Perl and Tcl interpreters running an array of micro and 

macro benchmarks on the DEC Alpha platform. They concluded that interpreter 

performance is primarily a function of the interpreter itself and is relatively 

independent of the application being interpreted. Our experiments will focus only on 

the Specjvm 98 benchmarks [3] only and will examine cache performance in detail in 

the components of the interpreter rather than just looking at it as a whole.   

 Newhall and Miller [7] developed a tool based on a performance measurement 

model that explicitly represents the interaction between the application and the 

interpreter. This tool measures the performance of interpreted Java applications and is 

shown to help application developers tune their code to improve performance. 

Radhakrishnan et al. [9] analyzed Java applications at the bytecode level while 

running in an interpreted environment and did not find any evidence of poor locality 

in interpreted Java code. Our results pertaining to interpreter cache performance agree 

with the ones obtained in [9]; in addition, we compare these results to the JIT and 

mixed-mode execution styles.  
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 There has been quite some research on the issue of ahead-of-time translation 

of Java bytecodes. Proebsting [14] presented Toba, a system for generating stand-

alone Java applications and found that Toba-compiled applications execute 1.5-4.2 

times faster than interpreted and JIT applications. Hsieh [2,13] studied the impact of 

interpreters and offline Java compilers on microarchitectural resources such as cache 

and the branch predictor. They attribute the inefficient use of the microarchitectural 

resources by the interpreter as a significance performance penalty. They observed in 

their work that an offline bytecode to native code translator is a more efficient Java 

execution mode for utilizing the caches and the branch predictors. Our results do not 

agree with that in the sense that the miss rates seen in the interpreted mode of 

execution for the instruction as well as data caches are better than for C++ programs.  

 There have been quite a few studies looking at the execution characteristics 

and architectural issues involved with running Java in the JIT mode. Most relevant to 

our experiments is the work of Radhakrishnan [10], which investigates the CPU and 

cache architectural support that would benefit such JVM implementations. They 

concluded that the instruction and data cache performance of Java applications are 

better than compared to that of C/C++ applications, except in the case of data cache 

performance of the JIT mode. It also speculated that install write misses during the 

installation of JIT compiler output has a significant effect on the data cache 

performance in JIT mode. Our results confirm their speculation and in addition, 

examine their relevance in a mixed-mode execution environment. Radhakrishnan  

[11] provided a quantitative characterization of the execution behavior of the SPEC 
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JVM98 programs, in interpreter mode and using JIT compilers and obtained similar 

results to the ones obtained in [10].  

 There has been a gradual shift towards exploring mixed mode execution 

systems that use JIT compilation selectively on only those portions of the Java 

methods that are frequently executed. Barisone [12] have presented a detailed 

instruction-level characterization of the overall behavior of the HotSpot Server 

compiler running the SPEC JVM98 benchmarks and compared the same with the 

interpreted and JIT compilation modes. Our experiments differ in the sense that in 

addition to this, we look at cache performance in the components of the JVM.  

Agesen [15] propose a 3-mode execution engine, comprised of a single interpreter, a 

fast non-optimizing compiler and a slow, optimizing compiler used in the background 

with the aim of providing fast startup and high performance simultaneously. Their 

results show significant performance gains over conventional modes of Java 

execution. Their results are in terms of execution time and do not look at the 

performance of caches. 

 

2.2 Motivation 

 The motivation for this study is the need to examine in detail the cache 

performance of the JIT compilation mode and understand the reasons for its poor 

cache performance in comparison to the interpreted mode of execution. Prior work 

has given conclusive evidence of the poor data cache performance of JIT compiled 

Java code. It was seen [10] that the overall data cache miss rate is as high as 10-15% 
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in the JIT mode and not more than 4-8% in the interpreted mode, even though there is 

a reduction of 20-80% in number of data cache accesses as we move from the 

interpreted to the JIT mode. This study builds on previous works by examining cache 

performance in the different stages of execution of Java code namely the class 

loading, compilation/interpretation and garbage collection phases. This study offers 

conclusive proof of the speculation that install write misses during the installation of 

JIT compiler output have a significant effect on the data cache performance in JIT 

mode [10]. It segregates the cache performance in the 3 phases mentioned and serves 

as a pointer to optimizing specific sections of the code in the JVM. It could also serve 

as a guide for architectural enhancements that can mitigate the effect of poor cache 

performance. 

 Lastly, the results obtained in this detailed characterization are compared to 

the cache performance tradeoffs seen with the mixed-mode execution engine. This 

serves to highlight the performance gains associated with moving to an execution 

mode that optimizes more selectively than the pure JIT compilation mode. 
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3. Experimental Methodology  

 

 In this section, we describe the tools that were used for the study and the 

different benchmarks that were studied.  

3.1 Tools and Platform 

 Our study of cache performance of the Latte JVM was performed on the 

UltraSparc platform running Solaris 2.7 using tracing tools and analyzers. Sun 

Microsystems provides Shade [6], a tool suite, which provides user-level program 

tracing abilities for the UltraSparc machines. Shade is an instruction set simulator and 

custom trace generator. Application programs are executed and traced under the 

control of a user-supplied analyzer.  

 For our performance measurements, we used the cachesim5 analyzer provided 

by the Shade suite of programs. Cachesim5 is used to model the cache hierarchy for 

the experiments; it allows the user to specify the number of levels in the cache 

hierarchy, the size and organization of each of these and the replacement/write 

policies associated with them. A trace of instructions is input to the analyzer and the 

output provides detailed information on: 

a) Total number of accesses. 

b) Total number of misses as absolute numbers and as a percentage of accesses 

(read, write and combined). 

c) Percentage of cache blocks that were valid, dirty, unused etc. 
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d) Other write statistics based on write policies specified. For example, dirty 

write backs due to data writes, total write backs etc.  

 This analyzer was modified to suit the requirements of our measurements and 

validated to examine the correctness of these changes. It must be added that this 

analyzer is not cycle accurate and thus, timing issues are not considered in our 

experiments. 

 

3.2 The Latte Virtual Machine 

 We used the Latte virtual machine as the target Java Virtual Machine to study 

the cache performance in each of the distinct phases of a JVM. Latte [5] is the result 

of a university collaboration project between Seoul National University (Korea) and 

IBM. It is an open source virtual machine, which was released in Oct 2000 and was 

developed from the Kaffe open source VM and allows for instrumentation and 

experimentation. Its performance has been shown to be comparable to Sun’s JDK 1.3 

(HotSpot) VM.  

 Latte boasts of a highly optimized JIT compiler targeted towards RISC 

processors. In addition to classical compiler optimizations like Common Sub-

expression Elimination (CSE) and redundancy elimination, it also performs object-

oriented optimizations like dynamic class hierarchy analysis. In addition, it claims to 

perform efficient garbage collection and memory management using a fast mark and 

sweep algorithm. It makes exception handling more efficient by using on-demand 

translation of exception handlers. 
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3.3 The HotSpot VM  

 We used the HotSpot Client VM 1.3.1 [4] from Sun Microsystems to compare 

our results for the traditional execution mode JVMs to the more recent mixed-mode 

execution mode JVMs. It has been specially tuned to maximize peak operating speed 

and is intended for executing long-running server applications, for which having the 

fastest possible operating speed is generally more important than having a fast startup 

time or smaller runtime memory footprint.  

 Mixed-mode execution is expected to solve the problems of JIT compilation 

by taking advantage of an interesting property of most programs. Virtually all 

programs spend the vast majority of their time executing a small minority of their 

code. Rather than compiling method-by-method, just in time, the Java HotSpot VM 

runs the program immediately using an interpreter and analyzes the code as it runs to 

detect the critical "hot spots" in the program. It then focuses the attention of a global 

native-code optimizer on the hot spots. By avoiding compilation of infrequently 

executed code (most of the program), the Java HotSpot compiler is expected to 

devote much more attention to the performance-critical parts of the program, without 

necessarily increasing the overall compilation time. This hot-spot monitoring is 

continued dynamically as the program runs, so that it literally adapts its performance 

on-the-fly to the needs of the user. 

The HotSpot client VM contains an advanced adaptive compiler that supports 

many of the same types of optimizations performed by optimizing C++ compilers, as 

well as some optimizations that cannot be done by traditional compilers, such as 
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aggressive inlining across virtual method invocations. Adaptive optimization 

technology is very flexible in its approach, and typically outperforms even advanced 

static analysis and compilation techniques.  

 

3.4 Instrumentation of the JVM 

 Since the objective was to look at the cache behavior in the different stages of 

the VM, the source code of Latte was instrumented with sentinels that would mark 

the phases of class loading, interpretation/compilation and garbage collection. The 

sentinel generation code has been chosen in such a way that these high-level language 

statements are translated into double word store (STD) instructions in the SPARC 

assembly code whenever they are encountered.  

 The values stored as part of the store instructions are unique numbers for a 

particular phase of execution. The beginning of each phase is marked by a sentinel 

that involves storing 3 128-bit numbers. These numbers were chosen in such a 

manner that the probability of the consecutive occurrence of these 3 numbers is 

almost negligible. The occurrence of the sentinel is checked in the modified 

Cachesim5 analyzer. 

 

3.5 Benchmarks 

 The SPEC JVM98 suite of benchmarks [3] was used to obtain the cache 

performance characteristics of the JVM. This suite contains a number of applications 

that are either real applications or are derived from real applications that are 
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commercially available. The SPEC JVM98 suite allows users to evaluate 

performance of the hardware and software aspects of the JVM client platform. On the 

software side, it measures the efficiency of the JVM, the compiler/interpreter, and 

operating system implementations. On the hardware side, it includes CPU, cache, 

memory, and other platform specific features. Table 1 provides a summary of these 

benchmarks used for our experiments. 

 

No. Benchmark Description and Source 

1. compress A popular LZW compression program. 

2. Jess A Java version of NASA’s popular CLIPS rule-
based expert systems 

3. Db Data management benchmarking software written 
by IBM. 

4. mpegaudio The core algorithm for software that decodes an 
MPEG-3 audio stream. 

5.  Mtrt A dual-threaded program that ray traces an image 
file. 

6. Jack A real parser-generator from Sun Microsystems. 

Table 3.1: Description of the SPEC JVM98 benchmarks used 

Both the s1 and s100 data sets were used for the experiments.  

 

3.6 Cache Hierarchies and Modification of Cachesim5 

 The following cache hierarchies were chosen with the first configuration 

corresponding to the cache hierarchy on the UltraSparc-1 processor [19]: 
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a) Configuration 1: This configuration has a 16K L-1 Instruction Cache with 

block size of 32 bytes and no sub-blocking. It is 2-way associative, follows an 

LRU replacement policy and the write policy is write through. The L-1 Data 

Cache is 16K with block size of 32 bytes and sub-blocks of 16 bytes. It is 

direct mapped and the write policy is write-through with no write-on-allocate. 

The L-2 Unified Cache is 512K with block size of 64 bytes and no sub-

blocking. It is direct mapped and the write policy is write-back with write-on-

allocate. 

b) Configuration 2: This configuration has a 64K L-1 Instruction Cache with 

block size of 32 bytes. It is 2-way associative, follows an LRU replacement 

policy and the write policy is write through. The L-1 Data Cache is 64K with 

block size of 32 bytes and no sub-blocking. It is 4-way associative and the 

write policy is write-through with no write-on-allocate. The L-2 Unified 

Cache is 1M with block size of 64 bytes and no sub-blocking. It is direct 

mapped and the write policy is write-back with write-on-allocate. 

c) Configuration 3: This configuration has a 256K L-1 Instruction Cache with 

block size of 32 bytes. It is 2-way associative, follows an LRU replacement 

policy and the write policy is write through. The L-1 Data Cache is 256K with 

block size of 32 bytes. It is 4-way associative and the write policy is write-

through with no write-on-allocate. The L-2 Unified Cache is 2M with block 

size of 64 bytes and no sub-blocking. It is direct mapped and the write policy 

is write-back with write-on-allocate. 
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As mentioned previously, Cachesim5 provides detailed statistics on the 

references and misses at all levels in the cache hierarchy. It is modified to be able to 

examine the entire trace of the benchmarks and classify the particular instruction as a 

load or a store or an ordinary instruction. In addition to the above modification, a flag 

is set to classify the phase of the JVM execution where the instruction was 

encountered. This flag is set based on the sentinel values that have been encountered 

so far. All this classification information is provided to the cache simulator module. 

Separate counters are maintained for each of the measurements (references, misses 

etc) in each of the phases.  

 

3.7 Validation of Modified Cachesim5 

 The validation of the modified Cachesim5 was central to our experiments. 

Each of the benchmarks was run and the resulting instruction trace provided to the 

original Cachesim5 simulator and the total instruction counts, data accesses and 

misses were noted. The above was done with no instrumentation whatsoever applied 

to the JVM. The same benchmarks were now run and the resulting instruction trace 

provided to the modified Cachesim5 simulator. The statistics obtained in this case 

were compared to those obtained in the previous case, and there was almost exact 

agreement in the numbers. 

 With instrumentation applied to the JVM, we needed to validate the same 

again. The cache statistics computed for each of the phases into which the JVM had 

been divided were added up and compared to the numbers obtained in the previous 2 
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cases. The numbers agreed in all the cases. For the sake of sanity check, the numbers 

were compared to those obtained in [12] and there was close correspondence between 

the numbers obtained in both the studies. 
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4. Results and Analysis 

 

 This chapter summarizes the results of this study that characterizes the SPEC 

JVM98 benchmarks in terms of the cache performance in the various stages of the 

execution of the Latte Virtual Machine.  In addition, we also present the results of the 

same experiments with the HotSpot VM. 

 

4.1 Metrics and Data Sets 

 Cache performance was evaluated for the s1 as well as the s100 data sets of 

the SPEC JVM benchmarks with the 3 different cache configurations specified in the 

previous chapter. A larger data set does not imply a change in the static structure of 

the program; it increases the number of dynamic instructions executed by increasing 

the amount of method reuse, which is analogous to increasing the loop indices of the 

program. By increase in method reuse, we mean the number of times a method is 

invoked is increased greatly. Table 4.1 presents the number of methods and the 

number of dynamic method calls in the s1 and s100 data sets for each of the 

benchmarks. 

As mentioned earlier, the results of the experiments are in the form of cache 

performance statistics for the 3 phases of the execution of the Latte JVM: 

a) Class Loading 

b) Execution Engine – Interpretation / Compilation 

c) Garbage Collection 
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s1 data set s100 data set  
Benchmark Calls Methods Calls Methods 
compress 17.33M 577 14.56M 449 

jess 414,349 1222 95.96M 1375 
db 65,379 642 91.75M 658 

mpegaudio 954,605 843 93.05M 844 
mtrt 1.91M 781 71.17M 796 
jack 2.32M 1230 39.17M 1240 

 
Table 4.1 Number of methods and dynamic method calls for s1 and s100 data sets. 

 

4.2 Organization of Results 

We were unable to instrument and segregate phases in the HotSpot JVM 

because the VM does not build on our hardware platform, Solaris 2.7, upon 

modification to the source. This problem is expected to be corrected in all future 

releases. Hence, the results tabulated for this virtual machine will be for the VM as a 

whole. In all other tabulations of the results, we will present absolute numbers for 

instructions or data references and misses in each of the phases. The miss rate will be 

expressed as the percentage of cache accesses in that particular phase that missed. For 

clarity, only the s100 data set results are presented in this chapter. The s1 data set 

results are presented in the appendix. 

The organization of the results is as follows.  Section 4.3 presents results with 

the Latte VM for the instruction cache performance in the interpreted and JIT modes 

of execution. Sections 4.4 and 4.5 present the results for the data cache performance 

in the interpreted and JIT modes of execution for reads and writes respectively. Read 

accesses in the both modes of execution consist of reading method bytecodes and the 
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data required for the execution of these methods. The crucial difference is that, while 

in the JIT mode method bytecodes are read only the first time the method is invoked, 

in the interpreted mode they are read every time the method is invoked. Write 

accesses in the JIT mode are mostly the result of code installation whereas in the 

interpreted mode, they comprise of stack accesses implemented as stores. Data 

accesses of the benchmarks are common to both the execution modes and affect both 

of them equally. Thus, the fundamental differences in the character of read and write 

accesses in the two modes is the motivation behind our decision to study data cache 

read and write activity separately. 

Section 4.6 presents the effect of increased cache sizes on the performance in 

the Latte VM by comparing performance using 3 different cache configurations. The 

motivation behind these comparisons is to examine whether the poor data cache 

performance in the JIT compiled mode of the Latte VM was a result of mere capacity 

misses. For completeness, we also present the trends with the instruction cache 

accesses and the data cache reads. 

Section 4.7 presents cache performance statistics for the 3 configurations with 

the HotSpot Server VM. We wanted to examine if poor data cache performance 

applies to newer JVMs too that use mixed-mode execution and is not localized to 

traditional JVMs using JIT compiled modes of execution alone. Again, for 

completeness we present results for instruction cache accesses as well as data cache 

reads. 



 29

We will use the following convention to assist in following the results more 

clearly. Each table in this section will be referred to by a tuple of the form <JVM, 

execution mode, operation on cache, cache configuration>. JVM can take on values 

Latte or HotSpot. Execution mode can take on values int (interpreted mode of 

execution), jit (JIT mode of execution) or mix (mixed mode execution). Operation on 

cache takes on values ins (instruction access), dr (data read) and dw (data write). 

Cache configuration can take on values 1,2 or 3 indicating configurations 1,2 and 3 

respectively. For example, <Latte, jit, dr, 2> indicates results for the Latte VM in the 

JIT mode of execution for data read operations with Cache Configuration 2. 

 

4.3 Instruction Cache Performance 

4.3.1 Interpreted Mode of Execution (<Latte, int, ins, 1>) 

 In the case of the Instruction Cache, it is seen from Table 4.2 (<Latte, int, ins, 

1>) that for the case of the interpreted execution mode, the actual interpretation 

component constitutes the majority of the dynamic instruction count. It ranges from 

about 143 billion instructions for the compress benchmark to about 25 billion for 

mtrt. The overall instruction miss rate is therefore almost same as for the 

interpretation phase for the JVM execution. Class loading contributes almost a 

constant number of instructions to the JVM execution in all the benchmarks and its 

contribution is not very substantial. In fact, the statistics for class loading in every 

tuple are more or less constant. This is attributed to the class-loading phase including 

only the loading of classes that are required prior to the start of execution of the 
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methods. Classes loaded on demand are classified as being part of the execution 

phase.  

         Instruction miss rate here varies from 0.16% to 1.33% and this good 

instruction locality is due to the fact that the interpreter is one large switch statement 

with about 220 case labels. But only about 40 distinct bytecodes are accessed 90% of 

the time [9] and thus the entire loop can be fit into the instruction cache. Garbage 

collection plays a significant role in the case of the mtrt benchmark whereby it 

contributes about 33% of the instructions executed. But the miss rate is very 

comparable to that incurred in the interpretation phase and hence there is no effect on 

the overall miss rate. 

 
compress 

Stage References Misses Percentage Misses 
Class Loading 503.06K 8661 1.72 
Interpretation 143.27G 1.86G 1.30 

Garbage Collection 25.77M 40K 0.15 
Total 143.30G 1.87G 1.31 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 503.06K 8661 1.72 
Interpretation 28.82G 388.84M 1.35 

Garbage Collection 1.37G 14.15M 1.03 
Total 30.19G 403.01M 1.33 
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db 
Stage References Misses Percentage Misses 

Class Loading 503.06K 8653 1.72 
Interpretation 53.53G 86.14M 0.16 

Garbage Collection 520.41M 539.97K 0.10 
Total 54.05G 86.70M 0.16 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 503.06K 8653 1.72 
Interpretation 128.65G 781.22M 0.60 

Garbage Collection 6.62M 29.67K 0.45 
Total 128.66G 781.27M 0.61 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 503.06K 8663 1.72 
Interpretation 13.20G 5.58M 0.42 

Garbage Collection 25.42G 121.54M 0.47 
Total 38.63G 177.38M 0.46 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 503.06K 8661 1.72 
Interpretation 38.82G 279.59M 0.72 

Garbage Collection 916.52M 8.22M 0.89 
Total 39.73G 287.83M 0.72 

 
Table 4.2 Instruction Cache Performance for the s100 data set with the Latte VM for 
the interpreted mode of execution. 
 

4.3.2 JIT Mode of Execution (< Latte, jit, ins, 1>) 

 Table 4.3 < Latte, jit, ins, 1> shows the instruction cache performance 

numbers seen with the JIT compilation mode. It is very clear that there is almost an 

80% to 90% decrease in the dynamic instruction count when moving from the 

interpreted mode to the JIT. This is because the method bytecodes are translated only 
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once, unlike in the interpreted mode, where the interpreter loop has to be executed 

every time a method is invoked. The instruction cache performance in the JIT 

compilation is always worse than that in the interpreted mode. The reason for this is 

the fact that the operation of the JIT is for the most part similar to that of a compiler 

and compilers do not have very good instruction locality (for example, gcc in the 

SPEC95 suite [23]). In addition, the code installed by the translator need not be 

contiguously placed in the cache contributing to poorer performance. Exceptions to 

this are the benchmarks with larger footprints; compress (the miss rate decreases from 

1.3% to 0.07%) and mpegaudio (the miss rate decreases from 0.6% to 0.2%), where 

there is high method reuse and actual execution of the translated code dominates the 

compilation process. 

 As before, the contribution of the class loading stage is not considerable and 

the actual compilation stage dominates. But the garbage collection stage shows a lot 

more activity here with the jess and mtrt benchmarks. But the absolute instruction 

misses in this phase show no particular trend. It is clear that there is more locality 

seen amongst the instructions in this phase than the compilation/execution phase and 

this contributes in bringing down the overall miss rate where its contribution is 

substantial. This is evidenced in the case of jess (overall miss rate of 1.26% and 

execution phase miss rate of 1.48%) and mtrt (overall miss rate of 0.75% and 

execution phase miss rate of 1.21%).  

 It was speculated [9] that the instruction cache performance in the JVMs with 

JIT mode of execution would be poorer than in the interpreted mode due to the poor 
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locality exhibited by all compilers. But we do not see a clear trend between the 

overall miss rates of the interpreted and JIT modes in our results. It was also expected 

that since the compiled code for the methods are small, and do not have large basic 

block sizes, there would be frequent breaks in the instruction run causing a large 

number of misses. One would expect that as a result of frequent breaks in instruction 

run, the miss rates would decrease as we moved to the larger data sets because the 

execution of the application code after translation into the native form would start 

dominating in the larger data sets and also there would be better method reuse. This is 

confirmed by the results seen for the s1 and s100 data sets in the JIT mode. For the s1 

data set (Appendix B1), the compilation phase shows consistently higher miss rates 

(from 1.5% to 1.9%) when compared to the s100 data set (from 0.1% to 1.3%).  

compress 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.495 
Translation + Execution 9.56G 6.89M 0.07 

Garbage Collection 44.95M 71,966 0.16 
Total 9.60G 6.97M 0.07 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 204,255 1011 0.495 

Translation + Execution 3.98G 58.76M 1.48 
Garbage Collection 1.44G 9.8M 0.68 

Total 5.42G 68.58M 1.26 
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db 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.49 
Translation + Execution 6.59G 7.66M 0.12 

Garbage Collection 536.47M 172,968 0.03 
Total 7.13G 7.84M 0.11 

 
 

mpegaudio 
Stage References Misses Percentage Misses 

Class Loading 204,255 1009 0.49 
Translation + Execution 8.94G 16.31M 0.18 

Garbage Collection 26.11M 79,887 0.31 
Total 8.97G 16.39M 0.18 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 204,255 1011 0.49 

Translation + Execution 1.29G 15.73M 1.21 
Garbage Collection 2.56G 13.15M 0.51 

Total 3.86G 28.89M 0.75 
 

jack 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.49 
Translation + Execution 4.68G 61.34M 1.31 

Garbage Collection 952.15M 2.56M 0.27 
Total 5.63G 63.91M 1.14 

 
Table 4.3 Instruction Cache Performance for the s100 data set with the Latte VM in 
the JIT mode of execution. 
 

4.4 Data Cache Performance – Read Accesses 

4.4.1 Interpreted Mode of Execution (< Latte, int, dr, 1>) 

Table 4.4 (< Latte, int, dr, 1>) shows the performance numbers obtained for 

data cache reads in the interpreted mode of execution. One of the notable points is the 

fact that there is a very high miss rate seen in the case of the data read misses in the 
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garbage collection phase. It has the potential to cause the net data cache performance 

to deteriorate when its contribution is not negligible and this deterioration of data 

cache performance is indeed the case. This behavior is profoundly expressed in mtrt 

(the overall miss rate is 4.23% compared to the miss rate of 4.09% for the execution 

phase) and jess (the overall miss rate is 5.08% compared to the miss rate of 3.72% for 

the execution phase). In terms of absolute misses, mtrt shows a profound increase due 

to the influence of the garbage collection phase (an increase in overall miss rate from 

4.09% to 4.23% translates to 18 million additional misses). This high miss rate can 

probably be attributed to frequent conflict and capacity misses between the data 

accessed by the garbage collector (data structures and objects on the heap) and the 

method bytecodes that are interpreted in the execution phase. 

 When compared to the data reads for the s1 data set (Appendix A2), the data 

reads in the s100 phase for the interpretation phase are considerably lower. This can 

be attributed to the fact that there is greater method reuse in the latter case and the 

most frequently used methods are cached. This effect is most pronounced in the case 

of the db and jess benchmarks (which have the greatest increase in method reuse), 

where the decrease in miss-rates is 3.2% (8.1% to 4.9%) and 1.8% (5.5% to 3.8%) 

respectively.  
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compress 
Stage References Misses Percentage Misses 

Class Loading 97.89K 9029 9.22 
Interpretation 45.10G 919.52M 2.03 

Garbage Collection 3.02M 486.7K 16.14 
Total 45.11G 920.05M 2.04 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 97891 9037 9.23 
Interpretation 8.51G 419.06M 4.92 

Garbage Collection 141.12M 20.79M 14.74 
Total 8.65G 439.89M 5.08 

 
db 

Stage References Misses Percentage Misses 
Class Loading 97891 9039 9.23 
Interpretation 15.23G 558.32M 3.67 

Garbage Collection 56.57M 109.68K 19.39 
Total 15.29G 569.32M 3.72 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 97891 9029 9.22 
Interpretation 39.21M 371.41M 0.94 

Garbage Collection 886.42K 34,369 3.88 
Total 39.22G 371.49M 0.95 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 97891 9034 9.23 
Interpretation 4.21G 172.15M 4.09 

Garbage Collection 7.91G 340.86M 4.31 
Total 12.11G 513.04M 4.23 
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jack 
Stage References Misses Percentage Misses 

Class Loading 97891 9033 9.23 
Interpretation 11.81G 316.66M 2.68 

Garbage Collection 82.19M 6.77M 8.24 
Total 11.90G 323.46M 2.72 

 
Table 4.4 Data Cache (Read) Performance for the s100 data set with the Latte VM in 
the interpreted mode of execution. 
 

4.4.2 JIT Mode of Execution (< Latte, jit, dr, 1>) 

 Table 4.5 (<Latte, jit, dr, 1>) presents the performance numbers for the JIT 

compiled mode. Comparing the results to the interpreted mode results seen in Table 

4.4 (<Latte, int, dr, 1>), we observe that there is a drastic reduction in the number of 

read accesses. As seen previously, this is a result of the method bytecodes being read 

only the first time the method is invoked, rather than being read every time the 

method is invoked, as was the case in the interpreted mode. Another reason is the fact 

that a large percentage of operations in the interpreted mode involve accessing the 

stack, which are implemented as loads and stores. On the other hand, these are 

optimized as register-register operations in the JIT execution mode. This is most 

clearly demonstrated in the long running benchmarks, compress and mpeg, which 

show 85-90% reductions in data-read accesses. Miss rates for the execution phase 

increase from an average of 3.5% to as high as 18% when we move from the 

interpreted mode of execution to the JIT mode. The reason for this is the fact all 

bytecode read misses that occur are cold misses since they are brought into the data 

cache the very first time the method is invoked. As a result, the lowest miss rates will 
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be seen in benchmarks where the actual data required by the benchmark program is a 

large fraction of the total data accesses. This is indeed so in compress, which applies 

the same compression algorithm on a large amount of data (miss rate of 8.78% in JIT 

and 2.03% in the interpreter) and mpegaudio, where large stream of MPEG-3 audio 

streams are decoded using the same algorithm (miss rate of 5.75% in JIT and 0.94% 

in interpreter).   

Garbage collection activity shows a marginal increase in the JIT mode; this is 

something we are unable to explain. The garbage collector performs very poorly, and 

in most of the benchmarks, causes an increase in the overall miss rate by almost 2% 

in some cases (mtrt). This can be attributed to the fact that there is considerable 

amount of interference with the code installed by the compiler and this manifests 

itself wherever the contribution of the garbage collector is substantial as is the case in 

mtrt. When compared to the interpreted mode, there is no clear trend exhibited in the 

absolute misses as well as the miss rates and may be considered to be highly program 

dependent. 

  
compress 

Stage References Misses Percentage Misses 
Class Loading 46,696 5578 11.95 

Translation + Execution 2.51G 220.13M 8.78 
Garbage Collection 6.08M 790,016 12.99 

Total 2.52G 220.95M 8.79 
 
 
 
 
 



 39

jess 
Stage References Misses Percentage Misses 

Class Loading 46,696 5578 11.94 
Translation + Execution 831.40M 90.74M 10.92 

Garbage Collection 152.96M 19.49M 12.74 
Total 984.64M 110.26M 11.19 

 
db 

Stage References Misses Percentage Misses 
Class Loading 46,696 5578 11.94 

Translation + Execution 1.39G 262.15M 18.83 
Garbage Collection 58.96M 11.06M 18.76 

Total 1.45G 273.24M 18.82 
 

mpegaudio 
Stage References Misses Percentage Misses 

Class Loading 46,696 5578 11.94 
Translation + Execution 1.90G 109.60M 5.75 

Garbage Collection 3.56M 237,477 6.66 
Total 1.91G 109.87M 5.75 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 46,696 5578 11.94 

Translation + Execution 322.65M 44.79M 13.83 
Garbage Collection 529.17M 90.17M 17.04 

Total 852.09M 134.99M 15.84 
 

jack 
Stage References Misses Percentage Misses 

Class Loading 46,696 5578 11.95 
Translation + Execution 663.38M 62.87M 9.48 

Garbage Collection 88.12M 6.92M 7.86 
Total 751.78M 69.83M 9.29 

 
Table 4.5 Data Cache (Read) Performance for the s100 data set with the Latte VM in 
the JIT mode of execution. 
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4.5 Data Cache Performance – Write Accesses 

4.5.1 Interpreted Mode of Execution (Latte, int, dw, 1>) 

 Table 4.6 (<Latte, int, dw, 1>) shows the results for the write accesses seen 

with the interpreted mode of execution. Overall, miss rates here range from 1.51% for 

mpeg to 9.53% for the case of jess. An examination of the absolute misses and the 

miss rate for the execution individual phases reveals that garbage collection miss rates 

are extremely high (ranging from 50% to 74%) in all the benchmarks save mtrt, 

where the miss rate is about 4.27%. This has an adverse effect on the overall miss rate 

of the benchmark; this is seen in the case of jess (overall miss rate of 9.53% 

compared to 5.68% in the execution phase) and jack (overall miss rate of 4.12% 

compared to 2.34% in the execution phase). In all the other benchmarks, the 

deterioration in performance is not much due to the preponderance of the execution 

phase. One can attribute this to the fact that all write misses in the garbage collection 

phase are brought about by deallocation of objects on the heap and updating of data 

structures, a broad percentage of whose accesses would be cold misses. In non-

generational garbage collectors as in Latte, most misses due to allocation are write 

misses, and fetch useless garbage that will immediately be overwritten by the 

initializing writes that create objects 
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compress 
Stage References Misses Percentage Misses 

Class Loading 27628 11065 40.05 
Interpretation 13.29G 822.28M 6.18 

Garbage Collection 2.92M 2.18M 74.56 
Total 13.30G 824.49M 6.19 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 27628 11089 40.13 
Interpretation 2.43G 138.42M 5.68 

Garbage Collection 167.7M 109.54M 65.32 
Total 2.60G 248M 9.53 

 
db 

Stage References Misses Percentage Misses 
Class Loading 27628 11092 40.14 
Interpretation 4.18G 216.81M 5.18 

Garbage Collection 564.9M 34.22M 60.59 
Total 4.24G 251.06M 5.92 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 27628 11052 40 
Interpretation 11.83G 179.02M 1.51 

Garbage Collection 486.85K 242.92K 49.89 
Total 11.84G 179.29M 1.51 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 27628 11084 40.12 
Interpretation 1.32G 32.39M 2.44 

Garbage Collection 2.61G 111.47M 4.27 
Total 3.93G 143.89M 3.66 
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jack 
Stage References Misses Percentage Misses 

Class Loading 27628 11097 40.16 
Interpretation 3.54G 8.29M 2.34 

Garbage Collection 112.11M 67.80M 57.70 
Total 3.66G 150.80M 4.12 

 
Table 4.6 Data Cache (Write) Performance for the s100 data set with the Latte VM in 
the interpreted mode of execution. 
 

4.5.2 JIT Mode of Execution (<Latte, jit, dw, 1>) 

 One of the most significant results of these sets of experiments has been to 

conclusively prove the effect of “double-caching”. This refers to the effect that is seen 

when the JIT compiler translates method bytecodes into native code for the very first 

time and has to incur compulsory misses when it is installed in the data cache. In 

addition, compulsory instruction cache misses will be incurred when the native code 

is brought into the instruction cache for execution. Compulsory misses are also seen 

when the method bytecodes are read into the data cache on invocation of the method 

for the very first time but this is not as profound as in the case of code installation 

because each bytecode translates into 25 native instructions on an average [10].  

 In terms of actual results, we observe that the miss rates in the execution 

phase range from 12.5% for db to about 69.8% for jess. The overall effect is 

compounded by the poor performance in the garbage collection phase, where the miss 

rates range from 39% to about 68%. A direct result of the installation of native code 

is that more data read misses are seen in both the execution and garbage collection 

phases due to conflict with this installed code (this was examined in 4.4.2 with < 
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Latte, jit, dr, 1>). Also, we noted the poorer performance of the instruction cache in 

the JIT mode when compared to the interpreted mode in 4.3.2 (<Latte, int, dw, 1>). 

This particular effect results in the overall poor performance of JIT compilers, which 

renders them less effective under memory constraints even though the speedup over 

the interpreted mode is appreciable. Table 4.7 (<Latte, jit, dw, 1>) provides the 

complete results of cache performance with the JIT mode. 

 We also note that when compared to the s1 data set, the overall miss rate is 

much lower. It ranges from 26.3% (compress) to 59% (jess) in the case of the s1 data 

set. This decrease is attributed to increased method reuse; the cost of translation and 

installation of native code is amortized over the frequent invocation of the methods. 

 

compress 
Stage References Misses Percentage Misses 

Class Loading 13,207 7292 55.21 
Translation + Execution 571.03M 111.97M 19.61 

Garbage Collection 3.75M 2.52M 67.37 
Total 574.86M 114.52M 19.92 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 13,207 7292 55.21 

Translation + Execution 129.99M 90.81M 69.86 
Garbage Collection 168.72M 107.79M 63.88 

Total 298.79M 198.64M 66.48 
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db 
Stage References Misses Percentage Misses 

Class Loading 13,207 7292 55.21 
Translation + Execution 183.55M 23.02M 12.54 

Garbage Collection 57.09M 34.02M 59.59 
Total 240.72M 57.07M 23.71 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 13,207 7292 55.21 

Translation + Execution 484.37M 154.52M 31.91 
Garbage Collection 1.36M 681,804 50.04 

Total 485.81M 155.23M 31.95 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 13,207 7292 55.21 
Translation + Execution 59.62M 23.44M 39.31 

Garbage Collection 216.59M 83.79M 38.69 
Total 276.28M 107.26M 38.82 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 13,207 7292 55.21 

Translation + Execution 131.23M 51.45M 39.21 
Garbage Collection 112.97M 66.64M 58.99 

Total 244.28M 118.12M 48.35 
 
Table 4.7 Data Cache (Write) Performance for the s100 data set with the Latte VM in 
the JIT mode of execution. 
 

4.6 Cache Performance with Increased Cache Sizes 

 We experimented with larger cache sizes to examine if the poor data cache 

performance in the JIT compiled mode of the Latte VM was a result of mere capacity 

misses.  For completeness, we also studied the trends for the instruction cache 

performance and data cache reads. The results obtained (with the s100 data set) for 
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the instruction cache performance, data reads and data writes for the 3 cache 

configurations are presented in this section. We examine only the miss rates for the 

execution and garbage collection phases in this section, since the contribution of the 

class loader phase is not substantial. Absolute misses and overall statistics for the 

s100 data set are tabulated in Appendices C and D for <Latte, jit, ins/dr/dw, 2>) and 

<Latte, jit, ins/dr/dw, 3>) respectively.  

For the case of the instruction cache, the miss rate is greatly reduced in the 

execution phase with an increase in cache size for jess, mtrt and jack, as we move 

from <Latte, jit, ins, 1>) to <Latte, jit, ins, 2>). But the increase is not so profound 

when we move to <Latte, jit, ins, 3>). Figure 4.1 plots the execution phase miss rates 

for each of the benchmarks with the 3 different cache configurations.  

Similar behavior is exhibited for the garbage collection phase; wherever 

garbage collection contributes significantly to instruction cache accesses (jess, mtrt 

and jack), we see considerable improvement. Figure 4.2 plots the miss rates in the 

garbage collection phase for each of the benchmarks with the 3 different cache 

configurations. 
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Figure 4.1 Instruction Cache - Miss Rates for Execution Phase (Latte VM) 
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Figure 4.2 Instruction Cache - Miss Rates for Garbage Collection Phase (Latte VM) 

 

 With data cache reads, there is considerable performance gain. For the 

execution phase, there is considerable drop in miss rates for all the benchmarks as we 

move from <Latte, jit, dr, 1> to <Latte, jit, dr, 2>. Performance gains are still quite 

good as we move to <Latte, jit, dr, 3>, where compress shows the greatest reduction 

in miss rate. Figure 4.3 shows a comparison of the miss rates for each of the 

configurations. The garbage collection phase also benefits from increased cache sizes, 

especially in mtrt (where garbage collection is a major component). Here we see a 

reduction in miss rate from 17.04% in <Latte, jit, dr, 1> to 4.64% in <Latte, jit, dr, 
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2>. Figure 4.4 presents these results for all the benchmarks in each of the 

configurations. 
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Figure 4.3 Data Cache Reads - Miss Rates for Execution Phase (Latte VM) 

 

 The scenario is quite different when one looks at the data writes. Referring to 

Figure 4.5, we find that the reduction in miss rate in the execution phase is not very 

substantial. The miss rates still range from 14.83% in the case of compress (19.63% 

in the <Latte, jit, dw, 1> and 17.78% in <Latte, jit, dw, 2>) to 55.3% in the case of 

jess (69.8% in the <Latte, jit, dw, 1>) and 57.6% in <Latte, jit, dw, 2>). This implies 

that however much we may increase the size of the data cache, we are not able to 
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recover from the performance penalty imposed by the compulsory misses in the 

execution phase (installation of translated code) and the garbage collection phase 

(allocation of objects).  
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Figure 4.4 Data Cache Reads - Miss Rates in Garbage Collection Phase (Latte VM) 

 

 In the garbage collection phase, the performance is far worse. jess 

(where the garbage collector executes a number of data writes) has a miss rate of 

57.9% in <Latte, jit, dw, 3>) down from a miss rate of 63.9% in <Latte, jit, dw, 1>), 

which is still significantly high. This trend is seen in all the benchmarks, though the 
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miss rates are slightly lower than the values seen for db, ranging from 30% (mtrt) to 

54% (db). Figure 4.6 presents these results. 
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Figure 4.5 Data Cache Writes- Miss Rates for Execution Phase (Latte VM) 

 

4.7 Cache Performance Results for the HotSpot Server VM 

  It was decided to compare the detailed results obtained with the Latte 

VM to the performance numbers obtained using Sun’s HotSpot Client VM 1.3.1. This 

was done to confirm that the effects of poor data cache performance is not localized 

to traditional JVMs using JIT compiled modes of execution alone, and applies to 

newer JVMs too that use mixed-mode execution. We were not able to generate per-
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phase results for the HotSpot VM because the VM would not build on the Solaris 

platform we were using. Hence, it was not possible to instrument the VM in order to 

obtain per phase results. In addition, the mtrt benchmark terminated with illegal 

memory access errors and we have not included it in our results. We studied the 

overall results with the same cache configurations that were used to study the per-

phase behavior of the Latte VM, and our numbers indicate that the trends observed in 

the Latte VM are observed here too. 
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Figure 4.6 Data Cache Writes - Miss Rates in Garbage Collection Phase (Latte VM) 
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 The instruction cache performance seen in the HotSpot Server VM is 

presented in Figure 4.7. The results seen here were very similar to what was seen with 

the Latte VM, though the absolute number of instruction and data cache accesses is 

much higher in the HotSpot VM. This high instruction miss rate can probably be 

attributed to overheads incurred in transforming from interpreted mode to the JIT 

mode and vice-versa when handling different methods. Continuous profiling of 

methods is also an overhead that cannot be neglected. There is considerable reduction 

in the instruction cache miss rates when we go from <HotSpot, mix, ins, 1> to 

<HotSpot, mix, ins, 3>; the largest improvements are seen in the case of jack (3.38% 

to 0.26%) and mpegaudio (from 0.97% to 0.04%). In general, improvements seen 

with increasing cache size are more prominent for the HotSpot VM and directly 

comparing miss rates for <HotSpot, mix, ins, 3>, we find that overall miss rates are 

lower for the HotSpot VM when compared to the Latte VM. Detailed results for 

Configurations 1,2 and 3 are presented in Appendix E. 

A large improvement is seen for all the benchmarks with respect to data cache 

read misses when we go from <HotSpot, mix, dr, 1> to <HotSpot, mix, dr, 3>. Figure 

4.8 presents the comparison results for data cache read-access misses with all the 

cache configurations. The Latte VM also showed considerable improvement when we 

increased the cache size. As we saw for the instruction cache, improvements seen 

with increasing cache size are more prominent for the HotSpot VM. For example, in 

compress, the miss rate with the Latte VM for data cache reads falls from 8.79% to 
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1.44% as we move from <HotSpot, mix, dr, 1> to <HotSpot, mix, dr, 3>, whereas it 

falls from 9.18% to 1.12% with the HotSpot VM, under the same conditions. 
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Figure 4.7 Instruction Cache – Miss Rates (HotSpot VM) 

 

The data cache write-access miss rates are slightly higher in the case of the 

HotSpot VM. It shows a minimum of 35.27% for the case of compress (19.9% in 

<Latte, jit, dw, 3>) and a maximum of 65.6% for the case of jess (66.5 in <Latte, jit, 

dw, 1>) in <HotSpot, mix, dw, 3>. This shows that our conclusion which states that 

data cache write misses do not decrease substantially in JIT compiled execution 

engines are valid even if a policy of selective translation of methods is followed.  
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Thus, the penalty imposed by installation of code in the translation stage of the 

execution is not offset even with the use of an intelligent policy for method 

compilation.  
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Figure 4.8 Data Cache Reads– Miss Rates (HotSpot VM) 

 

Data cache write miss rates do not decrease to acceptable values with 

increased cache sizes; in the case of mpegaudio there is a reduction from 29.7% to 

13.2% and in the case of db there is a reduction from 65.6% to 57.2% when we move 

from <HotSpot, mix, dw, 1> to <HotSpot, mix, dw, 3>. In fact, as we move from 
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<HotSpot, mix, dw, 2> to <HotSpot, mix, dw, 3> the reduction in miss rate is 

insignificant. The data cache miss rates seen even with Configuration 3’s caches sizes 

are still very high and range from 13% to 58%, and conclusively prove that the 

performance penalty that we incur with on-the-fly compilation of methods cannot be 

done away with merely increasing cache sizes. Figure 4.9 provides the comparison 

charts for the 3 configurations.  
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Figure 4.9 Data Cache Writes – Miss Rates (HotSpot VM) 
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5.Conclusion 

 

 Java’s architecture paves the way for network-oriented software architectures 

that take full advantage of Java’s support for network mobility of code and objects. 

At the heart of Java technology lies the Java virtual machine. The design of efficient 

JVM implementations on diverse hardware platforms is critical to the success of Java 

technology. An efficient JVM involves addressing issues in compilation technology, 

software design and hardware-software interaction. 

 This study has focused on understanding the cache performance of the JVM as 

a whole and the contribution of its main functional components, namely the class 

loader, the execution engine and the garbage collector, to this overall behavior. This 

was done for the most common implementations of the JVM – the JIT and the 

interpreter and their behavior compared to that of mixed-mode execution engines that 

use dynamic profiling to intelligently mix both the traditional execution modes. 

 The major findings from our research are as follows: 

• The JIT mode of execution of bytecodes results in a large reduction in the 

number of native instructions executed but the price to be paid is in the form 

of poor cache performance. This is reflected in instruction caches as well as 

data read and data write operations. 

• The instruction cache performance in the JIT compilation is always worse 

than that in the interpreted mode. This is to some extent a result of the poor 
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instruction locality inherent in compiler applications and the nature of Java 

methods, which result in non-contiguous pieces of native code. But the major 

contribution seems to be from compulsory misses incurred when the translated 

code is brought into the instruction cache. 

• The garbage collector demonstrates good instruction locality but its 

performance deteriorates in the JIT mode of execution due to conflict misses 

with the translated code. This behavior is carried to data reads too, where 

there is considerable interference between the GC data structures and the 

objects on the one hand and the translated code on the other hand. 

• Data writes exhibit extremely poor performance in JIT modes of execution 

and the miss rates are on an average 38% for the s100 data sets. For the case 

of the s1 data set, the average is about 49%. Poor data cache performance is 

the result of compulsory misses resulting from the installation of translated 

code. The garbage collector also performs very poorly owing to conflict and 

capacity misses and results in even further deterioration when its contribution 

is substantial. 

• With increased cache sizes, the instruction cache miss rates and data read miss 

rates are decreased substantially, but this is not seen with data cache writes 

that have been evidenced to be the performance bottlenecks. The average miss 

rate over all the benchmarks is still about 30%, an improvement of 8% over 

the original cache hierarchy configuration and this provides substantial 
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evidence to state that the data cache write misses are not merely the result of 

capacity misses. 

• Intelligent translation of Java methods implemented by dynamic profiling in 

mixed-mode execution engines like HotSpot does not change the overall 

cache performance of the JVM.  
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Appendix A1 
 

Instruction Cache Performance in Interpreted Mode – s1 data set 
(Configuration 1) 

 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 208,888 1,157 0.55 
Interpretation 10.98M 1.17M 0.01 

Garbage Collection 7.33M 3,142 0.04 
Total 10.99M 1.20M 0.01 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 208,888 1,484 0.71 
Interpretation 163.19M 2.32M 1.43 

Garbage Collection 12.93M 94,719 0.73 
Total 180.72M 2.48M 1.37 

 
db 

Stage References Misses Percentage Misses 
Class Loading 208,888 1,162 0.56 
Interpretation 38.45M 172,298 0.45 

Garbage Collection 6.06M 3,125 0.05 
Total 49.44M 199,488 0.40 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 208,888 1,484 0.71 
Interpretation 1.32G 13.48M 1.02 

Garbage Collection 6.62M 33,584 0.51 
Total 1.33G 13.57M 1.02 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 208,888 1,484 0.71 
Interpretation 890.14M 5.26M 0.59 

Garbage Collection 45.99M 135,713 0.29 
Total 941.13M 5.45M 0.58 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 208,888 1,484 0.71 
Interpretation 2.31G 16.20M 0.70 

Garbage Collection 59.15M 407,911 0.69 
Total 2.37G 16.66M 0.70 
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Appendix A2 
 

Data Cache (Reads) Performance in Interpreted Mode– s1 data set 
(Configuration 1) 

 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 47,216 3,767 7.98 
Interpretation 3.45G 8.31M 0.24 

Garbage Collection 981,860 32,414 3.30 
Total 3.46G 8.39M 0.24 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 47,216 5,610 11.88 
Interpretation 42.53M 3.29M 7.75 

Garbage Collection 1.46M 58,849 4.04 
Total 44.95M 3.43M 7.63 

 
Db 

Stage References Misses Percentage Misses 
Class Loading 47,216 3,770 7.99 
Interpretation 9.58M 196,578 2.05 

Garbage Collection 798,828 7,685 0.96 
Total 11.38M 246,829 2.17 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 47,216 5,609 11.88 
Interpretation 399.49M 8.66M 2.17 

Garbage Collection 886,515 36,979 4.17 
Total 401.47M 8.78M 2.19 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 47,216 5,610 11.88 
Interpretation 270.85M 8.62M 3.18 

Garbage Collection 4.77M 634,053 13.29 
Total 276.61M 9.33M 3.37 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 47,216 5,610 11.88 
Interpretation 700.56M 18.48M 2.64 

Garbage Collection 5.45M 347,533 6.37 
Total 700.70M 18.91M 2.68 
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Appendix A3 
 

Data Cache(Writes) Performance in Interpreted Mode–s1 data set 
(Configuration 1) 

 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 13,403 4,448 33.18 
Interpretation 1.02G 7.66M 0.75 

Garbage Collection 600,105 313,075 52.17 
Total 1.03G 8.01M 0.79 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 13,403 7,201 53.72 
Interpretation 11.58M 947,078 8.18 

Garbage Collection 1.21M 722,713 59.80 
Total 13.06M 1.73M 13.26 

 
Db 

Stage References Misses Percentage Misses 
Class Loading 13,403 4,427 33.03 
Interpretation 2.67M 138,049 5.17 

Garbage Collection 459,389 216,826 47.15 
Total 3.39M 396,027 11.66 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 13,403 7,232 53.96 
Interpretation 120.16M 2.00M 1.66 

Garbage Collection 486,840 242,897 49.89 
Total 120.94M 2.31M 1.91 

 
mtrt 

Stage References Misses Percentage Misses 
Class Loading 13,403 7,201 53.72 
Interpretation 82.61M 3.12M 3.77 

Garbage Collection 5.22M 3.43M 65.68 
Total 88.09M 6.60M 7.49 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 13,403 7,201 53.72 
Interpretation 209.81M 5.05M 2.41 

Garbage Collection 6.96M 4.20M 60.35 
Total 217.04M 9.31M 4.29 
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Appendix B1  
 

Instruction Cache Performance for JIT– s1 data set (Configuration 1) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.49 
Compilation + Translation 1.02G 5.94M 0.58 

Garbage Collection 21.12M 53,240 0.25 
Total 1.05G 6.01M 0.57 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 204,255 1011 0.49 

Compilation + Translation 604.56M 11.81M 1.95 
Garbage Collection 35.61M 134,602 0.38 

Total 641.58M 1.95M 1.86 
 

Db 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.49 
Compilation + Translation 343.32M 6.16M 1.79 

Garbage Collection 20.27M 57,475 0.28 
Total 364.98M 6.22M 1.71 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 204,255 1011 0.49 

Compilation + Translation 603.47M 10.24M 1.70 
Garbage Collection 26.05M 79,365 0.31 

Total 630.91M 10.33M 1.64 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 204,255 1011 0.49 
Compilation + Translation 603.88M 10.72M 1.78 

Garbage Collection 64.54M 107,739 0.17 
Total 669.81M 10.83M 1.62 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 204,255 1011 0.49 

Compilation + Translation 819.37M 14.59M 1.78 
Garbage Collection 80.88M 231,918 0.29 

Total 901.64M 14.83M 1.64 
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Appendix B2  
 

Data Cache (Reads) Performance for JIT– s1 data set (Configuration 1) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 46,696 5,582 11.95 
Compilation + Translation 242.73M 19.49M 8.03 

Garbage Collection 2.93M 197,447 6.73 
Total 245.93M 19.72M 8.02 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 46,696 5,579 11.94 

Compilation + Translation 110.40M 10.44M 9.46 
Garbage Collection 4.70M 231,441 4.92 

Total 115.38M 10.71M 9.28 
 

Db 
Stage References Misses Percentage Misses 

Class Loading 46,696 5,579 11.94 
Compilation + Translation 61.27M 5.43M 8.87 

Garbage Collection 2.80M 153,597 5.49 
Total 64.34M 5.62M 8.73 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 46,696 5,582 11.95 

Compilation + Translation 108.35M 9.76M 9.01 
Garbage Collection 3.55M 236,097 6.64 

Total 112.18M 10.03M 8.95 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 46,696 5,579 11.94 
Compilation + Translation 114.89M 10.38M 9.04 

Garbage Collection 7.42M 780,105 10.52 
Total 122.57M 11.20M 9.14 

 
jack 

 Stage References Misses Percentage Misses 
Class Loading 46,696 5,579 11.94 

Compilation + Translation 135.51M 13.57M 10.01 
Garbage Collection 8.59M 530,932 6.18 

Total 144.38M 14.14M 9.79 
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Appendix B3  
 

Data Cache (Writes) Performance for JIT– s1 data set (Configuration 1) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 13,207 7,293 55.22 
Compilation + Translation 55.28M 14.31M 25.89 

Garbage Collection 1.18M 608,256 51.49 
Total 56.54M 14.95M 26.44 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 13,207 7,262 54.98 

Compilation + Translation 22.33M 13.67M 61.20 
Garbage Collection 2.11M 1.08M 50.99 

Total 24.53M 14.78M 60.23 
 

db 
Stage References Misses Percentage Misses 

Class Loading 13,207 7,262 54.98 
Compilation + Translation 12.75M 6.98M 54.77 

Garbage Collection 1.06M 509,339 47.99 
Total 13.89M 7.52M 54.13 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 13,207 7,293 55.22 

Compilation + Translation 23.26M 11.04M 47.48 
Garbage Collection 1.36M 681,184 50.07 

Total 24.70M 11.75M 47.58 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 13,207 7,262 54.98 
Compilation + Translation 24.23M 13.43M 55.41 

Garbage Collection 5.97M 3.74M 62.62 
Total 30.28M 17.19M 56.77 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 13,207 7,262 54.98 

Compilation + Translation 27.61M 15.07M 54.59 
Garbage Collection 7.81M 4.47M 57.21 

Total 35.50M 19.57M 55.12 
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Appendix C1  
 

Instruction Cache Performance for JIT– s100 data set (Configuration 2) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 204,255 800 0.39 
Compilation + Translation 9.55G 6.92M 0.07 

Garbage Collection 44.95M 28,509 0.06 
Total 9.60G 6.95M 0.07 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 204,255 800 0.39 

Compilation + Translation 3.97G 19.34M 0.48 
Garbage Collection 1.44G 2.22M 0.15 

Total 5.42G 21.58M 0.39 
 

db 
Stage References Misses Percentage Misses 

Class Loading 204,255 795 0.39 
Compilation + Translation 6.59G 6.99M 0.11 

Garbage Collection 536.49M 82,977 0.02 
Total 7.13G 7.08M 0.10 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 204,255 791 0.38 

Compilation + Translation 8.95G 10.30M 0.12 
Garbage Collection 26.11M 24,546 0.09 

Total 8.97G 10.33M 0.12 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 204,255 800 0.39 
Compilation + Translation 1.29G 9.81M 0.76 

Garbage Collection 2.56G 3.37M 0.13 
Total 3.86G 13.19M 0.34 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 204,255 800 0.39 

Compilation + Translation 4.67G 15.21M 0.33 
Garbage Collection 952.15M 331,439 0.04 

Total 5.63G 15.54M 0.28 
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Appendix C2  
 

Data Cache (Reads) Performance for JIT– s100 data set (Configuration 2) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,789 8.11 
Compilation + Translation 2.50G 11.87M 4.73 

Garbage Collection 6.08M 421,684 6.94 
Total 2.51G 119.12M 4.74 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,784 8.10 

Compilation + Translation 831.26M 33.52M 4.03 
Garbage Collection 152.96M 10.35M 6.77 

Total 984.49M 43.89M 4.46 
 

db 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,789 8.11 
Compilation + Translation 1.39G 141.03M 10.13 

Garbage Collection 58.97M 7.99M 13.54 
Total 1.45G 149.04M 10.27 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,789 8.11 

Compilation + Translation 1.90G 19.56M 1.03 
Garbage Collection 3.56M 147,282 4.13 

Total 1.91G 19.72M 1.03 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,784 8.10 
Compilation + Translation 322.65M 14.28M 4.43 

Garbage Collection 529.17M 42.54M 8.04 
Total 852.09M 56.84M 6.67 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,784 8.10 

Compilation + Translation 663.17M 17.50M 2.64 
Garbage Collection 88.12M 3.72M 4.23 

Total 751.56M 21.24M 2.83 
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Appendix C3  
 

Data Cache (Writes) Performance for JIT– s100 data set (Configuration 2) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,514 34.18 
Compilation + Translation 571.03M 101.52M 17.78 

Garbage Collection 3.75M 2.31M 61.81 
Total 574.86M 103.86M 18.07 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,517 34.20 

Compilation + Translation 129.96M 74.92M 57.64 
Garbage Collection 168.72M 101.33M 60.06 

Total 298.76M 176.26M 58.99 
 

db 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,491 34.0 
Compilation + Translation 183.55M 201.3M 10.97 

Garbage Collection 57.09M 30.59M 53.59 
Total 240.72M 50.74M 21.08 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,514 34.17 

Compilation + Translation 484.37M 92.45M 19.09 
Garbage Collection 1.36M 619,160 45.45 

Total 485.81M 93.09M 19.16 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,517 34.20 
Compilation + Translation 59.61M 17.91M 30.03 

Garbage Collection 216.59M 65.51M 30.24 
Total 276.28M 83.44M 30.20 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,517 34.20 

Compilation + Translation 131.13M 33.52M 25.56 
Garbage Collection 112.97M 55.79M 49.39 

Total 244.18 89.34M 36.59 
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Appendix D1  
 

Instruction Cache Performance for JIT– s100 data set (Configuration 3) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 204,255 699 0.34 
Compilation + Translation 9.56G 5.27M 0.05 

Garbage Collection 44.94M 15,373 0.03 
Total 9.60G 5.29M 0.06 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 204,255 699 0.34 

Compilation + Translation 3.98G 16.38M 0.41 
Garbage Collection 1.44G 2.14M 0.15 

Total 5.42G 18.53M 0.34 
 

db 
Stage References Misses Percentage Misses 

Class Loading 204,255 699 0.34 
Compilation + Translation 6.59G 5.79M 0.09 

Garbage Collection 536.47M 45,358 0.01 
Total 7.13G 5.84M 0.08 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 204,255 694 0.34 

Compilation + Translation 894.79M 9.02M 0.10 
Garbage Collection 26.09M 7,820 0.03 

Total 8.97G 9.03M 0.10 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 204,255 699 0.34 
Compilation + Translation 1.29G 8.42M 0.65 

Garbage Collection 2.56G 1.52M 0.06 
Total 3.86G 9.94M 0.26 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 204,255 699 0.34 

Compilation + Translation 4.67G 11.48M 0.25 
Garbage Collection 952.15M 228,302 0.02 

Total 5.63G 11.71M 0.21 
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Appendix D2 
 

Data Cache (Reads) Performance for JIT– s100 data set (Configuration 3) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,601 7.71 
Compilation + Translation 2.50G 35.82M 1.43 

Garbage Collection 6.08M 310,433 5.11 
Total 2.51G 36.15M 1.44 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,600 7.71 

Compilation + Translation 831.26M 18.69M 2.25 
Garbage Collection 152.96M 7.94M 5.19 

Total 984.49M 26.64M 2.71 
 

db 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,600 7.71 
Compilation + Translation 1.39G 113.62M 8.16 

Garbage Collection 58.96M 7.93M 13.45 
Total 1.45G 121.56M 8.37 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,601 7.71 

Compilation + Translation 1.90G 8.30M 0.44 
Garbage Collection 3.56M 136,762 3.84 

Total 1.91G 8.45G 0.44 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 46,696 3,601 7.71 
Compilation + Translation 322.50M 5.63M 1.75 

Garbage Collection 529.17M 24.55M 4.64 
Total 851.95M 30.20M 3.55 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 46,696 3,601 7.71 

Compilation + Translation 663.42M 12.32M 1.86 
Garbage Collection 88.12M 2.78M 3.15 

Total 751.81M 15.11M 2.01 
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Appendix D3 
 

Data Cache (Writes) Performance for JIT– s100 data set (Configuration 3) 
 
 

compress 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,330 32.79 
Compilation + Translation 571.03M 84.69M 14.83 

Garbage Collection 3.74M 2.30M 61.34 
Total 574.86M 87M 15.13 

 
jess 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,324 32.74 

Compilation + Translation 129.96M 71.93M 55.34 
Garbage Collection 168.72M 97.73M 57.92 

Total 298.76M 169.67M 56.79 
 

db 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,324 32.74 
Compilation + Translation 183.54M 18.91M 10.30 

Garbage Collection 57.09M 30.54M 53.49 
Total 240.72M 49.47M 20.55 

 
mpegaudio 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,330 32.78 

Compilation + Translation 484.36M 43.32M 8.94 
Garbage Collection 1.36M 563,437 41.36 

Total 485.80M 43.90M 9.04 
 

mtrt 
Stage References Misses Percentage Misses 

Class Loading 13,207 4,330 32.78 
Compilation + Translation 59.56M 16.33M 27.42 

Garbage Collection 216.58M 65.02M 30.02 
Total 276.23M 81.36M 29.46 

 
jack 

Stage References Misses Percentage Misses 
Class Loading 13,207 4,330 32.78 

Compilation + Translation 131.24M 30.19M 23.00 
Garbage Collection 112.97M 54.68M 48.41 

Total 224.29M 84.89M 34.75 
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Appendix E1  
 

Cache Performance for HotSpot VM– s100 data set (Configuration 1) 
 
 

compress 
Cache Operation References Misses Percentage Misses 

Instruction 13.23G 24.84M 0.19 
Data Read 3.26G 299.74M 9.18 
Data Write 1.09G 388.37M 35.27 

 
 

jess 
Cache Operation References Misses Percentage Misses 

Instruction 5.17G 45.08M 0.87 
Data Read 942.36M 106.29M 11.28 
Data Write 314.15M 205.95M 65.55 

 
 

Db 
Cache Operation References Misses Percentage Misses 

Instruction 7.72G 22.94M 0.29 
Data Read 1.80G 286.48M 15.89 
Data Write 674.18M 280.74M 41.64 

 
 

mpegaudio 
Cache Operation References Misses Percentage Misses 

Instruction 16.11G 156.22M 0.97 
Data Read 3.92G 106.88M 2.73 
Data Write 1.24G 367.06M 29.67 

 
 

jack 
Cache Operation References Misses Percentage Misses 

Instruction 4.07G 137.70M 3.38 
Data Read 716.30M 66.70M 9.31 
Data Write 357.99M 171.36M 47.87 
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Appendix E2  
 

Cache Performance for HotSpot VM– s100 data set (Configuration 2) 
  
 

compress 
Cache Operation References Misses Percentage Misses 

Instruction 13.24G 11.33M 0.09 
Data Read 3.27G 121.35M 3.72 
Data Write 1.09G 256.81M 23.53 

 
 

jess 
Cache Operation References Misses Percentage Misses 

Instruction 5.16G 14.70M 0.29 
Data Read 941.19M 32.78M 3.48 
Data Write 313.79M 181.02M 57.68 

 
 

Db 
Cache Operation References Misses Percentage Misses 

Instruction 7.72G 13.41M 0.17 
Data Read 1.80G 162.47M 9.02 
Data Write 673.91M 265.14M 39.34 

 
 

mpegaudio 
Cache Operation References Misses Percentage Misses 

Instruction 16.09G 36.72M 0.23 
Data Read 3.92G 25.26M 0.64 
Data Write 1.24G 223.19M 18.06 

 
 

jack 
Cache Operation References Misses Percentage Misses 

Instruction 4.07G 25.70M 0.63 
Data Read 716.09M 15.15M 2.12 
Data Write 357.91M 132.36M 36.98 
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Appendix E3  
 

Cache Performance for HotSpot VM– s100 data set (Configuration 3) 
 
 

compress 
Cache Operation References Misses Percentage Misses 

Instruction 13.18G 5.58M 0.04 
Data Read 3.26G 36.49M 1.12 
Data Write 1.09G 228.56M 21.02 

 
 

jess 
Cache Operation References Misses Percentage Misses 

Instruction 5.18G 7.72M 0.15 
Data Read 944.01M 17.96M 1.90 
Data Write 315.09M 180.06M 57.15 

 
 

Db 
Cache Operation References Misses Percentage Misses 

Instruction 7.72G 8.46M 0.11 
Data Read 1.80G 129.46M 7.18 
Data Write 673.83M 263.08M 39.04 

 
 

mpegaudio 
Cache Operation References Misses Percentage Misses 

Instruction 16.08G 6.97M 0.04 
Data Read 3.92G 8.28M 0.21 
Data Write 1.23G 163.15M 13.21 

 
 

jack 
Cache Operation References Misses Percentage Misses 

Instruction 4.07G 10.71M 0.26 
Data Read 716.81M 11.65M 1.63 
Data Write 358.01M 130.56M 36.47 
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