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Abstract—This paper proposes a technique for 

incorporating machine learning into a wearable medical patch 

by combining two key technologies: weightless neural networks 

(WNNs), known for their efficiency and low hardware overhead, 

and Flexible Integrated Circuits (FlexICs) - ultra low-cost 

circuits on flexible substrates. We develop a special WNN model 

called “arrWNN” for detecting arrhythmia events from ECG 

signals that has an average prediction accuracy of 89% over the 

MIT BIH Arrhythmia datasets. We, then, design and implement 

the arrWNN model in hardware, and fabricate it using 

Pragmatic’s FlexIC technology. The arrWNN FlexIC contains 

5,706 NAND2-equivalent gates with a core area of 24 mm2 

consuming less than 10 mW at 3V. Our wafer-level test and 

measurement results show the full functionality of the 

fabricated arrWNN FlexICs validated against the simulation. 

Keywords—machine learning, arrhythmia, FlexIC, weightless 

neural networks and ECG patch 

I. INTRODUCTION 

Over the course of the last two decades, flexible 
electronics has evolved into a mature platform, delivering 
low-cost, slim, flexible, and conformable devices. The 
emergence of ultra-cost FlexIC technology [15][16] from 
Pragmatic has opened doors to a plethora of potential 
applications within the medical field, impacting various 
aspects of healthcare delivery and individual well-being. This 
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paper investigates the application of FlexIC technology in 
arrhythmia detection in cardiology demonstrating the 
potential of implementing area-efficient neural networks 
(NNs) as flexible chips for real-time detection of irregular 
heart rhythm conditions. 

Deep neural networks (DNNs) are compute and memory 
intensive algorithms difficult to be implemented in hardware 
for resource-constrained applications such as smart-packaging 
and healthcare patches. Weightless neural networks (WNNs) 
[1][2][3][4][5] offer a key advantage in terms of their 
hardware efficiency because they require fewer computational 
resources and no memory for weight storage. Thus, this makes 
WNNs an excellent candidate for the FlexIC technology that 
currently has some technology constraints such as larger 
device geometries, lack of large on-chip memories and the 
limited scale of integration. However, it has certain qualities 
that cannot be matched by the silicon chips such as low-cost 
materials, low-capex and low-carbon footprint fabrication, 
thinness and physical flexibility. In particular, the physical 
flexibility is a desirable feature for wearable devices such as 
ECG patches.  

In this paper, we propose a WNN specifically designed to 
detect arrhythmia from ECG data (arrWNN). arrWNN is then 
implemented as an application specific integrated circuit and 



fabricated as a FlexIC, which makes it the first arrhythmia 
detection NN hardware fabricated as a FlexIC. 

II. BACKGROUND AND RELATED WORK 

Cardiovascular diseases, with a significant proportion 
attributed to arrhythmias, continue to pose a substantial global 
health burden. According to the World Health Organization 
(WHO), cardiovascular diseases are the leading cause of death 
worldwide, accounting for 32% of all global deaths in 2019. 
Arrhythmias, characterized by abnormal heart rhythms, 
contribute significantly to this alarming statistic. Timely 
identification of arrhythmias allows for the implementation of 
appropriate interventions, reducing the risk of morbidity, 
hospitalization, and mortality. Continuous monitoring over an 
extended period allows for the identification of intermittent or 
asymptomatic arrhythmias that may go undetected during 
short-term assessments. 

There have been prior works in detecting arrhythmia using 
NNs, however, these NNs are computationally intensive and 
demand large on-chip memory. Some were implemented on 
FPGAs [6][7][8] and some as ASICs [9][10]. However, these 
NN models are too complex to fabricate in the FlexIC 
technology. Recent advances in edge inferencing using WNN 
[2][3][4][5] yield an area-efficient methodology to create 
lightweight neural networks that can be fabricated as FlexIC. 
There has been a prior work by Ozer et al [17] that developed 
a very small binary NN as a FlexIC targeting an odour 
recognition application rather than arrhythmia detection. Ozer 
et al [19] also develop a FlexIC detecting atrial fibrillation 
(i.e., a type of arrhythmia) events but the atrial fibrillation 
detecting FlexIC was not based on a machine learning model. 

WNNs rely on value lookups implemented using RAMs 
or look up tables (LUTs) instead of Multiply-Accumulate 
operations [1][11], and have shown success for edge 
inferencing [2][3][4][5]. LUTs can capture a variety of non-
linear functions, and NNs built with them can learn patterns 
with few parameters. WiSARD [1], an early WNN, has been 
shown in [12] to have a large VC dimension best suited to 
classifier tasks, where inputs are partitioned into different 
categories. It uses a sub-model called discriminator for each 
class created for each output category, and these 
discriminators are composed of small RAM nodes [1][3]. 
During inference, the outputs of the RAM nodes in each 
discriminator are summed, and the index of the discriminator 
with the strongest response is the predicted output. Recent 
research [3][5][13] have demonstrated that WNNs and their 
variations are effective for energy-efficient edge applications. 

III. ARRWNN DESIGN 

A. Model Development 

We use the MIT-BIH Arrhythmia Database [18] for 
developing the arrWNN model and evaluating the 
performance of its hardware implementation fabricated as a 
FlexIC. The database comprises 48 half-hourly excerpts 
extracted from 2-channel ECG recordings obtained from 47 
subjects from 23 recordings representing routine clinical 
scenarios alongside 25 recordings featuring arrhythmias. The 
data are sampled at a rate of 360 Hz per channel with an 11-
bit resolution in a 10-mV range. The database labels each 
heartbeat as either normal or one of 18 arrhythmia types, but 
we reduce the number of classes into two: Normal versus 
Arrhythmia (all types of arrhythmia considered as a single 

class) to simplify the arrWNN model and its hardware 
implementation. 

The arrhythmia detection pipeline is shown in Fig. 1a. The 
ECG signal is pre-processed by an analog frontend and then 
converted into a digital signal using an analog-to-digital 
converter. Next, a bandpass filter similar to the one used in the 
Pan-Tompkins QRS detection algorithm [14] to filter the 
noise. Filtered digital data is then encoded into a unary 
(thermometer) format and mapped into 8-bit addresses to 
access the WNN model where arrhythmia is predicted. 

In developing the arrWNN model, we build upon the 
methodologies presented in LogicWiSARD [2] and COIN [4]. 
These architectures convert LUTs to equivalent function 
minterms, so no memory storage for weights is required. 
To reduce the number of pins used in the arrWNN FlexIC, we 
feed inputs to the FlexIC in a serial manner. Hence, inside the 
FlexIC, we convert the serial input bit stream into an 8-bit 
parallel format. Then, the logic function 
minterms corresponding to the model using the COIN training 
methodology are implemented. The model uses 741 
minterms. During inference, corresponding minterm groups 
are selected using a multiplexer for each input tuple, and up-
down counters are employed to adjust the score of each class. 
The argMax determines the predicted class with the highest 
score. 

We conduct 50 iterations of Monte Carlo cross-validation 
to test the robustness of our WNN model. We select the best 
model whose AUC (Area Under the Curve) is closest to the 
mean AUC of all iterations. Also, we adopt a "leave-some-
patients-out" strategy and stratify cross-validation to mitigate 
biases arising from patient data overlap and unfair 
partitioning. Despite the inherent imbalance in the dataset, we 
maintain a representative distribution of classes. The Monte 
Carlo cross-validation results show a mean accuracy of 0.8604 

with a variance of 0.0038, and a mean AUC of 0.8429. Thus, 
the arrWNN model has an overall accuracy of 0.8827 with a 
sensitivity of 0.6862 and a specificity of 0.9983 achieving 
AUC of 0.8422. 

B. Hardware Design and Implementation 

arrWNN leverages Pragmatic’s FlexIC technology of 
0.6µm n-type metal-oxide thin-film transistor technology that 
uses indium-gallium-zinc-oxide (IGZO) and resistors to 
fabricate flexible chips on a 200 mm polyimide wafer.  

 
Fig. 1 (a) Arrhythmia detection pipeline showing the arrWNN 
implemented as an FlexIC (b) Microarchitecture of arrWNN 



The pre-trained arrWNN model is converted to Verilog. 
Fig. 1b illustrates the major blocks in the microarchitecture of 
arrWNN such as serial to parallel converter, function min-
terms, up-down counters and the argMax to determine the 
counter with the highest count (i.e., the predicted class). Logic 
synthesis converts the design in Verilog into a gate-level 
netlist, and optimizations are applied to reduce die area while 
ensuring logical correctness. Pragmatic’s 0.6µm FlexIC PDK 
and the standard cell library are used for developing the 
arrWNN FlexIC. Complex logic cells such as OR-AND-
Invert and AND-OR-Invert help reduce area and timing 
critical paths. The design is synthesised and timed for a clock 
frequency of 100 kHz. Timing analysis tools are used to 
ensure that the gate-level netlist meets these constraints. 
Formal verification and simulation are employed to detect and 
correct design errors. The logic synthesis is followed by Place 
and Route, when the physical placement of logic gates and the 
routing of interconnections is determined. Effective 
floorplanning, assigning logic gates to predefined locations on 
the chip, is followed by optimization algorithms to determine 
the optimal positions for these gates, ensuring that wires are 
as short as possible to meet timing constraints and minimize 
signal delay. A well-designed clock tree is used to minimize 
clock skew and optimize clock signal delivery.  

A well-designed power grid reduces voltage drop and 
supports low-power operation. During Route, ensuring a 
reliable and efficient power grid is crucial. In the initial stages 
of Place and Route, meticulous power planning is undertaken 
to define the layout of the power grid. This process 
encompasses the strategic positioning of decap cells, which 
are miniature capacitors strategically placed to alleviate 
voltage fluctuations and guarantee a stable power supply. Cell 
routing density determines the signal routing congestion and 
final area. A balanced and calculated approach is applied to 
avoid timing violations. Design Rule Checking (DRC) and 
Layout-versus-Schematic (LVS) are performed to verify that 
the physical layout matches the original design. Then, the 
physical layout is converted to GDSII format for tape-out and 
fabrication. The physical implementation results show that the 
arrWNN FlexIC has a maximum clock frequency of 100 kHz, 
a NAND2-equivalent gatecount of 5,706 with a core area 
(excluding the chip-level power grid, pads and IOs) of 24 mm2 
and consume 9.4 mW power at 3V. 

C. FlexIC Fabrication and Test 

Fig. 2a shows the die photo of the arrWNN FlexIC 
fabricated on a 200 mm polyimide wafer. Two flexible wafers 
are fabricated and all arrWNN FlexICs in the wafers undergo 
rigorous testing to ensure functionality. A probe card is used 

to test the arrWNN FlexICs on the flexible wafer as shown in 
Fig. 2b. Due to high capacitive loading in the test equipment, 
the maximum clock frequency generated by the test harness is 
6.25 kHz, so the arrWNN FlexICs are operated at a clock 
frequency of 6.25 kHz. 

The tests involve 306 inference test vectors created from 
the ECG datasets in the MIT-BIH Arrhythmia Database. The 
test results exactly match the simulation results indicating the 
full functionality. Fig. 2c visualizes these results 
demonstrating accurate synchronization between input and 
output signals throughout the test sequence. This includes the 
final stages of the input data stream (sink_valid and addr) and 
their corresponding outputs (source_valid and 
predicted_class). The slow rise time observed on the 
predicted_class signal is attributed to the combined effect of 
capacitive loading from the test equipment cable and the 
limited drive strength of the output buffers on the chip. 

IV. CONCLUSION 

 In this paper, we have presented “arrWNN” - an 
innovative machine learning network designed for arrhythmia 
detection, harnessing the computational efficiency of 
weightless neural networks and the ultra-cost and physical 
flexibility of the FlexIC technology. We have developed the 
arrWNN model, designed and implemented its hardware, 
fabricated it as a FlexIC. The mean accuracy of the arrWNN 
model has been around 89%. When physically implemented 
as a FlexIC, arrWNN has a core area of 24 mm2, which is 
equivalent to a NAND2 gatecount of 5,706 consuming less 
than 10 mW at 3V. Our test and measurement results have 
shown the full functionality of arrWNN operating at a clock 
frequency of 6.25 kHz. arrWNN will enable a disruptive class 
of arrhythmia detection hardware for emerging low-cost 
wearable ECG patches. 
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Fig. 2 (a) Die photograph of the arrWNN FlexIC of a 9x6mm pad layout with 60 pins, (b) Flexible wafer containing arrWNN FlexICs tested on a wafer 
probe station, (c) Waveform of the tested arrWNN FlexIC, displaying the synchronization of input and output signals during a test sequence showing the 

final stages of the input data stream (sink_valid and addr) and the inference outputs (source_valid and predicted_class). 
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